
Noise-SDR: Arbitrary Modulation
of Electromagnetic Noise from Unprivileged

Software and Its Impact on Emission Security
Giovanni Camurati, Aurélien Francillon

Software and System Security Group
EURECOM

Sophia-Antipolis, France
e-mail: name.surname@eurecom.fr

Abstract—Electronic devices generate electromagnetic noise, also
known as EM leakage when the noise leaks information. Many
recent research papers exploit the fact that software activity can
exploit this leakage to generate radio signals. This process breaks the
isolation between simple unprivileged code and the radio spectrum,
letting an attacker generate physical radio signals without accessing
any radio interface. Previous work has discovered many leakage
sources and covert communication channels, which generally use
simple modulation schemes. However, a fundamental research
question has been left unexplored: to which point can attackers shape
electromagnetic leakage into signals of their choice?

The answer to this question has an important security impact
that goes beyond specific attacks or platforms. Indeed, arbitrary
signal modulation is a useful primitive. This would allow attackers
to use advanced modulations and better exploit the channel (leakage)
capacity, for example, to establish advanced communication channels,
or to inject malicious signals into victim receivers. At a first analysis,
arbitrary modulation seems impossible: software has limited control
on the leakage and existing attacks are therefore constrained to on-off
keying or frequency-shift keying.

In this paper, we demonstrate that shaping arbitrary signals out
of electromagnetic noise is possible from unprivileged software. For
this we leverage fully-digital radio techniques and call our method
Noise-SDR because, similarly to a software-defined radio, it can
transmit a generic signal synthesized in software. We demonstrate
our approach with a practical implementation with DRAM accesses
on ARMv7-A, ARMv8-A, x86-64, and MIPS32. We evaluate it on
different types of devices, including smartphones, a laptop, a desktop,
and a Linux-based IoT device. Although power, frequency and
bandwidth are constrained by the properties of the leakage, we
present several case studies, including transmission with advanced
protocols, device tracking, and signal injection.

I. INTRODUCTION

Software often stimulates and modulates the electromagnetic
emissions of the electronic device on which it is running. From
a security point of view, this breaks the logic isolation between
unprivileged software and the physical world. An attacker able to
intentionally control this process can interact with the physical world
without having any explicit access to peripherals or communication
interfaces. This idea was first introduced in 1998 under the name of
Soft-TEMPEST [1], [2], though the authors mention earlier records
of this principle for playful applications. Soft-TEMPEST consists in
displaying a specially-crafted pattern on the screen to modulate the
video signal. The resulting leakage at the frequency of AM radio

can be easily picked with a standard handheld device. This is useful
to exfiltrate data from a compromised device, or to intentionally
add noise to the leakage from the screen to prevent eavesdropping.

Over the years, a vast literature [3]–[28] in the field of Emission
Security (EmSec) has studied how to exfiltrate data from air-gapped
networks using software-controlled emissions. There are many
different leakage sources (e.g., electromagnetic, magnetic, electrical,
optical, vibrational, acoustic, thermal), but their modulation is
challenging because:

Challenge 1: The carrier is a harmonic of a leakage
whose properties (e.g., power, frequency, phase, stability)
are generally not under control of unprivileged software.1

Challenge 2: In general, software can only cross-
modulate a binary pattern on top of the leakage (e.g.,
alternating memory accesses and inactivity to turn the
emissions on and off).
Challenge 3: Timer sources that control the software
pattern, which modulate the leakage, are not comparable
to those available to dedicated radio circuits.

Under these conditions, only simple modulation schemes such as
On-Off Keying (OOK) and Frequency Shift Keying (FSK) are easy
to implement. They are used by the majority of covert channels,
with simple custom protocols. A few exceptions explore more
advanced modulations, including multiple OOK subcarriers using
multiple threads [11], and LoRa-like Chirp Spread Spectrum (CSS)
approximated with FSK [8].

However, the ability to go beyond simple modulation schemes
(i.e., to achieve arbitrary modulation of electromagnetic noise) could
have a significant impact on emission security. Indeed, shaping
arbitrary radio signals from unprivileged software can have many
applications, from establishing advanced radio links to injecting
signals into other victim receivers. For this reason, in this paper, we
formulate and answer the following two research questions:

Question 1: Is it theoretically and practically possible
to generate arbitrary radio signals using the noise
produced by unprivileged software?
Question 2: What are the impact and applications of
arbitrary modulation on emission security?

1Using output peripherals (e.g., the speakers in [25]) is beyond our goals.

1193

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Giovanni Camurati. Under license to IEEE.
DOI 10.1109/SP46214.2022.00018

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

67

TABLE I
COMPARISON OF SOFTWARE-CONTROLLED ELECTROMAGNETIC AND MAGNETIC LEAKAGE

Name Type Physical layer modulation Protocol Applications
Noise-SDR (this paper) EM Arbitrary (RF-PWM) Arbitrary analog or digital protocols Advanced software-defined radio transmissions
Soft-TEMPEST [1], [2] EM AM, FSK Custom Exfiltration (display to AM radio)
AirHopper [3], [4] EM FSK (A-FSK, DTMF) Custom (raw or packet) Exfiltration (computer screen to smartphone)
USBee [5] EM FSK (B-FSK) Custom Exfiltration (USB bus to SDR)
GSMem [6] EM OOK (B-ASK) Custom Exfiltration (computer to mobile phone)
BitJabber [7] EM OOK, FSK (M-FSK) Custom Exfiltration (computer to SDR)
EMLora [8] EM Approximated CSS Custom Lora-like Exfiltration (computer to SDR)

AIR-FI [9] EM OOK Custom Exfiltration (computer to SDR or WiFi cards
that expose physical layer radio measurements)

MAGNETO [10] M OOK, FSK (B-FSK) Custom Exfiltration (computer to smartphone)

ODINI [11] M OOK (ASK, OOK-OFDM
using multiple cores), FSK Custom (including FEC) Exfiltration (computer to magnetic bug)

Matyunin et al. [12] M OOK, FSK (‘period based’) Custom Exfiltration (laptop to smartphone)

a) Generating arbitrary radio modulation: To provide a
positive answer to Question 1 despite the aforementioned chal-
lenges, we take an approach to modulation that is radically different
from previous work. Like previous work, we are limited to binary
modulation of the leakage (e.g., ‘on’ and ‘off’ symbols) using simple
patterns (e.g., ‘intense memory accesses’ vs. ‘inactivity’). Unlike
previous work, we do not map these symbols directly with the data
to transmit (e.g., ‘1’→ ‘on’ vs. ‘0’→ ‘off’). Instead, we add two
layers of abstraction that bridge the gap with arbitrary modulation:

Abstraction 1: Using a software-defined approach, the
application data to transmit is mapped to the baseband
signal of a given radio protocol.
Abstraction 2: Using a fully-digital radio approach,
the generic multi-bit baseband signal is upconverted to
intermediate frequency and approximated with a binary
sequence (that can be easily modulated on the leakage
in a conventional way).

Thanks to Abstraction 1, attackers can easily implement, or
reuse existing, generic radio protocols, from the upper layers to
the physical layer. Thanks to Abstraction 2, attackers can control
the amplitude, frequency, and phase of a band-pass signal at an
intermediate frequency of their choice. Like in a superheterodyne
transmitter, this signal is modulated on a leakage at radio frequency.
We call this method Noise-SDR, as it uses a software-defined
fully-digital approach to shape arbitrary radio signals out of noise
from unprivileged software. The fully-digital method that is best
suited for this context is Radio-Frequency Pulse-Width Modulation
(RF-PWM) [29]–[33].

We demonstrate that Noise-SDR is a generic and practical
technique with practical implementations on modern ARM
smartphones, IoT devices, Laptop and Desktop computers. We start
with controlling DRAM accesses as an electromagnetic leakage
source, because they have been proven to be effective [7], [8].
However, any leakage source that can be controlled by software
in a binary way can be used.

Although considerably more flexible than classic leakage-based
transmitters, Noise-SDR has some hardware constraints. Indeed,
the time resolution at which the leakage can be switched on and
off affects the resolution, intermediate frequency and bandwidth
of the radio signal (e.g, tens of kHz on ARMv7-A and a few MHz

on ARMv8-A). In addition, like classic leakage-based transmitters,
the frequency range is limited to the harmonics of the leakage
(e.g., all the multiples of an 800 MHz DRAM clock). However,
in modern devices the leakage frequencies are high and might
overlap with other radio protocols [3], [6], [9]. It is natural that
leakage-based transmitters have more limitations than dedicated
radio hardware. However, by implementing the physical layer in
software, Noise-SDR pushes the limits of what can be achieved with
electromagnetic noise. The software implementation of the physical
layer is what defines a software-defined radio as such, and all
software-defined radio have limitations (e.g., frequency, bandwidth,
transmission and/or reception) that depend on their cost and purpose.

b) Noise-SDR impact and security implications: Regarding
Question 2, Noise-SDR opens new opportunities to establish radio
links with advanced properties and good performance. Indeed,
advanced techniques that optimize transmission for different
goals (e.g., distance, data rate) become readily available, making
exfiltration more practical and effective. The mobile nature of
smartphones leads to additional opportunities, for example, device
tracking. Moreover, smartphones carry many radio transceivers, and
sensors. Attackers could use Noise-SDR to jam, spoof, or otherwise
affect one of these components. Table I compares Noise-SDR with
existing (electro)magnetic channels.

c) Contributions: We make the following contributions:
• A generic approach for arbitrary noise modulation: We

present Noise-SDR, a software-defined fully-digital approach
to shape generic radio signals out of the noise produced by
unprivileged software (though with some limitations on the
available power, frequency, and bandwidth).

• A practical implementation: We demonstrate a practical
implementation on several platforms and architectures
(ARMv7-A, ARMv8-A, x86-64, and MIPS32), using DRAM
accesses as building block to generate electromagnetic leakage.

• Evaluation and Security impact: We show the opportunities
brought by Noise-SDR, with experiments on many devices:

– Advanced transmissions: Performant transmissions
with advanced techniques (e.g., symbol shaping, spread
spectrum, multi-carriers, interleaving) and state-of-the-art
protocols (e.g., AM, FM, SSTV, CW, RTTY, MFSK,
PSK, multi-carrier PSK, THOR, HamDRM, LoRa,

1194

RadioRadio

Radio spectrum

Software Defined
Radio

Traditional
Radio

Baseband:
modulation of

signals

Radio front-end:
generation of
radio signals

Protocol layer

RF signals

Upper
Layers

RF signals

DataData

Upper
Layers

Physical
Layer

Physical
Layer

Conventional analog radio front-end

Fully-digital radio front-end

Filtering

Software RF-PWM + Leakage radio front end
 (this work)

Bandpass
1-bit

Coding
SMPA BPF

RF-PWM

BPF PADAC

FleakFif

Power
Amplifier

Switched-Mode
Power Amplifier

Band-Pass
Filter

Digital-to-
Analog
Converter

Analog Hardware

Software
Digital Hardware

Fig. 1. Overview of different radio architectures. A conventional radio implements
the physical layer in hardware, whereas an SDR implements it in software. A
conventional radio front-end is made of analog/RF components, whereas a fully-
digital radio uses digital hardware thanks to one-bit coding. Finally Noise-SDR (this
paper) implements both the physical layer and one-bit coding in software, and uses the
electromagnetic leakage of the underlying hardware to generate physical radio signals.

GLONASS C/A), each optimized for different goals.
– Applications beyond exfiltration: Case studies for

possible applications, including exfiltration with different
protocols, device tracking using FT4 below the noise
floor (up to 5 m) with a Samsung Galaxy S5 Mini, and
remote control of a Tytera UD MV 380 UHF receiver.

II. BACKGROUND

A. Software-Defined Radios
A radio transmits information using electromagnetic signals. The

physical layer of a protocol defines how these signals are processed
to transmit and receive data. In the past, a given device implemented
a fixed physical layer using dedicated hardware. Nowadays, radio
hardware is often more flexible thanks to its integration with
software. In particular, the Software Defined Radio (SDR) Forum2

defines an SDR as:
Software Defined Radio (SDR): “Radio in which some
or all of the physical layer functions are software
defined” [34].

This means that all or part of the physical layer is implemented in
software. For example, baseband signals are generated in software
starting from the data to send. SDRs should not be confused with
Software Controlled Radios, where software simply controls the
parameters of operation of the physical layer. Figure 1 compares an
SDR with a traditional radio. Note that the choice of modulation has
a fundamental impact on the properties of the channel (e.g., speed,
distance, bandwidth, spectral efficiency, resilience to different types
of noise).

The advent of SDRs has had a huge impact on security. Indeed,
attackers with an SDR gain a flexible and relatively inexpensive
access to the radio spectrum both in reception and transmission.
SDRs are particularly useful to generate rogue signals to inject in
other receivers [35], [36], or to flexibly craft packets of any protocol,
including proprietary ones [37].

2Now Wireless Innovation Forum, it is an group of industrial, academic, and
governmental actors interested in advancing wireless technologies including
Software Defined Radios (SDRs) https://www.wirelessinnovation.org.

Phase change

t

f

Baseband component
Fundamental componentA

AM FM

AM FM PM

A

Time domain Frequency domain

Amplitude change
Frequency change

f

F

f0-B f0+B

Cosine

Square
Pulse phase change

t

Pulse widh change
Pulse frequency change F

f0 3f0

Harmonics

2f0

t

A Approximated signal

f

F

f0-B f0+B

Band-pass filter

Square
Filtered

PM

AM FM PM

Fig. 2. Sinusoidal band-pass signal (top) vs. RF-PWM square wave signal (middle)
vs. Filtered RF-PWM signal (down). For the sake of clarity, we show simple AM, FM,
and PM in sequence, one after the other. Figure 3 shows a more complex example.

B. Fully-Digital Radios

A conventional radio transmitter is made of several analog
radio-frequency components that modulate the baseband signal
on a radio carrier. Unfortunately, this type of components is hard
to integrate with other digital parts of the system and might not
be energy efficient. For this reason, many research efforts have
been spent with the goal of reducing their number to the minimum,
leading to fully-digital radios:

Fully-Digital Radios: Radios implemented with digital
components, mostly without analog blocks.

There are many strategies to implement such radios. In general, they
are based on one-bit coding to generate radio signals:

One-Bit Coding: A set of techniques to approximate a
generic multi-bit signal with a (1-bit) square wave.

Figure 1 compares the working principle of conventional and fully-
digital radios. The conventional radio first converts the baseband
signal to the analog physical domain, then it mixes it with the
radio-frequency carrier, and finally amplifies it with a linear power
amplifier [38]. In contrast, the fully-digital radio first generates a
modulated square wave carrier using band-pass one-bit coding, then
amplifies the resulting binary signal with a switching amplifier [30].
This can be made more energy efficient than the linear counterpart.
The final filtering stage cancels the noise outside the band of interest.

One-bit coding is possible because the error produced by the
approximation is kept outside of the frequency band of interest,
where it can be easily filtered out. In this paper we focus on
RF-PWM, that we describe in the following.

C. Radio-Frequency Pulse-Width Modulation (RF-PWM)

Figure 2 explains how a RF-PWM [29]–[33] square wave can
approximate a generic band-pass signal used in radio communi-
cations. The generic band-pass signal, shown in the top plot, is

1195

Frequency (Hz)

Samples

Am
pl

itu
de

PS
D

 (d
B/

H
z)

RF-PWM

RF-PWM

Original

Original

f0-B f0+B

3X PSK250R

Fig. 3. Example of RF-PWM in the time (top) and frequency (bottom) domain. In the
band of interest, the Power Spectral Density (PSD) of RF-PWM signal matches the
original sinusoidal signal. The modulation is 3X PSK250R (three PSK subcarriers).

a sinusoidal wave at frequency f0, with instantaneous changes in
amplitude a(t) and phase θ(t). In the frequency domain, it occupies
a bandwidth 2B from f0−B to f0+B. It can be written as:

x(t)=a(t)cos(2πf0t+θ(t)) (1)

The RF-PWM signal, shown in the middle plot, is a generic
square wave with amplitude 1 or 0, whose pulses show instantaneous
changes in width, frequency, and phase. The square wave has funda-
mental frequency f0, phase θ(t), and duty-cycle δ(t) (ratio between
pulse width and pulse period) set to asin(a(t))

π . Such square wave
can be decomposed into an infinite sum of components as follows:

baseband=δ(t)

fundamental=
2

π
a(t)cos(2πf0t+θ(t))

harmonics=

k=+∞∑
k=2

2

kπ
sin(kπδ(t))cos(2πkf0t+kθ(t))

(2)

It is clear that the fundamental component of the RF-PWM square
wave has the same form as the generic band-pass signal that we want
to approximate. If the fundamental frequency is sufficiently larger
than the bandwidth, the baseband component and the harmonics are
well separated from the fundamental and can be ignored. Indeed,
a simple band-pass filter can select the fundamental component,
producing the desired sinusoidal band-pass signal, shown in the
lower plot. Figure 3 shows a practical example using a pass-band
signal with three orthogonal subcarriers, each modulated in phase
(3X PSK250R), clearly visible around the fundamental frequency
at 4 kHz. In the frequency band of interest the RF-PWM is clearly
a good approximation of the original sinusoidal wave, while the
baseband and harmonics of the square wave can be disregarded as
out-of-band noise. In summary, we can define RF-PWM as follows:

RF-PWM: A band-pass one-bit coding technique
that represents a generic band-pass signal as the
fundamental component of a square wave, ignoring the
other components as out-of-band noise.

The RF-PWM technique should not be confused with (baseband)
Pulse Width Modulation (PWM). The PWM method consists in
controlling the amplitude of the baseband component by changing
the duty cycle, ignoring the fundamental and the harmonics.

RF-PWM advantage: In RF-PWM the frequency of the square
wave is the same as the frequency of the desired signal (i.e.,
frfpwm=f0). This is easier to implement than the high-frequency
square wave required by other methods such as PWM and
Delta-Sigma (∆Σ) (e.g., fpwm � f0). For example, RF-PWM
requires a lower sampling rate.

Importance of time resolution: In any one-bit coding scheme,
the higher the time resolution at which the square wave is defined,
the higher the accuracy at which the amplitude, phase, and
frequency of the desired signal are represented. More details and
a numerical example for RF-PWM are given in Appendix B.

D. Software-Controlled (Electromagnetic) Emissions

As we have seen in Section I, an extensive literature in Emission
Security (e.g., [3]–[28]) has discovered a wide range of emissions
that can be controlled from unprivileged software. We could
generalize them as the following attack primitive:

Software-Controlled Leakage: An unintended physical
leakage from an electronic device, with two properties:
• Carrier(s): The physical leakage is made of one or

more carriers (e.g., the harmonics of a high-speed
clock) that propagate from the device and can be
received by an attacker.

• Software Modulation: Unprivileged software can,
through a certain physical effect, modulate the
carriers (generally in a very simple way).

Electromagnetic carriers: Our approach is general to any type
of emission, but we focus on electromagnetic leakages. In general,
high-speed clocks (e.g., CPU clock, DRAM clock) and data lines
(e.g., HDMI, USB, Ethernet) are strong sources of leakage. In
general, they are digital signals that present several sinusoidal
harmonics at the multiples of the fundamental frequency. An
in-depth modeling of digital signals, their electromagnetic emissions,
and their interference with other radio systems is given in [39]. To
reduce interference, some systems (e.g., DRAM used in desktop
computers) use Spread Spectrum Clock (SSC). In this case, the
clock frequency follows a chirp, reducing the peak of the emissions
as energy is spread over a larger frequency range. SSC emissions
can be still effectively used as carriers using two possible methods:
(i) despreading the clock at reception [7], (ii) observing that a SSC
clock can be modeled as a finite set of frequency components each
acting as a normal subcarrier [8]. Besides unintended emissions,
other intentional radio signals might act as carriers [40]–[43].

Minimal unprivileged modulation: In general, unprivileged
code has a very minimal control on the underlying leakage. In the
simplest case, the software can alternate one operation that triggers
strong emissions with a period of inactivity, leading to a binary mod-
ulation of the amplitude of the carrier. A typical example are intense
accesses to DRAM on x86-64/AMD machines [6]–[8], [44]. While
this method is likely portable to other architectures, we are not aware
of any covert channel designed for devices such as smartphones with
the ARM architecture. Similarly, an HDMI video signal can be mod-
ulated with a pattern of pixels of two different colors [1], [45]. An ex-
tensive analysis of how different instructions modulate leakage carri-
ers was conducted in several studies (e.g, [46]–[50]). These extensive

1196

Fleak

Carrier(s)
E.g., harmonics
of DRAM clock

Some physical
cross-modulation

effect
"On"

"Off"

while(0 < t < T/2):
 somethingLeaky()
 //e.g., DRAM access

while(T/2 < t < T):
 doNothing()

Frequency

Time

Fleak

Fleak+1/T1

Fleak-1/T1

Fleak+1/T2

Fleak-1/T2

Fleak+1/Tn

Fleak-1/Tn

1 0 1 1 0

0

1 1 1 1 1

0

1 0 1

"OOK" "FSK" "CSS-Like"

while(0 < t < Tsymbol)

Fig. 4. Generalizing the results of previous work, we model software as a simple OOK modulator that cross-modulates a square wave on an existing leakage. Controlling
the timings of the square wave leads to OOK, FSK, and CSS-Like modulation.

experimental analyses show how software-modulated leakages prop-
agate at a very large distance from a large and diverse set of devices.

A simple model: Figure 4 shows a simple generalization of how
previous work achieves simple modulation of a leakage carrier. By
alternating a leaky operation and inactivity with period T , software
cross-modulates a square wave on the leakage Fl, producing a
component at Fl ± 1/T (and harmonics). With this primitive,
software can use: (i) OOK modulation (e.g., [6]) by turning the
component on or off for the duration of a symbol Tsymbol, (ii) FSK
(e.g., [10]) by using two different periods T1 and T2 to encode ones
and zeros, (iii) CSS-Like (e.g., [8]) by approximating a chirp with
multiple values of T and encoding ones and zeros in the phase
of the chirp. Overall, we can assume that an attacker is able to
cross-modulate a square wave on top of an existing leakage. In other
words, the attacker has access to a binary amplitude modulator.

III. THE Noise-SDR APPROACH

In this paper, we address the problem of crafting arbitrary signals
from the noise produced by unprivileged software (Question 1).
We propose Noise-SDR, a software-defined fully-digital approach
that achieves arbitrary modulation, solving the challenges presented
in Section I. Noise-SDR is shown in Figure 5, which should
be compared with the generalization of previous work shown
in Figure 4. Both previous work and Noise-SDR have a Radio
Frequency (RF) stage that uses a special software pattern (e.g.,
intense memory accesses) to cross-modulate a square wave on an
electromagnetic leakage. To achieve arbitrary modulation, Noise-
SDR adds two levels of abstraction (Stages 1-2) to conventional
leakage-based transmitters (Stage 3), with the following architecture:

• (Stage 1) Software-Defined Baseband (BB): The generic
baseband signal of a given protocol is generated in software.
Many existing libraries can be leveraged for this scope.

• (Stage 2) Software Fully-Digital Intermediate Frequency
(IF): The generic baseband signal is embedded in the
fundamental component of a square wave using RF-PWM,
a pass-band one-bit coding technique used by fully-digital
radios. Also this step is entirely performed in software.

• (Stage 3) Electromagnetic RF Leakage: The RF-PWM
square wave is modulated on an electromagnetic leakage
(e.g., harmonics of the DRAM clock) using a special software
pattern (e.g., intense memory accesses followed by inactivity).

This architecture solves all the main challenges presented in
Section I:

• Solution to challenge 1: In general, software does not control
the frequency and phase of the underlying leakage source.
For example, it does not control the clock of the DRAM. To
solve this problem we rely on the IF stage. The choice of the
intermediate frequency FIF gives us some freedom in the
choice of the carrier fc =Fleak+FIF . In addition, we gain
control on the phase θ(t) of the output signal, which lets us
implement frequency or phase modulation.

• Solution to challenge 2: In general, software is only able to
cross-modulate a square wave on the leakage (e.g., by alternat-
ing intense activity with inactivity). Instead, we want to gener-
ate an arbitrary sinusoidal band-pass signal modulated in ampli-
tude, frequency, and phase. To solve this problem, we leverage
band-pass one-bit coding. In particular, we use RF-PWM,
which represents such signal as the fundamental component of
a square wave, ignoring the harmonics as out-of-band noise.

• Solution to challenge 3: In general, timer sources available
to software have lower accuracy and resolution than those
available to dedicated radio hardware. In addition, one-bit
coding techniques generally require oversampling and a good
time resolution. To address this problem, we chose to use
RF-PWM. Compared to other techniques (e.g., PWM, ∆Σ)
it works with a square wave at the frequency of the signal
that we want to generate. This lowers the requirements in
terms of accuracy and resolution. For example, it has weaker
requirements on the sampling rate.

With this architecture, Noise-SDR achieves arbitrary modulation.
Figure 5 shows a few non-exhaustive examples. They include
analog and digital protocols, using single or multiple subcarriers,
amplitude frequency or phase modulation, or even spread spectrum
(based on chirps or direct spreading).

Threat model: Noise-SDR is a general approach not tied to a
specific threat model, but it has some minimum requirements:
• Leakage with minimal control: The target device should

have a leakage source that software can cross-modulate with
a square wave (i.e., apply binary changes to the amplitude like
in OOK). As we have seen in Section I and Section II this is a
reasonable assumption as there are many well known leakage
sources of this type.

• Timer source: Software should have access to a relatively
accurate time source. This is often a reasonable assumption
(e.g., in native code on Linux, Windows, and Android). When
this is not the case, an extensive literature in the field of
micro-architectural attacks has shown how to implement

1197

Upper
Layers

Physical
Layer

FIF

Fleak

Carrier(s)
E.g., harmonics of

DRAM clock

 Cross-modulation

Stage 1 (BB)
Software-Defined

Stage 2 (IF)
Software-Defined

Fully-Digital

Stage 3 (RF)
EM Leakage

Produced by Software

Data

"On"

"Off"

Bandpass
1-bit

Coding

xRF(t)
Arbitrary

modulation

Frequency

Time

Fleak

Fleak+FIF

Fleak-FIF

Fleak+2FIF

Fleak-2FIF

AM
NBFM 2x

PSK25
0R

THOR22

MFSK LoRa

CSS
...A

ny

GLONASS

DSS

Out-of-band
"Noise"

Fig. 5. Overview of Noise-SDR (compare with previous work in Figure 4). With its software-defined fully-digital approach, Noise-SDR achieves arbitrary modulation (control
of the frequency FIF , amplitude a(t), and phase θ(t), of an arbitrary signal a(t)cos(2π(Fleak+FIF)t+θ(t)) at carrier frequency Fleak+FIF). The spectrogram
depicts a few (non-exhaustive) examples. See the evaluation for actual measurements (e.g., Figure 8, Figure 13).

accurate timers in other ways (e.g., [51]–[55]). For example,
the simplest method is to use a spinning counter.

• Software execution: Noise-SDR requires to execute code on
the target, but without any privilege, permission, or access to
any peripheral. Such code is normally assumed unable to trans-
mit radio signals, but with Noise-SDR it can establish advanced
radio communications. Previous work on exfiltration with un-
privileged code has similar requirements [6]–[8]. In Section IX
we will mention a possible relaxation of those requirements.

IV. IMPLEMENTATION

A. Fldigi-Noise-SDR

Architecture: Fldigi [56] is a popular SDR tool that supports a
wide range of amateur radio protocols, each optimized for different
applications (e.g., distance, speed, error correction, robustness to
a certain type of noise). In the Android version [57], a Java GUI
application wraps the native code. We integrated Fldigi with our code
for the RF-PWM and leakage stages, resulting in a standalone tool
that can run on ARMv7-A, ARMv8-A, x86-64, and MIPS32. The tool
is based on intense memory accesses to DRAM that modulate the
emissions of the DRAM clock, and it does not require privileges on
Linux, Windows, and Android. In our tool, Fldigi is used as a library
of modems to modulate the input data using the desired protocol.
Using this modular architecture, adding modulations and protocols
is straightforward (e.g., custom or ported from GNURadio).

Supported protocols: Fldigi-Noise-SDR supports the protocols
available with Fldigi for Android (e.g., CW [58], RTTY [59],
MFSK [60], PSK [61], THOR [62], Olivia [63]). A comparison
of their characteristics and performance is given in [64]. We also
added a simple LoRa-like CSS protocol similar to [8] and a real
LoRa implementation based on [37]. The supported modes use
several different modulation schemes, including On-Off Keying
(OOK), Binary Frequency Shift Keying (BFSK), M-ary Frequency
Shift Keying (MFSK), Offset Incremental Frequency Shift
Keying (IFK+), Phase Shift Keying (PSK), Orthogonal Frequency
Division Multiplexing (OFDM), and Chirp Spread Spectrum (CSS).
Many use advanced methods to work in challenging conditions,
including Forward Error Correction (FEC) and interleaving. Being
implemented in software, the physical layer has many configuration
options (e.g., bandwidth, bit rate, coding rate, symbol shaping). We
will provide more details in Section V.

Interface: For simplicity, we interface with the tool with a
command-line interface. For example, the command

> ./fldigi-noise
-sdr -i secret.txt -m MODE_3X_PSK250R -c 4000

modulates the content of the text file using three orthogonal PSK
subcarriers, generates the corresponding RF-PWM square wave
at an intermediate frequency of 4 kHz, and finally turns it into a
physical radio signal using a leakage. The same functions called
by the CLI tool could be easily exposed to other code, including
a Java application on Android.

RF-PWM: The algorithm to generate an RF-PWM square wave
is illustrated in Figure 6. The first step consists in generating a
modulated IF sinusoidal carrier in a conventional way, in this case
using Fldigi modems (see Appendix A for a simple explanation).
The second step consists in identifying all the periods of the
sinusoidal wave by looking at the zero crossings. They will
correspond to the periods of the RF-PWM square wave. The
amplitude of each period can be identified as well (e.g., as the
maximum over the period). The last step consists in computing the
pulse width for each period, by simply applying a pre-distortion to
the value of the amplitude (see Equation 2). The resultingThigh,i and
Ti that characterize the square wave are streamed to the next stage
(Stage 3 that controls the leakage). Being implemented in software,
this algorithm operates at discrete time with a sampling frequency of
Fs. In our context a sampling rate of Fs=80kHz is adapted to most
protocols and scenarios, but it can be easily changed. The listing of
our C++ implementation (Listing 1) is available in Appendix B.

Leakage: Our tool modulates the emissions of DRAM clock
(and its harmonics) using memory accesses. To generate the
RF-PWM square wave, we repeat intense memory accesses during
a pulse Thigh,i, followed by inactivity till the end of the period
Ti (time is measured at the ns resolution with clock gettime). On
x86-64/AMD, accessing DRAM is a proven method to generate
strong leakage [6], [7], [44] even in presence of SSC [8]. We
extend this approach to ARMv7-A and ARMv8-A smartphones using
similar yet different techniques. Like previous work on x86-64 [7],
[65], we take inspiration from Rowhammer attacks [66], [67] that
address the same problem of bypassing the cache for direct access
to DRAM. We also support MIPS32 used on a WiFi-enabled Linux
Module. In all cases the code does not require any privilege to run.
• x86-64: On x86-64, DRAM can be written directly using

1198

A

n/Fs

2

A

n/Fs

3

A

n/Fs

1

Fig. 6. Visualization of the algorithm to generate the RF-PWM signal. Sinusoidal
wave modulated in amplitude/frequency/phase (top). Duration and amplitude of each
period identified at the zero-crossings (middle). Corresponding RF-PWM square
wave (bottom), whose fundamental component matches the original sinusoidal wave.

stream instructions. Like [8], [44], we use mm stream si128
to trigger a leakage during Thigh,i.

• ARMv7-A: On ARMv7-A, unprivileged direct access to
DRAM is possible in Android with the ION allocator [66],
or from the GPU [55]. We empirically observed that simply
allocating and freeing a small chunk of memory with ION
produces a strong leakage. We use this to generate a leakage
during Thigh,i.

• ARMv8-A: On ARMv8-A, unprivileged direct access to
DRAM is possible with non-temporal and cache maintenance
instructions [67]. In particular, the DC CIVAC instruction
cleans and invalidates an address in data cache, so that a
following load accesses DRAM. We use this method produce
strong leakages during Thigh,i.

• MIPS32: On MIPS32, we alternate counter increments during
Thigh,i with sleeps, similarly to [44].

Code listings for these four architectures are shown in Appendix B.

B. Other Implementations Of Noise-SDR

Offline Noise-SDR: The leakage stage of Noise-SDR for a
given application can run alone on the target device, reading the
timings of the square wave from a precomputed file. Similarly
the RF-PWM stage can run alone to produce an RF-PWM square
wave from a generic baseband signal generated with another SDR
tool (e.g., GNURadio [68], Qsstv [69], FLDigi [56], WSJT-X [70]).
GNURadio is a generic framework (also available for Android [71])
for signal processing, which allows defining custom C++ and
Python blocks. The RF-PWM and leakage stages could be easily
added to signal processing flows this way. We demonstrate the
offline method for protocols such as FT4 [72], GLONASS C/A [73],
HamDRM [74], SSTV [75], AM [76], and NBFM [77] (but they
could be easily integrated into Fldigi-Noise-SDR, too).

Other leakage sources: Noise-SDR is not limited to using
the leakage produced by memory accesses to DRAM. We have
conducted preliminary experiments using other methods and
sources to generate the leakage. For example, (i) math operations
in JavaScript [44], and (ii) screens displaying pixels of different
color [1], [3], [45], [78], [79]. However, they are outside the scope
of this paper. Indeed, for sake of clarity we focus on one leakage
source (memory accesses on several architectures) to show the
novel idea of arbitrary modulation.

V. EXPERIMENTAL EVALUATION

A. Preliminary Considerations
A whole design space: Noise-SDR is a generic way to establish

a communication link, optimized for the desired properties. With
Noise-SDR, the attacker gains the ability to explore a whole design
space for transmissions, while, previous work generally provides
fixed design points. For example, Table II shows a non-exhaustive
list of digital and analog protocols that can be used with Noise-SDR.

A theoretical point of view on the design space: Given a noisy
channel, the Shannon-Hartley theorem [80] about channel capacity
expresses the trade-offs between the data rate, the bit error rate,
the bandwidth occupied by the signal, and the signal-to-noise ratio
over that bandwidth. Given a certain Signal-to-Noise Ratio (SNR),
bandwidth, and error rate, the maximum achievable data rate has
a limit. Existing protocols take design choices in this space [81].
With Noise-SDR, attackers can easily explore this design space, too.

Evaluation: Given a specific leakage source on a specific device,
we compare the performance of different protocols and modulation
techniques. This is meaningful because the same device has the
same properties, such as, power, clock stability, and available
bandwidth. Different leakage sources/devices will have different
properties. Therefore, not all protocols are suitable for all devices,
and the same modulation does not have the same performance on all
devices. One of the advantages of Noise-SDR is the ability to flexibly
choose the best fit. Extensive experimental analyses of leakage are
outside the scope of this paper and available in literature [46]–[50].

Experimental setup at reception: We use an Ettus Research
USRP B210 SDR [82] peripheral, connected to a laptop. One of the
advantages of Noise-SDR is that we do not need to design a custom
signal processing block to implement the receiver (unless we use
a custom protocol). We can simply use popular SDR tools, such as,
Gqrx [83] to control the SDR, and FLDigi [56], Qsstv [69], WSJT-
X [70], and gnss-sdr [84]. There exist many open-source implemen-
tations for many protocols based on GNURadio [68], for example,
for LoRa [37]. The ability to leverage existing high-quality receivers
let us quickly experiment with many protocols, without any engineer-
ing effort. We always use a standard monopole antenna. Only for
Direct Sequence Spread Spectrum (DSSS) we use a NAE-HPROBE-
15 antenna [85] and an additional TEXBOX TBWA2 amplifier [86].

Experimental setup at transmission: We run Noise-SDR on the
target devices in Table III in a realistic home environment. We avoid
any coupling between transmission and reception. For the general
measurements, we run the code in foreground, and we disable other
communication interfaces (airplane mode on mobile devices).

Metrics: In amateur radio speed is given in words (6 characters)
per minute (wpm). For analog protocols we report the audio quality
and rate. For the other protocols we report the amount of time
required to transmit an amount of data. For the SNR, we report
the values computed by the reception tools (when available). The
SNR is defined over a certain noise bandwidth (usually 2.5 kHz
in amateur radio). The percentage of correctly received words (‘%
COPY’) is a good metric for comparing protocols at reception [64].

B. Establishing Advanced Channels
Baseline: Previous was generally based on OOK [6], FSK [10]

(both without symbol shaping), or, recently, approximated Lora-like

1199

TABLE II
SOME DIGITAL AND ANALOG PROTOCOLS

Name Modulation Bandwidth Reference
Simple CW OOK >50 Hz to>200 Hz [58], [64]
Simple RTTY BFSK >270 Hz to>370 Hz [59], [64]
LoRa-like CSS Custom 8000 Hz [8], [37]
CW Shaped OOK 50 Hz to 200 Hz [58], [64]
RTTY Shaped BFSK 270 Hz to 370 Hz [59], [64]
LoRa CSS Custom 8000 Hz [37], [87]
MFSK 8FSK-32FSK 154 Hz to 1920 Hz [60], [64]
THOR IFK+ 173 Hz to 1800 Hz [62], [64]
PSK BPSK 31 Hz to 1800 Hz [61], [64]
Multi-carrier PSK PSK OFDM 650 Hz to 3600 Hz [64]
FT4 4-GFSK 90 Hz [72]
HamDRM QAM OFDM 2.4 kHz [74]
GLONASS C/A DSSS 0.511 MHz [73]
AM Analog AM 10 kHz [76]
NBFM Analog FM 12.5 kHz [77]
SSTV Analog FM 2.5 kHz [75]

CSS [8]. For this reason, we chose the following baseline:

• Simple CW (OOK): CW [58] uses Morse code encoding and
then turns the carrier on and off to represent marks and spaces.

• Simple RTTY (FSK): RTTY [59] uses two tones to send
ones and zeros.

• Simple LoRa-like (CSS): We implemented simple Lora-like
CSS by removing advanced techniques like FEC and interleav-
ing from the full LoRa implementation used by Noise-SDR.

Table IV (IV.1-IV.5) shows the results of the baseline. For each
device/protocol, we report the maximum distance for reliable
transmission. CW20 (Table IV.1) has good performance regarding
distance (thanks to its very low bandwidth) but it is very slow.

Reducing Inter Symbol Interference (ISI) with shaping:
Sharp transitions between symbols occupy a large bandwidth
and lead to ISI, reducing performance. This form of noise can be
removed by shaping the spectrum of the symbols with appropriate
filters. This is commonly implemented Fldigi and other tools that
work with real SDRs. However, previous work cannot use them,
because they generally result in a signal with concurrent amplitude
and frequency changes at multi-bit resolution. Instead, Noise-SDR is
an SDR and is able to generate these signals. All Fldigi modes with
symbol shaping (e.g., PSK) are also available in Fldigi-Noise-SDR.

Using phase modulation: For the first time, we show PSK
with a leakage. PSK can achieve a high spectral efficiency (the
number of bits transmitted per second per hertz of occupied
bandwidth) [64]. In addition, PSK is often used to modulate the
subcarriers of a high-speed OFDM transmission. All PSK modes
in Fldigi-Noise-SDR use symbol shaping for optimal performance.
See Table IV (IV.12-IV.20) for examples of (multi-carrier) PSK.

DSSS for resilience, secrecy, and multiple-access: For the first
time, this paper shows DSSS with a leakage. DSSS is a spread
spectrum technique based on multiplying a PSK signal with a
pseudorandom spreading code. Spreading makes the communication
more resistant to narrow-band noise. The autocorrelation properties
of the code make detection and tracking possible below the noise
floor. Using a secret code (or cryptographically secure) code makes
the transmission hard to detect or jam. The low cross-correlation
between codes makes it possible for two transmitters to use the

Adviser expects TEMPEST becomes quickly serious problem

AxMokum eEccoer Teiiles burbstT qeoicSs srveEey pdpPmls
xxxxxxx

Advxser expexts TEMPExT becomex xuickly sxrious prxblem

AxMokum eEccoer Teiiles burbstT qeoicSs srveEey pdpPmls
Interleaving

Noisy channel

Deinterleaving

Burst error (cannot be corrected with FEC)

Error spread over multiple words (can be corrected with FEC)

Fig. 7. Interleaving: shuffling bits over time spreads burst errors over multiple
words, where FEC can correct them, improving resilience to fading/interference.

same frequency (Code Division Multiple Access (CDMA)). DSSS
is possible thanks to: (i) the phase modulation of the leakage, (ii)
the reuse of Global Navigation Satellite System (GNSS) protocols.
Existing SDR receivers [84] which implement code detection and
tracking can precisely determine the frequency and phase of the
codes, working even with unstable clocks or moving targets. We
experimented with the GLONASS C/A code (Table IV.18). We also
implemented a ‘slowed down’ mode of GLONASS (including code
and data) that runs 10 times slower (Table IV.19). Similarly, we
experimented the transmission of 2 GPS C/A codes simultaneously,
100 times slower (Table IV.20). The problem of synchronization
(solved by GNSS receivers) is one of the reasons why previous
work [8] avoided DSSS in favor of CSS. Both CSS and DSSS are
transparently supported by Noise-SDR’s SDR approach.

Improving noise resilience with FEC and interleaving: The
various sources of noise that affect a radio channel might introduce
errors in the received data, even if the modulation scheme is itself
robust. Several techniques exist to counter this problem. FEC [88]
addsm redundant bits of information every n bits of data (coding
rate n/(n+m)). On the one hand this reduces the efficiency of the
transmission, on the other hand it makes the receiver able to detect
and correct up to a certain number of bit errors. In other words, a low
error rate can be achieved with a lower SNR, at the price of a lower
effective data rate due to redundancy. Sometimes, errors are local-
ized at a certain moment in time (e.g., interfering signal, fading con-
dition) leading to many errors for a single word, so that FEC is not
enough to correct them. Interleaving [88] spreads the bits of a single
word of data over multiple words over time. If a burst error occurs on
a full word after interleaving, it will result in smaller errors on many
words after de-interleaving. Such smaller errors spread over multiple
words are more likely to be detected and corrected by FEC. Figure 7
informally summarizes this concept. Previous work on exfiltration
uses simple custom protocols without these techniques (to the best of
our knowledge only [11] uses FEC). Instead, Fldigi-Noise-SDR sup-
ports a large number of protocols that use FEC and interleaving to
achieve high robustness in challenging environments (THOR, PSKR
(Robust), real LoRa, to cite a few). With Noise-SDR supporting ex-
isting advanced protocols is transparent and available to any attacker,
because Noise-SDR behaves like an SDR. Instead, adding FEC and
interleaving to previous work at transmission and reception would
add significant development efforts and advanced knowledge in
radio communications and signal processing. The advantage of FEC
and interleaving (larger distance at the price of lower effective rate)
is particularly evident in Table IV when comparing the same mode
with and without them (e.g., IV.6 vs. IV.5, IV.13 vs. IV.12, IV.16 vs.

1200

TABLE III
DEVICES FOR PROTOCOL COMPARISON

Device Type Arch. OS Family DRAM Fleak (FIF+B)max SSC Harmonics n
A HP ENVY Laptop x86-64 Ubuntu DDR3 800 MHz 15.062 kHz yes 1
B PC Desktop x86-64 Windows DDR3 800 MHz 35.062 kHz yes 1
C Samsung Galaxy S5 Mini Phone ARMv7-A Android n.a. 400 MHz 15.062 kHz no 1-11, 13-19, 26
D Innos D6000 Phone ARMv8-A Android LPDDR3 800 MHz 1.130 MHz no 1-4
E 8Devices Carambola2 IoT MIPS OpenWRT DDR2 400 MHz 35.062 kHz no 1-6

TABLE IV
ADVANCED CHANNELS SPEED-DISTANCE TRADE-OFF FOR 100% COPY

Protocol Speed A (cm) B (cm) C (cm) D (cm) E (cm)
IV.1 Simple CW20 20 wpm - 200 2 - 300
IV.2 Simple CW100 100 wpm - 2 - - 60
IV.3 Simple RTTY50 66 wpm - 1 3 0 30
IV.4 Simple RTTY75 100 wpm - 0 2 - 25
IV.5 LoRa-like 8 kHz, SF=8 16 bytes, 1.128 s - 75 8 0 210
IV.6 LoRa 8 kHz, SF=8 16 bytes, 1.928 s - 120 9 3 300
IV.7 MFSK32 120 wpm 0 20 15 1 300
IV.8 MFSK128 480 wpm - 9 8 0 84
IV.9 THOR4 14 wpm 8 250 110 10 >500
IV.10 THOR16 58 wpm 0 105 65 4 >500
IV.11 THOR100 352 wpm - 30 5 2 65
IV.12 PSK125 200 wpm 0 100 4 0 40
IV.13 PSK125R 110 wpm 0 250 15 1 75
IV.14 3xPSK250R 660 wpm - 2 1 - 50
IV.15 2xPSK500 3200 wpm - - 0 (Unreliable) - 1 (Unreliable)
IV.16 2xPSK500R 1760 wpm - - 1 - 10
IV.17 HamDRM A QAM4 1140x960RGB, 45 s - - 0 (Needs multiple runs) - 5
IV.18 GLONASS C/A 511 chips per 1 ms - - - 0 -
IV.19 GLONASS /10 511 chips per 10 ms; 5 bps - - - 0 -
IV.20 GPS C/A /100 (2 codes) 1023 chips per 100 ms - - - 0 -
IV.21 FT4 77 bits, 4.48 s 0 100 500 (If detected, see Figure 12) 1 500
IV.22 AM 16-bit 44.1 kHz audio - 4 5 0 50
IV.23 NBFM 16-bit 44.1 kHz audio - 10 10 0 >400
IV.24 SSTV Martin1 320x256RGB, 114 s - 2 5 0 30

IV.15), and also in the distance achieved by FT4 (Table IV.21).

Using IFK+ for resilience to multi-path: The Offset Incremen-
tal Frequency Shift Keying used by THOR [62] is robust because
symbols are encoded in the frequency difference with the previous
symbol instead of a fixed value. In addition, incremental keying
makes it particularly robust to Inter Symbol Interference (ISI) due
to multi-path reception [89], typical of realistic indoor environments
with walls and obstacles. Results are shown in Table IV.9-IV.11.

Using OFDM for higher data rates: Orthogonal Frequency
Division Multiplexing consists in modulating multiple orthogonal
subcarriers to increase the data rate. Usually, each carrier is modu-
lated in phase or Quadrature Amplitude Modulation (QAM) (phase
and amplitude). Previous work has shown elementary examples of
transmission with multiple OOK-modulated magnetic-field carriers
using multiple CPU cores [11]. Using multiple threads and cores is
necessary because a single thread cannot generate a signal more com-
plex than a single OOK or FSK carrier using previously known tech-
niques, while an OFDM signal with multiple subcarriers shows both
amplitude and frequency variations at multiple levels. Instead, Noise-
SDR can generate a generic signal, including PSK-OFDM, using a
single thread and performant existing protocols. They can achieve
high data rates, as shown in Table IV (IV.14-IV.17). Multiple cores
and threads can be used to further transmit more data at other fre-
quencies, with the same or different protocols. For example, a smart-

phone could run one instance of Fldigi-Noise-SDR transmitting with
3X PSK250R on one core, and another instance transmitting with
PSK31 on another core. See Figure 8a for an example of multiple
PSK subcarriers with a single thread, and Figure 8c for independent
processes transmitting with three different protocols concurrently.

Using Reed Solomon Identifier (RSID) for automatic detec-
tion and tuning: An attacker might not know the exact protocol
and frequency at which the victim device is transmitting. They
could change over time depending on the load, or the same device
could transmit at multiple frequencies with different protocols.
Small differences between devices could lead to slightly different
frequency offsets from the nominal value. For this reason, it is very
useful to prepend an easy-to-detect unique signal before starting the
transmission. To this purpose, Fldigi-Noise-SDR can use RSIDs [90].
These sequences can be easily decoded at very low SNR (−16 dB)
and uniquely identify the protocols, parameters, and frequency of the
transmission (with a precision of 2.7 Hz). The Fldigi receiver is able
to scan for one or more of the supported protocols over a frequency
band, and automatically start demodulating and decoding once a
transmission is detected. For most protocols, the RSID is easier to
decode than the data. From a security perspective, this is useful to de-
tect at least the presence of a transmitter even when the signal is not
good enough to decode the data. Note that attackers interested in be-
ing more stealth could use custom codes. Nevertheless, the presence

1201

(a) One thread: 3X PSK250R (3 BPSK carriers, 660 wpm).

(b) One thread: MFSK128 (16-FSK 480 wpm).

(c) Concurrent processes: THOR22 (18-IFK+ 78 wpm),
RTTY45 (BFSK 60 wpm), PSK125R (BPSK 110 wpm).

Fig. 8. Non-exhaustive examples of advanced communications with Fldigi-Noise-
SDR at 5 cm from the device E in an office, at 400 MHz. All modes but RTTY45
use FEC and interleaving and are preceded by an RSID.

of other legitimate amateur radio transmissions could conceal the
attack, too. Figure 8 shows several modes preceded by their RSID.
The red lines show that Fldigi was able to perfectly identify and track
the carrier frequency and start decoding, without any manual effort.

The advantages of analog protocols: Digital protocols offer
many advantages, but also analog protocols are useful in some
applications. Transmitting audio with AM and Narrow-Band
Frequency Modulation (NBFM) is particularly useful during the
analysis of a device and the implementation or tuning of new
techniques. The audio signals offer a quick human-understandable
feedback and tolerate huge distortion and noise. The SSTV protocol
transmits color images with NBFM. In a practical security scenario,
analog protocols could be useful to exfiltrate audio and images.
Results are shown in Table IV (IV.22-IV.24).

Summary: We tested many analog and digital protocols with
different properties (Table II) on many devices (Table III) with
different architectures. This shows how attackers can use Noise-SDR
to establish advanced communication channels, covering a large
design space without any effort. Reading Table IV by row shows
the improvements made possible by Noise-SDR for all devices,
whereas reading it by column highlights the differences among
devices. Figure 8 shows some example spectrograms.

VI. SECURITY IMPACT

Noise-SDR uses electromagnetic leakage to achieve advanced ra-
dio transmission, using arbitrary modulation and state-of-the-art pro-
tocols. This requires executing code without any privilege, permis-
sion, or access to output peripherals, which would normally be un-
able to transmit radio signals. Despite some limitations on the power,
bandwidth, and frequency of the leakage, Noise-SDR has many secu-

VictimAttacker

TX
RX

Exfiltration

Victim's data

Tracking

TX
RX

Injection

Malicious data

TX
RX

Tracking data

Fig. 9. Some security applications of Noise-SDR: (i) data exfiltration from a victim
device, (ii) tracking of a victim device with a fixed beacon signal, (iii) injection of
malicious data from a victim device to another victim receiver.

TX

A

E

D

2.3m

1.9m

1.3m

1.5m
3m

B

C
2.8m

2.8m

2.2m

2.2m

1.5m

1.5m

1.1m 1.5m

1.8m

1.8m

Fig. 10. Anonymized and simplified scheme of the home environment. The target
is placed on a desk as in a typical workstation. Letters denote different areas. The
presence of walls, appliances, and other objects results in a realistic scenario.

rity applications. In the following, we describe several case studies
for exfiltration, tracking, and injection, summarized in Figure 9.

A. Exfiltration

Threat model: An attacker compromises a victim device, and
then runs Noise-SDR’s code to exfiltrate sensitive data to a receiver
nearby. The receiver is also controlled by the attacker. In the worst
case for the attacker, the victim is air-gapped, that is, disconnected
from the network. Although compromising air-gapped networks
is possible (e.g., Stuxnet [91]), one might assume that the absence
of available transceivers prevents exfiltration of data even when an
attacker can execute code. However, using a physical leakage for
transmission breaks this assumption [3]–[28].

Impact of Noise-SDR: Compared to previous work, Noise-SDR
offers several advantages for exfiltration. For example, (i) use of
previously-unavailable advanced techniques, modulations, and
protocols, that offer great performance gains, (ii) ability to choose
a convenient trade-off in a huge design space according to the
attackers needs and goals, (iii) flexible software-defined physical
layer that can be dynamically adapted to the conditions, (iv)
software-defined approach that enables the reuse of optimized tools
for existing protocols at transmission and reception, (v) little/no
previous knowledge in radio communications required.

Example, practical exfiltration: We show two practical setups
that can be used on the field, shown in Figure 11 (left). The
Tytera MD UV 380 [92] is used to receive Very High Frequency
(VHF) or Ultra High Frequency (UHF) radio signals. After
down-conversion, the resulting audio signal is sent to Fldigi for
Android [57] running on a smartphone. Fldigi can then decode
any of the protocols supported by Fldigi-Noise-SDR. A similar
approach could be replicated with other reception tools and radio
peripherals. For example, the Tytera handheld radio can be replaced

1202

MD UV 380 UHF/VHF
handheld radio tuned at

@400Mhz

Audio
cable

Fldigi for Android
(AndFlmsg) running on an
Android phone, decoding
DominoEx16 messages

RTL-SDR tuned
at @799.7Mhz

RFAnalyzer

AndFlmsg,
decoding a

THOR16 message

Fig. 11. Two portable receivers: (left) based on an handheld radio, (right) based
on an SDR dongle. Fldigi is used for decoding: (left) DominoEx16 at 1.5 m from
device E, (right) THOR16 at 3 m from device B.

by a ∼ 25$ RTL-SDR dongle [93] controlled by the RFAnalyzer
application [94], as shown in Figure 11 (right). In these examples,
the excellent properties of DominoEX16 and THOR16 make
it possible to correctly receive from device E (1.5 m, 115 wpm)
and device B (3 m, 58 wpm) using extremely simple and popular
equipment, and without any engineering effort. Also note that
this is a case in which using a relatively small bandwidth is very
convenient both to work at low power and to use simple receivers
(e.g., compared to large-bandwidth SDRs like the USRP210). At
shorter distances we can use faster protocols, as shown in Table IV.

Example, flexible exfiltration: To show the flexibility of Noise-
SDR, we demonstrate the following practical scenario and speed/dis-
tance trade-off. We consider device E on a desk in the home environ-
ment of Figure 10. We use Fldigi-Noise-SDR to exfiltrate a private
DSA key (771 bytes) at 400 MHz. This application does not tolerate
errors at reception. An attacker that can get close to the device (e.g.,
1 cm to 50 cm on the same desk), but only for a short period of time,
can use 3X PSK250R. At 660 wpm the exfiltration takes only a few
seconds. However, an attacker might be limited to covertly listen in
another separate room, but with more time available. In this case,
THOR22 shows excellent performance thanks to its IFK+ that is
resistant to multi-path reception. We were able to correctly receive
the key (sent line by line) in some minutes from area C (i.e., at more
than 5 m, enclosed by a 15 cm-think wall). We noticed that, while
other protocols like MFSK and PSKR work in these conditions too,
THOR22 is superior in ease of use (e.g., tuning) and reliability.

B. Tracking Beacons

Threat model: In a setting similar to exfiltration, the attacker
runs Noise-SDR’s code to transmit a fixed beacon signal that can be
used to identify and track the victim. Also in this case the attacker
controls the receiver. This scenario is particularly relevant for
mobile and IoT devices. For example, let us consider an Android
application without any special privilege or permission. Users would
install this application believing that their privacy will be preserved,
because there are no permissions which would allow, for example,
to transmit tracking signals (and airplane mode is additionally
available). With Noise-SDR, transmitting tracking signals becomes
possible and effective without requiring any privilege or permission
to access peripherals, breaking this assumption.

Impact of Noise-SDR: Since tracking requires only a fixed
message, attackers can use an offline implementation of Noise-SDR

Fig. 12. SNR and percentage of received FT4 beacons at different distances and
from different directions from device C at 1.2 GHz in an office.

DTMF *44**
(Disable)DTMF *45**

(Enable)
NBFM Voice

Fr
eq

ue
nc

y

Time

M
H

z

Fig. 13. Injection from device E to a receiver on channel 400.02 MHz (UHF band) at
1 m. Noise-SDR remotely controls a TYT MD-UV 380, using DTMF signaling [95]
to enable and disable the receiver, and NBFM audio to transmit a voice message.

where the RF-PWM stage transmits a precomputed wave. This
way, a complex protocol (e.g., very resilient using symbol shaping,
FEC and interleaving) can be implemented with a very tiny piece of
code, easy to conceal and with excellent transmission performance.
In addition, DSSS could be used to achieve secrecy (secret or
even cryptographic codes, transmission below the noise floor) and
multiple access (with orthogonal codes like GPS).

Example, RSID-based beaconing: RSIDs have excellent recep-
tion properties even below the noise floor. In addition, they occupy a
small bandwidth and there exist many codes that can be assigned to
different devices for concurrent tracking. For example, we place de-
vices C and E side by side on a desk in the home environment of Fig-
ure 10. We assign them the RSID of PSK250R at fIF =8kHz and
THOR22 at fIF =9kHz, respectively. Both devices transmit their
RSID continuously, with Fldigi-Noise-SDR running in background.
At 2.5 m at the 1.4 GHz harmonic with a USRP B210 we can clearly
distinguish both codes. Device E has a much stronger leakage than
device C (also see Table IV), and tracking is possible all over areas
A, B, C, D, and E (i.e., more than 5 m in many directions and in
another closed room behind a 15 cm wall). The same is possible
with the MD-UV 380 portable setup using the 400 MHz harmonic.

Example, FT4-based beaconing: To improve tracking for
device C despite the lower transmission power, we use FT4 [72].
With its small bandwidth, high coding rate, and transmission
synchronized with Universal Coordinated Time (UTC) time,
FT4 is a perfect protocol to achieve large distance at very low
power. With a USRP B210 and the WSJT-X [70] SDR receiver,
reception is possible up to 5 m, as shown in Figure 12 for multiple
directions (note that the experiment was carried in a realistic indoor
environment and free-space loss is not the only factor that affects
reception). Table IV reports more results for other devices.

C. Injection

Threat model: The attacker uses Noise-SDR on one victim
(compromised beforehand or remotely) to inject malicious signals

1203

into another victim receiver (on the same platform or nearby). This
is useful when placing a real transmitter close to the victim receiver
is impractical. Leveraging a victim device for transmission can also
be less expensive and more stealthy than using radio equipment.

Impact of Noise-SDR: Previous work transmits using simple
custom protocols. In some cases [3], [6], [9] reception is possible
with standard devices, provided that the attacker controls them and
has access to low-level processing (e.g., raw WiFi data [9]). Instead,
thanks to arbitrary modulation and its software-defined approach,
Noise-SDR can generate valid signals of existing real-world proto-
cols. For this reason, we believe it could start a novel line of research
on signal injection and spoofing from unprivileged software.

Example, controlling a handheld UHF radio: The TYT MD-
UV 380 [92] is a very popular handheld two-way radio operating
in the UHF and VHF bands, supporting both digital and analog
transmissions. Like many types of radio equipment, it supports
remote control functions (e.g., enable/disable) through DTMF
signaling [95]. We assume that it has been programmed to listen on
Channel 1 at 400.020 MHz NBFM, and that it can be enabled and
disabled using the DTMF codes *45** and *44** respectively. Note
that once disabled the radio can be enabled only when it receives the
*45** code, or by reprogramming it (which requires physical access).
We use Noise-SDR running on a Carambola2 (device E) to transmit
the DTMF codes and a voice message at the correct frequency
(fc = Fleak +FIF = 400MHz+19.2kHz). We can successfully
enable the radio, transmit a voice message, and disable the radio, as
shown in Figure 13. In the home environment of Figure 10, the voice
transmitted by device E on the desk can be heard clearly all over
most of areas A, B, D (i.e., more than 4 m). DTMF is less robust,
but we successfully disabled the radio at 4 m in area B by repeatedly
sending the off sequence for around 1 min. Among our devices,
only the device E can transmit in the frequency range of the UHF
radio, but this range is reasonable for other IoT devices with similar
hardware. The choice of the intermediate frequency (and thus of
the channel frequency) is limited by the bandwidth of device E (see
Table III). More complex radio equipment (e.g., repeaters, sirens)
could offer even more functions through DTMF. Compromising
some digital equipment nearby could be then used to control the
radios. Also, a repeater could further broadcast a message at higher
power reaching more devices at larger distance. Noise-SDR is not
limited to a specific protocol, and the same principle could be
applied to other types of control and data signals. Some directions
for future research on GNSS are mentioned in Section IX.

VII. COUNTERMEASURES

Low-accuracy timers: The lower the time resolution, the stricter
the constraints on the generated signal, to the point where RF-PWM
is not practical. Countermeasures that mitigate timing side channels
by preventing accurate timing measurements (e.g., [51], [96], [97])
could be applied to Noise-SDR, too. However, the arms race with
attackers (e.g., [51]–[55]) shows that this solution is not definitive,
because other timing sources are available (e.g., calibrated counters).

Countermeasures against Rowhammer: Those countermea-
sures against Rowhammer that focus on detecting or preventing
fast DRAM accesses could also be applied to Noise-SDR, but
they are not a definitive solution. The detection of electromagnetic

leakages [65] is not practical on mobile devices. Some of the
approaches proposed for ARMv8-A [67] are not likely to be detected
by observing cache misses (e.g., [98]) and cannot be easily forbidden
in unprivileged code. Moreover, gadgets in system calls could be
exploited from unprivileged code [67] (though not fast enough for
flipping bits, they could be sufficient for Noise-SDR modulation). Fi-
nally, offensive research on Rowhammer is active and keeps finding
several ways to access DRAM quickly (e.g, [55], [67], [99], [100]).

Careful design: A careful RF design reduces leakages and
coupling between components, possibly at a higher cost. Shielding
reduces the emissions from a device, but it can be at least partially
bypassed [8], [11]. SSC reduces the peak power of the DRAM
emissions, but software can still modulate the sub-harmonics [8].

VIII. RELATED WORK

Fully-digital radios: Several fully-digital radios have been
proposed in literature, based on one-bit coding as explained in Sec-
tion II. Alternatively, a Direct-to-RF Converter (DRFC) synthesizes
a radio signal directly with a high-speed multi-bit digital-to-analog
converter (DAC). We refer the reader to specialized literature [29],
[30], [101]. These techniques work with real hardware [30]–[33],
whereas Noise-SDR uses software-induced leakages only.

Rowhammer: Code running Rowhammer attacks on x86-64 ma-
chines can be detected through its electromagnetic leakages [65], and
it can be used for covert channels [7]. Rowhammer attacks against
smartphones with ARM architecture have been shown in [66] using
DMA. Other approaches include exploiting the GPU [55] or ArmV8
cache maintenance instructions [67] for fast DRAM access. How-
ever, Rowhammer attacks aim at flipping bits in DRAM, and [7]
uses a custom FSK protocol on x86-64, not generic signals on ARM.

Soft-TEMPEST: We have covered Soft-TEMPEST [1], [2] and
covert channels [3]–[28] in Section I. Noise-SDR goes beyond pre-
vious modulation schemes, introducing arbitrary signal modulation.

Simple radios: Makers have built radio transmitters with very
few and simple components, described in numerous blog posts and
repositories. For example: [44], [45] use Soft-TEMPEST leakages to
send simple tunes; [102], [103] implement RTTY transmission with
the Local Oscillator (LO) leakage of a SDR receiver; [104]–[110]
use a cable connected to a microcontroller output pin to implement
OOK, FM, AFSK, NTSC, PAL, AM; examples of clock signal FSK
and delay line FKS simple radios are shown in [111]; [112] switches
Ethernet speed to transmit CW signals; [113] uses VGA to transmit
DVB-T, PAL, and NTSC; [114] uses VGA for FM; [115] uses the
VGA DACs to feed an RF modulator; [116] uses the DAC of a
reverse-engineered USB-to-VGA converter as DRFC SDR able to
transmit generic signals including GSM and GPS; [117] is a direct
sampling receiver using the analog-to-digital converter (ADC) of a
microcontroller; [118] is a fully-digital FPGA-based BLE receiver.
These works use signal processing tricks (e.g., undersampling) to
deal with limited resources, and they were a source of inspiration,
even if theoretical explanations are often informal or lacking.
Naturally, those that use output pins or multi-bit VGA DACs are
those that achieve the best results, but these outputs are not available
to unprivileged software on smartphones and computers. Note
that [105], [106] are fundamentally different from Noise-SDR. They
first convert baseband audio into a ∆Σ signal, and then they transmit

1204

it with a simple fixed BFSK using an output pin. While this method
achieves analog FM audio transmission, it cannot generate amplitude
and phase modulated radio signals (only BFSK). Instead, Noise-SDR
uses RF-PWM to generate arbitrarily modulated radio signals (start-
ing from an OOK square wave generated with memory accesses). To
the best our knowledge, none of these works achieves arbitrary mod-
ulation on smartphones or laptops using purely software leakages.

Nexmon SDR: Some Broadcom WiFi chips can transmit a
short arbitrary signal in the WiFi band. Using a firmware patch,
Nexmon [119], [120] turns them into an SDR, to build WiFi covert
channels [121], or to jam WiFi networks [122].

IX. DISCUSSION AND FUTURE WORK

Limitations: Noise-SDR achieves arbitrary modulation, but it
also has some limitations. First, the achievable power, frequency,
and bandwidth are inherently limited by the leakage and the ability
of the attacker to control it. Nevertheless, leakage often appears
at several harmonics covering a large spectrum from a few MHz
to several GHz. Moreover, Noise-SDR controls the intermediate
frequency of the RF-PWM carrier, letting the attacker chose an
offset (of up to hundreds of kHz on ARMv8-A) from the carrier
frequency. For example, this is enough to align the carrier frequency
to that of a GLONASS satellite in the band around an harmonic of
the DRAM clock at 1.6 GHz. The second limitation is the bandwidth,
constrained by the execution time of the instructions that produce
the leakage. In our implementation we can reach tens of kHz on
ARMv7-A, x86-64 and MIPS32, and a few MHz on ARMv8-A. In our
experiments on x86-64 the limit is actually set by the harmonics of
the SSC clock. However, this bandwidth is sufficient for a large num-
ber of useful protocols. Moreover, a large bandwidth is not always
desirable. Using a very small bandwidth is a strategy used by many
protocols to achieve large distance at low power [81] (e.g., FT4 [72]
uses only 90 Hz). Finally, another limitation is the resolution and sta-
bility of time measurements. Software timers are not as accurate as
dedicated radio hardware, but their performance (e.g., ns resolution
of clock gettime) is sufficient for many protocols. Moreover, state-
of-the-art receivers have excellent algorithms to track clock drifts.

Open directions: Noise-SDR opens novel opportunities beyond
data exfiltration. First, Noise-SDR could facilitate the security
evaluation of complex systems regarding unintended emissions. The
analyst could define a number of protocols, each representative of a
given threat model, and then transmit beacons using Noise-SDR. A
frequency scan would reveal whether the beacons can be retrieved
from a given distance and direction, and at which frequency. This
would also be useful to evaluate countermeasures like shielding.
Second, Noise-SDR could leverage noise from high-speed digital
components to inject malicious radio packets into victim receivers
on the same platform. Indeed, their clock frequency often overlaps
and interferes with radio protocols [123]–[126]. In particular,
DRAM frequency or its harmonics sometimes overlap with
GLONASS at 1.6 GHz (Table III). Future research could try to
inject fake satellites, to produce erroneous location results, or to
exploit software vulnerabilities (similar to [127]). As a preliminary
result, Figure 14 shows the reception of a GLONASS C/A code
transmitted by an Innos D6000 at 800.875 MHz (the same is
possible with a Galaxy A30S using the harmonic at 1794 MHz). To

> gnss-sdr --config-file conf/gnss-sdr_GLONASS_L1_CA_ibyte_coh_trk.conf

Current receiver time: 1 s

Tracking of GLONASS L1 C/A signal started on channel 5 for satellite Glonass PRN 09 (Block -2)

PULL-IN Doppler [Hz]=0 Code Phase correction [samples]=0 PULL-IN Code Phase [samples]=4760

Start
GNSS Receiver

Lock aquired,
started tracking

(k=-2)

Code Phase Delay (Used to compute arrival time)Frequency Offset

Fig. 14. Reception with USPR B210 of a GLONASS C/A Code sent at 800.875 MHz
with an Innos D6000. Using FIF =875kHz corresponds to satellite k=−2. Future
research could try to inject the 1.6 GHz harmonic directly in the GNSS receiver.

ensure that the lock at reception is valid, we: (i) did not overfit the
lock/tracking parameters of the default configuration of the gnss-sdr
receiver, (ii) observed that the lock occurs only when transmission
is on, (iii) observed that the lock always corresponds to the expected
satellite for different choices of the tuning frequency. Third, Noise-
SDR could be used to modulate radio carriers intentionally emitted
by the circuit leveraging effects like Screaming Channels [42],
[43], and building a Second-Order Soft-TEMPEST [40], [41]. For
example, we were already able to leverage the carrier emitted by the
Near Field Communication (NFC) reader of a Nokia 3.1 to transmit
data with PSK31. Fourth, phase modulation and DSSS open new
directions for research on localization (e.g., Doppler of moving
targets) and/or undetectable secret transmissions (below the noise
floor and with cryptographically secure spreading codes [128]).
Fifth, Noise-SDR is a general approach that could be extended to
other types of physical leakage. Finally, leakage control could be
achieved without explicit code execution. For example, a website
could download and display an image to control the screen’s leakage,
or memory accesses could be triggered with GPU-accelerated
rendering in the browser [55], or by sending WiFi packets [129].

X. CONCLUSION AND REPLICABILITY

We have presented Noise-SDR, a software-defined fully-digital ap-
proach to obtain a high degree of control on electromagnetic leakage
compared to previous work. Despite some limitations on frequency
and bandwidth, Noise-SDR achieves arbitrary modulation in ampli-
tude, frequency, and phase. Like an SDR, Noise-SDR modulates a
generic baseband signal generated in software on an electromagnetic
leakage acting as carrier. This way, theoretical and practical
knowledge in radio communications (e.g., advanced techniques,
high-performance protocols, state-of-the-art tools) becomes readily
available to the attacker. Noise-SDR has a fundamental impact on
emission security for two main reasons. First, attackers can establish
advanced communication channels that were previously thought
unavailable to unprivileged software. Second, attackers can leverage
SDR tools to use existing high-performance radio protocols without
any knowledge or effort, or to design complex custom solutions.
To ensure the replicability of our results, Noise-SDR is open source
and available at: https://github.com/eurecom-s3/noise-sdr.

ACKNOWLEDGMENTS

We would like to thank Andrea Possemato, Giulia Clerici, Matteo
Guarrera, Elie Bursztein, Jean-Michel Picod, the anonymous
reviewers and the shepherd for their feedback, help or interesting
discussions. This work was partially supported by a Google Faculty
Research Award.

1205

REFERENCES

[1] M. G. Kuhn and R. J. Anderson, “Soft Tempest: Hidden data transmission
using electromagnetic emanations,” in Information Hiding, D. Aucsmith, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 124–142.

[2] R. Anderson and M. G. Kuhn, “Soft Tempest - an opportunity for NATO,”
1999.

[3] M. Guri, G. Kedma, A. Kachlon, and Y. Elovici, “AirHopper: Bridging the
air-gap between isolated networks and mobile phones using radio frequencies,”
in 9th International Conference on Malicious and Unwanted Software: The
Americas MALWARE 2014, Fajardo, PR, USA, October 28-30, 2014. IEEE
Computer Society, 2014, pp. 58–67.

[4] M. Guri, M. Monitz, and Y. Elovici, “Bridging the air gap between isolated
networks and mobile phones in a practical cyber-attack,” ACM Trans. Intell.
Syst. Technol., vol. 8, no. 4, May 2017.

[5] ——, “USBee: Air-gap covert-channel via electromagnetic emission from
USB,” in 14th Annual Conference on Privacy, Security and Trust, PST 2016,
Auckland, New Zealand, December 12-14, 2016. IEEE, 2016, pp. 264–268.

[6] M. Guri, A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky, and Y. Elovici,
“GSMem: Data exfiltration from air-gapped computers over GSM frequencies,”
in 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015, J. Jung and T. Holz, Eds. USENIX Association,
2015, pp. 849–864.

[7] Z. Zhan, Z. Zhang, and X. Koutsoukos, “Bitjabber: The world’s fastest
electromagnetic covert channel,” in 2020 IEEE International Test Conference
(ITC). IEEE, 2020.

[8] C. Shen, T. Liu, J. Huang, and R. Tan, “When LoRa meets EMR:
Electromagnetic covert channels can be super resilient,” in 2021 2021 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2021, pp. 529–542.

[9] M. Guri, “AIR-FI: Generating covert wi-fi signals from air-gapped computers,”
CoRR, vol. abs/2012.06884, 2020.

[10] M. Guri, A. Daidakulov, and Y. Elovici, “MAGNETO: Covert channel
between air-gapped systems and nearby smartphones via cpu-generated
magnetic fields,” CoRR, vol. abs/1802.02317, 2018.

[11] M. Guri, B. Zadov, and Y. Elovici, “ODINI: Escaping sensitive data from
faraday-caged, air-gapped computers via magnetic fields,” IEEE Trans. Inf.
Forensics Secur., vol. 15, pp. 1190–1203, 2020.

[12] N. Matyunin, J. Szefer, S. Biedermann, and S. Katzenbeisser, “Covert
channels using mobile device’s magnetic field sensors,” in 2016 21st Asia and
South Pacific Design Automation Conference (ASP-DAC), 2016, pp. 525–532.

[13] M. Guri, B. Zadov, D. Bykhovsky, and Y. Elovici, “PowerHammer:
Exfiltrating data from air-gapped computers through power lines,” IEEE
Trans. Information Forensics and Security, vol. 15, pp. 1879–1890, 2020.

[14] Z. Shao, M. A. Islam, and S. Ren, “Your noise, my signal: Exploiting
switching noise for stealthy data exfiltration from desktop computers,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 4, no. 1, pp. 07:1–07:39, 2020.

[15] V. Sepetnitsky, M. Guri, and Y. Elovici, “Exfiltration of information
from air-gapped machines using monitor’s LED indicator,” in IEEE Joint
Intelligence and Security Informatics Conference, JISIC 2014, The Hague,
The Netherlands, 24-26 September, 2014. IEEE, 2014, pp. 264–267.

[16] J. Loughry and D. A. Umphress, “Information leakage from optical
emanations,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 3, pp. 262–289, 2002.

[17] M. Guri, B. Zadov, and Y. Elovici, “LED-it-GO: Leaking (A lot of) data
from air-gapped computers via the (small) hard drive LED,” in Detection
of Intrusions and Malware, and Vulnerability Assessment - 14th International
Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings, ser.
Lecture Notes in Computer Science, M. Polychronakis and M. Meier, Eds.,
vol. 10327. Springer, 2017, pp. 161–184.

[18] M. Guri, B. Zadov, A. Daidakulov, and Y. Elovici, “xLED: Covert data
exfiltration from air-gapped networks via switch and router leds,” in 16th
Annual Conference on Privacy, Security and Trust, PST 2018, Belfast,
Northern Ireland, Uk, August 28-30, 2018, K. McLaughlin, A. A. Ghorbani,
S. Sezer, R. Lu, L. Chen, R. H. Deng, P. Miller, S. Marsh, and J. R. C. Nurse,
Eds. IEEE Computer Society, 2018, pp. 1–12.

[19] M. Guri and D. Bykhovsky, “aIR-Jumper: Covert air-gap
exfiltration/infiltration via security cameras & infrared (IR),” Comput.
Secur., vol. 82, pp. 15–29, 2019.

[20] R. Hasan, N. Saxena, T. Halevi, S. Zawoad, and D. Rinehart, “Sensing-
enabled channels for hard-to-detect command and control of mobile devices,”
in 8th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, Hangzhou, China - May 08 - 10, 2013, K. Chen,
Q. Xie, W. Qiu, N. Li, and W. Tzeng, Eds. ACM, 2013, pp. 469–480.

[21] V. Subramanian, A. S. Uluagac, H. Cam, and R. A. Beyah, “Examining the
characteristics and implications of sensor side channels,” in Proceedings of
IEEE International Conference on Communications, ICC 2013, Budapest,
Hungary, June 9-13, 2013. IEEE, 2013, pp. 2205–2210.

[22] M. Guri, “AiR-ViBeR: Exfiltrating data from air-gapped computers via
covert surface vibrations,” CoRR, vol. abs/2004.06195, 2020.

[23] M. Guri, Y. A. Solewicz, and Y. Elovici, “MOSQUITO: Covert ultrasonic
transmissions between two air-gapped computers using speaker-to-speaker
communication,” in IEEE Conference on Dependable and Secure Computing,
DSC 2018, Kaohsiung, Taiwan, December 10-13, 2018. IEEE, 2018, pp. 1–8.

[24] M. Guri, Y. A. Solewicz, A. Daidakulov, and Y. Elovici, “Acoustic data
exfiltration from speakerless air-gapped computers via covert hard-drive noise
(‘DiskFiltration’),” in Computer Security - ESORICS 2017 - 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September
11-15, 2017, Proceedings, Part II, ser. Lecture Notes in Computer Science,
S. N. Foley, D. Gollmann, and E. Snekkenes, Eds., vol. 10493. Springer,
2017, pp. 98–115.

[25] B. Carrara and C. Adams, “On acoustic covert channels between air-gapped
systems,” in Foundations and Practice of Security - 7th International
Symposium, FPS 2014, Montreal, QC, Canada, November 3-5, 2014. Revised
Selected Papers, ser. Lecture Notes in Computer Science, F. Cuppens,
J. Garcı́a-Alfaro, A. N. Zincir-Heywood, and P. W. L. Fong, Eds., vol. 8930.
Springer, 2014, pp. 3–16.

[26] M. Guri, Y. A. Solewicz, A. Daidakulov, and Y. Elovici, “Fansmitter:
Acoustic data exfiltration from (speakerless) air-gapped computers,” CoRR,
vol. abs/1606.05915, 2016.

[27] M. Guri, “POWER-SUPPLaY: Leaking data from air-gapped systems by
turning the power-supplies into speakers,” IACR Cryptol. ePrint Arch., vol.
2020, p. 516, 2020.

[28] M. Guri, M. Monitz, Y. Mirski, and Y. Elovici, “BitWhisper: Covert signaling
channel between air-gapped computers using thermal manipulations,” in 2015
IEEE 28th Computer Security Foundations Symposium, 2015, pp. 276–289.

[29] F. Raab, “Radio frequency pulsewidth modulation,” IEEE Transactions on
Communications, vol. 21, no. 8, pp. 958–966, August 1973.

[30] P. A. Nuyts, P. Reynaert, and W. Dehaene, Continuous-time digital front-ends
for multistandard wireless transmission. Springer, 2014.

[31] S. Kulkarni, I. Kazi, D. Seebacher, P. Singerl, F. Dielacher, W. Dehaene, and
P. Reynaert, “Multi-standard wideband OFDM RF-PWM transmitter in 40nm
CMOS,” in ESSCIRC Conference 2015 - 41st European Solid-State Circuits
Conference (ESSCIRC), 2015, pp. 88–91.

[32] J. S. Walling, H. Lakdawala, Y. Palaskas, A. Ravi, O. Degani, K. Soumyanath,
and D. J. Allstot, “A Class-E PA with pulse-width and pulse-position
modulation in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44,
no. 6, pp. 1668–1678, 2009.

[33] M. Grozing, J. Digel, T. Veigel, R. Bieg, J. Zhang, S. Brandl, M. Schmidt,
C. Haslach, D. Markert, and W. Templ, “A RF pulse-width and pulse-position
modulator IC in 28 nm FDSOI CMOS,” 2018 IEEE Nordic Circuits and
Systems Conference (NORCAS): NORCHIP and International Symposium
of System-on-Chip (SoC), pp. 1–4, 2018.

[34] S. D. R. Forum, “SDRF Cognitive Radio Definitions Working Document
SDRF-06-R-0011-V1.0.0,” 2007. [Online]. Available: http://www.sdrforum.
org/pages/documentLibrary/documents/SDRF-06-R-0011-V1 0 0.pdf

[35] J. Pohl and A. Noack, “Universal radio hacker: A suite for analyzing and
attacking stateful wireless protocols,” in 12th USENIX Workshop on Offensive
Technologies, WOOT 2018, Baltimore, MD, USA, August 13-14, 2018,
C. Rossow and Y. Younan, Eds. USENIX Association, 2018.

[36] A. Dubey, D. Vohra, K. Vachhani, and A. Rao, “Demonstration of
vulnerabilities in GSM security with USRP B200 and open-source
penetration tools,” in 2016 22nd Asia-Pacific Conference on Communications
(APCC), 2016, pp. 496–501.

[37] J. Tapparel, O. Afisiadis, P. Mayoraz, A. Balatsoukas-Stimming, and A. Burg,
“An open-source LoRa physical layer prototype on GNU Radio,” 2020.

[38] A. Behzad, Wireless LAN Radios: System Definition to Transistor Design
(IEEE Press Series on Microelectronic Systems). Hoboken, NJ, USA: John
Wiley & Sons, Inc., 2008.

[39] K. Slattery and H. Skinner, Platform interference in wireless systems: Models,
measurement, and mitigation. Newnes, 2011.

[40] E. Cottais, J. L. Esteves, and C. Kasmi, “Second order soft-TEMPEST in RF
front-ends: Design and detection of polyglot modulations,” 2018 International
Symposium on Electromagnetic Compatibility (EMC EUROPE), pp. 166–171,
2018.

[41] J. L. Esteves, E. Cottais, and C. Kasmi, “Second order soft Tempest: From
internal cascaded electromagnetic interactions to long haul covert channels,”
2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), pp. 1–3, 2019.

1206

[42] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon, “Screaming
channels: When electromagnetic side channels meet radio transceivers,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM, 2018, pp. 163–177.

[43] G. Camurati, A. Francillon, and F.-X. Standaert, “Understanding screaming
channels: From a detailed analysis to improved attacks,” IACR Transactions
on Cryptographic Hardware and Embedded Systems (CHES 2020), vol.
2020, no. 3, pp. 358–401, June 2020.

[44] W. Entriken, “System bus radio,” 2013. [Online]. Available:
https://github.com/fulldecent/system-bus-radio

[45] E. Thiele, “Tempest for Eliza,” 2001. [Online]. Available:
http://www.erikyyy.de/tempest/

[46] R. Callan, A. Zajić, and M. Prvulovic, “A practical methodology for
measuring the side-channel signal available to the attacker for instruction-level
events,” in 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014, pp. 242–254.

[47] A. Zajić and M. Prvulovic, “Experimental demonstration of electromagnetic
information leakage from modern processor-memory systems,” IEEE Trans-
actions on Electromagnetic Compatibility, vol. 56, no. 4, pp. 885–893, 2014.

[48] R. L. Callan, A. G. Zajić, and M. Prvulovic, “FASE: Finding amplitude-
modulated side-channel emanations,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, Portland, OR, USA, June
13-17, 2015, D. T. Marr and D. H. Albonesi, Eds. ACM, 2015, pp. 592–603.

[49] M. Prvulovic, A. Zajić, R. L. Callan, and C. J. Wang, “A method for finding
frequency-modulated and amplitude-modulated electromagnetic emanations
in computer systems,” IEEE Transactions on Electromagnetic Compatibility,
vol. 59, no. 1, pp. 34–42, 2017.

[50] S. Sangodoyin, F. Werner, B. B. Yilmaz, C. L. Cheng, E. M. Ugurlu,
N. Sehatbakhsh, M. Prvulovic, and A. Zajić, “Side-channel propagation
measurements and modeling for hardware security in iot devices,” IEEE
Transactions on Antennas and Propagation, pp. 1–1, 2020.

[51] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain times,” in
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016, T. Holz and S. Savage, Eds. USENIX Association,
2016, pp. 463–480.

[52] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers and
where to find them: High-resolution microarchitectural attacks in javascript,”
in Financial Cryptography and Data Security - 21st International Conference,
FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers, ser.
Lecture Notes in Computer Science, A. Kiayias, Ed., vol. 10322. Springer,
2017, pp. 247–267.

[53] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “ARMageddon:
Cache attacks on mobile devices,” in 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016, T. Holz and
S. Savage, Eds. USENIX Association, 2016, pp. 549–564.

[54] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on the
line: Practical cache attacks on the MMU,” in 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017. The Internet Society, 2017.

[55] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the GPU,” in 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA. IEEE Computer Society, 2018, pp. 195–210.

[56] D. Freese, “FLDigi.” [Online]. Available: http://www.w1hkj.com/
[57] ——, “AndFlmsg.” [Online]. Available: http://www.w1hkj.com/files/

AndFlmsg/
[58] Sigidwiki, “Morse Code (CW).” [Online]. Available:

https://www.sigidwiki.com/wiki/Morse Code (CW)
[59] ——, “RTTY50.” [Online]. Available: https://www.sigidwiki.com/wiki/

Radio Teletype (RTTY)
[60] ——, “MFSK.” [Online]. Available: https://www.sigidwiki.com/wiki/Multi

Frequency Shift Keying (MFSK)
[61] ——, “PSK.” [Online]. Available: https://www.sigidwiki.com/wiki/Phase

Shift Keying (PSK)
[62] ——, “THOR.” [Online]. Available: https://www.sigidwiki.com/wiki/THOR
[63] ——, “OLIVIA.” [Online]. Available: https://www.sigidwiki.com/wiki/Olivia
[64] D. Freese, “FLDigi Modes.” [Online]. Available:

http://www.w1hkj.com/FldigiHelp-3.21/Modes/
[65] Z. Zhang, Z. Zhan, D. Balasubramanian, B. Li, P. Volgyesi, and X. Koutsoukos,

“Leveraging EM side-channel information to detect rowhammer attacks,” in
2020 IEEE Symposium on Security and Privacy (S&P’20), 2020, pp. 862–879.

[66] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic

rowhammer attacks on mobile platforms,” in CCS, Oct. 2016, pwnie Award
for Best Privilege Escalation Bug, Android Security Reward, CSAW Best
Paper Award, DCSR Paper Award.

[67] Z. Zhang, Z. Zhan, D. Balasubramanian, X. D. Koutsoukos, and G. Karsai,
“Triggering rowhammer hardware faults on ARM: A revisit,” in Proceedings
of the 2018 Workshop on Attacks and Solutions in Hardware Security,
ASHES@CCS 2018, Toronto, ON, Canada, October 19, 2018, C. Chang,
U. Rührmair, D. Holcomb, and J. Guajardo, Eds. ACM, 2018, pp. 24–33.

[68] “GNU Radio.” [Online]. Available: https://www.gnuradio.org/
[69] “Qsstv.” [Online]. Available: http://users.telenet.be/on4qz/
[70] J. Taylor, “WSPR instructions.” [Online]. Available:

https://physics.princeton.edu/pulsar/K1JT/WSPR Instructions.TXT
[71] B. Bloessl, “GNU Radio Android Toolchain.” [Online]. Available:

https://github.com/bastibl/gnuradio-android
[72] J. Taylor, “FT4.” [Online]. Available: https://physics.princeton.edu/pulsar/

k1jt/FT4 Protocol.pdf
[73] G. C. S. I. Center, “GLONASS interface control document,” 1998. [Online].

Available: https://www.unavco.org/help/glossary/docs/ICD GLONASS 4.
0 (1998) en.pdf

[74] Sigidwiki, “HamDRM.” [Online]. Available: https:
//www.sigidwiki.com/wiki/WinDRM

[75] ——, “SSTV.” [Online]. Available: https://www.sigidwiki.com/wiki/SSTV
[76] ——, “AM.” [Online]. Available: https://www.sigidwiki.com/wiki/

Amplitude Modulation (AM)
[77] ——, “NBFM.” [Online]. Available: https://www.sigidwiki.com/wiki/NFM

Voice
[78] Y. Hayashi, N. Homma, M. Miura, T. Aoki, and H. Sone, “A threat for

tablet pcs in public space: Remote visualization of screen images using
EM emanation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, G. Ahn, M. Yung, and N. Li, Eds. ACM, 2014, pp. 954–965.

[79] Z. Liu, N. Samwel, L. Weissbart, Z. Zhao, D. Lauret, L. Batina, and
M. A. Larson, “Screen gleaning: A screen reading TEMPEST attack on
mobile devices exploiting an electromagnetic side channel,” CoRR, vol.
abs/2011.09877, 2020.

[80] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech.
J., vol. 27, no. 4, pp. 623–656, 1948.

[81] Y. Roth, J.-B. Doré, L. Ros, and V. Berg, “The physical layer of low power
wide area networks: Strategies, information theory’s limit and existing
solutions,” in Advances in Signal Processing: Reviews, Vol. 1, Book Series,
Aug. 2018.

[82] Ettus Research, “USRP B210.” [Online]. Available:
http://www.ettus.com/all-products/UB210-KIT/

[83] A. Csete, “Gqrx SDR.” [Online]. Available: https://gqrx.dk/
[84] “gnss-sdr.” [Online]. Available: https://gnss-sdr.org/
[85] NewAE Technology Inc., “NAE-HPROBE-15.” [Online]. Available:

https://www.newae.com/products-1/NAE-HPROBE-15
[86] TEKBOX, “TBWA2.” [Online]. Available: https://www.tekbox.com/product/

tbwa2-wideband-rf-amplifiers/
[87] G. Ferré and A. Giremus, “LoRa physical layer principle and performance

analysis,” in 25th IEEE International Conference on Electronics, Circuits
and Systems, ICECS 2018, Bordeaux, France, December 9-12, 2018. IEEE,
2018, pp. 65–68.

[88] A. F. Molisch, Wireless Communications, 2nd ed. Wiley Publishing, 2011.
[89] Sigidwiki, “DominoEX.” [Online]. Available: https:

//www.sigidwiki.com/wiki/DominoEX
[90] P. Lindecker, “Technical aspects of RS ID and

Call ID and use,” 2010. [Online]. Available:
https://tapr.org/wp-content/uploads/DCC2010-RS-ID-Call-ID-F6CTE.pdf

[91] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE
Secur. Priv., vol. 9, no. 3, pp. 49–51, 2011. [Online]. Available:
https://doi.org/10.1109/MSP.2011.67

[92] Tyetera, “TYT MD-UV 380.” [Online]. Available:
https://www.tyt888.com/?mod=product show&id=127

[93] RTL-SDR, “RTL-SDR.” [Online]. Available: https:
//www.rtl-sdr.com/about-rtl-sdr/

[94] D. Mantz, “RFAnalyzer,” 2014. [Online]. Available:
https://github.com/demantz/RFAnalyzer

[95] Sigidwiki, “DTMF.” [Online]. Available: https://www.sigidwiki.com/wiki/
Dual Tone Multi Frequency (DTMF)

[96] Y. Cao, Z. Chen, S. Li, and S. Wu, “Deterministic browser,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, B. M. Thu-
raisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 163–178.

1207

[97] M. Schwarz, M. Lipp, and D. Gruss, “Javascript zero: Real javascript and
zero side-channel attacks.” in NDSS, 2018.

[98] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “ANVIL: Software-based protection against next-generation
rowhammer attacks,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 743–755.

[99] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in Detection of Intrusions and
Malware, and Vulnerability Assessment - 13th International Conference,
DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings, ser. Lecture
Notes in Computer Science, J. Caballero, U. Zurutuza, and R. J. Rodŕıguez,
Eds., vol. 9721. Springer, 2016, pp. 300–321.

[100] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and
L. Lamster, “Nethammer: Inducing rowhammer faults through network
requests,” CoRR, vol. abs/1805.04956, 2018.

[101] F. Chierchie, G. J. González, J. I. Morales, E. E. Paolini, J. Cousseau, and
P. S. Mandolesi, “Baseband model for uniformly sampled RF-PWM,” IEEE
Transactions on Circuits and Systems I: Regular Papers, pp. 1–9, 2020.

[102] RTL-SDR.com, “RTL-SDR.” [Online]. Available:
https://www.rtl-sdr.com/update-rtl-sdr-transmitting-1270-mhz/

[103] “RTL TRX.” [Online]. Available: https://github.com/tejeez/rtl-trx
[104] A. Cui, “Funtenna,” 2015. [Online]. Available: https://github.com/funtenna
[105] O. Mattos and O. Weigl, “Turning the Raspberry Pi into an FM transmitter.”

[Online]. Available: http://icrobotics.co.uk/wiki/index.php/Turning the
Raspberry Pi Into an FM Transmitter

[106] “FM transmitter RPi3.” [Online]. Available: https:
//github.com/PNPtutorials/FM Transmitter RPi3

[107] “Rasberry pirate radio FM transmitter.” [Online]. Available:
https://www.rtl-sdr.com/raspberry-pirate-radio-fm-transmitter/

[108] CNLhor, “Esp8266 analog broadcast television interface,” 2016. [Online].
Available: https://github.com/cnlohr/channel3

[109] T. Yapo, “Experimental software-defined radio using a serial port,” 2018.
[Online]. Available: https://github.com/tedyapo/serial-port-sdr

[110] M. Seet, “PAL-Streamer,” 2020. [Online]. Available:
https://hackaday.io/project/171977-pal-streamer

[111] D. Spill, “Ridiculous radios,” 2018. [Online]. Available: https://hackaday.
com/wp-content/uploads/2018/12/Ridiculous-Radios-Supercon-2018.pdf

[112] J. Lipkowski, “Etherify - bringing the ether back to ethernet,” 2020. [Online].
Available: https://lipkowski.com/etherify/

[113] F. Bellard, “Analog and digital TV (DVB-T) signal generation,” 2005.
[Online]. Available: https://bellard.org/dvbt/

[114] B. Kania, “VGASIGFM radio transmitter using a VGA graphics card,” 2009.
[Online]. Available: https://bk.gnarf.org/creativity/vgasig/vgasig.pdf

[115] P. Rudolph, “VGAtoIQBaseband,” 2013. [Online]. Available:
https://wiki.das-labor.org/w/VGAtoBaseband

[116] S. Markgraf, “Osmo-fl2k for using USB 3.0 VGA adapters as SDR transmit-
ters,” 2018. [Online]. Available: https://osmocom.org/projects/osmo-fl2k/wiki

[117] L. Cruz, “PiccoloSDR (WIP),” 2021. [Online]. Available:
https://github.com/luigifcruz/pico-stuff/tree/main/apps/piccolosdr

[118] B. Newhouse, “One-bit BT,” 2021. [Online]. Available:
https://github.com/newhouseb/onebitbt

[119] M. Schulz, D. Wegemer, and M. Hollick. (2017) Nexmon: The C-based
firmware patching framework. [Online]. Available: https://nexmon.org

[120] M. Schulz, “Teaching your wireless card new tricks: Smartphone performance
and security enhancements through wi-fi firmware modifications,” Ph.D.
dissertation, Darmstadt University of Technology, Germany, 2018.

[121] M. Schulz, J. Link, F. Gringoli, and M. Hollick, “Shadow Wi-Fi: Teaching
smartphones to transmit raw signals and to extract channel state information
to implement practical covert channels over wi-fi,” in Proceedings of the
16th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys 2018, Munich, Germany, June 10-15, 2018, J. Ott,
F. Dressler, S. Saroiu, and P. Dutta, Eds. ACM, 2018, pp. 256–268.

[122] M. Schulz, F. Gringoli, D. Steinmetzer, M. Koch, and M. Hollick, “Massive
Reactive Smartphone-Based Jamming using Arbitrary Waveforms and Adap-
tive Power Control,” in ACM Conference on Security and Privacy in Wireless
& Mobile Networks (WiSec) 2017, Boston, USA, Jul. 2017, pp. 111–121.

[123] H. Lin, C. Lu, H. Tsai, and T. Kung, “The analysis of EMI noise coupling
mechanism for GPS reception performance degradation from SSD/USB
module,” in 2014 International Symposium on Electromagnetic Compatibility,
Tokyo, 2014, pp. 350–353.

[124] H.-N. Lin, “Analysis of platform noise effect on performance of wireless
communication devices,” 2012.

[125] A. C. Scogna, H. Shim, J. Yu, C. Oh, S. Cheon, N. Oh, and D. Kim, “RFI
and receiver sensitivity analysis in mobile electronic devices,” in DesignCon,
vol. 7, 2017, pp. 1–6.

[126] S. Moon, S. Kim, D. Kim, D. Yi, S. Lee, and J. Shin, “Analysis and estimation
on EMI effects in AP-DRAM interface for a mobile platform,” in 2016 IEEE
66th Electronic Components and Technology Conference (ECTC), 2016, pp.
1329–1334.

[127] T. Nighswander, B. M. Ledvina, J. Diamond, R. Brumley, and D. Brumley,
“GPS software attacks,” in the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012,
T. Yu, G. Danezis, and V. D. Gligor, Eds. ACM, 2012, pp. 450–461.

[128] R. E. Navas, F. Cuppens, N. Boulahia-Cuppens, L. Toutain, and G. Z.
Papadopoulos, “Physical resilience to insider attacks in IoT networks:
Independent cryptographically secure sequences for DSSS anti-jamming,”
Comput. Networks, vol. 187, p. 107751, 2021.

[129] C. Shen and J. Huang, “Earfisher: Detecting wireless eavesdroppers by
stimulating and sensing memory EMR,” in 18th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2021, April 12-14, 2021,
J. Mickens and R. Teixeira, Eds. USENIX Association, 2021, pp. 873–886.

APPENDIX A
BASICS OF RADIO COMMUNICATIONS

Complex notation: A generic signal x(t) can be conveniently
represented as the projection on the real axis of a complex vector
with amplitude a(t) and angle θ(t) (the angle can be expressed in
terms of frequency f and phase φ(t)):

x(t)=Re{a(t)ei(2πft+φ(t))}=a(t)cos(2πft+φ(t))

θ(t)=2πft+φ(t)
(3)

Frequency domain and radio signals: A baseband signal
xbb(t) with amplitude abb(t) and angle θbb(t) carries the information
that has to be transmitted. In the frequency domain it occupies the
range−B toB, where the bandwidthB is its maximum frequency
component. This signal is shifted (up-converted) to a carrier
frequency fc, resulting into a modulated carrier:

xrf(t)=abb(t)cos(2πfct+θbb(t)) (4)

In the frequency domain, this signal occupies the range fc−B to
fc+B. In this case, the term bandwidth is often used to indicate
the occupied spectrum 2B.

Modulation: Any type of analog or digital amplitude and/or
angle (frequency or phase) modulation can be implemented with
a proper choice of the baseband signal. See Table V for a brief
list. The modulated carrier xrf (t) can be rewritten as the sum of
its in-phase (I) and quadrature (Q) components:

xrf(t)=I(t)cos(2πfct)+Q(t)cos(2πfct+
π

2
)

I(t)=abb(t)cos(θbb(t)), Q(t)=abb(t)sin(θbb(t))
(5)

Implementing a quadrature modulator (Equation 5) is often more
convenient than implementing a polar modulator (Equation 4).

Superheterodyne: In this two-stage architecture, the baseband
signal is first modulated on an intermediate frequency fIF , and
then further up-converted to the radio-frequency carrier fc.

Discrete time and quantization: Digital software and hardware
work with a discrete-time digital representation of signals, that is, a
sequence of samples xs[i]=x(t=i/Fs), where Fs is the sampling
rate. Each sample xs[i] is represented with a digital number that
can only take a finite number of values (quantization levels).

Modems: In short, a modem takes the input bits to transmit,
and generates the samples xs[i] = abb[i/Fs] ∗ cos(2πfIF i/Fs +

1208

TABLE V
MODULATION TYPES

Acronym Name Short Description
AM Amplitude Modulation Analog amplitude
FM Frequency Modulation Analog frequency
OOK On Off Keying Digital amplitude (on/off)
ASK Amplitude Shift Keying Digital amplitude
FSK Frequency Shift Keying Digital frequency
B-FSK Binary FSK Digital frequency (two values)
M-FSK M-ary FSK Digital frequency (M values)
IFK Incremental FSK Digital frequency
DTMF Dual Tone Multi Frequency FSK
GFSK Gaussian FSK Gaussian-filtered FSK
A-FSK Audio FSK FSK in the audio bandwidth
PSK Phase Shift Keying Digital phase
B-PSK Binary PSK Digital phase (two values)

QAM Quadrature Amplitude
Modulation Digital phase (four values)

DSSS Direct Sequence
Spread Spectrum Code to spread the spectrum

CSS Chirp Spread Spectrum Chirp to spread the spectrum

OFDM Orthogonal Frequency
Division Multiplexing Orthogonal subcarriers

USB Upper Side Band Filter lower half band

θbb[i/Fs]) of the intermediate frequency wave, that is then sent to
the radio-frequency stage. a[i]=abb[i/Fs] and θ[i]=θbb[i/Fs] are
chosen based on the bits to transmit and the specifications of the pro-
tocols. The simplest example is OOK with symbol durationTsym. In
this case, a bit ‘1’ consists of the samples x[i]=cos(2πfIF i/Fs) for
i=[0,TsymFs], whereas a ‘0’ is x[i]=0 for i=[0,TsymFs]. Similar
exaplanations exist for other modulations, and their C++ implemen-
tation is visible in Fldigi [56] and GNURadio [68] source code.

APPENDIX B
IMPLEMENTATION DETAILS

RF-PWM: Conversion from a sinusoidal IF carrier (modulated
in amplitude/frequency/phase) to an RF-PWM square wave is
straightforward following Equation 2. Figure 6 visualizes the process.
Listing 1 shows our C++ implementation used in Fldigi-Noise-SDR.

Leakage generation: Noise-SDR requires a source of leakage
(Section IV). Inspired by previous work on exfiltration [1], [3],
[8], [44], [45] and Rowhammer [66], [67], we have implemented
Noise-SDR on x86-64, ARMv7-A, ARMv8-A, and MIPS32. The code
sequence (leakyOperation) used to trigger the leakage emission
during the high periods of the RF-PWM square wave is shown in
Listing 2, Listing 3, Listing 4, and Listing 5, respectively.

Leakage control: To generate the desired RF-PWM square wave,
Noise-SDR simply alternates an operation with strong leakage
(during the high period) with inactivity (during the low period).
The timings of the square wave (high and low periods) are stored in
a static array (filled by the RF-PWM stage) for fast access. The code
that controls the square wave is shown in Listing 6. Timing measure-
ments (get ns()) that control the pulses are based on clock getttime.
The fundamental difference between this code and that provided in
previous work is that duty-cycle, frequency, and phase of the pulses
are controlled in a generic way following an RF-PWM square wave,
to modulate an arbitrary sinusoidal signal on the first harmonic.

Time resolution, quantization levels, and bandwidth: Noise-
SDR is implemented in software and therefore it works at discrete

while (i
< outputBufferIndex && outputBuffer[i++] < 0) {

}
while (i < outputBufferIndex && len < EDGESIZE) {

uint64_t j = 0;
double a = outputBuffer[i];
while (i + j < outputBufferIndex

and outputBuffer[i + j] >= 0) {
j++;
if (outputBuffer[i + j] > a)
a = outputBuffer[i + j];

}
while (i + j < outputBufferIndex

and outputBuffer[i + j] < 0) {
j++;

}
if (len < EDGESIZE - 1) {

edges[len++] = (asin(a) /
M_PI) * (uint64_t)(1e9 * j / samplerate);

edges[
len++] = (uint64_t)(1e9 * j / samplerate);

}
i += j;

}
}

Listing 1. From a sinusoidal IF carrier (outputBuffer) modulated in amplitude/fre-
quency/phase to the corresponding RF-PWM square wave timings (edges).

void stream(void) {
_mm_stream_si128(®, reg_one);
_mm_stream_si128(®, reg_zero);

}

Listing 2. leakyOperation for x86-64 native code (inspired from [8], [44]).

static inline void ion_leak(void) {
ion_user_handle_t ion_handle;
ion_alloc(ion_fd

, len, 0, (0x1 << chipset), 0, &ion_handle);
ion_free(ion_fd, ion_handle);

}

Listing 3. leakyOperation for ARMv7-A/ (or ARMv8-A) native code (inspired
from [66]).

__attribute__((naked)) \
void hammer_civac(uint64_t *addr) {

__asm volatile("LDR X9, [X0]");
__asm volatile("DC CIVAC, X0");
__asm volatile("DSB 0xB");
__asm volatile("RET");

}

Listing 4. leakyOperation for ARMv8-A native code (inspired from [67]).

time. In RF-PWM, the time resolution Tres = 1/Fres at which
the square wave is generated affects the resolution of amplitude,
frequency, and phase of the first harmonic at f0 (FIF in Noise-SDR).
The quantization levels (the possible discrete values) are:

f0=
Fres
q
,q≥2

θk=2kπf0
q

Fres
,q∈
[
−
⌊
Fres
2kf0

⌋
,

⌊
Fres
2kf0

⌋)
ak=sin(kπq

f0
Fres

),q∈
[
0,

1

2k

Fres
f0

) (6)

1209

cnt++; // Followed by sleep during the low period

Listing 5. leakyOperation for MIPS32 native code (inspired from [44]).

int x = 0;
uint64_t mid, reset;
uint64_t start = get_ns();
while (x < len) {
mid = start + edges[x++];
reset = start + edges[x++];

// High period
while (get_ns() < mid) {

// basic operation
#ifdef LEAKY_OP_CIVAC

hammer_civac(address);
#elif LEAKY_OP_ION

ion_leak();
#elif LEAKY_OP_STREAM

stream();
#elif LEAKY_OP_CNT

cnt++;
#endif

}
// Low period

#ifdef LEAKY_OP_CNT
clock_sleep_trap(clock_port

, CLOCK_MONOTONIC, reset / NSEC_PER_SEC
, reset % NSEC_PER_SEC, &remain);

#else
while (get_ns() < reset) {};

#endif
// Reset the starting point
start = reset;

}

Listing 6. RF-PWM square wave control.

Note that the maximum achievable f0 frequency is Fres/2.
A numerical example: Let us consider a 3X PSK250R signal

that occupies a total bandwidth 2B=950Hz. We chose sampling
frequencyFs=80kHz. Therefore, our device should have a time res-
olution Tres=1/Fres in the order of tens of µs, at least. From now
on, we can consider Fres=Fs=80kHz. To avoid any overlap with
the baseband component, f0=FIF should be bigger than 950 Hz.
Because of the sampling theorem, FIF+B should not exceed Fs/2,
so FIF cannot exceed 39.525 kHz. We chose, for example, FIF =
5kHz. In this case, there are 80kHz/5kHz=16 samples per period.
So there are 8 possible values of the duty-cycle between 0 and 0.5 (in
RF-PWM the duty-cycle cannot be higher than 0.5 because of the
pre-distortion δ(t)= asin(a(t))

π). This corresponds to having a resolu-
tion of log2(8)=3 bits on the amplitude. Since there are 16 possible
values for the phase of the pulse, the phase resolution is 4 bits.

Advantage over PWM: For simplicity, let us focus on the un-
modulated intermediate carrier x(t) at FIF =5kHz. As depicted in
Figure 15, PWM approximates x(t) with the baseband component
of a square wave at fpwm>>2fIF . RF-PWM approximates x(t)
with the fundamental component of a square wave at fRF−PWM =
FIF , exploiting the fact that x(t) is a band-pass signal, too. Conse-
quently, PWM requires a higher time resolution to generate a square
wave at higher frequency. This would become quickly impractical
using leakage. An in-depth comparison of the two techniques is
outside the scope of this paper, and can be found in [30].

Fig. 15. Comparison between PWM (top) and RF-PWM (bottom).

TABLE VI
TESTING THE PRESENCE OF CONTROLLABLE LEAKAGE ON SMARTPHONES

Model ARM DRAM f (MHz) Harmonics n
Innos D6000 V8-A LPDDR3 400 1−4
Nokia 3.1 V8-A LPDDR3 13.56 7 (NFC)
Samsung Galaxy A30S V8-A LPDDR4 1794 1
Samsung S7 Exynos V8-A LPDDR4 1794 1

Samsung Galaxy S5 Mini V7-A n.a. 200 1-11,
13-19,26

Samsung M31 V8-A LPDDR4 1794 1 (rare)
Samsung Galaxy J7 V8-A LPDDR3 - -
Samsung Galaxy Young V7-A n.a. - -
Sony Xperia C5 V8-A LPPDR4 400 1-11
Sony Xperia X V8-A LPDDR3 - -
Motorola Moto E6S V7-A LPDDR3 400 1,2

Google Nexus 5 V7-A LPDDR2 200 1−5,8,12
16,20,24

Google Pixel XL V8-A LPDDR4 - -
Google Pixel 2 V8-A LPDDR4 - -
Wiko Fever V8-A LPDDR3 - -
Huawei P8 Lite V8-A LPDDR3 - -
Huawei P10 V8-A LPDDR4 - -
Huawei P8 SE V8-A LPDDR3 - -
OnePlus 7 Pro PE V8-A LPDDR4 - -

APPENDIX C
ADDITIONAL EXPERIMENTAL DATA

Controllable leakage on additional devices: We studied the
existance of controllable leakage on many smartphones. In particular,
we tested the existence of leakage that can be modulated with simple
tunes and chirps by unprivileged software, which is a necessary
requirement for Noise-SDR and other Soft-TEMPEST techniques.
As shown in Table VI, in many devices one or more harmonics of an
electromagnetic leakage can be controlled by performing memory
accesses. The Samsung Galaxy A30S is noticeable because it is able
to transmit a GLONASS C/A code at 800 MHz as we explained
in Section IX. In addition, we also analyzed a laptop (Dell Inspiron
14R 5437). It has a DDR3 DRAM with SSC at 800 MHz. We tested
NBFM, PSK31, RTTY45, MFSK128, and Olivia on one SSC sub-
harmonic at 800 MHz, with the antenna in proximity to the device.

Modulating an intentional radio carrier: The Nokia 3.1 in
Table VI is particularly interesting. Since we did not observe
any leakage from DRAM, we might think that exfiltration is not
possible. However, we noticed that DRAM accesses modulate the
radio carrier intentionally emitted at relatively high power by the
NFC reader when close to a tag. This is probably due to some
coupling effect on the smartphone platform that hosts both the
DRAM and the NFC reader. As a result, we were able to use
Noise-SDR to transmit, for example, with PSK31.

1210

