
How Does Usable Security
(Not) End Up in Software Products?

Results From a Qualitative Interview Study
Marco Gutfleisch ∗, Jan H. Klemmer †, Niklas Busch †,
Yasemin Acar ‡, M. Angela Sasse ∗, and Sascha Fahl †§

∗Ruhr University Bochum, Germany, {marco.gutfleisch, martina.sasse}@ruhr-uni-bochum.de
†Leibniz University Hannover, Germany, {klemmer, busch}@sec.uni-hannover.de
‡Max Planck Institute for Security and Privacy, Germany, yasemin.acar@mpi-sp.org
§CISPA Helmholtz Center for Information Security, Germany, sascha.fahl@cispa.de

Abstract—For software to be secure in practice, users need
to be willing and able to appropriately use security features.
These features are usually implemented by software professionals
during the software development process (SDP), who may be
unable to consider the usability of these mechanisms.

While research has made progress in supporting developers
in creating secure software products, very little attention has
been paid to whether and how these security features are made
usable. In a semi-structured interview study with 25 software
professionals (software developers, designers, architects), we
explored how they and other decision-makers encounter and
deal with security and usability during the software development
process in their companies.

Based on 37 hours of interview recordings, we qualitatively
analyzed and investigated 23 distinct development contexts in
detail. In addition to individual awareness and factors that
directly influence the implementation phase, we identify a high
impact of contextual factors, such as stakeholder pressure,
presence of expertise, and collaboration culture, and the specific
implementation of the SDP on usable security in software
products. We conclude our work by highlighting important gaps,
such as studying and improving contextual factors that contribute
to usable security and discussing potential improvements of the
status quo.

I. INTRODUCTION

Software security is important. However, security alone is
not enough. Instead, security features also need to be usable:
Users have to use the security features and use them correctly.

Previous research demonstrated the ineffectiveness of poorly
designed warning messages [5], [14], [16], [22] the prevalent
issues with passwords [18], [25], [47], or security and privacy
problems due to wrong mental models and misconceptions.
For example, most Android users do not pay attention to
permissions and lack comprehension, which can lead to wrong
security decisions [17]. Secure systems, however, should ac-
count for all these human factors to be actually secure; namely,
they should implement usable security.

The creators of software, such as software developers and
designers, greatly influence whether security is implemented in

A companion website for this paper is available at https://publications.
teamusec.de/2022-oakland-usec-in-sdps/.

a usable way. However, while many unusable security mech-
anisms are known to have created problems in the past [69],
and while research has been done on how developers (fail to)
implement security [1], [2], [24], the root causes for lack of
usable security (or successfully implemented usable security)
in software products is yet unknown.

In addition to software professionals’ individual factors,
such as awareness and skill sets, we hypothesize that simi-
larly to security [24], the entire software development pro-
cess (SDP) and contextual factors impacts software product
usable security. This software creation process involves many
more stages than writing code, ranging from requirements
engineering to deployment, and often involves multiple stake-
holders, e. g., customers, management, and designers. In this
study, we investigate how usable security is handled within
the software development process in practice. Therefore, we
conduct 25 semi-structured interviews with software profes-
sionals, including developers, architects, designers, and other
decision-makers. We use qualitative coding to extract and
explore problems, practices, and motivations for secure and
usable software [11]. With this study, we aim to explore the
following research questions:

RQ1: Which factors in the software development process and
in companies influence usable security?

RQ2: What are contributors and blockers for usable security
in software development?

RQ3: When and where in the development process are im-
portant decisions made that influence usable security?

Based on our results, we aim to deepen the understanding of
how usable security can be achieved while also identifying
factors that prevent usable security. We analyze how company
culture and contextual factors contribute to usable security and
suggest how academia and industry can improve the adoption
of usable security by improving awareness, interdisciplinary
collaboration, and developing measures that support a holistic
usable security process.

The remainder of this paper is structured as follows: We
give an overview of related work in Section II. In Section III,

893

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Marco Gutfleisch. Under license to IEEE.
DOI 10.1109/SP46214.2022.00011

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

56

we present our methodology, including the interview guide
and our analysis procedure. Section IV presents our findings.
We discuss our results’ implications in Section V, where we
also propose interventions for better usable security in SDPs
and highlight implications for academic research. Section VI
concludes the paper.

II. RELATED WORK

We discuss related work in three key areas: (1) the history
of usable security, (2) studies and experiments with software
professionals, and (3) organizational processes and security
culture in software development processes.
Usable Security. Usable security has been heavily researched
for more than 20 years. In 1996, Mary Ellen Zurko estab-
lished the term user-centered security and made the case that
usability for different groups of non-security specialists (soft-
ware developers, system administrators, and end-users) was
a necessary condition for systems to be secure and function
in practice [71]. In 1999, Whitten and Tygar demonstrated in
their seminal paper that the target users of PGP 5.0 were not
able to operate it securely and identified the usability issues
that were the cause [69]. Stransky et al. [60] conducted a
field study in 2021 and confirmed that end-to-end encryption
for email is still a huge issue. Adams and Sasse found that
the password policies common in organizations were hard to
follow and led to constant skirmishes of workarounds and
sanctions that did little to make non-specialists take security
seriously [4]. The usability of authentication and encryption
for end-users has improved over the past 20 years. However, in
many organizations, people still encounter impossible security
tasks and are blamed when they cannot cope [52], [55].

Over the past decade, the research community started to
apply and transfer usable security principles to developers: In
2016, Green and Smith suggested supporting developers and
presented ten principles for usable and secure cryptographic
APIs [19], and Acar et al. proposed a research agenda for
developer-centered usable security [3]. Pieczul, Foley, and
Zurko extended this approach and called for the development
of new measures for developer-centered security in addition
to the transfer of principles from end-users to developers [48].
Studies and Experiments with Software Professionals.
When software professionals choose insecure or unusable op-
tions, this impacts the end-users interacting with the software
– so improving usability for this group improves security
for everyone. Research on “developer-centered security” has
produced important insights by conducting empirical studies
with software industry professionals (e. g., developers, system
operators) that document and analyze their knowledge (and
knowledge gaps), attitudes, and behaviors around security.
Naiakshina et al. [37]–[40] and Danilova et al. [12] found
that developers struggle with the secure implementation of
password storage. Fahl et al. [15] found that many developers
fail to provide secure TLS implementations in Android apps,
which is still a problem as recent studies by Oltrogge et
al. demonstrate [44], [45]. In 2017, Acar et al. examined
the usability of Python cryptography libraries and identified

several problems with those APIs leading to insecure code [1].
The problem was also identified by others [36], [46]. In
2017, Krüger et al. presented the IDE plugin CogniCrypt that
assists developers in using cryptographic APIs securely [32].
This tool was later extended by CogniCryptGEN to generate
secure crypto code fully automatically [33]. Nguyen et al.
created the IDE plugin FixDroid and demonstrated that it
significantly helps Android developers in writing more secure
code [41]. Acar et al. examined the impact of information
sources on development and found the usage of StackOverflow
to produce more functional correct but less secure solutions
compared to the official Android documentation [2]. Ruef et
al. presented a novel contest for secure development and a
quantitative analysis of emerging vulnerabilities [51]; Votipka
et al. performed a qualitative analysis to understand what
security mistakes are made by developers and why [64]. All
these studies focused on developers as users of programming
languages, APIs, documentation, and tools necessary to create
secure software products – but they do not support the usability
aspects of security.

Another strand has studied how system operators and other
expert users handle security. Krombholz et al. conducted an
experimental study with system administrators and reported
that they struggled with the complexity involved in imple-
menting secure TLS [31], and an interview study revealed that
the same group administrators have significant misconceptions
about HTTPS [30]. Yakdan et al. created and evaluated a
usability optimized decompiler for malware analysts [70].
While those studies provided in-depth insights into the nature
of their difficulties, they only studied one specific group of
software professionals on one specific security task in the
implementation and deployment phase of the SDP. Research
has also identified obstacles to fast update behavior with
Android developers [13] and system administrators [62], also
finding the important impact of organizational factors, such as
management and policies [34].

Our study investigated these aspects in both more breadth
and depth by asking software professionals specifically about
individual and organizational factors that contribute to usable
security.
Organizational Processes and Security Culture. In addition
to individual factors that contribute to security, research has
identified organizational processes and culture that impact
software security [23], [26], [28], [49], [57], [58], [63].
Haney et al. studied organizations developing cryptographic
products [24] and found a strong security mindset as well
as high expertise in cryptography. Thomas et al. conducted
interviews with 32 application security experts and concluded
that organizational processes and related factors must be
improved to improve software security [61]. In an interview
study, Assal and Chiasson identified company culture as a
reason that security best practices are not followed in software
development life cycles (SDLC) [8]. In another paper, Assal
and Chiasson evaluated their assumptions quantitatively and
concluded that security processes being followed depends
more on organizational processes than individual develop-

894

ers [7]. In an interview study, Votipka et al. found that
good communication between hackers and software testers is
important for finding vulnerabilities, leading to better security
outcomes [65]. Stevens et al. presented a case study evaluating
the introduction and effects of threat modeling in an enterprise
environment [59]. They found that this is beneficial for the
overall security, only leveraging existing resources. In 2019,
Lopez et al. conducted an ethnographic study with software
developers and concluded that awareness of security matters
is raised through several paths, including processes, standards,
practices, and company training, and that a focus on security is
driven by contextual factors [35]. Weir et al. found a high need
for security, only 14–22% of Android developers have access
to security experts, and identified the need for increasing the
use of assurance techniques [68]. They proposed and evaluated
a set of lightweight assurance techniques that help developers
create more secure software and raise awareness [67]. The
effectiveness was evaluated further in a long-term study [66].
In 2020, Shostack and Zurko underlined the need for research
on secure software development techniques [56]. However,
there has been little research with a specific focus on usable
security: In 2016, Caputo et al. conducted three exploratory
qualitative case studies in large US companies that investigated
organizations’ approaches to make their security products
more usable [9]. The authors identified barriers to this goal,
namely that usability was perceived as less important than
security and common sense, i. e., not requiring specialist
knowledge or skills. In a preliminary study mainly with end-
users, Iacono, Nguyen, and Schmitt analyzed requirements for
usable security using a mixed-methods approach and identified
the need for lightweight measures, e. g., models, patterns,
guidelines, tools, and checklists [27]. We recruited a set of
developers from across the industry to see which contextual
factors impact the SDP and usable security outcomes.

III. METHODOLOGY

In this section, we explain the methodology of our interview
study, including data collection and analysis (see Figure 1). We
chose semi-structured interviews because of the exploratory
nature of our research questions. It also affords the flexibility
of letting participants relate their experiences with usable
security – including practices we did not expect – while going
into more depth with follow-up questions. The 25 interviews
lasted on average 1:30:06 hours, were audio-recorded, and
then transcribed by the authors. All interviews were conducted
remotely between August 2020 and January 2021.

A. Interview Guide

Here, we describe the process of iteratively developing our
pre-questionnaire as well as the interview guide itself. 1

Instrument Development. We were interested in our partic-
ipants’ professional experiences with usability, security, and
hopefully, usable security. We developed our interview guide

1The interview guide can be found in Appendix D, as well as the replication
package (cf. Appendix B).

Personal
Networks

Upwork Reddit Slack Twitter

Potential
Participants

Pre-Questionnaire
Consent form, usability and security experience,
and demographics. Used for screening.

Interview
90 minute semi-structured online interview (n =
25). Recording of audio and (optionally) video.

Transcription
Transcription of recorded interviews.

Coding
Qualitative (open) coding by two researchers.
Iterative codebook development.

Memos, Theories
Group discussions

Recruitment Channels

Fig. 1. Methodology overview.

based on prior research on usable security [9] to investigate
the roles that usability, security, and usable security play in the
development processes of the companies our participants work
at. All authors reviewed and iterated the interview guide. Two
authors (who had worked as software professionals) tested the
guide on each other, then piloted it with a colleague who
also had professional software development experience as well
as with the first participant. We adapted the guide after each
round of feedback. After the interview with the first external
pilot participant, very few minor edits were needed, so we
included that participant in our sample.

Pre-Questionnaire. Based on the duration of the pilot in-
terviews, we moved several interview questions into a pre-
questionnaire which participants were asked to fill in after
consenting to the study and before scheduling the interview. 2

The pre-questionnaire asks for participant demographics and
a self-assessment of knowledge about and experience with
usability and security; we referred to the participants’ pre-
questionnaire answers during the interviews.

Interview Guide Structure. Our interview guide consists of
three parts, each covering a category; first usability, second
security, third the interplay, usable security. As we were inter-
ested in specific software development processes for usability,
security, and usable security, we started the interviews by
asking participants to think of a specific software project that
contained a security feature with a user interaction component
(e. g., login forms, warning messages) and tried to stay in

2The pre-questionnaire can be found in Appendix C, as well as the
replication package; the consent form is in the replication package (cf.
Appendix B).

895

the same context for all three parts of the interview. For
the usability and security parts of the interviews, we asked
the participants to walk through and explain the SDP. This
included information about the product and the surrounding
context (e. g., company, team, budget) and covered the whole
SDP from modeling and requirements engineering to deploy-
ment. In the usable security part of the interviews, we asked
about methods used to achieve usable security in the software
products.

B. Interview Procedure

Those interested in participating in our study were sent to a
landing page informing them about the study’s purpose and
screened for eligibility for the interview. Then, they were
shown our consent form where we informed them about
how we would handle their data, their right to terminate the
interview at any time without repercussions, and where they
could agree to audio-recording and opt in to the interview
being video-recorded. They were then asked to fill in a pre-
questionnaire, after which they could schedule their interview.
Interview Setup. We used a locally-hosted open-source,
browser-based meeting tool for all interviews. All interviews
were audio- and, if participants consented, video-recorded via
the meeting tool’s functionality, and we captured audio locally
as a backup.
Interview Process. All interviews were conducted by the
first author, when possible, with the support of one of the
other authors, which allowed for supplemental questions, and,
after the participant left the meeting, discussion and debriefing
sessions. The interviews were conducted in English (n = 14)
and German (n = 11).

C. Recruitment

We wanted to recruit software professionals who could offer
insights into how usability, security, and usable security are
addressed, including software developers and software de-
signers. Therefore, we used purposive sampling: we recruited
participants who matched our criteria in terms of role and
level of experience in software development. We recruited
through all authors’ professional networks, via Reddit, Twit-
ter, relevant Slack workspaces, and Upwork. We advertized
the interview as a study for those “willing to share their
professional experience with usability and security” with us.
Participants qualified if they had professional experience with
user interfaces or user interactions and professional experience
with software security. They also needed to be willing to
talk about a specific software development process (vs. only
giving vague answers). 3 We offered $105 4 in compensation
to be competitive with other job posts on Upwork and attract
experienced developers. Moreover, for those interested in the
topic, we invited them to participate in a workshop about

3Recruitment materials can be found in our replication package (see
Appendix B).

4Based on C90 (C1 per minute), according to the USD/EUR exchange rate
at the time.

TABLE I
PARTICIPANTS’ DEMOGRAPHICS.

Gender
Male 20 80.0% Prefer not to answer 1 4.0%
Female 4 16.0%

Country of Residency
Germany 10 40.0% Lebanon 2 8.0%
United States 4 16.0% Other 7 28.0%
India 2 8.0%

Age [years]
Min. 24 Max. 60
Mean (Std.) 35.2 ±8.3 Median 33

Industry Experience [years]
Min. 3 Max. 30
Mean (Std.) 11.7 ±8.8 Median 10

Education
High school 1 4.0% Graduate school 1 4.0%
College 2 8.0% Master’s degree 8 32.0%
Vocational degree 1 4.0% Doctorate / PhD 2 8.0%
Bachelor’s degree 8 32.0% Prefer not to answer 2 8.0%

usable security free of charge. We stopped recruiting after our
interviews reached saturation [11].

D. Demographics

We interviewed 25 participants; see Table I for an overview
of participant demographics and Table III, and Appendix A
for full participant details. The majority were from Germany
and the US, and we also interviewed participants from India,
Lebanon, Venezuela, and the United Arabic Emirates. We in-
terviewed 20 men and 4 women. Participants’ ages range from
24 to 60 years, with an average of 35.2 years. This tracks with
a high level of professional experience in the software industry
with an average of 11.7 years and a maximum experience of
30 years. Our participants also reported a high level of formal
education; 19 participants (76.0%) hold at least a Bachelor’s
degree and 10 participants (40.0%) a Master’s or Doctorate
degree. While most interviewees were software engineers,
architects, or developers, we also interviewed participants who
held founding or C-level roles, as well as usability, design, and
front-end professionals. Almost half of the participants were
recruited via the authors’ personal networks (n = 12). The
majority of the rest was recruited via the freelancer platform
Upwork (n = 10), while a small number were recruited via
online communities and platforms (n = 1 for Twitter, Reddit,
and Slack each).

E. Transcript Analysis

Data Processing. Members of the research team transcribed
the interview recordings. In addition to audio, notable reactions
visible on video (such as “air quotes” or “raised eyebrows”)
were also transcribed. During transcription, we replaced sen-
sitive information like company names, personal information,
or relationships with pseudonyms; some participants asked us
to omit specific statements from our transcripts, a request
that we honored. We matched the pre-questionnaire data to
the appropriate transcript, then destroyed the recordings as
promised in the consent form.

896

Qualitative Coding. We used both inductive and deductive
approaches for data analysis: The first coder developed a code
list based on the phases of software engineering as described
by Pressman and Maxim [50], our research questions, the
interview guide, and insights from the interviews. The codes
were then iteratively refined over the process of coding nine
transcripts independently with two authors, then discussing
and adapting the codebook until all authors agreed on the
codebook. All codes were formally defined (“operationalized”)
to ensure agreement by all coders. Two authors then coded
all transcripts, re-coding those used for codebook creation,
and merged their codes for analysis. The final codebook (cf.
Table IV) addressed concepts like usability, security, usable
security, concepts related to mental models (such as “mis-
conceptions”), factors that influence the software development
process (such as budget and resources), as well as the software
development process itself. Throughout the coding process,
we explored the relationship between the codes as well as
patterns and themes. The authors regularly met and discussed
the emerging concepts, which allowed the focus of this paper
to develop: how software development processes influence
usable security in software products.

F. Ethics and Data Protection

Neither of our institutions had an institutional review board
(IRB) nor an ethics review board (ERB) that applied to our
study. We adhered to the strict German and EU privacy laws,
and the main author’s institution’s data protection officer re-
viewed and approved our study and our data handling process.
Our consent form is compliant with the European General
Data Protection Regulation (GDPR) and covered all informa-
tion usually required for US IRB approval. Participants were
informed that they could terminate the study at any time. We
clarified all of their questions regarding the consent form, data
processing and storage, and privacy ahead of the interview. All
participants consented to our data handling, collection, usage
practice, and publication strategy. We clarified that we would
only evaluate de-identified data, publish aggregate data and de-
identified quotes. We deleted all video and voice recordings
post transcription to minimize unnecessary storage of PII,
including information that was accidentally revealed in the
interviews, and de-identified during the transcription process.
To further prevent re-identification, we report results linked
to development context independently from participant IDs. A
more detailed discussion of our measures to ensure protection
of participants’ data can be found in Appendix A.

G. Limitations

This paper describes results from a qualitative study with a
purposive sample. Therefore, all counts reported in our results
are used to convey weight but should not be taken as quantita-
tive results, statistics, or as claims to generalizability. Our goal
was to understand a wide range of processes and conceptions
about usable security. We are confident that we reached
theoretical saturation in participants’ answers for our purposive
sampling strategy. Due to our advertising and the questions

we asked, participants likely knew that we were interested
in usability, security, and usable security – which could raise
concerns about priming. However, most participants reported
a lack of processes for usability, security, and usable secu-
rity, as well as disinterest in the topic in their professional
experience, so the concern is not warranted. This qualitative
study aimed to explore current practices surrounding usable
security and if/how it is supported. Possible follow-up work
can build on this with quantitative methods and the goal
of generalizability to verify our results. Additionally, while
we aimed for a diverse sample, our sample skewed Western
and male, aligning with human factors research studies with
software professionals. While individual developers might tend
to provide their personal opinions, our interviews prompted
participants to report specific organizational experiences and
context information. Individual recollections are, of course,
subject to self-censorship and biases [6], most importantly
self-reporting and social desirability bias, e. g., interviewees
claiming that usability is important to them when it is actually
not. However, for many aspects like usability, security, and
others, our in-depth interviews and the fine-grained process
explanations allow us to assess actual procedural focus on
specific topics, as opposed to individual assessment of im-
portance.

IV. RESULTS

In this section, we present the results and themes that
emerged from the analysis of the 25 semi-structured inter-
views. We first provide an overview of development con-
texts, i. e., companies and projects (for a detailed breakdown,
see Table II). We assessed each company regarding usable
security, identifying four different categories (cf. Figure 2):
(1) Usable Security Awareness and Follow-through, (2) Usable
Security Awareness, Little or no Follow-through, (3) No Us-
able Security Awareness, some User-centered Measures, and
(4) No Usable Security Awareness, few or no User-centered
Measures. We present the findings in each category within
the four sections starting at Section IV-B. In this and the
following sections, we report counts of interviews. However,
as we conducted qualitative analysis, the counts should only
give weight to the themes we found and therefore should not
be interpreted as a quantitative result.

A. Software Development Contexts

Companies and Projects. Here we report the contexts, i. e.,
the companies, organizations, and projects that participants
related to in the interviews. 21 of our 25 interviews covered
at least one company context in detail, resulting in a total
of 23 contexts (see Table II). The companies sizes’ ranged
from five companies being very small (1–9 employees), eight
small (10–99), five medium sized (100–999), two large (1000–
5000), to three companies being very large (> 5000). In the
remaining four interviews, participants shared their profes-
sional experiences and impressions across several projects and
organizations, rather than focusing on a single context or
company. While this did not allow us to investigate specific

897

TABLE II
SUMMARY OF THE CONTEXTS IN OUR INTERVIEWS.

Product Company
Size Awareness User-

Centered

C1 Passwordmanager Very Small
C2 Office Suite Very Large
C3 Cloud Project Very Large
C4 Secure Communication Small
C5 Service for Postal Deliveries Very Large
C6 Fitness App Small
C7 Access Control (Cars/Trucks) Very Small
C8 Secure E-Mail Small
C9 Document Processing Software Small

C10 Secure Messaging Small
C11 Cryptocurrency Web Wallet Medium
C12 Secure Configuration IoT Medium
C13 Secure E-Mail Medium
C14 Secure Mobile App Large
C15 Addon for CRM Small
C16 Document & Data Management Small
C17 Internal Administration Software Very Small
C18 Document Signing Medium
C19 PDA Delivery Assistant Large
C20 Tracker medical devices Very Small
C21 Social Distancing Wearable Very Small
C22 Monitoring Trains Small
C23 Security Product Medium

contexts in-depth, these experienced participants (mean indus-
try experience: 13.5 years) and how they compared different
contexts they encountered in their professional career provided
a cross-cutting perspective that helped comparing different
contexts described in the other interviews.

Usable Security Status. As a first step, we analyzed all
23 company contexts regarding their focus on and their
awareness of usable security. If participants were aware of
usable security and reported its relevance for the product or
the company, we classified those contexts as being aware
of usable security. We made this assessment based on the
parts of the interviews we had coded Interplay Usability &
Security, Product, Importance, and Responsibility. Contexts
were also classified in this category when usable security
was not directly mentioned, but the underlying concept was
understood. We were able to reconstruct each company’s SDP
from the codes Communication & Modeling, Construction,
Deployment, Staff & Team, Budget & Resources. We an-
alyzed whether user-centered development measures were
taken, whether (1) participants mentioned systematic usabil-
ity testing, and whether (2) they conducted user research,
or performed strong and active engagement with their user
community. We found various forms of empirical user testing,
expert evaluations, or field observations. To assess whether
the reported development process was user-centered, we relied
on the key principles for user-centered system design by
Gulliksen et al. [20]. Based on the classification along those
two axes, we obtained the four categories shown in Figure 2.
We provide an in-depth description of the categories and their
characteristics below.

No Usable Security
Awareness, some User-
centered Measures
(n = 2), Sec. IV-C

Usable Security Awareness
and Follow-through

(n = 5), Sec. IV-B

No Usable Security
Awareness, few or no
User-centered Measures
(n = 10), Sec. IV-E

Usable Security Aware-
ness, Little or no Follow-
through
(n = 6), Sec. IV-DU

se
r-

ce
nt

er
ed

ap
pr

oa
ch

Awareness

Fig. 2. Categories that emerged from the contexts in our interviews.

B. Usable Security Awareness and Follow-through

We placed five of 23 contexts (C1–C5) into the top-right
category in Figure 2 because they followed a process that is
characterized by user-centered methods, and they were aware
of the underlying principles of usable security:

“Actually, I think that the security issues should be solved
as much as possible technically and should not bother the
user. Most of the time, the user is not an expert [. . .] That
is, all the decisions that can be made for him, should be
made in advance.” (C1)

We also found that in all contexts of this group, at least
one expert for either usability or user interaction and security
worked closely with the development team. Even if they were
not members of the software development team, they were
actively involved in the process.

Within C5, the UX expert was the pivot point for creating
the interaction design. They actively involved a variety of
stakeholders and pushed the user-centered thinking forward:

“Usually, with the stakeholders or directors, you are not
really in direct contact with them. But for me, I developed
a relationship with each of them [. . .] I made sure that
they were more to date every week, [. . .] sometimes the
developers get left out [. . .] so I made sure that the
developers and the stakeholders were very involved in the
design process.” (C5)

In addition to the availability of expert knowledge, we found
an organizational structure that supports close interdisciplinary
collaboration between different expert groups to be one of the
key factors enabling usable security. In the above example
(C5), the motivation to invest in a redesign of a security
feature was based on past experiences with problems, i. e.,
customer complaints. Good usable security was thus the main
driver for the project, and most stakeholders were aware
that was the case. This participant also reported that user-
centered processes were common in this company context:
The team systematically examined the old application, and
the problems users had with it. Therefore, the UX team was
in continuous exchange with the development team to check
which improvements were feasible. They conducted laboratory
testing with real users to evaluate their design prototypes
early. Moreover, they involved various experts from other
teams like privacy experts or content designers to improve
their product continuously. This is similar for the other four
contexts in which we also observed that usability, including

898

usability of security features, was part of the business goals.
Compared to the contexts from the other categories, we found
that these five companies had user-centered methods like user
testing, A/B tests, expert evaluation, or prototyping integrated
within their SDP. Their development was also characterized by
producing small and incremental artifacts. Nearly all of our
25 participants claimed that the companies they worked for
employed beta-testing. However, not all companies actively
collected feedback from them and used them for further
testing.

C. No Usable Security Awareness, some User-centered Mea-
sures

Within this category, we found two contexts (C6, C7)
that showed elements of a user-centered development culture
– without concrete awareness of usable security concepts
as such. Both participants reported that usability had high
priority. One company developed and improved its product
incrementally based on user feedback. Therefore, they had
specific testing groups for usability and actively gathered
feedback, recorded usability issues, and prioritized them in de-
velopment. By contrast, security ranked lower in importance,
and neither security experts were involved nor were security
measures applied. Security features in the user interface were
treated similarly to other features without additional effort:

“They were more concerned about usability. Like I said,
they even made decisions which sort of decreases security,
develop the product just so that it is more usable. [. . .] So,
when we decide to go ahead with implementing a security
feature, we then do not look at the original idea of the
usability of it at all.” (C6)

For the other company, the customer explicitly requested
security, and functional feature requests often included a
security-relevant function (e. g., access control of cars). Still,
their main focus was on usability. They did not involve de-
signers and only brought in external security experts in certain
development phases. Driven by specific customer requests,
security mechanisms were adapted to customer needs (e. g.,
trying to make authentication as easy as possible for truck
drivers). While their processes were user-centered, we found
fundamental misconceptions about the interplay between secu-
rity and usability (e. g., the trade-off myth). These misconcep-
tions were present both in product descriptions given by the
participants as well as in their direct statements: “if we created
an easy authentication method, I think its more likely to be
vulnerable at some point, because usability cause security. . .
security. . . don’t know, security risks. . . ” (C7). We focus on
misconceptions in Section IV-G2.

D. Usable Security Awareness, Little or no Follow-through

We observed that the development teams in six out of
23 contexts (C8–C13) may have been aware of usable security
and may have even been interested or motivated to implement
it. However, there were no supporting structures. All except
one of these companies (C9) had dedicated security experts
working on the projects, with a strong focus on security. One
participant spoke of a “very strong security focus” (C10), and

another said they “put security at the forefront, and privacy
and data protection” (C8).

Only one of those companies (C11) had a designer or
UX expert actively involved in the development process. In
the other five contexts, design decisions were often made by
developers and project leads. All participants reported that they
followed an agile philosophy in their company. However, we
found neither specific methods for evaluating usability nor
dedicated measures for user research. Compared to the two
previous categories, the interviewees did not report notable
user-centered approaches. While some of them reported having
tried some user-centered methods, they were used to a lesser
extent. Two contexts, C8 and C10, however, had at least a
public community of users. Nevertheless, compared to some
of the companies described in Section IV-B who actively used
their communities to request feedback, the relationship here
can be described as more passive. However, participants were
aware of concepts underlying usable security and sometimes
even the terminology. Most attributed importance to usable
security in their product but had not implemented mature
measures for usable security in their processes. In the other
companies in this category, designers or UX experts were not
available. One participant of a medium-sized security company
C13 described how they design interfaces themselves, because
they were unable to hire an employee with skill sets in UX
design and security:

“No, actually, we had for a very long time an open
position for a UI/UX designer. . . but if you are looking
for a UI/UX designer with additional qualification in the
security environment. . . then, yes, you have to make one
yourself.” (C13)

Other statements suggested that there is no need for a ded-
icated UX expert or designer: “We are relatively small as
a company and [. . .] don’t have a usability expert now,
unfortunately. But mainly . . . , those are things that everyone
has to learn themselves to a certain extent.” (C11).

We also observed that, unlike security, there were no specific
requirements for usability. Usability was partly described as a
handiwork of the developers:

“We give the developers a lot of freedom to design
and implement features, so there are corporate design
guidelines for colors and fonts and stuff like that, but in-
teraction patterns and so on are more up to the developers
themselves.” (C11)

Unlike the vague description of usability requirements,
security was specified precisely. One participant told us that
certification by a national office for software security means
meeting concrete security requirements is a priority, even
if this negatively affects usability. Other participants also
mentioned that complying with security standards had an
adverse impact on usability:

“So a thing, in general, is the interplay between security,
especially in terms of approval, certification, and user
experience, because I often find myself having to argue
against a user experience thing because of some security
thing, some box that has to be checked in order to get
certification.” (C13)

899

We discuss conflicts created by security compliance standards
in Section IV-G4.

We made two key observations: Firstly, some participants
considered their processes to be sufficient for achieving usable
security. Secondly, some participants openly admitted that they
did not know how to implement certain security requirements
without compromising usability.

E. No Usable Security Awareness, few or no User-centered
Measures

In 10 of 23 contexts (C14–C23), we found that companies
were unaware of the interplay between usability and security
and spent little or no resources on the usability of their product.
In five of those contexts (C14, C18–C20, C23), security was
an important part of their business. In contrast, usability was
taken much less seriously:

“I think the effort that goes into security-related topics
and implementing them perfectly is many times greater
than the ambition in the usability area, which is based
more on the fact that the team has a claim to deliver.
With security, it’s about delivering [laughs].” (C14)

Four companies (of which two were focused on security
products) had actively involved experts for UX and design
within their SDP. For all other contexts, even when products
contained multiple security features, they did not see a need for
usability experts. For example, one software team developed
software for document signing (C18). This assessment was in-
dependent of the fact that usable security was well-understood:
“I don’t think there was a designer involved. [laughs] That’s
how it developed over time – like a plant grows, that’s how I
always imagined it.” (C18).

Some participants did not comprehend the concept of usable
security, even when explicitly asked about the relationship
between security and usability: “Oh is that [usable security]
a phrase? I’ve never heard the phrase combined, no.” (C17).

Here, security is attributed extraordinary importance, with
security measures in place, but usability is regarded as entirely
independent from and less important compared to security. Ac-
cordingly, the process is not very user-centered: “Other com-
panies focus on usability. For us, security is important.” (C14).
Their customers pay for technical security, but the system pos-
sibly being compromised due to users struggling with unusable
security mechanisms was not a concern. However, we also
found one case where an explicit request for usability from
the customer compromised security. A participant described
that a customer requested an “uncomplicated authentication
process” for a managed mobile device and insisted on using
employees’ telephone numbers as the “secret” for unlocking
the devices. The need for usable security was clearly evident
to those involved but despite knowing better, the security
company gave in to the request: “And if you don’t, you insist.
They tell you ‘go away’, and they hire another company. Here,
there are many companies waiting in the queue just to have a
piece of the cake.” (C23).

While usable security was at least considered in the exam-
ple, in other contexts, it was not attended to during implemen-

tation: “I’ll be honest. I don’t think they would even mention
the usability of the security. [. . .]” (C17).

We generally heard that development teams are under pres-
sure to deliver and that their resources are extremely limited.
Good development practices such as clean requirements gath-
ering, unit testing, and mature technical designs often fall by
the wayside: “We need a solution in half a year. So there will
be nothing like making a concept first, how everything should
look, and making it well usable.” (C16) We discuss issues
around resources and budgets in Section IV-G1.

F. Usable Security Decisions

As reported by participants, corporate structures and cor-
porate cultures varied, as did the decision-making processes
that affect usable security. For example, early in the devel-
opment process, customer requirements and suggestions from
marketing or other stakeholders often set the direction for
the development team. The level of detail provided to the
development team varied, which implicitly means developers
make decisions relevant for usable security. For example, P11
mentioned:

“That is not defined. It’s up to us. It’s [. . .] sort of an
unspoken rule that if you have login, the developers will
implement ‘forget password’ for you and everything. It’s
never really defined in the requirements [. . .].” (P11)

In development teams without dedicated designers, software
developers often perform design activities. While designers,
when involved, contributed wireframes and mockups for gen-
eral design decisions, even with designer involvement, not
every exception was included (e. g., the password recovery
routine) and important usable security details (e. g., number of
allowed login attempts) were missing. Even though designers
take some responsibility, the development teams still stay in
charge of making usable security decisions. The user interface
design of a product often emerges from an interaction between
developers and designers who try to interpret user require-
ments. Designers were actively involved in eleven software
development contexts (C1–C6, C8, C11, C15, C19, C22).
Three other development teams (C17, C18, C23), reported
the ability to consult designers but never or only very rarely
made use of this option. In the remaining contexts, no de-
signers were available, leaving developers to make their own
decisions. Since not specifying requirements explicitly might
impact the distribution of resources within the development
team, we asked whether customers requested usable security
features. According to our participants, some customers do not
care about usable security. Five participants (P8, P13, P17,
P18, P22) stated that their customers did not consider usable
security important in the past as they assigned little or no
budget. For example, P8 said:

“Usually, you have like three [login] attempts or some-
thing. Sometimes the client doesn’t even want that, so
you can just keep entering the password until you get it
because it’s simpler to develop, you know. They don’t have
to spend too much money on development, I guess.” (P8)

900

G. Structures that Hinder Usable Security
Below we present obstacles and challenges to usable secu-

rity based on insights from interviews dealing with concrete
development contexts (cf. Section IV-A).

1) Limited Resources: All development organizations have
to use their resources carefully. The two key resources overall,
budget and time to delivery, are often limited, which has an
adverse impact on usable security. The focus lies on delivering
functionality on time and budget; security and usability are not
specified in detail. Hence, they are assigned a lower priority
and fewer resources. It affects usability and security, but usable
security – which requires more than one skill set – is not
owned by anyone and considered last – if there is any budget
and time left.
Budget. Eight participants (P4, P11, P14, P17, P18, P19, P23,
P25) said that very limited budgets impacted steps related to
usable security in the SDP. For example, usable security cannot
be achieved when even basic security cannot be realized within
existing budgets, as P18 illustrated:

“But in many cases, if the customer doesn’t have enough
budget for development, you can’t set up that kind of
security. [. . .] They have budget for main functionality but
not for security or usability.” (P18)

While limited budgets were a common theme throughout
the interviews, justifications varied. P17 stated that features
must primarily pay for themselves and that usable security is
not a way to make money: “And then you also sometimes
discuss whether a usability feature is in proportion to its cost.
[. . .] because in the end, the majority of features have to pay
for themselves.” (P17). P23 agrees: “[. . .] there are limited
resources, right? What’s gonna happen is they are testing
other features that have broader use, have broader impact
[. . .]” (P23). Another participant illustrated the prioritization
of security awareness over usability: “Yes, yes. Enormous
amount of spending on security. [. . .] [But on] the usability
of it. No, no. That would be. . . that would be very, very low,
considering the usability.” (P4). This is in line with P11 and
might cause a security paradigm that cannot achieve usable
security as it is skewed towards technical security, neglecting
the human factors.
Time. Strongly related to budget, time is another limiting
resource. Ten participants (P3, P5, P10, P11, P14, P16–P19,
P24) explicitly mentioned general time pressure during their
work as well as deadlines. This lack of time inevitably leads
to higher-priority tasks being attended to first. Usable security
rarely has priority. P18 explicitly described this “On fast and
easy projects [. . .], you never find that time of detail of security
level or usability level.” (P18) as well as P24 who said: “When
you do have to get that thing done in that time, quality suffers,
and so some of the things that can suffer is security [. . .] and
then also usability” (P24). Besides P24, also P3, P5, and P11
each reported that due to time pressure, testing is neglected.
All this highlights the time budget’s impact on which measures
and steps in the SDP will get attention.
Functionality First. A common theme across eight inter-
views (P3, P10, P15, P18, P20, P24, P25) is the prioritization

of features and functionality – to the detriment of usable
security. This functionality first principle is also an indicator
of the low awareness of usable security’s importance: “against
security, against usable security as well. Yes. The resources,
the priorities were just mostly to new features” (P15). Partic-
ipants described that this is related to time or budget:

“There’s a point where you will sacrifice a usability or
security feature. [. . .] You cannot touch the main func-
tionality. But you can remove a security feature or a UI
part or whatever to remain inside a budget.” (P18)

Following that principle, some participants (P3, P10, P15,
P25) told us that the features, including their security, only
have to be functional regardless of how usable they are: “I
absolutely don’t care what the function looks like. The main
thing is that the function is in there, and the customer can
use it.” (P3). Furthermore, those participants reported that
improving usable security is something they plan to attend
to sometime later. But since budgets are always too tight, the
resources are never there. While functionality is the key selling
point for software and the deciding factor when competing
with other companies (P24), the fact that its usable security is
never attended to before budgets run out should raise concerns
in development companies and their customers.

2) Misconceptions: The analysis of the interviews revealed
several misconceptions about usable security and also about
usability itself. If software developers do not understand what
usable security is, we cannot expect them to carry out the
steps needed to deliver it. P9, for example, mentioned a usable
authentication method where users overlooked the security
but the participant himself did not realize that this is an
aspect of usable security: “But otherwise, I think we really
don’t have [usable security]. Because the login happens [. . .]
[transparently for users] and what we do there in terms of
security things has no influence on how the normal user
uses it.” (P9). However, while this would allow accidental
or unconscious usable security, other misconceptions would
hinder usable security adoption. For example, P21 blamed
users for being unable to cope with the security technology and
forgetting usernames and passwords: “[This is] not related to
usability, mostly it’s related to lack of technology skills. [. . .]
we can’t do anything about [authentication]” (P21).

Another participant did not realize that even well-educated
users are more likely to make mistakes when presented with
a complex mechanism: “Then security is my first priority
because they are already educated and they know exactly
what’s going on in the system.” (P1).

As we have already seen, usability may be assigned a low
priority because it is not taken seriously: “So it’s kind of,
I would say, a healthy mix of best practice and common
sense.” (P5). A designer (P19) told us that her expertise is
not perceived as such:

“But there is a totem pole, and that’s you don’t always
get people to trust your expertise, I guess. There are some
people. . . they trust their opinion over the expertise in the
field. What are you gonna do about that?” (P19)

This was evidenced in P21’s opinion that a UX expert was not
needed on their team:

901

“We didn’t need any expert to know that. . . that this
type of. . . of usability. . . is needed, actually we don’t put
usability on the. . . on standards. Usability has to be like
this or we can identify as that. . . we don’t know this type. . .
or this. . . we don’t take it from the academic view. We. . .
do deal with usability as a sense. I don’t know, as a fifth,
fourth, seventh sense, I don’t know.” (P21)

Similar to other research [9], [53], [54], we found that
participants (P1, P6, P21, P22, P24) believed in the trade-
off myth for usable security. Around half of our participants
stated that usability and security have to be weighed against
each other: “I think the gain of security is worth the slight dip
in usability.” (P24) or “I mean if you want to create something
easy to use, you must pay for it at some point. [. . .] it puts
you on a risk of being vulnerable on the security level” (P21).

Usable security research has provided ample evidence that
and how security systems that are difficult to use end up being
circumvented or compromised by users. Our results indicate
that developers do not yet understand this. P22, P4, and P7 told
us that they consciously traded security for more usability: “In
order to make the application more usable, we had to remove
all of that. . . all of that security-related code [. . .]” (P4).

In summary, we found fundamental misconceptions about
usable security, not least a complete lack of awareness that
being usable is a necessary condition for a security mechanism
to be effective.

3) Communication Barriers: Implementing usable security
requires knowledge and skills in both security and usability.
Individuals rarely have knowledge and skills in both, so
development organizations have to take steps to ensure a
development project has access to those skills. We found
several contexts in which expertise was available but not
accessible when it was needed. Incorporating other teams or
experts in the SDP creates an overhead within organizations.
P5 described that developers may have access to experts but do
not consult them because it would cost valuable time. Instead,
they would only resort to doing so in case of severe problems.
This mental barrier may be heightened due to problems in
understanding the respective other profession resulting from
fractured knowledge. P10, P13, and P23 highlighted that
especially designers lack knowledge and understanding of
security concepts: “I think they really put a lot of effort into it
already. But what you wonder is if the designer was even able
to grasp the front-end developer” (P10). P22 surmised that
designers might not be interested in technical aspects, such as
security: “I didn’t meet any designers that like to be involved
in technical decisions. I think they feel bored or something.”
(P22).

P13 and P23 both told us about conflicts with the security
team while fighting for better usability. For example, the
usability expert (P13) said:

“We were constantly at odds with the [cryptography team]
because [. . .] we had to basically consistently push back
against that cryptography. Well, in their mind, it was
against their cryptography because we had to tell them
that, like, ‘Listen, and you can’t do it this way because,
like, users will not accept, this is unacceptable, from the
user perspective’.” (P13)

However, it is essential to combine both in the SDP to
actually achieve usable security. Conflicts, therefore, have to
be overcome by respecting and understanding each other.

4) Requirements, Guidelines, Compliance: Usability re-
quirements in our participants’ organizations were vague and
rarely, if ever, written down. In contrast, we noticed that
specific security requirements had their origin either in compli-
ance standards or they emerged naturally, as P2, P6, P11, and
P15 described: “Actually, they came pretty naturally.” (P6).

We hoped to obtain concrete requirements for usable secu-
rity, but as a rule, the processes analyzed tend to indicate that
usable security is a requirement, which also arises naturally,
but where the basis is not the individuals themselves, but
rather the project focus and the corporate culture. To the
companies that we have classified as aware it was rather clear
to the team members that the project focus was on usable
security. However, we have seen at certain companies (cf.
Section IV-D) that were aware but failed to implement usable
security measures. Neither participants who talked about a
specific case nor participants who gave us a more high-level
view of their experiences mentioned any compliance standards
or guidelines related to usable security. In contrast, we heard
about security guidelines or standards more frequently. P19
described a case where she was in a conflict with a decision-
maker about removing security questions from the product for
multiple reasons. In the end, she lost the fight because she did
not have any evidence to convince her superior:

“I didn’t have evidence to bring to the table [. . .]. That
would have been a lot easier. [. . .] Trying to explain
usability without a ton of evidence isn’t gonna get you
very far. I wasn’t able to find anything [. . .] worthwhile.
You know, sometimes you win, sometimes you lose.” (P19)

H. Structures and Attitudes that Contribute to Usable Security

This section highlights and relates the structures and atti-
tudes that we identified in the above classification as more
positively related to the ability to deal with usable security
challenges. We consider a holistic understanding of usable
security as necessary so that suitable measures can be estab-
lished. We have seen that some decisions have been made
contrary to results of previous usable security research due to
fundamental misconceptions (e. g., some development teams
still believing the trade-off myth).

1) Communication Pivot: In all contexts showing user-
centered characteristics that we classified as being aware of
usable security, we found a person who formed the commu-
nication bridge between both worlds, usability and security:

“Yeah, so that was one security part of it [. . .] Especially
in the beginning [. . .], what can the developers actually do
on that team, and what are their capabilities in the time
frame and the money that we had. So, yeah, the developers
were included in the discussion with all the security issues
from the beginning.” (P14)

Those people with background knowledge in security were
not left out but actively involved in the design process. We
also observed a strong collaboration between UX experts
and security experts in the case of P13. For example, the

902

designers were actively involved during threat assessment with
the security experts. However, the designer or UX expert does
not always have to be the driver for usable security. In three of
five cases in Section IV-B, a security expert was the pivot for
communication about usable security in the software teams.
We also observed that the domain knowledge of security and
usability was more pronounced in either one of the areas. P13
described that the design team was involved during a threat
assessment.

2) Open Attitude and Commitment Towards Usability: We
have seen that the development teams of most companies
whose processes we classified as having user-centered char-
acteristics were given the time and resources to apply user-
centered methods. In most of the contexts, as described in
Sections IV-B and IV-C, participants showed an open attitude
towards usability and its value for the customer and the
business: “The main and the most important request from the
management was: they need an easy-to-use software or app
or interface to compete with other competitors” (P21).

3) Access to Real Users and Feedback: Participants re-
ported two products, one partly (P6), one completely open-
source (P2). Both described how they leveraged their user
communities to collect feedback. P2 said that they had access
to communities all over the world and dedicated contact per-
sons who are in contact with specific user groups via forums
and emails. Those communities provided not only compre-
hensive feedback but were also the source of substantial new
requirements. In other contexts which had developed usable
security, users were also actively involved in the development.
For example, in C5, users were invited to a laboratory to test
the software prototype.

4) Knowledge About User-centered Methods and (Usable)
Security: In six contexts, we found awareness of the im-
portance of usable security, but the processes were not very
user-centered (Section IV-D). Although the lack of resources
was often mentioned as a reason for lacking measures (Sec-
tion IV-G1), participants reported individual user-centered
measures, such as personas or prototyping, being used because
they were considered rather low-cost. In another case, beta-
testing with users and collecting feedback in high-security
environments was not possible due to confidentiality reasons:
“No, unfortunately [a beta group is] not possible. For the
same reason, we don’t get feedback from users.” (C13).

V. IMPLICATIONS

In this section, we discuss the implications of our findings
for academia and the software industry. First, we summarize
our results and discuss the major factors that enable or
prevent usable security in development organizations as well as
identify actions that organizations that espouse usable security
as a goal could take to enable and support developers.

A. Factors Impacting Usable Security

Lack of Awareness. The development processes our partic-
ipants described revealed fundamental misconceptions of us-
able security. Misconceptions are not necessarily shortcomings

of them as individuals but can be a shared lack of understand-
ing in software development contexts (Section IV-G2). Many
of our participants had an apparent misunderstanding of the
connection between usability and security (Section IV-E) or
suggested having to sacrifice one to achieve the other (see
section IV-G2). Some participants stated usability not to be
a specific skill set, but some common knowledge developers
would implicitly have. In these development contexts, user-
centered methods were neither available nor applied (Sec-
tion IV-C).

Missing Knowledge of User-Centered Methods. Some in-
terviewees were aware of the potential benefits of making
security features usable. However, they lacked the means
to implement usable security (Section IV-D). Across all our
interviews, only a few user-centered methods were mentioned.
Hence, there seems to be a lack of usability security knowledge
in many software teams (Section IV-H4). The methods the
participants were aware of were often not applied due to a
lack of resources (Section IV-G1). Even in the face of lim-
ited resources and time constraints, developers could engage
with usability for security features by applying established
heuristics such as Nielsen’s “10 Usability Heuristics for User
Interface Design” [42].

Communication Barriers. In some contexts (Section IV-G3),
usability expertise was available in the form of specialists,
but individual development teams did not consult them. When
usability was seen as easy, consulting experts was considered
a waste of time. Usable security is an interdisciplinary field
where knowledge from both domains must be brought together
to craft an effective security mechanism that does not over-
burden end-users (Section IV-H1).

B. Decision Making

In the case of development teams that miss resources to
implement usable security or that have the required skills
available but do not apply them, adapting structures and
processes can help. Functional requirements are frequently
defined during requirements engineering. Depending on the
level of requirements details, developers need to make their
own decisions. Fine-grained requirements evoke the interac-
tion between end-users as well as the system and reduce
the likelihood of inappropriate assumptions made by develop-
ers.Some participants reported that more rigorously specified
design drafts were created in collaboration with one or more
technical experts (cf. Section IV-B). Decisions affecting the
usability of the product were made by different stakeholders.
We rarely identified active decisions for or against usable
security: Decisions affecting usable security are often not
debated or a source of conflict; they do not seem important
enough to invest much effort. These findings illustrate that
many of our participants (see Sections IV-C, IV-E) lack usable
security awareness and the consequences of not taking care of
it.

903

C. Recommendations for Industry

Development organizations need to recognize that usable
security requires effort and does not come for free with
security alone. On one level, making something usable seems
easy enough – but it requires basic resources and skills to
deliver it. Assuming that developers will take care of a quality
attribute that is not clearly specified, and for which nobody
has been given responsibility, is wishful thinking – especially
when time and resources are always tight. It requires changes
to the development process that need to be managed and given
resources. In the following section, we present two approaches
that could support companies in taking a step further towards
usable security.

1) Climbing the Competence Curve: Different types of
interventions are needed to help software teams climb the
competence curve:

1) Build up awareness for usable security.
2) Impart knowledge to those involved.
3) Integrate and consolidate measures into the company’s

daily routine.
Changing employees’ habits and routines is complex and
requires resources. However, it is not about redrawing entire
organizational structures, but rather about moving holistically
and purposefully one step further towards usable security.
Create Awareness. As we illustrated in the results, awareness
of usable security is crucial. While we identified companies
that focused on user-centered requirements or needs and im-
plemented respective methods into their processes, they were
not aware of the important interplay of usability and security.
Instead, they made usable security decisions unconsciously
(cf. Sections IV-F, V-B). The fact that decisions about usable
security are often made unconsciously reinforces our assump-
tion that awareness is fundamental to start a conversation
about usable security and, consequently, to actively make
decisions adapting the SDP towards usable security. Neverthe-
less, awareness alone is not sufficient to change behavior and
establish habits that support usable security (cf. Section IV-D).
Understanding Users and Their Context. Some contexts
did not integrate measures for usability in their SDP. In order
to make a system, and especially its security components,
usable, it is crucial to understand the users’ needs, capabilities,
goals, and most importantly, the context in which they interact
with the software. We have seen that all of the contexts from
Section IV-B were actively engaged in learning more about
their users to build a more usable and secure product. To
establish a better user understanding, we recommend sharing
this information with other stakeholders, as the participant
from C5 did while building an authentication mechanism for
a postal delivery company. For a systematic approach, human-
computer interaction research has established an extensive
knowledge base (e. g., [10]) and toolbox (e. g., [42], [43]) that
software professionals can use to improve usable security.
Improve Communication between Experts. In all contexts
from Section IV-B, we noticed the gap between usability
and security expertise being much smaller than in the other

contexts. We attribute this to extensive communication be-
tween security and usability experts. Tools such as personas or
scenarios, known for decades as communication and modeling
tools, are particularly suitable for helping software profession-
als to understand their users’ needs, experiences, behaviors,
and goals. Even further, P13 described that they performed
threat modeling as a group activity with both security and
usability experts.

Shift Usable Security Left. Usable security should become
part of the SDP early on. We observed that usable security
requirements are currently not specified concretely in almost
all contexts. That said, usable security should be explicitly
included in requirements engineering and addressed in early
discussions with customers and other stakeholders – ideally
from the very beginning. The analysis of decision-makers and
decision chains (Section V-B) revealed that the requirements
which are handed over to development teams, along with their
level of detail, substantially determine the extent of available
resources and the scope for interpretation of usable security.

Measure and Track Usable Security. The celebration of
short-term goals is a common activity to drive change for-
ward [29]. Hence, we recommend tracking usable security
progress for both the process and the product. Furthermore,
this helps to understand and improve usable security in existing
processes. Performing regular usable security measurements as
part of the SDP may also prevent a trial-and-error approach
and save resources. To the best of our knowledge, there are
no explicit measures to assess usable security. Instead, we
recommend using conventional usability evaluation methods
for security features to assess products’ usable security. This
could include but is not limited to A/B testing, beta tests,
or active feedback gathering, as prevalent in the contexts of
Section IV-B. There may be other indicators or proxies; in C5
the reduced number of support tickets opened by users after a
major redesign was an indicator of improved usable security.

Usable Security Champions. In the context of security,
security champions are a common role within teams. Sim-
ilarly, we identified usable security champions as having
interdisciplinary knowledge in usability and security as well as
taking care of usable security. Usable security champions were
available in three out of five contexts (C2–C4) in Section IV-B.
Those champions are rare, like in C11 (Section IV-D), or
could not be found or hired as in C13. Champions were
unavailable in the other two contexts that also achieved usable
security. Instead, in C5, the designer was the pivot point
and initiator of a successful usable-security-driven process
– without having security knowledge. However, this needs
extensive communication, which can be a higher burden
compared to a usable security champion as there will be no
communication overhead. Therefore, we conclude that a usable
security champion may not be needed when there is enough
knowledge and skills for usability and security in the team and
the respective members are collaborating.

2) Usable Security Defaults and Tooling: We identified
a gap between usability and security for developers and

904

stakeholders as expertise in both is often unavailable at the
same time. A general approach from the security area is the
security by default principle. We suggest transferring this to
usable security by default. For example, a web framework
might have a module for user authentication. Extending this
by usable security principles would allow software creators to
easily create a secure and usable software feature out of the
box, requiring little or no effort. Consequently, this approach
appears suitable for those unaware of usable security or unable
to climb the competence curve.

To the best of our knowledge, the current software devel-
opment ecosystem lacks this support, as there is no tooling,
no special documentation, guidelines, or standards for usable
security. As a starting point, we propose creating guidelines
and checklists for usable security in specific use cases. These
then can be incorporated into tools and frameworks. Even if
these measures may only be directly related to individual and
not all stakeholders (e. g., a framework that only front-end
developers use), they consider other contextual factors such as
limited resources and knowledge. Nevertheless, the approach
is not as holistic as the competence curve. However, this could
be a way to systematically address the simpler usable security
pitfalls. Overall, we recommend more research to explore this
avenue.

D. Recommendations for Human Factors in Security Research

Researching human factors in security has been an active
field in the security community since the 1990s. However,
we identified a low awareness (Sections IV-C, IV-E) and
fundamental misconceptions (Section IV-G2) for usable se-
curity among practitioners. While it remains unclear how
practitioners learn about usable security, it shines through
all our observations that the past decades of usable security
research contributions have not received widespread attention
in the software industry so far. Hence, there seems to be
a huge gap between the status quo in academic research
and the adoption by the software industry. However, we are
convinced that our community should try to close this gap by
better transferring our expertise and knowledge to practitioners
who build software. That way, research could increase its
impact on society and improve security for millions of users.
Furthermore, we discuss the following.
Emphasize Context. Prior research has investigated pitfalls
created by individual developers and other software profes-
sionals as highlighted in Section II. However, we found that
context factors and culture are essential for success with usable
security. This highlights the need for further research not
limited to individual developers and extends the focus more
towards context factors. This includes supporting factors and
structures for usable security but also blockers and challenges
posed by context factors. Therefore, research should move
beyond developer training, education, and support, which is
indeed an important approach. However, we also advocate for
the research and development interventions that target the pro-
duction context as a whole and not only single steps from the
SDP like the coding by developers. Such a holistic approach

should consider the context, including the company and all
stakeholders, and processes as important factors influencing
usable security. We hypothesize that a holistic approach could
also be more sustainable as it does not focus on a single group
of individuals, e. g., developers that may leave the company
anytime, or technology and defaults changing over time.
Tooling vs. Mindset & Knowledge. Two main approaches
can be identified in our research community. One is tooling
and technical solutions whose main idea is to support humans,
for example, by providing suitable tools [32], [33], [41] to
enable non-experts to develop secure software. Beyond that,
some approaches aim to “have an impact on the human”,
e. g., the mindset, knowledge, or skills of stakeholders. Both
have advantages and limitations; for example, using a tool is
often easier than learning new skills or changing a mindset,
but building a mindset for usable security might be more
sustainable. We argue that both are orthogonal approaches,
and both can be beneficial for different contexts. However,
choosing one of those approaches in a specific scenario is not
obvious and requires more research.
Develop Measures. To support the adoption of usable security
research results in the software industry, development teams
need actionable measures. Researchers can support arguments
for usable security in teams by developing measurable goals,
actions, and interventions. Without those, blockers might be
too challenging, as described by P19. We recommend mea-
sures to be lightweight in order to to take the limited resources
and economic pressures into account (see Section IV-G1) and
remain in line with general security research [66], [67].

VI. CONCLUSION

In this work we provide novel insights into how profes-
sional software development organizations make usable secu-
rity using 25 semi-structured interviews with software industry
workers from different professions. Our results suggest a high
impact of individual as well as contextual software develop-
ment process factors on software products’ usable security,
such as the commitment to usable security and knowledge of
user-centered methods. Our study highlights the need for more
awareness and a holistic understanding of usable security.
Based on blockers and structures that contribute to usable
security, we propose interventions for industry, such as de-
liberately strengthening the communication between security
and usability experts. To successfully integrate usable security
into software products, we recommend that researchers and
practitioners take a holistic view on software development,
also taking into account contextual factors.

ACKNOWLEDGMENT

This research was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC 2092 CASA –
390781972. We would like to thank the anonymous reviewers
for their valuable feedback and for helping us to improve
this paper. Furthermore, we want to thank all interviewees
for supporting our research.

905

REFERENCES

[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the Usability of Cryptographic APIs,” in Proc.
38th IEEE Symposium on Security and Privacy (SP’17). IEEE, 2017.

[2] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You’re Looking For: The Impact of Information
Sources on Code Security,” in Proc. 37th IEEE Symposium on Security
and Privacy (SP’16). IEEE, 2016.

[3] Y. Acar, S. Fahl, and M. L. Mazurek, “You are Not Your Developer,
Either: A Research Agenda for Usable Security and Privacy Research
Beyond End Users,” in Proc. 2016 IEEE Secure Development Confer-
ence (SecDev’16). IEEE, 2016.

[4] A. Adams and M. A. Sasse, “Users are not the enemy: Why users
compromise security mechanisms and how to take remedial measures,”
Communications of the ACM, vol. 42, no. 12, pp. 40–46, 1999.

[5] D. Akhawe and A. P. Felt, “Alice in Warningland: A Large-Scale Field
Study of Browser Security Warning Effectiveness.” in Proc. 22nd Usenix
Security Symposium (SEC’13). USENIX Association, 2013.

[6] H. Alshenqeeti, “Interviewing as a Data Collection Method: A Critical
Review,” English Linguistics Research, vol. 3, no. 1, pp. 39–45, 2014.

[7] H. Assal and S. Chiasson, “‘Think Secure from the Beginning’: A
Survey with Software Developers,” in Proc. CHI Conference on Human
Factors in Computing Systems (CHI’19). ACM, 2019.

[8] H. Assal and S. Chiasson, “Security in the Software Development
Lifecycle,” in Proc. 14th Symposium on Usable Privacy and Security
(SOUPS’18). USENIX Association, 2018.

[9] D. D. Caputo, S. L. Pfleeger, M. A. Sasse, P. Ammann, J. Offutt,
and L. Deng, “Barriers to Usable Security? Three Organizational Case
Studies,” IEEE Security & Privacy, vol. 14, no. 5, pp. 22–32, 2016.

[10] A. Cooper, R. Reimann, D. Cronin, and C. Noessel, About Face: The
Essentials of Interaction Design, 4th ed. John Wiley & Sons, Ltd.,
2014.

[11] J. M. Corbin and A. L. Strauss, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory. SAGE
Publications, 2014.

[12] A. Danilova, A. Naiakshina, J. Deuter, and M. Smith, “Replication: On
the Ecological Validity of Online Security Developer Studies: Exploring
Deception in a Password-Storage Study with Freelancers,” in Proc. 16th
Symposium on Usable Privacy and Security (SOUPS’20). USENIX
Association, 2020.

[13] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An Empirical Study of Third-Party Library Updatability on Android,” in
Proc. 24th ACM Conference on Computer and Communication Security
(CCS’17). ACM, 2017.

[14] S. Egelman, L. F. Cranor, and J. Hong, “You’ve Been Warned: An Em-
pirical Study of the Effectiveness of Web Browser Phishing Warnings,”
in Proc. SIGCHI Conference on Human Factors in Computing Systems
(CHI’08). ACM, 2008.

[15] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory love Android: An analysis of Android
SSL (in)security,” in Proc. 19th ACM Conference on Computer and
Communication Security (CCS’12). ACM, 2012.

[16] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja,
A. Bettes, H. Harris, and J. Grimes, “Improving SSL Warnings: Com-
prehension and Adherence,” in Proc. 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI’15). ACM, 2015.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android Permissions: User Attention, Comprehension, and Behavior,”
in Proc. 8th Symposium on Usable Privacy and Security (SOUPS’12).
ACM, 2012.

[18] M. Golla, M. Wei, J. Hainline, L. Filipe, M. Dürmuth, E. Redmiles, and
B. Ur, ““What Was That Site Doing with My Facebook Password?”: De-
signing Password-Reuse Notifications,” in Proc. 25th ACM Conference
on Computer and Communication Security (CCS’18). ACM, 2018.

[19] M. Green and M. Smith, “Developers are Not the Enemy!: The Need
for Usable Security APIs,” IEEE Security & Privacy, vol. 14, no. 5, pp.
40–46, 2016.

[20] J. Gulliksen, B. Göransson, I. Boivie, S. Blomkvist, J. Persson, and
A. Cajander, “Key principles for user-centred systems design,” Be-
haviour & Information Technology, vol. 22, no. 6, pp. 397–409, 2003.

[21] M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A. Sasse, and
S. Fahl, “Replication Package: "How Does Usable Security (Not) End

Up in Software Products? Results From a Qualitative Interview Study",”
https://doi.org/10.25835/0089554, 2021, version 1.0.

[22] M. Gutfleisch, M. Peiffer, S. Erk, and M. A. Sasse, “Microsoft Office
Macro Warnings: A Design Comedy of Errors with Tragic Security
Consequences,” in Proc. 2021 European Symposium on Usable Security
(EuroUSEC’21). ACM, 2021.

[23] J. Hallett, N. Patnaik, B. Shreeve, and A. Rashid, “"Do this! Do that!,
And Nothing will happen": Do specifications lead to securely stored
passwords?” in Proc. 43rd IEEE/ACM International Conference on
Software Engineering (ICSE’21). IEEE, 2021.

[24] J. M. Haney, M. Theofanos, Y. Acar, and S. S. Prettyman, ““We make
it a big deal in the company”: Security Mindsets in Organizations that
Develop Cryptographic Products,” in Proc. 14th Symposium on Usable
Privacy and Security (SOUPS’18). USENIX Association, 2018.

[25] N. Huaman, S. Amft, M. Oltrogge, Y. Acar, and S. Fahl, “They
Would do Better if They Worked Together: The Case of Interaction
Problems Between Password Managers and Websites,” in Proc. 42nd
IEEE Symposium on Security and Privacy (SP’21). IEEE, 2021.

[26] N. Huaman, B. von Skarczinski, C. Stransky, D. Wermke, Y. Acar,
A. Dreißigacker, and S. Fahl, “A Large-Scale Interview Study on Infor-
mation Security in and Attacks against Small and Medium-sized Enter-
prises,” in Proc. 30th Usenix Security Symposium (SEC’21). USENIX
Association, 2021.

[27] L. L. Iacono, H. V. Nguyen, and H. Schmitt, “Usable Security — Results
from a Field Study,” i-com, vol. 15, no. 2, pp. 203–209, 2016.

[28] L. Kocksch, M. Korn, A. Poller, and S. Wagenknecht, “Caring for IT
Security: Accountabilities, Moralities, and Oscillations in IT Security
Practices,” Proceedings of the ACM on Human-Computer Interaction,
vol. 2, no. CSCW, pp. 92:1–92:20, 2018.

[29] J. P. Kotter, Leading Change. Harvard Business Review Press, 2012.
[30] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and E. von Zezschwitz,

“"If HTTPS Were Secure, I Wouldn’t Need 2FA" - End User and Ad-
ministrator Mental Models of HTTPS,” in Proc. 40th IEEE Symposium
on Security and Privacy (SP’19). IEEE, 2019.

[31] K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl, ““I Have
No Idea What I’m Doing” - On the Usability of Deploying HTTPS,” in
Proc. 26th Usenix Security Symposium (SEC’17). USENIX Association,
2017.

[32] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and R. Kamath, “CogniCrypt: Sup-
porting Developers in Using Cryptography,” in Proc. 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE’17).
IEEE Press, 2017.

[33] S. Krüger, K. Ali, and E. Bodden, “CogniCryptGEN : Generating Code
for the Secure Usage of Crypto APIs,” in Proc. 18th ACM/IEEE Inter-
national Symposium on Code Generation and Optimization (CGO’20).
ACM, 2020.

[34] F. Li, L. Rogers, A. Mathur, N. Malkin, and M. Chetty, “Keepers of the
Machines: Examining How System Administrators Manage Software
Updates For Multiple Machines,” in Proc. 15th Symposium on Usable
Privacy and Security (SOUPS’19). USENIX Association, 2019.

[35] T. Lopez, H. Sharp, T. Tun, A. K. Bandara, M. Levine, and B. Nuseibeh,
“"Hopefully We Are Mostly Secure": Views on Secure Code in Profes-
sional Practice,” in Proc. 12th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE’19). IEEE Press,
2019.

[36] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, ““Jumping Through
Hoops”: Why do Java Developers Struggle With Cryptography APIs?”
in Proc. 38th IEEE/ACM International Conference on Software Engi-
neering (ICSE’16). ACM, 2016.

[37] A. Naiakshina, A. Danilova, E. Gerlitz, and M. Smith, “On Conducting
Security Developer Studies with CS Students: Examining a Password-
Storage Study with CS Students, Freelancers, and Company Develop-
ers,” in Proc. CHI Conference on Human Factors in Computing Systems
(CHI’20). ACM, 2020.

[38] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and
M. Smith, “"If You Want, I Can Store the Encrypted Password": A
Password-Storage Field Study with Freelance Developers,” in Proc. CHI
Conference on Human Factors in Computing Systems (CHI’19). ACM,
2019.

[39] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why Do Developers Get Password Storage Wrong?:
A Qualitative Usability Study,” in Proc. 24th ACM Conference on
Computer and Communication Security (CCS’17). ACM, 2017.

906

[40] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith, “Deception Task
Design in Developer Password Studies: Exploring a Student Sample,”
in Proc. 14th Symposium on Usable Privacy and Security (SOUPS’18).
USENIX Association, 2018.

[41] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl,
“A Stitch in Time: Supporting Android Developers in Writing Secure
Code,” in Proc. 24th ACM Conference on Computer and Communication
Security (CCS’17). ACM, 2017.

[42] J. Nielsen, “Enhancing the Explanatory Power of Usability Heuristics,”
in Proc. SIGCHI Conference on Human Factors in Computing Systems
(CHI’94). ACM, 1994.

[43] J. Nielsen, Usability engineering. Morgan Kaufmann Publishers, 1993.
[44] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To Pin or

Not to Pin—Helping App Developers Bullet Proof Their TLS Connec-
tions,” in Proc. 24th Usenix Security Symposium (SEC’15). USENIX
Association, 2015.

[45] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and S. Fahl,
“Why Eve and Mallory Still Love Android: Revisiting TLS (In)Security
in Android Applications,” in Proc. 30th Usenix Security Symposium
(SEC’21). USENIX Association, 2021.

[46] N. Patnaik, J. Hallett, and A. Rashid, “Usability Smells: An Analysis of
Developers’ Struggle With Crypto Libraries,” in Proc. 15th Symposium
on Usable Privacy and Security (SOUPS’19). USENIX Association,
2019.

[47] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,
L. F. Cranor, S. Egelman, and A. Forget, “Let’s Go in for a Closer
Look: Observing Passwords in Their Natural Habitat,” in Proc. 24th
ACM Conference on Computer and Communication Security (CCS’17).
ACM, 2017.

[48] O. Pieczul, S. Foley, and M. E. Zurko, “Developer-centered security
and the symmetry of ignorance,” in Proc. 2017 New Security Paradigms
Workshop (NSPW’17). ACM, 2017.

[49] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda,
“Can Security Become a Routine?: A Study of Organizational Change
in an Agile Software Development Group,” in Proc. 2017 ACM Confer-
ence on Computer Supported Cooperative Work and Social Computing
(CSCW ’17). ACM, 2017.

[50] R. S. Pressman and B. R. Maxim, Software Engineering: A Practi-
tioner’s Approach, 8th ed. McGraw-Hill Education, 2015.

[51] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek, and P. Mardziel,
“Build It, Break It, Fix It: Contesting Secure Development,” in Proc.
23nd ACM Conference on Computer and Communication Security
(CCS’16). ACM, 2016.

[52] A. Sasse, “Scaring and Bullying People into Security Won’t Work,”
IEEE Security & Privacy, vol. 13, no. 3, pp. 80–83, 2015.

[53] M. A. Sasse and M. Smith, “The Security-Usability Tradeoff Myth
[Guest editors’ introduction],” IEEE Security & Privacy, vol. 14, no. 5,
pp. 11–13, 2016.

[54] M. A. Sasse, M. Smith, C. Herley, H. Lipford, and K. Vaniea, “De-
bunking Security-Usability Tradeoff Myths,” IEEE Security & Privacy,
vol. 14, no. 5, pp. 33–39, 2016.

[55] B. Schneier, “Stop Trying to Fix the User,” IEEE Security & Privacy,
vol. 14, no. 5, pp. 96–96, 2016.

[56] A. Shostack and M. E. Zurko, “Secure Development Tools and Tech-
niques Need More Research That Will Increase Their Impact and
Effectiveness in Practice,” Communications of the ACM, vol. 63, no. 5,
pp. 39–41, 2020.

[57] B. Shreeve, J. Hallett, M. Edwards, M. Ramokapane, R. Atkins, and
A. Rashid, “The best laid plans or lack thereof: Security decision-
making of different stakeholder groups,” IEEE Transactions on Software
Engineering, 2020.

[58] B. Shreeve, J. Hallett, M. Edwards, P. Anthonysamy, S. Frey, and
A. Rashid, ““So If Mr Blue Head Here Clicks the Link...” Risk Thinking
in Cyber Security Decision Making,” ACM Transactions on Privacy and
Security, vol. 24, no. 1, 2020.

[59] R. Stevens, D. Votipka, E. M. Redmiles, C. Ahern, P. Sweeney, and
M. L. Mazurek, “The Battle for New York: A Case Study of Applied
Digital Threat Modeling at the Enterprise Level,” in Proc. 27th Usenix
Security Symposium (SEC’18). USENIX Association, 2018.

[60] C. Stransky, O. Wiese, V. Roth, Y. Acar, and S. Fahl, “27 Years and 81
Million Opportunities Later: Investigating the Use of Email Encryption
for an Entire University,” in Proc. 43rd IEEE Symposium on Security
and Privacy (SP’22). IEEE, 2022.

[61] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security During
Application Development: An Application Security Expert Perspective,”
in Proc. CHI Conference on Human Factors in Computing Systems
(CHI’18). ACM, 2018.

[62] C. Tiefenau, M. Häring, K. Krombholz, and E. von Zezschwitz, “Secu-
rity, Availability, and Multiple Information Sources: Exploring Update
Behavior of System Administrators,” in Proc. 16th Symposium on
Usable Privacy and Security (SOUPS’20). USENIX Association, 2020.

[63] D. van der Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun, M. Pe-
tre, M. Levine, J. Towse, and A. Rashid, “Schrödinger’s Security:
Opening the Box on App Developers’ Security Rationale,” in Proc.
42nd IEEE/ACM International Conference on Software Engineering
(ICSE’20). ACM, 2020.

[64] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and
M. Hicks, “Understanding security mistakes developers make: Quali-
tative analysis from Build It, Break It, Fix It,” in Proc. 29th Usenix
Security Symposium (SEC’20). USENIX Association, 2020.

[65] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek, “Hackers
vs. Testers: A Comparison of Software Vulnerability Discovery Pro-
cesses,” in Proc. 39th IEEE Symposium on Security and Privacy (SP’18).
IEEE, 2018.

[66] C. Weir, I. Becker, J. Noble, L. Blair, M. A. Sasse, and A. Rashid,
“Interventions for long-term software security: Creating a lightweight
program of assurance techniques for developers,” Software: Practice and
Experience, vol. 50, no. 3, pp. 275–298, 2020.

[67] C. Weir, L. Blair, I. Becker, J. Noble, A. Sasse, and A. Rashid,
“Interventions for Software Security: Creating a Lightweight Program
of Assurance Techniques for Developers,” in Proc. 41st IEEE/ACM
International Conference on Software Engineering (ICSE’19). IEEE,
2019.

[68] C. Weir, B. Hermann, and S. Fahl, “From Needs to Actions to Secure
Apps? The Effect of Requirements and Developer Practices on App
Security,” in Proc. 29th Usenix Security Symposium (SEC’20). USENIX
Association, 2020.

[69] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0,” in Proc. 8th Usenix Security Symposium
(SEC’99). USENIX Association, 1999.

[70] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
Johnny to Analyze Malware: A Usability-Optimized Decompiler and
Malware Analysis User Study,” in Proc. 37th IEEE Symposium on
Security and Privacy (SP’16). IEEE, 2016.

[71] M. E. Zurko and R. T. Simon, “User-Centered Security,” in Proc. 1996
New Security Paradigms Workshop (NSPW’96). ACM, 1996.

APPENDIX A
PARTICIPANTS

Table III gives an overview of our participants. We did
not include sensitive information such as age and gender on
a per-participant basis to protect our participants’ privacy.
However, this data is reported in aggregated form in Table I.
We purposely do not link contexts to individual interviews for
participant and company privacy, as some participants were
recruited from our professional network. Identifying product,
company size, experience, etc. could help re-identify those
who volunteered to participate in our study. We think this
should not impact the paper: Our coding and interpretation
included our contextual knowledge; thus, our results are in-
formed by this link. For privacy reasons, we omit the link in
Tables II and III. Consequently, when we quote participants
where their context is relevant, we identify them with the
context; whenever their personal experience is most relevant,
we quote them with their participant ID.

APPENDIX B
REPLICATION PACKAGE

To improve the reproducibility of our work and allow easy
access for meta-research, we publish a replication package [21]

907

TABLE III
OVERVIEW OVER OUR PARTICIPANTS.

Highest Degree Country1 Current Job Status Current Job Title Industry Experience [years]

P1 Master IN Self-employed/Freelancer Consultant, CTO, Full Stack Architect 16
P2 High School DE Employed, full-time Software Design and Development 30
P3 Bachelor DE Employed, full-time Senior Full-Stack Developer 14
P4 College US Employed, full-time Software Engineer 3
P5 Master DE Prefer not to say/NA Senior Software Developer 6
P6 — DE Employed, full-time Founder —
P7 Master LB Employed, full-time Web Developer 10
P8 Master BA Self-employed/Freelancer Embedded Systems Developer 4
P9 Vocational Degree DE Employed, full-time Programmer 5

P10 College US Employed, full-time Software Engineer 6
P11 Bachelor IN Employed, full-time Lead Architect 5
P12 Doctorate DE Employed, full-time COO 8
P13 Graduate School DE Employed, full-time Founder 10
P14 Bachelor CA Employed, part-time UX Research, Design Specialist 4
P15 Master LU Prefer not to say/NA Software Developer 3
P16 Bachelor UA Employed, full-time Tech Lead 18
P17 Master DE Employed, full-time Senior Software Engineer 3
P18 Master VE Prefer not to say/NA Software Architect 29
P19 Bachelor US Self-employed/Freelancer UX Designer 6
P20 Doctorate DE Employed, full-time Head of Development 13
P21 Bachelor LB Employed, full-time Software Developer 10
P22 Bachelor AE Self-employed/Freelancer Chief Software Architect 12
P23 Master US Employed, full-time Technical Staff 30
P24 Bachelor GB-SCT Employed, full-time Principal Front End Engineer 23
P252 Doctorate DE Employed, full-time Lead Engineer and Architect —
1 ISO 3166-1 encoded.
2 Interview with three participants, reported only main participant.

containing the following documents: (1) The pre-questionnaire
for demographic and quantitative questions; (2) The interview
guide with the main questions and follow-up prompts for
the semi-structured interviews; (3) The materials we used to
contact and recruit participants; (4) The consent forms; (5) A
table of the software used in this study; (6) The operationalized
codebook with codes contributing to this paper. The replication
package is available at https://doi.org/10.25835/0089554.

APPENDIX C
PRE-QUESTIONNAIRE

Usability
Q1.1. Which of the following statements best describes your usabil-
ity experience?

© No experience with usability
© Little experience with usability
© Some experience with usability
© Considerable experience with usability
© Prefer not to answer

Q1.2. Was usability part of your training or studies?
© Yes
© No
© Prefer not to answer
© Other (please specify):

Q1.3. During your professional activity have you participated in any
usability course or training?

© Yes
© No
© Prefer not to answer

Q1.4. Which usability methods have you applied? [Free text field]
Q1.5. Who do you think is responsible for the usability of a software
product? [Free text field]

Security

Q2.1. Which of the following statements best describes your secu-
rity experience?

© No experience with security
© Little experience with security
© Some experience with security
© Considerable experience with security
© Prefer not to answer

Q2.2. Was security part of your training or studies?

© Yes
© No
© Prefer not to answer
© Other (please specify):

Q2.3. During your professional activity have you participated in any
security course or training?

© Yes
© No
© Prefer not to answer

Q2.4. Who do you think is responsible for the security of a software
product? [Free text field]
Q2.5. How many of your recent projects had security requirements?
[Numerical field]

Experience

Q3.1. How old are you? [Numerical field]
Q3.2. What is your gender?

© Male
© Female
© Non-binary
© Prefer not to answer
© Other (please specify):

908

TABLE IV
OUR FINAL CODEBOOK. (*) DENOTES A CONTAINER FOR SUB-CODES AND THEREFORE IS NOT USED DURING CODING.

Code Description Example Quote

Individual (*) Codes that describe the participant individually, not the context or company. —
Usability General statements and attitudes towards usability. Yes, that UX and usability is quite the extensive and broad

topics but from my experience basically, I just divide it
into two simple classifications.

Security General statements and attitudes towards security. When it comes to the security it’s something that should be
architected in from the very beginning

Interplay Usability &
Security

General statements and attitudes towards the relationship and interplay of security
and usability, including usable security.

I think it’s equal. They go hand in hand. Security as is
very important but also usability.

Context Information (*) Context specific information (company, project, and product, including pro-
cesses).

—

Product Description of the software product, including functionality, use cases, customers,
requirements, etc.

We’re a little bit special with the password manager
product.

Staff & Team Descriptions of the team working on the software, including roles, skills,
expertise, and size. Covers external and internal team members.

And the CEO of course. . . he knows what he wants. He
knows the users better than we do.

Budget & Resources Resources influencing security and/or usability. This includes time and money
but also statements on limited resources or time pressure.

Yes, so as I said, designers explicitly don’t, because it’s
not important enough for that, and no one would want to
pay him.

Responsibility Responsibility for security, usability, and usable security, but also related steps
in the SDP. This includes decision-makers.

The, the people in the design team, they had little voice or
no voice at all.

Importance for Company
& Motivation

Motivators and focus in the context’s company. Including but not limited to
usability, security, and usable security.

So, our goal was to make it as efficient and usable and
quick as possible for the user.

Guidelines & Standards Usage and availability of guidelines and standards in the SDP, also inter-
nal/context specific. Also includes checklists and laws.

Yes, I mean, of course, we sometimes look into the
material design guidelines.

SDP (*) In-depth descriptions of the software development processes. —
Communication &
Modelling

Modeling of products, as well as everything belonging to the communication
phase (e. g., requirement elicitation). This includes requirement modeling, archi-
tecture modeling and design modeling.

We have a user experience designer. He made these
suggestions for a redesign based on the suggestions we
had already collected as a team.

Planning Information on the planning phase and project management. Also includes
general procedures and processes spanning the whole SDP or other SDP steps
as well as techniques (e. g., agile).

Yes, all three things I talked to you about were agile
[makes air quotes].

Construction General and usability/security specific measures and descriptions of the construc-
tion phase, including implementation and testing.

The static analysis tool takes care of that.

Deployment Measures and process steps that take place after construction. Includes mainte-
nance, bug handling and fixing, customer support, as well as beta/alpha testing.
Also includes everything belonging to operations.

We also did a beta phase there.

General (*) General information and statements not related to a specific context. —
Misconceptions Misconceptions about security, usability, and usable security. Security over usability, they were like ‘no no no we gotta

have this time out’ and I was just like ‘accessibility issues
and other things’ and they like ‘no no no we need to do
this’.

Staff & Team (same as above, but covering non context specific statements) Bigger companies. . . Mid sized companies normally have a
security guy.

Responsibility (same as above, but covering non context specific statements) You know it doesn’t come to much from the product team
or the users [. . .]

Importance for Company
& Motivation

(same as above, but covering non context specific statements) I cant think of a time. [. . .] they’ve mentioned the usability
of the security.

Budget & Resources (same as above, but covering non context specific statements) And the smaller companies have money too [. . .]
Guidelines & Standards (same as above, but covering non context specific statements) But the biggest companies normally are more tied to the

plan, following guidelines, following [. . .]
SDP – General Thoughts (*) (Including the same subcodes as the above SDP code) —

Q3.3. What is the highest level of school you have completed or the
highest degree you have received?

© Less than high school / GCSE or equivalent
© High school or equivalent / A level or equivalent
© Some college, currently enrolled in college, or two-year asso-

ciate’s degree, completed part of a higher education course, or
currently enrolled

© Vocational degree
© Bachelor’s degree
© Some graduate school, or currently enrolled in graduate school
© Master’s or professional degree
© Doctorate degree
© Other (please specify):

Q3.4. In which country do you live? [Free text field]
Q3.5. What is your current employment status?

© Employed full-time
© Employed part-time

© Prefer not to answer
© Other (please specify):

Q3.6. What is your current job title? [Free text field]
Q3.7. How many years have you been in the software industry?
[Numerical field]

Q3.8. How many different products have you worked on in your
professional career? [Numerical field]

APPENDIX D
INTERVIEW GUIDE

We include only the English version which is identical
in content with the German version. A version with follow-
up questions can be found in the replication package (Ap-
pendix B).

909

Individually
1) Usability: What is usability for you in a software product?
2) Security: What role does security play in software development

for you?
3) Usable Security: How do you think usability and security are

related to each other?

Case Example
Usability.

1) Have you ever implemented something that affected the usabil-
ity of the product? (e. g., anything that changes the UI)

2) Can you tell me a little bit about the background of the product
and feature you have implemented?

3) How did you make your decision about usability? Can you walk
me through the process?

4) Did the specification you were given cover usability aspects?
5) Were you given any specific usability criteria to meet (when

would the software be “usable enough”)?
6) Who did you assign usability tasks to? Did you assign the role

of “usability champion” to any team member?
7) Did you consult other team members, or other usability re-

sources in the company, at any stage?
8) Did you consult any external usability resources – literature,

design guidelines – at any point?
9) What were the specific usability goals/requirements for this

project?
10) Were any usability assessments (e. g., heuristic evaluation, user

test) carried out during the project?
11) Did you know exactly who the users are and how they behave

with the product?
12) How do you handle usability bugs?
13) Was usability directly or indirectly part of your goals within

your contract?
14) What role does usability play for your team?
15) What usability knowledge and skills does the team have?
16) How many of you previously worked on a project with usability

requirements?
17) How many of you had usability training in this company, or in

a previous position?
18) How important was it for the company that software delivered

is usable? What are the consequences if it is not?
19) How well do you think this company delivers usability, com-

pared to other companies you know?
20) How does the company deliver usability?
21) How does the organization define usability?
22) Can you give me some more Background information to this

company?
Security.

1) Have you ever implemented something that affected the security
of the product? (e. g., login field, network interface, some API
which used cryptographic functions)

2) Can you tell me a little bit about the background of the product
and feature you have implemented?

3) How did you make your decision about security? Can you walk
me through the process?

4) Did the specification you were given cover security aspects?
For instance, was a risk/threat analysis provided? Were security
mechanisms specified?

5) Were you given any specific security criteria to meet (when
would the software be “usable enough”)?

6) Who did you assign security tasks to? Did you assign the role
of “security champion” to any team member?

7) Did you consult other team members, or other security resources
in the company, at any stage?

8) What were the specific security goals/requirements for this
project?

9) Were any security assessments (e. g., code walkthrough, pen
testing) carried out during the project?

10) How do you select an API for security purposes?
11) How do you deal with security bugs?
12) Was security directly or indirectly part of your goals within your

contract?
13) How do members of the team define security?
14) What security knowledge and skills did the team have?
15) How many of you previously worked on a project with signifi-

cant security requirements?
16) How many of you had security training in this company, or in

a previous position?
17) How important is it for the company that software delivered is

secure? What are the consequences if it is not?
18) How does the organization deliver secure software?
19) How well do you think this company delivers usability, com-

pared to other companies you know?
20) How does the organization define security?
21) How well does the software deliver by the organization meet

security goals, compared to other organizations?
22) Can you give me some more background information of this

company?
Usable Security.

1) Did you personally have to deal with conflicting usability and
security requirements at any stage?

2) Can you tell me a little bit about the background of the product
and conflict you dealt with?

3) When you look at all your projects in the past, how many of
them had bad usable security requirements?

4) Did you consult any internal or external resources – colleagues,
developer forum – to help you solve the problem? If so, what
information was helpful to you?

5) Do you follow a particular software development process? If
so, how would you describe it? And how easy is it to deliver
usable security as part of this process?

6) Did you consult any internal or external resources – colleagues,
external experts, developer forum – to help you achieve usable
security in the project? If so, what information was helpful to
you?

7) Were there specific goals for usability of the security mecha-
nisms in the software?

8) How important is it for the company to deliver usable security?
What are the consequences if it is not?

9) What does the company do to ensure it does deliver usable
security? Who in the company has responsibility for this?

910

