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Abstract—Despite the demonstrated effectiveness of dynamic 

taint analysis (DTA) in a variety of security applications, the poor 
performance achieved by available DTA prototypes prevents their 
widespread adoption in production systems, especially the 
Android system with limited computation and storage resources.  

To overcome DTA’s overhead bottlenecks, recent research 
efforts aim to decouple taint tracking logic from program 
execution. Continuing this line of research, this work proposes 
FSAFlow, a novel hybrid taint tracking and control system, to 
reduce DTA overhead significantly while ensuring sound Android 
privacy protection. FSAFlow further separates the path tracking 
logic from the corresponding taint tracking logic and the control 
of the information flow path is optimized. Specifically, a classic 
static analysis algorithm is first modified to search target paths 
and their key branch information. Then, the potential paths that 
violate the user's predefined privacy protection policy are chosen 
and encoded with a Finite State Automaton (FSA). A small amount 
of FSA-based state management code is inserted into the 
corresponding position in the program. Finally, it monitors the 
program’s state of path execution and prevents information 
leakage during runtime. 

The efficiency and correctness of FSAFlow are proved by 
theoretical analysis. The experimental results show that FSAFlow 
incurs lower overhead than several representative DTA 
optimization approaches, 2.06% for popular applications, and 
5.41% on CaffeineMark 3.0. FSAFlow has fewer false negatives in 
implicit flow tracking than the Android DTA platform, TaintDroid, 
and achieves higher precision than the static analysis tool, 
FlowDroid, by verifying the paths that never occur and tracking in 
the complete execution stage of the loop body at runtime. 

I. INTRODUCTION  
Android systems increasingly contain private user infor-

mation. Because of their openness, they often run a large number 
of untrusted programs, which results in frequent privacy leakage 
[1], [2]. The propagation and flow of sensitive information must 
be controlled [3]. Fine-grained information flow control is in-
separable from information flow tracking, also known as taint 
tracking. Specifically, it first tags source data (e.g., GPS location 
data returned by API call) as tainted. Then, these taints are prop-
agated through data flow or control flow. Finally, whether the 
tainted data reach sinks (e.g., the network output) is checked. 

Solutions that rely on static taint analysis (STA) can 
comprehensively search for potential information leakage paths 
but may cause over-approximations by generalizing all possible 
behaviors of a program and produce false positives [1], [4]-[7].  

§ Corresponding Authors 

Furthermore, if a discovered leakage path and a legitimate path 
share a sink, it is challenging for STA to apply correct judgments 
and control due to the lack of runtime path information (Refer 
to the example in Section II for this problem). 

In contrast, solutions that rely on dynamic taint analysis 
(DTA) search for security issues at program runtime. The char-
acteristics of DTA enable it to provide sufficient context, which 
helps DTA to avoid false positives. DTA has been used in vari-
ous application domains, including information flow control [5], 
[8]-[13], vulnerability discovery [14]-[20], security attacks [19], 
[21]-[27], malware detection [27], [29], privacy leakage analysis 
[30]-[32], etc. Despite its advantages, DTA is rarely used in 
practice today [9]. The most serious problem is its performance 
overhead since, in a pure DTA situation, every instruction of the 
original program usually takes 6 to 8 extra taint tracking instruc-
tions to propagate a taint tag [35]-[37]. Several efforts have been 
made to reduce the overhead of DTA through hardware 
acceleration [5], [39]-[42], parallelization [36]-[37], [42]-[46], 
code optimization [14], [31], [52], etc. For example, TaintPipe 
[37] can reduce the slowdown of dynamic taint analysis to 1x in 
some test cases. However, other problems then arise. Hardware-
accelerated DTA requires additional hardware support. 
Parallelized DTA sacrifices the spare cores and wastes energy to 
accelerate DTA. Code optimization can only be realized for 
specific code features. Moreover, few pure DTA tools track 
implicit flows, which incur a significant performance overhead 
due to the lack of comprehensive branch structure information 
at runtime [30]. 

Hybrid analysis (HA) has been explored to accelerate DTA 
by static pre-optimized tracking logic [9]-[10], [52], [60], static 
pre-reduced tracking range [10], [61], static part sharing tracking 
tasks [62], etc. Although HA can use STA rapidly to calculate 
implicit taint propagation caused by the control dependencies, 
these traditional HA are still based on dynamic taint tracking 
supplemented by STA, where the dynamic instruction-by-
instruction tracking is still the main component. For example, 
Iodine [9] assumes that the fast path is often executed, while the 
slow path is less executed. Iodine only optimizes tracking for 
fast paths. If the fast and slow paths have equal probability of 
execution, or the profiler's prejudgment of whether a path is fast 
or slow is not accurate, the advantages of Iodine are nullified, 
but the path switching and recovery overhead will increase. 
Therefore, these methods only exhibit their advantages in certain 
cases and are not adequately robust. Moreover, HA’s static 
analysis usually lacks runtime profile information, which leads 
to reduced optimization and accuracy. Additionally, HA 
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introduces several STA’s shortcomings. For example, the 
classic STA algorithm IFDS (Interprocedure, Finite, Distri-
butive, Subset) [34] does not analyze the stable periods of loop 
structures to avoid path length explosions, which may produce 
false positives (Refer to Section III D for this problem).  

As for the above work, the tracking logic is not separated 
from the program execution, or the separation is not complete. 
Regarding privacy protection and performance improvement, 
the use of instruction-by-instruction tracking mechanisms for 
running programs is undesirable. Instead of caring about how 
information is spread between variables, research should 
consider whether the information flow path has occurred, 
whether it has reached the sink node, and whether the policy 
allows it. This requires a more effective regulatory mechanism. 
This paper proposes FSAFlow to address the above-mentioned 
challenges in HA. Its key idea is to separate the slow taint 
tracking logic from the program execution and further separate 
the path control logic from the taint tracking logic. Its static 
analysis does not require dynamic profile information, and it 
only searches for potential paths. Its runtime control is based on 
changes in path state rather than taint state. Figure 1 compares 
pure DTA and FSAFlow using an example. It assumes that 
variable td is a source, and printf(out) is a sink. The taint is 
propagated to variables in, a, b and out successively. Finally, it 
reaches the sink, causing an information leakage. Figure 1 (a) 
shows the tracking of pure DTA. It adds taint tracking 
instructions for each data flow statement, as shown in ①-⑥. 
Figure 1 (b) shows the tracking of FSAFlow. It only inserts path 
tracking instructions at the start, end, and branches of the path, 
as shown in ①-④. The detailed FSAFlow instrumenting logic 
is shown in Section III-D and Figure 5. FSAFlow is directly 
applicable to Android APK. The demo video can be downloaded 
from https://github.com/ FSAFlow/FSAFlow. 

The contributions of this paper are as follows:  
1) A novel information flow protection system, FSAFlow, is 

proposed that uses path tracking rather than taint tracking for 
privacy protection. The target program is only instrumented with 
lightweight supervision code related to the path, which does not 
involve cumbersome variable taint propagation. Based on this, 
fast information flow tracking can be achieved at runtime. 

2) FSAFlow uses a finite state machine to monitor the path 
state efficiently at runtime. It provides path-aware control which 
is difficult for STA and achieves higher precision than STA by 
verifying the paths that never occur and tracking throughout the 
execution stage of the loop body. It makes quick tracking 
operations by updating the path state only at branch statements, 
and can find and track implicit flow paths more easily than DTA 
by using STA comprehensively to search potential paths. 

3) The experimental results show that FSAFlow incurs a low 
overhead, 2.06% for popular applications, and 5.41% on 
CaffeineMark 3.0, which is lower than some representative 
DTA optimization approaches such as tracking on demand, local 
code optimization, optimal hybrid taint analysis. 

II. MOTIVATION 
In this section, a specific example, InsecureBankv2 [43], is 

provided to illustrate typical data leakage behavior and explain 
our motivation. InsecureBankv2 is used to evaluate the 
efficiency of security holes analysis tools. Data leakages 
designed in this app are basically the same as those in actual apps. 

Figure 2 shows a code snippet from InsecureBankv2 with a 
slight modification. First, in the onCreate method, data, the 
initial position of privacy data (the 3rd line), is regarded as the 
source. The privacy information eventually flows to the log 
method (the 25th line), which is regarded as sink nodes. This 
code prints out the password in the log and the password is easily 
leaked out, which is a serious privacy issue.  

It is understood that Android presently cannot prevent such 
leakages. Android’s permission control mechanism only 
determines which sources (such as location, IMEI, etc.) or sinks 
(sending to networks, etc.) can be accessed by apps following 
the user's choices. Android systems usually give a prompt such 
as whether to allow the program to read location information, 
but provide no mechanism that controls data propagation from 
sources to sinks nor information flow-control policies such as 
whether to allow the program to write location information into 
files. Information flow policies are crucial for privacy protection.  

Owing to commercial interests or untrusted third-party 
components, some popular apps, such as instant messaging, and 
navigation software, not only use private data to complete 
normal functions but also spread private data without informing 
users. In this case, information flow tracking and control are 
needed to prevent the leakage paths beyond normal functions. 
However, the current methods have the following problems: 

1) This leakage path can be found by traditional STA, but 
the kind of control to take at log.d is unknown. In Fig. 1, two 
paths converge to this sink. One contains the password infor-
mation (the if-then path starting from lines 19-20), and the other 
contains no password information (the if-else path starting from 
lines 21-22). There is no runtime context information at log.d. 
In practice, a sink node often contains multiple paths from the 
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Fig. 1.  Comparison of tracking between pure DTA and FSAFlow 

public class DoLogin extends Activity {
   protected void onCreate(Bundle savedInstanceState) { ……
     Intent data = getIntent();//source 
     password = data.getStringExtra("passed_password");
     new RequestTask().execute("password");
     …… }
   class RequestTask extends AsyncTask <String,String,String> {   
      protected String doInBackground(String...params) {
        postData(params[0]);
        …… }
      public void postData(String valueIWantToSend){
         ……
         InputStream in = responseBody.getEntity().getContent();
         result = convertStreamToString( in );
         ……
         Loginfo=Loginfo_tmpt1;
         Loginfo_tmpt2=Loginfo_tmpt1;
         if (result.indexOf("Correct Credentials") != -1) {
           if(MonitorFlag){

Loginfo[0]="Successful Login" +": account="+ 
                     username + ":" + password;
}else{
   Loginfo[0]="Unsuccessful Login";}  
if(Loginfo[0].matches("Successful Login"))
   MonitorFlag=false;
Log.d("Login status:",Loginfo_tmpt2[0]);//sink

               …
      }  }
      private String convertStreamToString(InputStream in ) {
         …… } 
}  }  
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Fig. 2.  Code snippet of InsecureBankv2 
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sources. Simple prohibition or permission will cause usability 
or security problems. 

2) If traditional DTA is adopted, the dynamic context 
information can be provided for correct control. However, the 
main problem is its excessive running overhead for single-step 
instruction track and its suffering in implicit flow tracking.  

To solve these problems, a novel hybrid analysis method, 
FSAFlow is proposed for privacy protection. The key idea is to 
adopt global path tracking instead of micro taint tracking at 
runtime. Meanwhile, path tracking is optimized to ensure 
tracking efficiency at runtime. FSAFlow provides path-aware 
control at sink points to ensure the accuracy of control.  

III. DESIGN AND IMPLEMENTATION 

A. Overall framework 
As shown in Figure 3, FSAFlow consists of a mobile client 

and a cloud server (distinguished by color), and its workflow is 
as follows: First, at ①, a user can use the client to customize the 
flow policies for any application on the mobile phone. By 
managing the information flow path from source to sink, the user 
obtains a customized privacy policy, such as whether the 
location information can be sent through the network or written 
to local files. Then, at ② , the personal flow policy file is 
uploaded to the cloud server with the corresponding APK file 
for processing.  

On the server side, FSAFlow performs static analysis and 
instrumentation processing according to the uploaded flow 
policy. In the static analysis stage, as shown at ③ , all the 
potential paths that violate the policy will be considered. 
Meanwhile, the key node information of these paths is recorded 
during this stage. In the static instrumentation stage, as shown at
④, the important nodes of the supervised path are instrumented 
for efficient path-state management. Then, at ⑤ , the 
instrumented code is repackaged to generate a new APK file and 
returned to the client. Based on this, the security-enhanced 
application will be run and monitored efficiently on users' 
mobile phones as shown in  ⑥.  

B. Static analysis  
The static analysis stage aims to mark potential leakage paths 

and record their necessary node information for static 
instrumentation. Since branch jumps are key nodes for 
distinguishing different paths, the contexts of branch nodes on 
the path will be recorded. Monitoring points are mainly 
instrumented at branches. In order to efficiently locate branch 
nodes during the instrumentation stage, the contexts of the 
function call and return will be recorded as separate nodes to 
indicate the method body where subsequent branch nodes are 
located. Therefore, for the branch node, we only need to record 
its relative position in the method body. 

The FSAFlow’s static analysis component is realized by 
modifying the classic IFDS framework [34] and the FlowDroid 
tool. Many static analysis problems, including taint analysis, 
pointer analysis, live variables, and constant propagation, can be 
solved by IFDS using a special graph-reachability algorithm.  

The IFDS problem is represented by a tuple (G#, D, F, M, ⊓), 
where G#= (N#, E#) is called the Interprocedural Control Flow 
Graph (ICFG), and it provides the directed supergraph represen-
tation of a program. Each n ∈ N# corresponds to a statement of 
the program, and each (n1,n2) ∈ E# indicates that Statement n2 is 
a direct successor to Statement n1. D is a finite set of information 
flow facts, indicating the variables that are infected. F ⊆ 2D→2D 
is a set of information flow functions. A flow function defines 
the impact of a statement on a set of flow facts. For example, the 
statement s: x = y would be associated with a flow function that 
maps a fact set {y} (i.e., y is tainted) to a fact set {x, y} (x and y 
are both tainted), which can be expressed as {x,y}=fs({y}). M: 
E#→F is a map from the edges of G# to flow functions, and the 
meet operator ⊓ is the union for taint analysis. 

G# consists of a set of flow graphs{G1,G2,…}(one per func-
tion). The flowgraph Gp of a function p is composed of a unique 
start node sp, a unique exit node ep, and the remaining nodes rep-
resenting the statements and predicates in p. In G#, a statement 
m of calling a function q is represented by two nodes, a call node 
cm, and a return-site node rm. Three edges are used to connect m 
and q: a call-to-return edge from cm to rm, a call-to-start edge 
from cm to sq, and an exit-to-return edge from eq to rm. 

To convert static analysis problems to graph-reachability 
problems, G# is extended to a supergraph G*=(N*,E*), where N* 
= N#× (D∪∅) and E*={<u, dx> →<v, dy> | (u, v)∈E#, dy∈fu 
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(dx) }. For example, (n1: x=y → n2: z=x) ∈E# can be extended 
to {(<n1,y>→ <n2, y>, <n1,x>→ <n2, y>)} ∈ E* , if y has been 
tainted before n1. Note that ∅ signifies an empty set of facts.  

Based on the definition of flow functions, the IFDS algo-
rithm performs width-first traversal of the ICFG from the 
source statement and searches for all paths ending with the sink 
statement in E*. Therefore, if there is a path from node <n0: 
y=source(), ∅> to node <nfinal: sink(x),z> in G*, the sequence 
of statements corresponding to the nodes on the path constitutes 
the information flow path from source to sink.  

FSAFlow continues to extend G* to G^=(N^,E^), where N^= 
N*×String and E^={<u, dx, PFSA>→<v, dy, P’FSA> | (u, v)∈E*, dy
∈fu(dx)}. PFSA records the key information to identify the path 
so far, including the context of branch statements and call/return 
statements, etc. The search and recording are performed con-
currently. The specific static analysis is shown in Algorithm 1. 

In Algorithm 1, The inputs Sourcelist and Sinklist are ob-
tained by reading user policy files, and G# is generated by call-
ing the SOOT tool. First, G# is searched to find the source state-
ment set. Then, each source is taken as a starting point to search 
E^ for the paths to the target sinks. The searched edges are rec-
orded in the variable pathedge and will not be searched again 

(lines 12-13). The variable Worklist records the set of edges that 
remain to be searched. The newly found edges will be added to 
Worklist (lines 7, 23,27, etc.), and the old edges that have been 
searched will be removed from the worklist (line 11).  

The string array PFSA stores the information of each key node 
sequentially. In PFSA, different nodes are segmented with a spe-
cial separator. FSAFlow extracts different key information for 
different statement types. 

1) The statement type sink (lines 16-18). It indicates that a 
flow path has been found. At this time, the path expansion is 
terminated and PFSA is output. 

2) The statement type function call (lines 19-27). When this 
node is first encountered, the caller’s and callee’s call-site in-
formation is appended to PFSA, and the path is extended to the 
callee. Otherwise, the new extended path fragment PartFSA 
about the callee can be extracted from the function summary 
Summaryhash, and the search is then performed on the return-
site node. 

3) The statement type function return (lines 28-33). The 
function summary is appended to Summaryhash for reuse. Then, 
the algorithm returns to the call node and continues to expand 
the next statement. Summaryhash stores the path fragment of 
the information flow when it flows through the function.  

4) The statement type assignment (lines 34-38). PFSA will 
not be updated. The assignment statement is not the key infor-
mation for FSAFlow, but, in this case, the alias problem is con-
sidered. FSAFlow performs on-demand alias analysis. When-
ever a variable is tainted, FSAFlow searches backwards for its 
aliases and then taints them as well. The result variable output 

Algorithm 1  Static analysis 
1: Input:   G#=(N#, E#)     //the interprocedural CFG of the program 
2: Input:   Sourcelist, Sinklist     //the lists of Sources and Sinks 
3: Output: PFSA     //a path identified by key-node sequence 
4: Set<Statement> SourceStatements= G#.searchStatement(Sourcelist) 
5: for each  s in SourceStatements  do 
6:     PFSA=SourceTagHead+[s,di] //Variable di

 is tainted if s is executed; 
7:     Worklist.enQueue ([<-,∅>→<s,di>,PFSA])  //Enqueue an item on Worklist 
8: PathEdge.clearQueue( )  //Clear the queue PathEdge 
9: sn=0 

10:     while worklist≠null do 
11:         (<sp,d1>→ <n,d2>, PFSA)= Worklist.deQueue(); 
12:         if (<sp,d1>→ <n,d2>, PFSA) ∈ PathEdge   
13:             continue 
14:         PathEdge.enQueue((<sp,d1>→ <n,d2>, PFSA)) 
15:         Switch(n) 
16:         case  G#.isSinkstatement (n):  //n is sink statement 
17:             PFSA+= SinkTagHead+[ sn++;n; d2] 
18:             output PFSA 
19:         case  G#.isCallstatement (n): //n is call statement 
20:             endSums=Summaryhash.get([G#.getCalleeMethod(n), d2]) 
21:             If endSums≠null 
22:                 for each ( <n,d2>→<returnsite(n), d3>,PartFSA) in endSums do 
23:                    Worklist.enQueue([<n,d2>→<returnsite(n), d3>,PFSA+PartFSA]) 
24:             Else 
25:                 for each ( <n,d2>→< firstnodeofcallee (n), d3>,PFSA) in E^ do 
26:                     PFSA += CallTagHead+[n; firstnodeofcallee(n)] 
27:                     Worklist.enQueue([ <n,d2>→<firstnodeofcallee(n), d3>,PFSA]) 
28:         case  G#.isExitstatement(n): //n is return statement 
29:             PFSA += CallreturnTagHead+[n; returnsite(n)] 
30:             PartFSA = PFSA.Substring(PFSA.lastIndexof(G#.getMethodOf(n)); 
31:             Summaryhash.put(G#.getMethodOf(n),[<sp,d1>→<n,d2>, PartFSA]) 
32:             for each (<n,d2>→<returnsite(n), d3>,PFSA) in E^do 
33:                 Worklist.enQueue ([<n,d2>→<returnsite(n), d3>, PFSA]) 
34:         case  G#.isAssignmentstatement (n): //n is assignment statement 
35:             for each (<n,d2>→<m,d3>,PFSA ) in E^ do 
36:                 Worklist.enQueue([<sp,d1>→<m,d3>, PFSA])  
37:             for each d3’∈Backforward_alias(m,d3) do 
38:                 Worklist.enQueue([<sp,d1>→<m,d3’>, PFSA]) 
39:         case  G#.isBranchstatement(n):  //n is branch jump statement 
40:             for each (<n,d2>→<m,d3>,PFSA)∈E^do  
41:                 (size, no,type) = G#.branchinfo(m); 
42:                 [sn’; size’; no; type]=searchincurrentmethod(PFSA, m) 
43:                 if [sn’; size’; no’]does not exist then 
44:                     PFSA+=BranchTagHead+[sn++; size; no; type; -1; m ] 
45:                 Else 
46:                     PFSA+=BranchTagHead+[sn++; size; no; type; sn’; m] 
47:                 Worklist.enQueue([<sp,d1>→<m,d3>, PFSA]) 
48: end 

public class DoLogin ... {
   protected void onCreate(...) {……
     Intent data = getIntent();//source
     password = data.…;
     new RequestTask().execute("password");
     ……}
   class RequestTask ... {        
      protected String doInBackground(...) {
        postData(...);
        …… }
      public void postData(...){
         ……
         result = convertStreamToString( in );
         ……
         Loginfo=Loginfo_tmpt1;
         Loginfo_tmpt2=Loginfo_tmpt1;
         if (...) {
           if(...){

Loginfo[0]=username + password;
}else{
   Loginfo[0]="...";}
  …
Log.d(Loginfo_tmpt2[0]);//sink

               …
       }  }
      private String convertStreamToString(... ) {
         ……  }
 }  }
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com.android.insecurebankv2.DoLogin---->>
void onCreate(android.os.Bundle)---->
sourcestart￥<com.android.insecurebankv2.DoLogin: void 
onCreate(android.os.Bundle)>￥$r2 = virtualinvoke 
$r0.<com.android.insecurebankv2.DoLogin: android.content.IntentgetIntent()>()
com.android.insecurebankv2.DoLogin$RequestTask---->>
java.lang.String doInBackground(java.lang.String[])---->
##newinvoke
##|branchmid|￥1￥9￥9￥x￥-1
void <init>(com.android.insecurebankv2.DoLogin)---->
##newinvoke
java.lang.Object doInBackground(java.lang.Object[])---->
##newinvoke
java.lang.String convertStreamToString(java.io.InputStream)---->
##newinvoke
##|branchmid|￥3￥2￥1￥x￥-1
##|branchmid|￥4￥2￥2￥x￥-1
void postData(java.lang.String)---->
##newinvoke
##|branchmid|￥2￥2￥1￥x￥-1
##|branchmid|￥5￥2￥1￥x￥-1
##|branchmid|￥6￥2￥1￥x￥-1
##sinkend￥7￥<com.android.insecurebankv2.DoLogin$RequestTask: void postData 
(java.lang.String)>￥staticinvoke <android.util.Log: int d(java.lang.String,java.lang.String) 
>("Successful Login:", $r1)￥$r1(java.lang.String) * | >>

①

②

③
④

⑤
⑦

⑧

⑥

⑨

(a)

(b)  
Fig. 4.  Information flow analysis and path coding 
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by the function of backward alias analysis, the current statement, 
and PFSA combined form a new node in N^. This node will be 
exploited to continue the forward data flow analysis.  

5) The statement type branch (lines 39-47). The infor-
mation mp of the first statement ms of a subsequent branch path 
is appended to PFSA as a node. The node mp consists of a tuple 
<sn, size, no, type, sn', m >, where sn represents mp’s position 
in PFSA, size represents the branching number of the branch, no 
is for the branch serial number of the target path, and type is for 
the node type, indicating to which branch type the selected 
branch belongs. The node type can be in (entering loop body), 
out (the type of exiting loop body), and x (others). If ms appears 
more than once on the path within the current function, sn' is 
used to record the first corresponding position of ms in PFSA. m 
is for the statement itself. Finally, when PFSA is output, m is re-
moved from this node in PFSA. Refer to Section III-D and C for 
the use of branch information. 

Taking the code snippet in section II as an example, algo-
rithm 1’s path analysis process is given. The polluted process 
at the sink can be abstracted as the process steps ①-⑧ in Figure 
4(a). Meanwhile, the main structure of the path obtained by the 
static analysis is shown in Figure 4(b). FSAFlow operates on 
the Jimple code, therefore, to facilitate subsequent instrumen-
tation, the output path is also represented by Jimple statements. 

In step ①, the tainted variable password starts to propagate 
forward. At ②, the class RequestTask is tainted. Step ③ con-
tinues tracking when the tainted variable is called by postData. 
At ④, the tainted variable is called by ConvertStream ToString. 
Step ⑤ represents the return of the function call. The tainted 
variable continues to propagate forward through ⑥ and passes 
through two branches due to the if statements. At ⑥, loginfo is 
tainted. This triggers the backward alias analysis through steps 
⑦ and ⑧, the alias loginfo_tmpt2 for loginfo is found and then 
propagates forward as a normal taint. Finally, at ⑨, the tainted 
variable loginfo_tmpt2 leaks at the sink.  

FSAFlow adjusts the output format of PFSA and aggregates 
the nodes according to classes and methods. After the static 
analysis is completed, the key information of paths is output 
and written into path files.  

C. Static instrumentation 
The static instrumentation stage aims to embed the 

lightweight code for path monitoring into the apps, which 
transforms untrusted apps into policy-enforcing apps. Accord-
ing to the results of static analysis and user-defined flow policies, 
the disallowed paths are extracted and instrumented for the 
source nodes, branch nodes, and sink nodes. 

Before instrumentation, FSAFlow preprocesses the path file. 
Because there is a loop structure, a statement may repeatedly 
appear on the path, thus let SN be the set of all the positions (sn) 
on the path where a statement m appears. FSAFlow appends SN 
to the node where m first appears on the path for m’s location 
to be instrumented only once. After appending, other nodes 
about m remain on the path to ensure the consistency of the con-
trol flow when the following nodes are instrumented. Moreover, 
each loop structure involved in the path is assigned a unique ID 
that is used for status monitoring in nested loops. Refer to Sec-
tion III-D for the use of loop ID. 

Furthermore, all paths are managed hierarchically and uni-
formly by a multilevel hash table HashMappolicy according to 

class, method, and path identification. Hereby, the involved 
classes and methods are each traversed only once. HashMappol-

icy has a data structure of <classname, <method, <pathid, path-
fragment>>>, and is directly accessed through the multi-level 
key-value. Each key value of the method index can store the 
fragment information of multiple paths while pathfragment 
only stores branch nodes. The nodes associated with function 
calls on the path can be removed and will not occur in HashMap-
policy. Subsequent instrumentation is based on HashMappolicy.  

FSAFlow extends SOOT’s BodyTransformer and the 
method internalTransform is implemented to traverse the units 
(statements) of all method bodies and insert the monitoring code 
in the specified location. Algorithm 2 describes the process of 
code instrumentation in detail. 

The classes that appear in HashMappolicy are loaded item by 
item from the actual class files. Then, the methods in the class 
file are individually parsed. For each method, the corresponding 
path identification and path segment are extracted from the hash 
table, and there are three contexts for node processing:  

1) If it matches the source type, the corresponding state-
ment is located and the control code is inserted before it, which 
can activate the monitoring of the specified path at runtime. 

2) If it matches the branch type, the next branch from the 
current location is located. For different following paths, the re-
sponding control codes are inserted before the first statement of 
the subsequent target path as shown in Table I in Section III-D. 
If a node is the non-first repeated node (sn’=-1), it means that 
this node has been processed and can be ignored. 

3)  If it matches the sink type, the corresponding statement 

Algorithm 2  Code Instrumentation 
1: Input:    HashMappolicy  //the paths  stored with hash table 
2: Input:    classfiles  //the class files of the target program 
3: Output:  instrumented classfiles 
4: for each class c in HashMappolicy do  
5:    for each Method m in c do 
6:       for each pathid in hash(c,m) do 
7:          for each path fragement f in hash(c,m,id) do 
8:             for each node n in f do 
9:                if n is source type then 

10:                   stmtn = seek n in m 
11:                   insert source-control-code before stmtm to  control the source 
12:                else if n is branch type and n.sn’=-1 then 
13:                   Continue; 
14:                   for each following path  p at the next branch 
15: stmtm = the first statement of p 
16:                     insert branch-control-code before stmtm to control the branch 
17:                else if  n is sink type  then 
18:                   stmtn = seek n in m 
19:                   insert sink-control-code before  stmtm  to control  the sink 
20:       output  instrumented class c 
21: end 

public class DoLogin ... {
   protected void onCreate(...) {……
      detail_embeded_code.source_logic(114, 0,"Source information");          
      Intent data = getIntent();//source
      password = data...;
      …… }
   class RequestTask ... {        
      protected String doInBackground(...) { 
         ……}
      public void postData(...){
         ……
         detail_embeded_code.branch_logic(114, 5, "accept");
         if (...) {
           detail_embeded_code.branch_logic(114, 6,"accept");
           if(...){

Loginfo[0]=username + password;
}else{
   Loginfo[0]="...";  }
……
detail_embeded_code.sink_logic(114, 7,"Sink information");  
Log.d(Loginfo_tmpt2[0]);//sink

                ……
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Fig. 5.  Code instrumentation  

2118



is located and the control code is inserted before this statement, 
which allows information flow control and auditing.  

In a path, a method may be called more than once. The 
newinvoke type is used for updating the current instrument loca-
tion to the method’s initial node. Due to limited space, the details 
of the relevant newinvoke nodes in the description of Algorithms 
1 and 2 are omitted. 

After completing the code instrumentation for related class 
files by traversing HashMappolicy, a set of new class files is ob-
tained. Then, all the new class files are repacked into .dex files 
to replace the .dex files in the original APK file. Using the com-
pression package, a new APK file is generated.  

The code instrumentation example of InsecureBankv2 is 
shown in Figure 5. Only the statements before and after the in-
strumentation node are retained in this figure, and part of the 
instrumentation for the branch node is omitted. The inserted 
code is actually a function call code. Considering the hierarchy 
and interface of the project, the functions needed for actual op-
eration are encapsulated into separate classes. When these func-
tions are called in the running process, the related functions can 
be realized. 

D. Runtime control 
The runtime control stage aims to efficiently monitor the 

change of path states and dynamically prevent information 
leakage when the leakage path occurs. This section describes 
the specific control principle based on a finite state machine. 
The code snippet shown in Figure 1 is taken as an example to 
illustrate the runtime control mechanism. 

If the IFDS algorithm is used to analyze this example, after 
it traverses the loop body from s2 to s5 three times, the nodes 
<s3,td>, <s3,in>, <s3,a>, <s3,b>, <s3,c> in N* of the pro-
gram will be found. When IFDS tries to traverse s3 for the fourth 
time, it will find that there is no new node available for the path 
expansion. Then, IFDS stops traversing the loop body and con-
tinues to traverse s6. Finally, it will output a path s0-s1-s21-s31-
s41-s51-s22-s32-s42-s52-s23-s33-s43-s53-s6 (sin represents the n-th 
execution of si), while the actual execution path is s0-s1-s21-s31-
s41-s51-s22-s32-s42-s52-s23-s33-s43-s53-s24-s34-s44-s54-s6, which 
leads to information leakage and causes false negatives in IFDS. 
However, all STA techniques may face this problem.  

To deal with this problem effectively, the process of taint 
propagation is divided into three periods along the path: 1) For-
ward propagation period (N): The executed statement is outside 
the loop, corresponding to the execution period of s1 and s6. 2) 
Loop propagation period (P): The execution statement is in the 
loop body. According to IFDS, there are still new node exten-
sions in the current loop round that corresponds to the execution 
period of “s21-s31-s41-s51-s22-s32-s42-s52-s23-s33-s43-s53”. 3) 
Loop stable period (S): The executed statement is in the loop 
body structure. According to IFDS, the current loop round has 
no new node extension. The execution is then no longer tracked 
by IFDS, which corresponds to the execution period of " s24-s34-
s44-s54". 

To avoid the problem of path length explosion, IFDS does 
not analyze the S period yet still achieves good accuracy. How-
ever, further monitoring of the S period is beneficial. If there is 
a leakage path that includes an S period, it will cause false neg-
atives in the IFDS. The use of an over-accurate STA algorithm 
for the S period can easily lead to excessive overhead because 

STA has difficulty in determining the number of loop executions 
in the S period. Thus, a more effective and reasonable method is 
required to solve this problem. Before the execution enters into 
the S period of a loop, it has experienced the P period and 
reached the maximum taint state by taint accumulation. Thus, to 
maintain the maximum taint state of the loop, the repetitive ex-
ecution of the same code segment of a loop in the S period often 
tends to be stable. In practice, the code in the loops may be re-
petitive logical behaviors, such as scientific calculation, file 
reading, and writing, etc. The execution of the path usually does 
not change the final propagation state of the P period. Thus, 
these paths are still valid but have no role in propagation. In most 
cases, to ensure safety, FSAFlow continues to monitor the stable 
period, and only monitors the key branch nodes to ensure per-
formance and correctness, as shown in Table III. In a few cases, 
a false positive judgment may occur during the S period. Then, 
this path’s monitoring policy is revised to reduce the false posi-
tive judgments by no longer monitoring its stable period.  

FSAFlow implements the control of the path based on a 
pushdown automaton, which is an extension of the finite-state 
automaton and is composed of a state controller, an input, and 
a stack. As shown in Figure 6, given a path path output by static 
analysis and assuming its length is N, at runtime the corre-
sponding automaton is formally expressed as M=(Q,Σ,Γ,δ,q0,F), 
where:  

1) Q is a finite set of states. Each node i on the path corre-
sponds to a state qi(i>0). q0 corresponds to the inactive state of 
the path; q1 corresponds to the source node; qn corresponds to 
the sink node. 

2) Σ: 2{0,1,…,N}×TYPE×LID is the input alphabet. Each input 
symbol corresponds to a monitoring point of FSAFlow, and the 
input sequence represents the sequence execution of monitoring 
points for program execution. The input symbol σ is composed 
of a tuple (SNs,type,lid). SNs∈2{0,1,…,N} is the set of allowed 
node numbers corresponding to the monitoring point. Each 
node qi(i>0) on the path is assigned a node number i in sequence. 
In a special case, SNs={0} indicates that the monitoring point 
is on the non-target branch path. type∈{in,out,x} is the type of 
the location of the monitoring point. in/out/x respectively indi-
cate that the monitoring point is an entry/exit point of loop 
structure and other types. lid represents the identification of the 
loop structure. If type=x, then lid=-1. 

3) Γ: Period×LID is the stack alphabet. Stack is a “last in, 
first out” storage device that records the corresponding execu-
tion period of a loop when executing nested loops. Period: 
{N,P,S} respectively represent the forward propagation period 
(N), loop propagation period (P), and loop stable period (S). 𝐿𝐿𝐼𝐼𝐼𝐼 
is the set of IDs of the loop. For a stack symbol γ= (period, lid), 
if period=N, then lid=-1.  

4) δ: Q×Σ×Γ→Q×Γ is the transition function. According 
to the current state, if the current input and the symbol are at the 
top of the stack, the next action of M is determined, including 
the state transition, and the Push or Pop operation.  

...σ1

q0 q1 q2 qi qn... ... ...

Input Tape
(Sequence of executed monitoring points )

Take Input

Finite control unit

Stack

Push or Pop

P
P

S
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σ2 ...σ3 σ4

 
Fig. 6.  Path control Automaton 
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5) q0∈Q is the initial state, which indicates that the path is 
not activated.  

6) F:{q0, qn}⊆Q is the set of accepting states.  
The transition function of M is listed in Table Ⅰ. M starts 

from the state q0 and the empty stack. After the source statement 
is executed, it reaches the q1 state and enters the N period. Dur-
ing the N period, when a branch jump such as If/Switch is en-
countered, the state will be updated one step forward if the 
jumping target points to the next node in path; when a 
While/For loop is encountered, M will enter the P period, and 
the state is updated one step forward if both the jumping target 
and the target path point must enter the loop body. During the 
P period, when a branch jump is encountered, the state will be 
updated one step forward if the jumping target points to the next 
node in path; otherwise, M will enter the S period if the branch 
jump enters the loop body again while the next node in path 
points to the loop exit branch. In this case, it is indicated that 
the program should continue to execute the loop body after the 
execution reaches the path’s maximum value of taint propaga-
tion. During the S period, the branch that does not jump from 
the loop body is continuously monitored, and the path state re-
mains unchanged. When a branch that jumps from the loop 
body is encountered, M will pop up the stack and restore the last 
period indicated by the stack as the current period. Then, it con-
tinues tracking and monitoring according to different period re-
quirements. During the P or S period, loop nesting will occur if 
M determines to enter a different loop by distinguishing the 

loop ID. In this case, new period information will be pushed 
into the stack, and the assignment of the new period remains 
that of the current period. If other situations are encountered, M 
will return to the q0 state and clear the stack.  

FSAFlow exploits global variables to record the execution 
states and the stack of all supervised paths. As shown in Figure 
1, the example has four monitoring points. The main control 
codes of these monitoring points are shown in Figure 7.  

If the execution reaches the corresponding monitoring point 
of the sink, FSAFlow will check whether the execution matches 
the required state. If so, FSAFlow will limit the execution of 
the sink. If the intercepted sensitive data are numeric, they are 
assigned the value 0. If the intercepted sensitive data are char-
acter data, the character is first replaced with the ASCII code 
for 0. To prevent covert communication by using the length of 
sensitive data, the random number generation API is further 
called to determine the length of cleared character data ran-
domly. This confuses potential eavesdroppers, rendering it dif-
ficult to determine if the received information is truly sensitive 
and from their partners. Finally, to avoid affecting the normal 
functioning of the program, the purified data is passed to the 
sink point for execution. Moreover, the users will be notified 
that information has been intercepted, as shown in Figure 8 (c). 
To prevent attackers from removing path monitoring code from 
an app by upgrading the software, FSAFlow records the finger-
print of each app’s executable file. FSAFlow will always first 
check whether the fingerprint has changed before an app runs. 
If it has changed, the user must re-apply for the app’s path mon-
itoring. Furthermore, to prevent attackers from escaping detec-
tion through complex reflections, we will adopt a strict taint-
sensitive policy: if any input parameters are tainted, all output 
parameters in the reflections will be tainted. This taint propaga-
tion policy is relatively strict, but it may be the best practical 
approach to prevent attacks.  

As concerns the tracking of native calls, similar to 
FlowDroid, FSAFlow directly updates the taint state of the pa-
rameter variables of the call by following predefined propaga-
tion rules, rather than entering the native call body to continue 
the analysis. This reduces the difficulty of path control in track-
ing. Accordingly, the internal statements of the native method 
will not be recorded on the path. FSAFlow can still monitor the 
path by setting monitoring points at branch statements without 
additional processing. 

E. Implementation 
The completion of each step in the FSAFlow system is 

shown in Figure 8. The interaction between the client and server 
adopts the WebSocket protocol and full-duplex mode to enhance 
the stability and availability of the system. 

The cloud server was written in Java, JDK 1.8. The static 
path analysis module was developed by modifying more than 
2000 lines of FlowDroid code. The path monitoring instrumen-
tation framework of FSAFlow was developed on the SOOT plat-
form, where the intermediate representation of the 3-address 
code provided by Jimple, and the accurate call graph analysis 
framework lay an important foundation for the FSAFlow system. 
Meanwhile, the Dexpler plugin and Heros framework were also 
used. The client apps can run on the latest version of Android, 
which is downward compatible with Android 4.0 and above.  

Figure 8(a) illustrates the user-defined information flow-

①/*---- Monitor point of source---------------------------*/
path.state=1;        //Variable Path records path state,
push(N);             //stack operations are performed on Variable stack.
②/*---- Monitor point of branch entering a loop-----------*/
if (stack[top].phase!=S && path.state+1∈{2,3,4})
     path.state++; 
     if(stack[top].phase==N)     //forward propagation period(N),
        stack[top]=P;           //loop propagation period(P)
else if (stack[top].phase==P && path.state+1∉{2,3,4}) 
        stack[top]=S;          //loop stable period(S)
        path.state++; 
     else                      /*Here, there is only one loop on the path,
        clear(stack);             and our simplified code does 
        path.state=0;            not distinguish the loop ID.*/
③/*-----Monitor point of branch exiting a loop-------------*/
if (stack[top].phase!=S && paths.state+1∈{5})
     Pop; paths.state++;
else if (stack[top].phase==S)
        pop;
     else 
        clear(stack);
        path.state=0;
④/*-----Monitor point of sink------------------------------*/
c=0; sendMessage("Warnning: FSAFlow:…information leak…");
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Fig. 7.  Code instrumentation 

TABLE Ⅰ.  TRANSITION FUNCTION OF M 

Rule State Inputa Stacka Output/Action 
State Stack 

1 q0 <{1},-,-> empty q1 push(N,-1) 
2 

qi 
(N>i>0) 

 

<{i+1},x/out,-> <N,-> qi+1  
3 <SNs,in, lid > 

satisfying i+1∈SNs <N,-> qi+1 push(P, lid ) 

4 
<SNs,x, -> 

or <SNs,in, lid> 
satisfying i+1∈SNs 

<P,lid> qi+1  

5 <SNs,in, lid > satisfying 
i+1∈SNs, lid ≠lid   <P,lid> qi+1 push(P, lid ) 

6 <SNs,out, lid> 
satisfying i+1∈SNs <P,lid> qi+1 pop(); 

7 <SNs,in, lid> 
satisfying i+1∉SNs <P,lid> qi+1 pop(); 

push(S, lid) 
8 <{0},-,-> <N,-> or <P,-> q0 Clear stack 
9 <SNs,in, lid> or <SNs,x, -> <S,lid> qi  
10 <SNs,in, lid >  

satisfying lid ≠ lid <S,lid> qi push(S, lid ) 
11 <SNs,out,lid> top:<S,lid> qi pop(); 
12 other q0 Clear stack 

a. - = wildcard 
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path management interface of FSAFlow. The function of select-
ing the target APK file and selecting the information flow 
source node and sink node has been realized. After being sub-
mitted to the cloud server for processing, as shown in Figure 
8(b), the new APK file can be downloaded through the query 
function. Taking InsecureBankv2 as an example, the running of 
the processed APK file is shown in Figure 8(c)-(f). Before the 
sensitive information is leaked out by the information flow, it 
will be limited, and a notification will be sent to the user after 
being successfully intercepted, as shown in Figure 8(c)-(d). The 
user can click on the notification to view the details of the leak-
age path, which is shown in Figure 8(e)-(f).  

FastDroid [69] is an STA method, similar to FlowDroid. 
FastDroid implements a static information flow search based on 
a taint value graph by modifying the FlowDroid tool. Although 
the experiment in [69] showed that FastDroid can obtain better 
search performance, FSAFlow is not implemented on Fast-
Droid since FastDroid’s path is only composed of variable re-
lationships. The statements on the path, including branch state-
ments, are invisible in FastDroid, which makes it difficult to 
extract key path information from its output for path tracking.  

F. Limitations 
False negatives/positives: FSAFlow searches all paths using 

the STA tool FlowDroid. Although STA benefits from analyz-
ing the complete program code, FSAFlow may exhibit false neg-
atives due to implementation limitations [70], such as reflective 
calls and inaccessible code. FlowDroid resolves reflective calls 
only if their arguments are string constants. However, if reflec-
tive call targets are determined by external configuration or net-
work servers, the edge of a reflection call will be lost in the ICFG, 
resulting in potential false negatives. In order to prevent mali-
cious developers from writing their code deliberately like that to 
leak whatever they want to leak, our further work will adopt a 
strict taint-sensitive policy mentioned in Section III D. For na-
tive code, FlowDroid assumes a sensible default: the call argu-
ments and the return value become tainted if at least one param-
eter is previously tainted. Although this may be the best practical 
approximation in a black-box setting, it is also generally un-
sound. To minimize the storage overhead, FSAFlow may also 
exhibit false positives in coarse tracking granularity for arrays, 
lists, etc. 

Partially support for multithreading: FSAFlow has three 
phases: program static analysis, static instrumentation, and 
runtime control. FSAFlow's runtime control can handle multi-
threaded cases since it sets the path states as global variables that 

are managed through synchronized monitoring functions. Calls 
to these functions are multithreading-safe. FSAFlow's static 
analysis is implemented on the modified FlowDroid. FlowDroid 
itself partially supports multithreading analysis, including 
AsyncTask/Java's normal threading/Java's Runnable mecha-
nisms. Should the improvement to FlowDroid support more 
multithreading mechanisms, such as Java's Executor mechanism, 
FSAFlow would provide full multithreading support. 

Implicit flows: Untrusted programs can launder taint 
through implicit flows [63] [64], which poses a greater chal-
lenge to privacy protection. Similar to FlowDroid, FSAFlow 
cannot analyse implicit flows through table lookups. For im-
plicit flows through control dependencies, pure DTA systems 
may incur significant performance overhead due to the lack of 
comprehensive branch structure information [30]. Although 
both our evaluations and the analysis of the IFDS algorithm in 
Section V-B-3) show that the performance of FSAFlow is not 
significantly affected in most cases, there remain a few where 
large-scale implicit flows can be identified, and solutions must 
still be developed. For how to decide whether an implicit flow 
is a true violation, FSAFlow comes to a decision according to 
the user-defined policies, avoiding the difficulties in judging 
the code among benign and malicious cases. All information 
flows, including implicit information flows, from a source to a 
sink that are prohibited by the user will be prevented by 
FSAFlow.  

In general, implicit flows (as well as reflection and native 
code) remain major problems, however, our solution to implicit 
flow control caters mostly to benign code that is written so as 
to avoid such complicating constructs. For instance, a developer 
may vouch for a program's trustworthiness by indicating that it 
is fit for FSAFlow. Future work will attempt to analyze the spe-
cific characteristics and behaviors of malicious implicit flows 
for reducing misjudgment.  

IV. FUNCTION & COMPLEXITY ANALYSIS 
This section reports on the theoretical analysis conducted to 

prove that FSAFlow can perform correct instruction tracking 
and it is more efficient than the classic DTA system. 

A. Function Analysis 
For ease of description, a definition is presented as follows: 
Definition 1 (Basic block) Basic block refers to a sequence 

of statements executed sequentially in a program with only one 
entry and one exit. The entry is the first statement and the exit is 
the last statement.  

(a) (b) (c) (d) (e) (f)  
Fig. 8.  Components of FSAFlow 

 

2121



FSAFlow continues to monitor the path in the loop stable 
period to avoid misreporting. For a repeatedly executed loop 
body, its execution in the loop stable period tends to be stable to 
maintain the final taint state in the previous propagation period. 
Table III in section V-A also shows that it is true in most cases. 
However, FSAFlow can track any path output by STA tools, by 
removing Rules 7 and 10 listed in Table I. 

Theorem 1 (Correctness) In a program Q, for any path p 
found by IFDS/FlowDroid, by only tracking in the forward and 
loop propagation period, FSAFlow can report p if, and only if, 
p occurs when Q is running. 

Proof: Assume that path p=s1->s2->s3…si*…sj*…sk->sm is 
judged by IFDS/FlowDroid as a leakage path, where s1 is the 
source node and sm is the sink node. The jump statement can be 
used as the split node to express p as a basic block sequence 
q=B1->B2->B3…>Bn. FSAFlow instrument a monitoring point 
MBi in ahead of each Bi and transforms Q into Q’. 

Before any Bi is executed, its MBi is executed first. Accord-
ing to the transition rules, if the preorder state is qi-1, the execu-
tion of MBi will update the state to qi. When the source statement 
is executed, the path is activated, and Q’ reaches the state q1 
from the initial state q0. Any state transition from qi to qi+1 in-
dicates that after Bi is executed, the code of Bi+1 is also subse-
quently executed. The possibility of other blocks being exe-
cuted during the transition from Bi to Bi+1 must be excluded. 
Assuming that there is an execution path Bi->E1->E2…->EX-> 
Bi+1, consider the following two cases. First, E1 occurs on the 
path q, and the position set of E1 on q is labelled as K={k | 
k≠i+1,Bk=E1}. Then, SNs of the monitoring point ME1 of E1 is 
equal to K. Before E1 is executed after Bi, ME1 is first executed. 
According to the rules, ME1 restores the path state to q0 since 
i+1∉SNs does not meet Rules 2-6, indicating that tracking of 
the current path is stopped. Therefore, when Bi->E1->E2…-> 
EX->Bi+1 is executed at qi, the state will not enter qi+1 from qi in 
the current path. Thus, this state transition in the current path 
can only occur if there is a direct execution from Bi to Bi+1. Sec-
ond, E1 is not a basic block on path q. Then, SNs of the moni-
toring point ME1 of E1 is {0}. If ME1 is executed, FSAFlow will 
restore the state to q0, and also stop tracking the current path. 
Hence, the state transitions from qi to qi+1 occur if and only if 
Bi+1 is executed immediately after Bi is executed. Furthermore, 
the generalized state transition q1->q2…, -> qn must be accom-
panied by the flow path B1->B2->B3…->Bn being established. 
Thus, the execution reaches qn state if and only if p occurs.    ■ 

B. Complexity Analysis 
Theorem 2 (FSAFlow’s tracking and control runtime 

overhead) Given a program Q with E being the set of statements 
in Q. Assume u paths are monitored in Q and the average num-
ber of different branch nodes on a path is n and the average num-
ber of statements of a monitoring point is r. Then, the average 
overhead of FSAFlow’s runtime is nru/|E|. 

Proof: Given a path p, according to the FSAFlow instru-
menting mechanism, the monitoring points can only be set at 
branch nodes. Additionally, the repeated branch nodes share a 
monitoring point. The execution frequency of a monitoring point 
depends on that of the corresponding branch statement. Assume 
that all statements in E are uniformly executed, and p has n dif-
ferent branch nodes. Then, the executed frequency ratio of all 
monitoring pointers of p is n/|E|. If the average execution state-

ment number of a monitoring point is r, the ratio of the average 
runtime overhead of monitoring p is nr/|E|. Extended to u paths, 
the ratio of FSAFlow’s runtime overhead is nru/|E|. 

The randomness of instruction execution for r must be con-
sidered. Most program execution does not follow a leakage path. 
Thus, when a monitoring point code is executed, it is most likely 
to be in an inactive state q0 [47]. For most monitoring points, the 
state transition from q0 to qi (i≠1) is not consistent with the rules, 
indicating that only the beginning code of the monitoring point 
is executed, and the subsequent complex judgment may not be 
executed. Many set-determination operations may be omitted in 
the loop stable period. Consequently, the actual amount of code 
executed at each monitoring point may be small. 

Concerning u, only the potential user paths that violate the 
relevant policies are monitored, rather than all information flow 
paths. According to the previous work on the analysis of actual 
software [9], in commercial systems, such leak paths are rare. 

As for n, the nodes on the path mainly consist of sequential 
statements such as assignment, moving, and calculation. The 
number of branch statements of a path is usually considerably 
smaller than the path length. Besides, the path length is usually 
much smaller than |E|, thus n is far smaller than |E|. 

In summary, since nru/|E|<<1, the performance overhead 
can be very low. As a comparison, in the DTA systems adopting 
an instruction-by-instruction tracking mechanism, assume that 
each instruction requires a instructions for tracking and that 
they are generally used for copying and calculating taints in a 
shadow memory. Then, its overhead is a>1, which usually in-
creases by an order of magnitude and is significantly higher 
than that of FSAFlow.                                                               ■ 

Theorem 3 (Termination of Algorithms 1 and 2) Algo-
rithms 1 and 2 can all always terminate. 

Proof: Algorithm 1 continues to extend G* to G^=(N^,E^), 
where N^= N*×String and E^={<u, dx, PFSA >→<v, dy, P’FSA> | (u, 
v)∈E*, dy∈fu(dx)}. Meanwhile, the PFSA records the key node 
sequence on the information flow path thus far, including the 
information of function call and jump statement. Besides, to 
achieve better efficiency, Algorithm 1 records and updates the 
path information while searching. 

In Algorithm 1, pathedge records the set of path edges that 
has been searched. As each extended edge is added, more varia-
bles will be infected. Meanwhile, each edge will be inserted into 
the list pathedge after the first extended analysis. Later, if the 
new extended edge is in the pathedge list, the task is already in-
dicated to have been executed. Then, to avoid repeated analysis, 
this analysis is stopped. With the extension of the edge, the num-
ber of infected variables increases monotonically. Since the 
number of variables and the number of edges are both limited, 
the upper limit is that all variables are infected. Therefore, a 
graph search state exists where all new extended edge tasks have 
been executed, for Algorithm 1 to terminate. 

For a single-source information flow tracking, the worst case 
is to search all the extended edges and taint all the variables. In 
this case, the complexity of Algorithm 1 is O(|E||D|2), where E 
is the set of program statements and D is the set of program var-
iables. Considering the verification of the function repeat node, 
and assuming that the average number of statements in the 
method is k, then the complexity of Algorithm 1 is O(k|E||D|2). 
Moreover, if the backward alias analysis is considered, the com-
plexity of Algorithm 1 is O(k|E||D|4). However, the extended 
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edge of calling a function is only propagated and analyzed once, 
because after it is first analyzed, the record is summarized into a 
hash table Summaryhash. When the same extension is encoun-
tered later, the function summary can be reused, making the ap-
proach highly efficient. Especially, at different call sites of the 
same method m, the summary function can be reused (gaining 
efficiency). 

Regarding the static instrumentation in Algorithm 2, a mul-
tilevel hash mapping table HashMappolic is exploited to classify 
and record all the paths, and these are processed hierarchically 
by methods. Based on this, the methods of each class are ana-
lyzed only once, saving the long preparation and delay in re-
peatedly accessing them. The corresponding monitoring point 
is inserted at each branch node to monitor the path state. Be-
cause the path length and path set are both limited, Algorithm 
2 can terminate. For u paths, the average number of branch 
nodes of a path is denoted as v, then the complexity of Algo-
rithm 2 is O(uv), which mainly depends on the number of paths 
and the number of branch nodes.                                              ■ 

V. EVALUATION 
This section reports on how FSAFlow’s function and per-

formance were evaluated. Experiments were performed on a 
simulator. The host ran Windows 10, and was equipped with an 
Intel(R) Core (TM) i7-10710U CPU with 16.0 GB RAM. The 
simulator environment is a Pixel 2 smartphone with Android 
10.0, API 29.  

A. Function Evaluation 
This function evaluation verifies whether the system cor-

rectly prevents the release of prohibited information and re-
leases authorized information. Conventional DTA may produce 
false negatives due to its low code coverage, while FSAFlow 
may exhibit false negatives due to its implementation limita-
tions during the static analysis stage. We mainly compared 
FSAFlow with TaintDroid, an important DTA tool, from the 
perspective of false negatives. Considering that FSAFlow is 
based on FlowDroid, a well-known STA tool, FlowDroid was 
also chosen to mainly compare false positive rates because this 
is a common problem in STA. For the evaluations, implicit flow 
analysis was only enabled in FSAFlow and FlowDroid, since 
TaintDroid cannot support it. 

1) First, DroidBench 2.0 [57] was exploited to verify func-
tion adaptability in mining specific information flow paths. 
DroidBench 2.0 is an open-source benchmark suite for compar-
ing Android taint-analysis functions. 

Since FlowDroid and TaintDroid can only perform analysis 
but not control, their test results were judged by whether the 
given path can be found, while the test results of FSAFlow were 
judged by whether the given path can be intercepted at runtime. 
All 120 apps in DroidBench 2.0 were used and divided into 13 
categories. FSAFlow/FlowDroid defines more sources than 
DroidBench, such as getLastKnownLocation, etc. To focus on 
function evaluations, the leakage paths brought by such sources 
are marked as positive cases. The test results are listed in Table 
II. 

There are 115 leakage paths among all the test cases. Both 
FlowDroid and FSAFlow found 101 of these paths, but 
FlowDroid misreported eight paths, while FSAFlow 
misreported five. The three paths that FlowDroid misreported 

and FSAFlow did not misreport actually never occur in tests. 
These are Unregister1/Callbacks, Exceptions3/General Java, 
and VirtualDispatch3/General Java. FlowDroid does not 
provide a more precise analysis of the codes in the unregistered-
again callback, the non-occurring exceptions, and the never-
called factory method. The five paths misreported by FSAFlow 
involved a coarse-grained array or list tracking, and inaccurate 
backward alias analysis. To avoid incurring a significant storage 
overhead, all data items in an array or a list share the same taint 
tag, which caused four false positives.  

FlowDroid and FSAFlow missed 14 paths, mainly because 
some special codes were not tracked, including propagating 
taints across interleavings of separate components (Singletons1/ 
ICC), ICC Handler constructs (ServiceCommunication1/I CC), 
static initialization method (StaticInitialization1/General java), 
formatter (StringFormatter1/General java), etc. 

TaintDroid adopts a coarse-grained tracking strategy similar 
to FlowDroid, and stores only one taint tag per array/list/ object 
to minimize the storage overhead. Thus, it misreported seven 
paths in the tests of Arrays, Lists, and object fields. It missed 15 
paths, seven of which were implicit flow paths. TaintDroid does 
not track control flows and it missed seven implicit flows 
generated by the control-flow dependency in the ImplicitFlow 
1-4/ImplicitFlows tests. Instead, FSAFlow/FlowDroid tracks 
implicit flow generated by control dependency. Additionally, 
TaintDroid cannot track taint propagation in some specific 
objects, such as Sharedreferences (SharedPreference-Changed1/ 
lifecycle), or for specific sources such as findViewById (Private 
DataLeak1-2/AndroidSpecific), etc. 

In short, FSAFlow achieved a recall of 87.83% and a preci-
sion of 95.28%. FlowDroid also achieved a recall of 87.83%, 
but only 92.66% for precision. TaintDroid achieved a recall of 
86.96% and a precision of 93.46%. 

2) The tracking ability during the loop stable period was 
then tested. DroidBench 2.0 have very few loop structures. 
Therefore, a java program, GT, was written to produce test 
cases with taint propagation in loop bodies. The input parame-
ters of GT included the number M of variables (including a 

TABLE II.  CORRECTNESS TEST RESULTS OF INFORMATION FLOW  
LEAK PATH DETECTION ON DROIDBENCH 2.0 

DroidBench 2.0 Category # 
leaks 

FlowDroid TaintDroid FSAFlow 
TP  FP  FN  TP  FP  FN  TP  FP  FN  

Aliasing (1) 0 0 1 0 0 0 0 0 1 0 
Arrays and Lists (7) 3 3 4 0 3 4 0 3 4 0 
Callbacks (15) 17 17 1 0 17 0 0 17 0 0 
Field and Object Sensitivity (7)  2 2 0 0 2 3 0 2 0 0 
Inter-App Communication (3) 3 3 0 0 3 0 0 3 0 0 
ICC (18) 19 17 0 2 17 0 2 17 0 2 
Lifecycle (17) 17 17 0 0 16 0 1 17 0 0 
General Java (23) 20 18 2 2 19 0 1 18 0 2 
Android-Specific (13) 11 7 0 4 9 0 2 7 0 4 
Implicit Flows (4) 8 7 0 1 1 0 7 7 0 1 
Reflection (4) 4 1 0 3 4 0 0 1 0 3 
Threading (5) 5 3 0 2 5 0 0 3 0 2 
Emulator Detection (3) 6 6 0 0 4 0 2 6 0 0 
Total 115 101 8 14 100 7 15 101 5 14 
Precision=TP/(TP+FP) 92.66% 93.46% 95.28% 
Recall=TP/(TP+FN) 87.83% 86.96% 87.83% 

TABLE III.  CORRECTNESS TEST RESULTS OF INFORMATION FLOW LEAK 
PATH DETECTION FOR THE LOOP STABLE PERIOD 

M N L K #Cases #Paths FlowDroid FSAFlow 
FN FP FN FP 

5 3 7 1 20 20 20 24 0 0 
10 8 12 2 20 19 19 31 0 1 
15 17 18 3 20 18 18 40 0 2 
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source variable in and a sink variable out), the number N of 
statements contained in a loop body, the number of loop laps L 
(L>M), and the number K of loop nesting layers. Each statement 
was a simple assignment of x=y or x=0. GT first randomly gen-
erated schemes of assignment statements in loop bodies, then 
the schemes with propagation from in to out in the loop bodies 
were selected. A test case in the form of a java file was gener-
ated according to a selected scheme. The case first obtained the 
mobile IMEI and then sent the information by SMS after prop-
agating in nested loops. Because L>M, all the cases had loop 
stable periods. Three groups of cases were output. Each group 
had 20 cases that used the same parameter settings. The test re-
sults are listed in Table III. FlowDroid did not track in loop sta-
ble periods, causing all leakage paths to be missed and misre-
ported 95 paths that did not actually occur. FSAFlow only mis-
reported three paths and had no false negatives. The exceptions 
had forms akin to a loop body: {out=in, in=0;}. Although out 
was infected in the first round, it was cleaned again in the sec-
ond round. Such loop processing may have little meaning since 
it rarely appears in practice. 

3) Finally, the functions were evaluated on 150 popular real-
world apps from HUAWEI and Google’s app store. These were 
randomly selected from 15 different categories. These apps 
were shown as benign by VirusTotal, an authoritative website 
that provides malware-analysis services. For the paths found by 
FlowDroid, FSAFlow, and TaintDroid, since there was no 
available information about the privacy leakage of these apps, 
manual horizontal comparison and analysis were conducted ac-
cording to the app functions, self-declarations, and user com-
ments on the app stores, The test results are listed in Table IV.  

Thirty-two apps were found that have potential leakage 
paths. The main basis of judgment was that these release paths 
were not identified by the declarations of these apps, and they 
were not related to the main functions. For example, the Cur-
rency world app in the Finance category collects user accounts 
and writes them to a local file without prompting the user. The 
Fit fitness app in the Sports and Health category sends location 
data to advertising service providers.  

All three tools exhibit analysis errors. As for false negatives, 
TaintDroid missed two leakage paths on LETV video, dragonfly 
FM in the Media and Entertainment category because it did not 
track interface input information (e.g., passwords), while 
FSAFlow and FlowDroid reported correctly. However, 
FSAFlow and FlowDroid failed to report one leakage path 
where the information of dynamic reflection is stored in config-
uration files, such as Car Headlines from the Cars category, 
while TaintDroid reported correctly. Regarding false positives, 
the three tools all misreported one leakage path involving arrays 
in Baby Read from the Kids category because of their coarse 
tracking granularity for arrays. Besides, FlowDroid misre-
ported 1 leak path that will not occur in the Touch app of the 
Communication category. The APK file of this application con-
tains debugging code that does not execute at runtime. 
FSAFlow could avoid this misreport by runtime verification. 

B. Performance Evaluation 
FSAFlow’s performance was evaluated by comparing it 

with some representative optimization techniques on DTA. In 
the evaluations, the implicit flow analysis was enabled in 
FSAFlow only, since the DTA techniques used for comparison 

do not support such analysis.  
1) Evaluation on real-world apps. The selected test cases are 

32 apps with potential leakage paths from evaluation A-3). 
We compared FSAFlow’s static analysis with FlowDroid, 

and compared FSAFlow’s runtime control with Tracking On 
Demand (TOD), Local Code Optimization (LCO), Optimal Hy-
brid Analysis (OHA) and native Android system (Baseline). 
LIFT [47] was chosen as the TOD reference. LIFT checks 
whether all live-in/out variables are safe before tracking a basic 
block. If so, it runs the basic block without any tracking; 
otherwise, it runs the basic block with conventional tracking. 
Since LIFT’s implementation does not support Android, a 
simulation analysis was conducted on the best case of LIFT. In 
this case, LIFT did not spend any time determining whether 
basic blocks need to be tracked, but made quick operations 
directly on the basic blocks that had been inserted. In our 
experiment, it was manually determined whether there are 
already contaminated variables in a basic block before the 
execution enters this basic block; if so, we inserted tracking 
instructions into the basic block. CDroid [21] was chosen as an 

TABLE IⅤ.  CORRECTNESS TEST RESULTS OF INFORMATION FLOW  
LEAK PATH DETECTION ON REAL-WORLD APPS 

App Category # 
leaks 

FlowDroid TaintDroid FSAFlow 
TP  FP FN TP FP FN TP FP FN 

Media & Entertainment(9) 5 5 0 0 3 0 2 5 0 0 
Tools(11) 4 4 0 0 4 0 0 4 0 0 
Communication(12) 4 4 0 0 4 0 0 4 0 0 
Education(8) 1 1 0 0 1 0 0 1 0 0 
Books & References(11) 3 3 0 0 3 0 0 3 0 0 
Photography (12) 1 1 0 0 1 0 0 1 0 0 
Travel & Navigation(17) 5 5 0 0 5 0 0 5 0 0 
Shopping(7) 3 3 0 0 3 0 0 3 0 0 
Business(10) 1 1 1 0 1 0 0 1 0 0 
Kids(13) 4 4 1 0 4 1 0 4 1 0 
Finance(13) 2 2 0 0 2 0 0 2 0 0 
Sports & Health(4) 4 3 0 1 4 0 0 3 0 1 
Lifestyle & Convenience(7) 3 3 0 0 3 0 0 3 0 0 
Personalized Themes(10) 1 1 0 0 1 0 0 1 0 0 
Cars(6) 1 1 0 0 1 0 0 1 0 0 
Total 42 41 2 1 40 1 2 41 1 1 

TABLE V.  PERFORMANCE TEST RESULTS OF INFORMATION FLOW  
LEAK PATH DETECTION ON REAL-WORLD APPS 

APP Name 
Static  Dynamic  

Flowdroid 
analysis 

(ms) 

 FSAFlow 
analysis 

(ms) 

FSAFlow 
instrument 

(ms) 
Baseline 

(ms) 
Cdroid 

(%)b 
LIFT 
(%)b 

Iodine 
(%)b 

FSAFlow 
(%)b 

Draft design 6684 6991 2235 2186 14.72 8.68 5.54 1.98 
Baisou video 4858 5074 1450 1326 14.57 5.75 2.36 1.28 

Dragonfly FM 5223 6133 1735 878 13.77 8.74 5.41 2.76 
You health 6514 9713 1866 148 13.53 4.34 2.83 2.22 

Learning pass 3003 2957 1155 217 14.55 8.70 5.42 1.23 
Currency world 3945 4313 1285 1482 14.02 3.89 3.01 2.20 
Car headlines 3902 4247 1542 3476 14.37 6.05 3.07 2.28 

Two step outdoor 4135 3711 1482 604 13.26 16.71 9.15 2.62 
Wanshun taxi 5162 5359 1475 977 13.36 8.04 4.25 1.24 

Leeboo projection 2419 2628 934 1256 14.82 7.38 3.28 2.42 
YaoWang 3350 3621 957 2648 14.80 9.41 4.16 2.16 
Aikangyue 5443 5911 1569 2799 13.80 14.49 8.31 2.92 

Beautiful practice 6889 8829 2251 840 13.02 9.09 5.27 2.76 
Da Runfa Youxian 6125 6201 2450 688 14.47 6.24 2.33 2.06 

Maka design 3515 4138 1321 624 14.19 11.97 7.00 2.74 
Part time cat 6882 7786 2373 2256 13.96 9.51 5.46 2.00 

Class suspension bell 6663 6691 1915 1924 13.51 6.88 2.90 2.96 
Ease Flower 4827 6272 1788 1619 14.90 7.77 3.17 1.28 

Huiwan 5116 6349 1827 3055 13.93 8.81 5.60 1.71 
eHi taxi 4041 5985 1214 157 13.65 8.81 5.57 1.58 

Micro carp weather 5932 6218 2089 2718 13.38 11.90 7.03 1.36 
Settled guest 2583 3213 1029 312 13.27 8.97 4.35 2.27 

Guangdong Mobile 7613 8301 2456 1164 13.40 6.11 4.18 2.28 
Litchi news 5164 5743 1733 2918 14.15 14.19 8.25 2.88 
Change Icon 5527 5771 1777 919 13.08 3.39 2.89 1.33 

Good rabbit video 3891 3892 1276 386 14.17 9.78 5.57 2.16 
Sound encounter 3233 3838 1119 1680 13.95 9.78 4.96 1.05 
WuLi headlines 5434 6222 1698 1533 13.45 12.09 6.35 2.03 

Task Wizard 2581 3876 939 879 14.04 9.90 5.48 2.82 
LETV video 4151 5091 1609 933 14.28 15.72 8.91 1.37 

Shantao Street 6749 7734 2385 1230 13.92 8.35 5.07 2.54 
Walker 6146 6351 1824 189 13.56 8.57 4.39 1.57 

Average 4928 5599 1649 - 13.93% 9.06 5.05% 2.06% 
b. (%)=(a-b)/b, where a=Corresponding DTA time, b=Baseline time. 
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LCD reference, and it deploys local code optimization methods 
on hot traces, including reductant taint load/store elimination, 
reductant taint compute elimination, taint load hoisting and taint 
store sinking. Iodine [9] was chosen as an OHA reference. In the 
static analysis stage, Iodine only inserts tracking instructions for 
the statements that change the taint state of expected executions 
rather than all executions. Iodine realized rollback-free recovery 
from unexpected executions for its DTA to be sound. Since 
Iodine’s implementation also does not support Android, 
simulation analysis was conducted on the best case of Iodine. In 
this case, let Iodine execute the leakage path as a fast path with-
out triggering a tracking failure/recovery mechanism. 
According to Iodine's principle for fast path optimization, we 
only inserted tracking instructions for the statements whose 
source operands could be tainted by the taint source in forward 
STA, and destination operands could reach the sink in backward 
STA along the leakage path.   

In these test cases, different operations were performed for 
different applications to trigger the corresponding paths and test 
their execution time. For instance, in shopping apps, the leakage 
path of a payment password could be triggered by clicking the 
confirm button; in communication apps, the leakage path of the 
chat messages could be triggered by clicking the send button. 
Twenty tests were performed on each app, and the average exe-
cution time was recorded. The test results are listed in Table V. 

FSAFlow incurred a slightly higher overhead in static anal-
ysis than FlowDroid, which indicates that FSAFlow takes less 
time to extract key additional path information. FSAFlow 
needed less time in static analysis than in static instrumentation, 
mainly because only the key nodes of a few paths were instru-
mented with monitoring pointers. As for runtime tracking, com-
pared with native Android, the average overhead of CDroid, 
LIFT, Iodine and FSAFlow respectively was 13.93%, 9.06%, 
5.05% and 2.06%. Both LIFT and Iodine have lower overhead 
than CDroid. Although the test result of Iodine is closest to that 
of FSAFlow, it is obtained in Iodine’s best case, that is, let Io-
dine execute the leak path as a fast path without triggering a 
failure/recovery mechanism during the experiment. Note that 
the overheads of LIFT and Iodine fluctuated, because of the di-
verse sizes of flow statements contained in the different paths 
they encountered. In contrast, FSAFlow had the lowest over-
head with good robustness, which is attributable to the branch 
statements accounting for a small proportion of statements on 
most paths. Thus, the code execution of the corresponding mon-
itoring point had little impact on the program execution time.  

2) Evaluation on the CaffeineMark 3.0 benchmark. This 
benchmark uses a scoring metric to measure various aspects of 
system performance. The test on CaffeineMark 3.0 is scored by 
dividing the number of executed cases by the time taken to exe-
cute all the cases. Its six test cases that can run on Android were 
modified, and all were computationally intensive. The test ob-
jective was to obtain the overhead of FSAFlow when the CPU 
performed intensive sensitive information flow operations. 
Specifically, the initially assigned variable was set as the source 
node, and the output result variable was set as the sink node to 
perform path tracking. LIFT and Iodine were simulated using 
the method in 1). The test results are shown in Figure 9. 

The respective scores of the native Android system, CDroid, 
LIFT, Iodine, and FSAFlow are 5975 (SB), 4965 (SO1), 5190 
(SO2), 5431 (SO3), and 5652 (SO4). Compared with the native An-

droid, the average overhead of CDroid, LIFT, Iodine and 
FSAFlow respectively are 16.90%, 13.14%, 9.10% and 5.41% 
(overhead percentage = (SB-SOi)/SB). The results in Figure 9 
show that the overhead of FSAFlow caused by using loop and 
logic cases is higher than that of other cases. This may be due 
to the code structure of loop and logic encountering more 
branch nodes, which increases path state monitoring. CDroid 
incurs higher overhead in string cases than other cases. This is 
probably due to the additional memory comparisons for string 
objects in method prototypes. Iodine and Lift have higher over-
head in method cases than in other cases, which may be caused 
by more taint propagation statements in the target path in method 
cases. The score of FSAFlow is close to that of the native An-
droid system, proving that our tracking method is more efficient.  

The results of Evaluation 1) and 2) show that FSAFlow has 
better performance than several representative optimization ap-
proaches, such as Iodine (Hybrid Analysis), LIFT(Tracking On 
Demand), and CDroid (Local Code Optimization). 

3) Evaluation of implicit flow analysis. The test is divided 
into five groups. The first group consists of 32 apps in Table V, 
and each remaining group consists of eight randomly selected 
samples from the same family in the malware dataset Drebin 
[66]. Comparative experiments were conducted with and with-
out implicit flow enabled. Ten tests were performed on each 
group, and the average execution time was recorded. The final 
test results are listed in Table VI. 

The results show that adding implicit flow analysis may add 
insignificant overhead to FSAFlow. Moreover, the number of 
leak paths output by FSAFlow increases minimally. The main 
reasons are as follows: (a) The static IFDS algorithm performs 
width-first traversal to access the branch structure information, 
thus rapidly calculating the taint propagation caused by the con-
trol dependencies. (b) In IFDS, the control-dependent taint prop-
agation in conditional branches will not occur if independent 
variables are not tainted. (c) Furthermore, in these test cases, the 
tainted variables were found to appear rarely in conditional jump 
statements, indicating that the sensitive information flows sel-
dom affect the control behaviors of real apps. (d) Even in the 
case of some malware attempting to convey sensitive infor-
mation through implicit flows, to hide itself, the number of in-

 
Fig. 9.  Performance Test Scores of CaffeineMark 3.0 

TABLE VI.  PERFORMANCE TEST RESULTS WITH AND WITHOUT IMPLICIT FLOW 
ANALYSIS ENABLED ON REAL-WORLD APPS & MALWARE 

App 
Groups 

Static Analysis Static Instrument Runtime Control 
Enable Disable 

 Enable(s) Disable(s) Enable(s) Disable(s) Time(s) Leaks Time(s) Leaks 
Real-word APP 5.599 42 4.451 42 1.649 1.649 1.405 1.405 

BaseBridge 3.971 47 3.185 45 3.337 2.661 1.347 1.346 
KMin 3.487 39 2.798 36 3.052 2.237 1.321 1.318 

Geinimi 4.002 43 3.214 41 3.210 2.559 1.373 1.371 
DroidDream 4.995 54 4.017 50 4.005 3.091 1.398 1.391 
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structions involved in the leakage path is very small, resulting in 
the cost of FSAFlow tracking the small fragment of code con-
trollable. 

VI. RELATED WORK 
In this section, the previous research on DTA, DTA optimi-

zation, and hybrid analysis (HA) are introduced. The limiting 
factors are also discussed, casting the problem in terms of DTA 
optimization and proposing a new methodology based on HA. 

A. Dynamic Taint Analysis 
There has been considerable research on DTA systems [19], 

[28], [30], [33], [35], [53]-[56]. The time overhead of Dytan for 
data-flow based propagation alone was approximately 30x, 
whereas the overhead imposed by control- and data-flow based 
propagation was approximately 50x [33]. Panorama was 20 
times slower on average [28].  

B. DTA optimization 
Past work has developed many optimized DTA techniques. 

Important paths explored by previous research include:   

Hardware support: The hardware typically consists of logic 
blocks that monitor the execution of each instruction in the pro-
cessor and keep track of the tag information flowing from the 
execution unit at every cycle [5], [38]-[41]. Many hardware ac-
celeration schemes require additional non-standard commodity 
components or a redesign of the entire processor core, which 
limits the practicality of these approaches.  

Parallelization: The proliferation of multicore systems has 
inspired researchers to decouple taint tracking logic to spare 
cores to improve performance [36], [37], [44]-[46], [65]. Shad-
owReplica [65] spawns a secondary shadow thread from the 
original process to run DTA on spare cores in parallel. Shadow-
Replica performs a combined offline dynamic and static analysis 
of the application to minimize the data that must be communi-
cated for decoupling the analysis. However, ShadowReplica’s 
performance improvement achieved by this “primary & sec-
ondary” thread model is fixed and cannot be improved further 
when more cores are available [37]. TaintPipe [37] spawns mul-
tiple threads or processes in different stages of a pipeline to 
carry segmented symbolic taint analysis in parallel. Its pipeline 
style relies on straight-line code with very few runtime values, 
enabling lightweight online logging and a significantly lower 
runtime overhead. These efforts reduce the latency of DTA 
through parallelization, but also require OS or hardware level 
support, which limits commercial applications.  

Intermittent tracking： Performance is improved by dy-
namically deactivating tracking under certain conditions, e.g., 
when the program does not operate on tagged data [41], [47], 
[48] or when it is not handling risky tasks (reading network data) 
[49], [51]. Data tracking can also be applied on-demand based 
on CPU usage, or by manual activation [50]. The disadvantage 
of this kind of research work is that it fails to determine the tim-
ing of dynamic opening or closing. Non-professional users may 
suffer from privacy leakage when turning off taint tracking. Per-
formance loss can also be incurred by the dynamic switch. 

Code Optimization： Frequently executed taint logic code 
incurs substantial overhead. The work in [31] developed func-
tion summaries to track taint at the function level. Jee et al. [52] 

proposed Taint Flow Algebra to abstract and optimize taint logic 
for basic blocks. In [13] several lightweight taint propagation 
optimization methods were deployed on hot traces. Taint Rabbit 
[68] employed a JIT compiler to optimize generic taint analysis. 
Basic blocks without operating taints were not tracked, while the 
frequently executed basic blocks with operating taints were fur-
ther subdivided to only track sub-blocks that operate taints. For 
software vulnerability analysis, Neutaint [15] exploited machine 
learning methods to model the reachability from hot bytes in the 
input to the sink nodes. Such vulnerability can be exploited and 
attacked using the hot byte. In privacy protection, privacy data 
such as phone numbers are often sent to the sink in entirety. Of-
ten, the status of hot bytes is equivalent, which may be not suit-
able for privacy protection. Code optimization can only be real-
ized for specific code features, and their effect is limited. 

C. Hybrid analysis 
Hybrid analysis (HA) uses static analysis to narrow the 

scope of code pieces to be examined at runtime and then perform 
dynamic analysis on them. Many well-known STA tools [57]-
[59] can be exploited by hybrid analysis to complete pre-opti-
mized tracking logic [9]-[10], [52], [60], pre-reduced tracking 
range [10], [61], and share some tracking tasks [62]. While [10] 
used sound STA conservatively to reduce dynamic overheads. 
Iodine [9] and OHA [60] further reduced runtime overheads us-
ing unsound and predicated static analysis. They provided a re-
covery mechanism to handle any potential unsoundness in spec-
ulative execution. In OHA, the program execution was replayed 
from the beginning and analyzed, which is not feasible for online 
security analysis of live executions [9]. To solve this problem, 
Iodine exploited constraint predicated static analysis to achieve 
forward recovery. To optimize tracking, Iodine inserted moni-
toring points only at the statements that can change the taint state 
of variables when the fast-path is executed. However, if the ex-
ecution probabilities of fast- and slow-paths are equal in the pro-
gram to be analyzed, or the profiling of whether the path is fast 
or slow is inaccurate, they exhibit no advantages, conversely, 
considerable path switching and recovery overheads will be in-
curred. The current hybrid analysis shows that the DTA retains 
several dynamic single-step taint tracking instructions. The ex-
tant hybrid analysis methods only have advantages in some spe-
cific situations. The proposed FSAFlow differs from these meth-
ods since FSAFlow realizes a complete separation of the slow 
one-by-one tracking logic and dynamic operation in a program, 
and is continuously efficient for Android privacy protection 
through path monitoring. 

HA also has many practical applications. As a vulnerability 
protection tool, DynPTA [67] uses scoped byte-level DTA to 
narrow the range of objects identified for static pointer analysis. 
DynPTA only optimizes DTA specifically in loop optimizations 
for array accesses. According to the results of pointer analysis, 
the selective data is encrypted to prevent external attacks from 
exploiting the vulnerability of pointer misuse to obtain sensitive 
data. FSAFlow’s purpose differs from that of DynPTA. 
FSAFlow optimizes the performance of taint tracking and 
further prevents untrusted programs from actively leaking 
private information.  

VII. CONCLUSION 
A novel approach, FSAFlow, is proposed to perform a hy-
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brid analysis for privacy protection. This solves the key over-
head problem of applying DTA. The central concept of 
FSAFlow is to completely separate the one-by-one tracking 
logic and the program execution and perform tracking control 
based on the path instead of the taint. FSAFlow manages the 
path state through FSA. Because the state transition of the path 
mainly depends on the branch statements rather than all the 
statements, FSAFlow runs efficiently. The theoretical and ex-
perimental analysis proves that implementing FSAFlow is ra-
tional and efficient. 

VIII. ACKNOWLEDGEMENT 
We would like to thank Herbert Bos and the anonymous re-

viewers for their insightful comments. This work is supported 
by the National Natural Science Foundation of China (No. 
62176265). 

REFERENCES 
[1] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan and P. McDaniel, “Program 

analysis of commodity IoT applications for security and privacy: 
challenges and opportunities,” ACM Computing Surveys, vol.52, pp.1-
30, Sept. 2019. 

[2] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang et al., 
“Following Devil's Footprints: Cross-Platform Analysis of Potentially 
Harmful Libraries on Android and iOS,” 2016 IEEE Symposium on 
Security and Privacy (SP), San Jose, CA, USA, 2016, pp.357-376. 

[3] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized 
label model,” ACM Transactions on Software Engineering and 
Methodology, vol.9, pp.1557-7392, Oct. 2000. 

[4] V. P. Ranganath and J. Mitra, “Are free Android app security analysis 
tools effective in detecting known vulnerabilities?” Empirical Software 
Engineering, vol.25, pp.178-219, Jan. 2020.  

[5] N. Vachharajani, M. J. Bridg, J. Cha, R. Ranga, G. Otton, J. A. Blome et 
al., “RIFLE: an architectural framework for user-centric information-
flow security,” 37th International Symposium on Microarchitecture 
(MICRO-37'04), Portland, Oregon, 2004, pp.243-254. 

[6] Sufatrio, D. J. J. Tan, T. W. Chua and V. L. L. Thing, “Securing Android: 
a survey, taxonomy, and challenges,” ACM Computing Surveys, vol.47, 
pp.1-45，July 2015. 

[7] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. Singh Gaur, M. Conti 
and M. Rajarajan, “Android security: a survey of issues, malware 
penetration, and defenses,” IEEE Communications Surveys & Tutorials, 
vol.17, pp.998-1022, Secondquarter 2015. 

[8] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu and M. Yang, “Finding 
clues for your secrets: semantics-driven, learning-based privacy 
discovery in mobile apps,” in Proceedings of the Network and 
Distributed System Security Symposium(NDSS’18), 2018. 

[9] S. Banerjee, D. Devecsery, P. M. Chen and S. Narayanasamy, “Iodine: 
fast dynamic taint tracking using rollback-free optimistic hybrid 
analysis,” 2019 IEEE Symposium on Security and Privacy (SP), San 
Francisco, CA, USA, 2019, pp.490-504. 

[10] M. Zhang, H. Yin, “Efficient, Context-Aware Privacy Leakage 
Confinement for Android Applications without Firmware Modding,” in 
Proceedings of the 9th ACM symposium on Information, computer and 
communications security (ASIA CCS '14), Kyoto, Japan, 2014, pp.259-
270. 

[11] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao 
and A. Prakash, “ContexIoT: Towards providing contextual integrity to 
appified IoT platforms,” in Proceedings of the Network and Distributed 
Systems Symposium (NDSS’17)，2017. 

[12] W. Xu, S. Bhatkar and R. Sekar, “Taint-enhanced policy enforcement: a 
practical approach to defeat a wide range of attacks,” in Proceedings of 
the 15th conference on USENIX Security Symposium (USENIX-SS'06), 
USA, 2006. 

[13] Z. Wu, X. Chen, Z. Yang and X. Du, “Reducing security risks of 
suspicious data and codes through a novel dynamic defense model,” in 

IEEE Transactions on Information Forensics and Security, vol.14, 
pp.2427-2440, Sept. 2019. 

[14] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang and K. Chen, “FuzzGuard: 
filtering out unreachable inputs in directed grey-box fuzzing through 
deep learning,” in 29th USENIX Security Symposium, 2020. 

[15] D. She, Y. Chen, A. Shah, B. Ray and S. Jana, “Neutaint: efficient 
dynamic taint analysis with neural networks,” 2020 IEEE Symposium on 
Security and Privacy (SP), San Francisco, CA, USA, 2020, pp.1527-
1543. 

[16] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley and D. Evans, 
“Automatically hardening web applications using precise tainting,” IFIP 
International Information Security Conference, Boston, MA, vol.181, 
pp.295-307, 2005. 

[17] V. Ganesh, T. Leek and M. Rinard, “Taint-based directed whitebox 
fuzzing,” 2009 IEEE 31st International Conference on Software 
Engineering, Vancouver, BC, Canada, 2009, pp.474-484. 

[18] S. Lekies, B. Stock and M. Johns, “25 million flows later: large-scale 
detection of DOM-based XSS,” in Proceedings of the 2013 ACM 
SIGSAC conference on Computer & communications security (CCS '13), 
New York, NY, USA, 2013, pp.1193-1204.  

[19] J. Newsome and D. Song, “Dynamic taint analysis for automatic 
detection, analysis, and signature generation of exploits on commodity 
software,” in Proceedings of the Network and Distributed System 
Security Symposium (NDSS '05), 2005. 

[20] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan and O. Weisman, “TAJ: 
effective taint analysis of web applications,” in Proceedings of the 30th 
ACM SIGPLAN Conference on Programming Language Design and 
Implementation (PLDI '09), New York, NY, USA, 2009, pp.87-97.  

[21] Z. Wu, X. Chen, X. Du and Z. Yang, “CDroid: practically 
implementation a formal-analyzed CIFC model on Android,” Computers 
& Security, vol.78, pp.231-244, 2018. 

[22] G. E. Suh, J. W. Lee, D. Zhang and S. Devadas, “Secure program 
execution via dynamic information flow tracking,” in Proceedings of the 
11th international conference on Architectural support for programming 
languages and operating systems (ASPLOS XI), New York, NY, USA, 
2004, pp.85-96.  

[23] J. Kong, C. C. Zou and H. Zhou, “Improving software security via 
runtime instruction-level taint checking,” in Proceedings of the 1st 
workshop on Architectural and system support for improving software 
dependability (ASID '06), New York, NY, USA, 2006, pp.18-24.  

[24] W. G. J. Halfond, A. Orso and P. Manolios, “Using positive tainting and 
syntax-aware evaluation to counter SQL injection attacks,” in 
Proceedings of the 14th ACM SIGSOFT international symposium on 
Foundations of software engineering (SIGSOFT '06/FSE-14), New York, 
NY, USA, 2006, pp.175-185.  

[25] T. Pietraszek and C.V. Berghe, “Defending against injection attacks 
through context-sensitive string evaluation,” Springer, Berlin, 
Heidelberg, 2005, pp.124-145. 

[26] V. Haldar, D. Chandra and M. Franz, “Dynamic taint propagation for 
Java,” 21st Annual Computer Security Applications Conference 
(ACSAC'05), Tucson, AZ, USA, 2005. 

[27] P. Vogt, F. Nentwich, N. Jovanovic and E. Kirda, “Cross site scripting 
prevention with dynamic data tainting and static analysis,” in 
Proceedings of the Network and Distributed System Security Symposium 
(NDSS '07), 2007. 

[28] H. Yin, D. Song, M. Egele, C. Kruegel and E. Kirda, “Panorama: 
capturing system-wide information flow for malware detection and 
analysis,” in Proceedings of the 14th ACM conference on Computer and 
communications security (CCS '07), New York, NY, USA, 2007, 
pp.116-127.  

[29] J. Caballero, P. Poosankam, S. McCamant, D. Babi ć and D. Song, “Input 
generation via decomposition and re-stitching: finding bugs in Malware,” 
in Proceedings of the 17th ACM conference on Computer and 
communications security (CCS '10), New York, NY, USA, 2010, 
pp.413-425.  

[30] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel and A. 
N. Sheth, “TaintDroid: an information flow tracking system for real-time 
privacy monitoring on smartphones,” Communications of ACM, vol.57, 
pp.99-106, March 2014. 

2127



[31] D. Zhu, J. Jung, D. Song, T. Kohno and D. Wetherall, “TaintEraser: 
protecting sensitive data leaks using application-level taint tracking,” 
ACM SIGOPS Operating Systems Review, vol.45, pp.142-154, Feb. 2011.  

[32] M. G. Kang, S. McCamant, P. Poosankam and D. Song, “DTA++: 
Dynamic Taint Analysis with Targeted Control-Flow Propagation,” in 
Proceedings of the Network and Distributed System Security Symposium 
(NDSS '11), 2011. 

[33] J. Clause, W. Li and A. Orso, “Dytan: a generic dynamic taint analysis 
framework,” in Proceedings of the 2007 international symposium on 
Software testing and analysis (ISSTA '07), New York, NY, USA, 2007, 
pp.196-206. 

[34] T. Reps, S. Horwitz and M. Sagiv. “Precise interprocedural dataflow 
analysis via graph reachability,” in Proceedings of the 22nd ACM 
SIGPLAN-SIGACT symposium on Principles of programming languages 
(POPL '95), New York, NY, USA, 1995, pp.49-61. 

[35] W. Cheng, Qin Zhao, Bei Yu and S. Hiroshige, “TaintTrace: efficient 
flow tracing with dynamic binary rewriting,” 11th IEEE Symposium on 
Computers and Communications (ISCC'06), Cagliari, Italy, 2006, 
pp.749-754. 

[36] J. Ming, D. Wu, J. Wang, G. Xiao and P. Liu, “StraightTaint: decoupled 
offline symbolic taint analysis,” 2016 31st IEEE/ACM International 
Conference on Automated Software Engineering (ASE), Singapore, 2016, 
pp.308-319. 

[37] J. Ming, D. Wu, G. Xiao, J. Wang and P. Liu, “TaintPipe: pipelined 
symbolic taint analysis,” in Proceedings of the 24th USENIX Conference 
on Security Symposium (SEC'15), USA, 2015, pp.65-80. 

[38] J. Lee, I. Heo, Y. Lee and Y. Paek, “Efficient dynamic information flow 
tracking on a processor with core debug interface,” in Proceedings of the 
52nd Annual Design Automation Conference (DAC '15), New York, NY, 
USA, 2015, pp.1-6.  

[39] G. Venkataramani, I. Doudalis, Y. Solihin and M. Prvulovic, “FlexiTaint: 
a programmable accelerator for dynamic taint propagation,” 2008 IEEE 
14th International Symposium on High Performance Computer 
Architecture, Salt Lake City, UT, USA, 2008, pp.173-184. 

[40] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry 
et al., “Flexible hardware acceleration for instruction-grain program 
monitoring,” 2008 International Symposium on Computer Architecture, 
Beijing, China, 2008, pp.377-388. 

[41] E. Bosman, A. Slowinska and H. Bos, “Minemu: the world’s fastest taint 
tracker,” Springer, Berlin, Heidelberg, 2011. 

[42] O. Ruwase, “Parallelizing dynamic information flow tracking,” in 
Proceedings of the twentieth annual symposium on Parallelism in 
algorithms and architectures (SPAA '08), New York, NY, USA, 2008, 
pp.35-45. 

[43] InsecureBankv2. https://github.com/dineshshetty/Android-InsecureBankv2  
[44] E. B. Nightingale, D. Peek, P. M. Chen and J. Flinn, “Parallelizing 

security checks on commodity hardware,” in Proceedings of the 13th 
international conference on Architectural support for programming 
languages and operating systems (ASPLOS XIII), New York, NY, USA, 
2008，pp.308-318.  

[45] A. Quinn, D. Devecsery, P. M. Chen and J. Flinn, “JetStream: cluster-
scale parallelization of information flow queries,” in Proceedings of the 
12th USENIX conference on Operating Systems Design and 
Implementation (OSDI'16), USA, 2016, pp.451-466. 

[46] S. Ma, X. Zhang and D. Xu, “ProTracer: towards practical provenance 
tracing by alternating between logging and tainting,” in Proceedings of 
the Network and Distributed System Security Symposium (NDSS '16), 
2016. 

[47] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou and Y. Wu, “LIFT: a low-
overhead practical information flow tracking system for detecting 
security attacks,” 2006 39th Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO'06), Orlando, FL, USA, 2006, 
pp.135-148. 

[48] A. Ho, M. Fetterman, C. Clark, A. Warfield and S. Hand, “Practical taint-
based protection using demand emulation,” in Proceedings of the 1st 
ACM SIGOPS/EuroSys European Conference on Computer Systems 
2006 (EuroSys '06), New York, NY, USA, 2006, pp.29-41.  

[49] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim et al., “RAIN: 
refinable attack investigation with on-demand inter-process information 

flow tracking,” in Proceedings of the 2017 ACM SIGSAC Conference on 
Computer and Communications Security (CCS '17), New York, NY, 
USA, 2017, pp.377-390. 

[50] G. Portokalidis and H. Bos, “Eudaemon: involuntary and on-demand 
emulation against zero-day exploits,” in Proceedings of the 3rd ACM 
SIGOPS/EuroSys European Conference on Computer Systems 2008 
(Eurosys '08), New York, NY, USA, 2008, pp.287-299.  

[51] S. Moore and S. Chong, “Static Analysis for Efficient Hybrid 
Information-Flow Control,” 2011 IEEE 24th Computer Security 
Foundations Symposium, Cernay-la-Ville, France, 2011, pp.146-160. 

[52] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh and A. D. Keromytis, 
“A general approach for efficiently accelerating software-based dynamic 
data flow tracking on commodity hardware,” in Proceedings of the 
Network and Distributed System Security Symposium (NDSS '12), 2012. 

[53] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti and A. 
Prakash, “FlowFence: practical data protection for emerging IoT 
application frameworks,” in Proceedings of the 25th USENIX 
Conference on Security Symposium (SEC'16), USA, 2016, pp.531-548. 

[54] M. Sun, T. Wei and J. C.S. Lui, “TaintART: a practical multi-level 
information-flow tracking system for Android RunTime,” in 
Proceedings of the 2016 ACM SIGSAC Conference on Computer and 
Communications Security (CCS '16), New York, NY, USA, 2016, 
pp.331-342.  

[55] V. P. Kemerlis, G. Portokalidis, K. Jee and A. D. Keromytis, “Libdft: 
practical dynamic data flow tracking for commodity systems,” in 
Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual 
Execution Environments (VEE '12), New York, NY, USA, 2012, pp.121-
132.  

[56] Triton: A Dynamic Symbolic Execution Framework. SSTIC, 2015. 
[57] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein et al., 

“FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps,” in Proceedings of the 35th ACM 
SIGPLAN Conference on Programming Language Design and 
Implementation (PLDI '14), New York, NY, USA, 2014, pp.259-269. 

[58] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel and 
A. S. Uluagac, “Sensitive information tracking in commodity IoT”, in 
Proceedings of the USENIX Security Symposium, 2018, pp.1687-1704. 

[59] F. Wei, S. Roy, X. Ou and Robby, “Amandroid: a precise and general 
inter-component data flow analysis framework for security vetting of 
Android apps,” in Proceedings of the 2014 ACM SIGSAC Conference on 
Computer and Communications Security (CCS '14), New York, NY, 
USA, 2014, pp.1329-1341.  

[60] D. Devecsery, P. M. Chen, J. Flinn and S. Narayanasamy, “Optimistic 
hybrid analysis: accelerating dynamic analysis through predicated static 
analysis,” in Proceedings of the Twenty-Third International Conference 
on Architectural Support for Programming Languages and Operating 
Systems (ASPLOS '18), New York, NY, USA, 2018, pp.348-362.  

[61] W. Chang, B. Streiff and C. Lin, “Efficient and extensible security 
enforcement using dynamic data flow analysis,” in Proceedings of the 
15th ACM conference on Computer and communications security (CCS 
'08), New York, NY, USA, 2008, pp.39-50. 

[62] P. Saxena, R Sekar and V. Puranik, “Efficient fine-grained binary 
instrumentation with applications to taint-tracking,” in Proceedings of 
the 6th annual IEEE/ACM international symposium on Code generation 
and optimization (CGO '08), New York, NY, USA, 2008, pp.74-83. 

[63] L.Cavallaro, P. Saxena and R. Sekar, “On the limits of information flow 
techniques for malware analysis and containment,” in Proceedings of the 
International conference on Detection of Intrusions and Malware, and 
Vulnerability Assessment, Berlin, Heidelberg, 2008, pp.143-163. 

[64] Asia Slowinska, Herbert Bos, “Pointless Tainting? Evaluating the 
Practicality of Pointer Tainting,” in Proceedings of the 4th ACM 
European conference on Computer systems (EuroSys '0), New York, NY, 
USA, 2009, pp.61-74. 

[65] K. Jee, V. P. Kemerlis, A. D. Keromytis and G. Portokalidis, 
“ShadowReplica: efficient parallelization of dynamic data flow tracking,” 
in Proceedings of the 2013 ACM SIGSAC conference on Computer and 
communications security, 2013, pp.235-246. 

[66] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, 
“Drebin: Effective and explainable detection of android malware in your 

2128



pocket,” in Proceedings of the 19th Annual Network and Distributed 
System Security Symposium (NDSS). 2014. pp.1-15. 

[67] T. Palit, J. F. Moon, F. Monrose and M. Polychronakis, “DynPTA: 
Combining Static and Dynamic Analysis for Practical Selective Data 
Protection,” in Proceedings of 2021 IEEE Symposium on Security and 
Privacy (SP), San Francisco, CA, US, 2021, pp.1919-1937. 

[68] J. Galea and D. Kroening, “The taint rabbit: Optimizing generic taint 
analysis with dynamic fast path generation,” in Proceedings of the 15th 
ACM Asia Conference on Computer and Communications Security, 2020, 

pp.622-636. 
[69] J. Zhang, C. Tian and Z. Duan, “FastDroid: Efficient Taint Analysis for 

Android Applications,” In 2019 IEEE/ACM 41st International 
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2019, pp.236-237. 

[70] X. Zhang, X. Wang, R. Slavin and J. Niu, “ConDySTA: Context-Aware 
Dynamic Supplement to Static Taint Analysis,” in Proceedings of 2021 
IEEE Symposium on Security and Privacy (SP), San Francisco, CA, US, 
2021, pp.796-812. 

 

2129


