
HARDLOG: Practical Tamper-Proof System
Auditing Using a Novel Audit Device

Adil Ahmad†
Purdue University

Sangho Lee
Microsoft Research

Marcus Peinado
Microsoft Research

Abstract—Audit systems maintain detailed logs of security-
related events on enterprise machines to forensically analyze
potential incidents. In principle, these logs should be safely
stored in a secure location (e.g., network storage) as soon as
they are produced, but this incurs prohibitive slowdown to a
monitored machine. Hence, existing audit systems protect batched
logs asynchronously (e.g., after tens of seconds), but this allows
attackers to tamper with unprotected logs.

This paper presents HARDLOG, a practical and effective
system that employs a novel audit device to provide fine-grained
log protection with minimal performance slowdown. HARDLOG
implements criticality-aware log protection: it ensures that logs
are synchronously protected in the audit device before an
infrequent security-critical event is allowed to execute, but logs
are asynchronously protected on frequent non-critical events to
minimize performance overhead. Importantly, even on non-critical
events, HARDLOG ensures bounded-asynchronous protection: it
sends log entries to the audit device within a tiny, bounded
delay from their creation using well-known real-time techniques.
To demonstrate HARDLOG’s effectiveness, we prototyped an
audit device using commodity components and implemented
a reference audit system for Linux. Our prototype achieves
a bounded protection delay of 15 milliseconds at non-critical
events alongside undelayed protection at critical events. We also
show that, for diverse real-world programs, HARDLOG incurs a
geometric mean performance slowdown of only 6.3%, hence it is
suitable for many real-world deployment scenarios.

I. INTRODUCTION

System auditing is an essential security component of modern
enterprises. It requires keeping detailed logs of security-related
system events (e.g., root command execution and kernel module
installation) that occurred on each enterprise machine. These
system logs are the basis for critical analysis including endpoint
threat detection and post-mortem forensic analysis or attack
reconstruction [1]–[8].

Several recent concurrent trends increase the need for system
auditing. First, a pandemic-driven spike in remote work [9]
has made other auditing approaches infeasible. For instance,
enterprise network monitoring systems cannot protect machines
connected to home networks. Second, a surge in sophisticated
attacks [10], e.g., Advanced Persistent Threats (APTs), has lead
to recent high-profile system compromises [11]. In response,
strict auditing polices have been enacted at the enterprise
and government levels to ensure resilience by unconditionally
monitoring all machines. Notably, a recent US presidential
executive order on cybersecurity [12] specifically mentions that
government machines must maintain and protect system logs.

†Work done while this author was an intern at Microsoft Research.

TABLE I
OVERVIEW OF HARDLOG AND AUDIT SYSTEMS THAT PREVENT LOG

TAMPERING USING REMOTE STORAGE (RS), TAMPER-PROOF (TP) LOCAL
STORAGE, AND/OR TAMPER-EVIDENT (TE) INTEGRITY PROOFS.

Audit System RS (sync.) TP (sync.) TE+RS HARDLOG
[13] [14]–[17] [this work]

Properties
Log Availability Fine Fine Coarse Fine
False Alarm No No Yes No
Perf. Slowdown High High Low/Med.1 Low
Storage Reuse – No Yes Yes
Secure Retrieval – No Yes2 Yes2

Requirements
Secure Hardware
Kernel Change 3

1TE systems [14]–[16] that protect integrity proofs using Trusted Execution
Environments (TEEs) incur extra overhead to invoke their respective TEE.
2TE+RS systems and HARDLOG ensure log retrieval under normal machine
operation (i.e., before system compromise).
3TE systems compute integrity proofs inside the modified kernel to secure
these proofs against race condition attacks [17].

Unfortunately, a persistent hurdle to effective system auditing
is log tampering: once attackers have obtained root privileges
on a machine, they can easily modify or delete logs to
hide their compromise and subsequent malicious activities.
Of additional concern is that log tampering is wide-spread—
forensic analysts uncovered tampering evidence in 72% of
conducted attack investigations [18]. This is not surprising
because popular malware (e.g., BlackEnergy [19]) automatically
deletes logs [20], [21] to hide their tracks.

In principle, audit systems can prevent log tampering by
immediately storing each log entry in a secure location (i.e.,
remote storage [14], [22] or tamper-proof local storage [13]).
In practice, this results in unacceptable overheads given the
low performance of existing networking and storage devices
for large numbers of small messages. Thus, the audit systems
batch log entries for considerable amounts of time and store
far fewer, larger messages asynchronously. However, this delay
creates a time window for the attacker to tamper with the
batched events. Finally, if logs are stored in commercial tamper-
proof local storage devices [13], which lack authentication
and storage reusability, administrators are unable to remotely
manage logs (i.e., securely retrieve and discard old logs).

Traditionally, the main defense against log tampering has
been tamper-evident auditing [14]–[17], [23], [24]. These

1791

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Adil Ahmad. Under license to IEEE.
DOI 10.1109/SP46214.2022.00125

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

45

systems maintain a cryptographic integrity proof which is
updated for every new event [25]–[30] and allows a verifier to
ascertain that the logs have not been tampered with. However,
such systems do not prevent the attacker from interfering with
forensics by deleting logs. They also produce false alarms
since benign system crashes typically result in failed integrity
checks [14], [16], [23], [24]. Table I briefly summarizes existing
audit system properties and limitations.

This paper presents HARDLOG, an audit system that uses a
novel audit device with tamper-proof storage to protect system
logs. HARDLOG enables the following properties:
P1 Fine-grained log availability. HARDLOG ensures that log

entries are protected either synchronously or within a tiny,
bounded delay from their creation. Our prototype achieves
a 15 ms bounded delay which is significantly smaller than
the amount of time the state-of-the-art log deletion attack
requires to succeed [17].

P2 No false tamper alarms. HARDLOG secures logs in its
protected audit device rather than detects tampering. Thus,
administrators are not burdened with false tamper alarms.

P3 Modest performance slowdown. HARDLOG introduces
modest overhead to a monitored machine. Our prototype
only incurs a geometric mean slowdown of 6.3% over
non-audited execution on diverse real-world programs.

P4 Remote device management. HARDLOG allows remote
administrators to securely manage logs under normal opera-
tion (i.e., before system compromise). After a compromise,
HARDLOG keeps the logs safe until the system is recovered
at which time they can be securely retrieved again.

Our design includes deployment-friendly specifications for
a tamper-proof audit device (§VI-B). These specifications
enable flexible device-based access control policies like append-
only log storage and authenticated deletion, and mutually-
authenticated secure connections with administrators for remote
log retrieval. Importantly, the specifications only require
commodity hardware, making it simple for hardware vendors
to (a) integrate an audit device on future main boards (e.g.,
for enterprise laptops) and (b) manufacture standalone audit
devices that can be attached to existing machines.

HARDLOG implements criticality-aware log protection to
avoid the performance impact of synchronously protecting all
logs while maintaining effectiveness (§VI-C). In particular,
HARDLOG classifies forensically-relevant system events as
critical and non-critical. Critical events are infrequent events
that are known precursors to attacks (e.g., binary execution) [1],
[31], [32]. HARDLOG synchronously protects logs collected so
far on critical events to ensure likely compromises are always
logged, and asynchronously protects logs on the frequent non-
critical events (e.g., file access) to maintain performance.

Importantly, despite asynchronously protecting logs on non-
critical events, HARDLOG provides bounded-asynchronous
protection guarantees—all log entries for non-critical events
are protected within a tiny bounded delay from the events’
execution (§VI-D). To achieve such bounded delay on mass
market hardware, HARDLOG employs various well-known

real-time techniques [33], such as task preemption, controlled
resource usage, and bounded thread execution.

We prototyped an audit device using a commodity develop-
ment board, ROCKPro64 [34], to demonstrate its feasibility
and deployability (§VII). Our prototype receives logs from a
monitored machine’s kernel audit components through a USB
On-The-Go (OTG) interface. Our prototype is only one possible
implementation—vendors can implement custom cost-effective
devices based on HARDLOG’s specifications.

We analyze the security of HARDLOG thoroughly (§VIII).
Also, we stress-test HARDLOG’s log protection pipeline to
show that, even under extreme stress, HARDLOG ensures fine-
grained log availability for non-critical events within 15 ms
alongside ensuring full log protection for critical events.

We evaluate HARDLOG’s performance using microbench-
marks such as lmbench [35], and on popular applications such
as Firefox [36], GNU Octave [37], NGINX [38], Redis [39],
memcached [40], SQLite [41], 7-Zip [42], and OpenSSL [43].
HARDLOG’s geometric mean overhead across these applica-
tions is 6.3%, which is comparable to that of widely-deployed
audit systems [44]. The source code of our prototype is publicly
available at https://github.com/microsoft/HardLog.

II. BACKGROUND ON SYSTEM AUDITING

System auditing (also sometimes referred to as system
logging or system monitoring) refers to employing the operating
system to maintain a history of security-related events that
occurred on a machine. Such events include the execution of
system calls and root commands by users or processes, failed
login attempts, and kernel module installations. This history
is recorded as logs where each log entry describes a security-
related event through useful information like a timestamp,
process or user context, and system call parameters.

In enterprise settings, forensic analysis and periodic machine
health check are two of the most important use cases of
system auditing. Forensic analysis is crucial to answering
questions including how an attack was carried out or how the
machine should be patched. Moreover, system administrators
routinely (e.g., every day) retrieve logs to check an enterprise
machine’s health (e.g., check machine compromise status or
suspicious program behavior). Although system auditing is also
used for real-time attack detection, this paper focuses only on
forensic analysis and periodic machine health checks (§V).

III. MOTIVATION

A significant concern for system auditing is log tampering—
once attackers obtain root privileges on a machine, they can
modify or delete system logs, thus creating non-trivial hurdles
for attack reconstruction and forensic analysis. This section
describes how existing approaches try to address log tampering
and why they have limitations.

A. Synchronous Log Protection and its Limitations

Log tampering is prevented by synchronously storing logs—
as soon as a log entry is produced for a security-related
event and before the event is allowed to execute—in a secure

21792

TABLE II
TIME TO INDIVIDUALLY SEND DIFFERENT DATA SIZES THROUGH VARIOUS

DEVICE INTERFACES USING THE dd COMMAND WITH DIRECT I/O.

1 block (512 B) 2000 blocks (1 MB)

Device Elapsed Throughput Elapsed Throughput
interface∗ (µs) (blocks/s) (µs) (blocks/s)

PCIe 3.0 x4 19.4 54k 534.9 4194k (78×)
PCIe 2.0 x4 35.2 30k 1253.1 1634k (54×)
USB 3.0 90.4 12k 4378.9 489k (41×)

∗These measurements were performed on the machines we used for imple-
mentation and evaluation (§VII and §IX). For the PCIe 3.0 and USB 3.0
experiments, we connected NVMe SSDs to the main machine using respective
links (specifications listed in §VII-A). For the PCIe 2.0 experiment, we
connected an NVMe SSD to the other machine using the link (specifications
listed in §VII-B). Each interface measurement was averaged over 2000 runs.

location that a compromised machine cannot access, such
as a network storage server [45]–[47] or a local tamper-
proof storage device (e.g., Write Once Read Many (WORM)
drives [13]). Unfortunately, both solutions incur a prohibitive
slowdown. Tamper-proof local storage devices also require
constant physical device management, which is impractical in
remote scenarios (e.g., work from home employee machines).
Prohibitive performance slowdown. Both network and local
storage provide low throughput for storing small messages due
to high communication latencies [48] and setup cost. For in-
stance, when sending small (512 B) and large (1 MB) messages
through various device communication interfaces available on
our evaluation machines, the large messages showed up to 78×
higher throughput than the small ones (Table II). Since modern
machines can produce hundreds of thousands of log entries
each second [14], synchronously storing each entry (usually
smaller than 512 B) while pausing event execution incurs a
prohibitive performance slowdown to monitored systems.
Physical device management. Another problem with com-
mercial tamper-proof storage devices (e.g., WORM drives [49],
[50]) is that they require constant physical access, which
does not correspond to accelerated remote work trends. These
devices do not allow remote administrators to securely retrieve
logs or reuse device storage. In particular, the administrator
must ask a potentially compromised operating system to retrieve
logs from the device and there is no proof that the logs were
retrieved from the tamper-proof device. Moreover, these devices
are built for archival purposes; hence, they only provide write-
once use and must be physically replaced when they are full.

B. Asynchronous Log Protection and its Limitations

Given the performance cost of synchronously storing logs,
all existing commercial and academic audit systems implement
asynchronous log protection—log entries are gathered in
memory buffers while allowing the immediate execution of
corresponding events and periodically sent to a secure location
in large blocks after lengthy intervals (e.g., tens of seconds).
However, since an adversary can tamper with logs within
hundreds of milliseconds [17] after initiating an attack, it is
challenging to trust such logs without additional protection.

To enable trust in asynchronously stored logs, existing
audit systems [14], [15], [17], [23], [51] implement tamper-
evident mechanisms to detect log tampering. In particular, they
synchronously create an integrity proof for each log entry [25]–
[30]. When entries are consumed for analysis, their integrity is
checked using the corresponding proofs. If the integrity proof
does not match or the proof has been deleted, the audit systems
consider that the machine is compromised.
Coarse-grained log availability. Existing audit systems, even
with a tamper-evident detection mechanism, do not provide
fine-grained guarantees on log availability. Hence, they deprive
administrators of the ability to analyze attacks. For instance,
some systems only guarantee 10 s old log availability [14]. Such
coarse guarantees fail to prevent an adversary from clearing
attack traces in system logs—a motivated attacker only needs
a few hundred milliseconds to clear its trace from logs [17].
False tamper alarms. Existing audit systems that use tamper-
evident mechanisms tend to produce false tamper alarms after
benign crashes [14], [16], [23], [24]. This is concerning because
(a) system crashes are common [52], [53] and (b) administrators
are already fatigued by many false threat alarms [7].

False alarms are raised when existing systems are terminated
mid-computation due to a kernel panic or audit software crash,
which causes transient in-memory integrity proofs or logs to
be lost. This results in incorrect integrity check failures. It is
non-trivial to differentiate integrity check failures from benign
crashes and log tampering incidents [24], particularly because
the administrator cannot perform conclusive forensic analysis
using these potentially tampered logs.

IV. DESIGN PRINCIPLES

Motivated by the limitations of log protection in existing
audit systems (§III), this section presents three design principles
for a practical and effective audit system.

A. Criticality-Aware Log Protection

Events differ in their ability to indicate possible compromise.
We classify them into (a) critical or (b) non-critical events, and
provide different log protection guarantees accordingly.

We define critical events as binary execution or permission
change events (e.g., execve and setuid system calls) whose in-
trinsic system role is to enable code execution. After extensively
analyzing real-world attacks and exploit payloads [54]–[56],
previous studies [1], [31], [32] show that attackers mostly use
critical events to execute malicious code at high privilege (e.g.,
to tamper with logs stored in host kernel memory). To prevent
a critical event from corrupting logs, we should synchronously
protect all logs stored in the host before executing the critical
event. This synchronous protection ensures that the full attack
trace is available if the attacker takes control at a critical
event. Critical events are infrequent (according to our evaluation
in §IX-D); hence, the performance impact of synchronously
protecting logs at such events is low and limited in time.

We define non-critical events as events whose intrinsic
system role is not to enable code execution, but they are
forensically-relevant because attackers use them to prepare

31793

attack payloads. Examples include file access (e.g., read) and
network operations (e.g., sendmsg). These events frequently
occur in many program executions (according to our evaluation
in §IX-D). Hence, given their less critical nature and high
frequency, non-critical log entries should be buffered and pro-
tected asynchronously (i.e., without blocking thread execution)
to limit their impact on performance. The buffered log entries
are protected at a critical event or periodically (§IV-B).

B. Bounded-Asynchronous Non-Critical Log Protection

In rare scenarios, even non-critical events can enable code
execution and allow the attacker to tamper with logs. Imagine
a catastrophic vulnerability in the read system call, resulting
in arbitrary code execution. Therefore, we should protect all
buffered non-critical log entries within a small bounded time
interval. This protection ensures that the attack trace up to
a bounded time interval before the attacker takes control at
a non-critical event is available. In practice, as long as the
bounded interval is small, an overwhelming portion of the
attack trace is available for forensic analysis (§VIII-B).

C. Local Log Storage with Remote Management

Protecting logs against host machine compromise requires
the logs to be stored beyond the reach of the operating system.
This storage location must be persistent to avoid losing logs on
system crashes. Moreover, since many machines are remote,
the administrator is expected to manage the protected logs
remotely. In particular, remote administrators should be able
to (a) securely retrieve logs and (b) discard stored logs when
they are not needed anymore to reuse storage.

Since commercial tamper-proof devices lack remote manage-
ment capabilities (§III-A), the remaining options are remote
network storage or virtualization (e.g., trusted hypervisors or
nested kernel [57]). These options make different trade-offs
between performance, overhead when not in use, attack surface,
system compatibility, and extra hardware requirements.

The feasibility of remote network storage depends on the
host’s network connection quality. Generally, network connec-
tions are too slow and unreliable in remote workplaces (e.g.,
employee homes) for this option to be feasible.

Remote storage problems are avoided by storing logs locally.
If logs are stored in the machine’s existing storage, the storage
must be virtualized to restrict the operating system’s access.
However, such virtualization degrades throughput and latency
noticeably for every operating system storage access, which is
highly undesirable. Single Root Input/Output Virtualization (SR-
IOV) [58] reduces this overhead, but only few server storage
devices implement it. A simpler alternative is a separate storage
device for logs and allowing the operating system pass-through
access to its existing storage device. Nevertheless, this requires
an extra dedicated storage device for logs.

Virtualization also imposes a non-negligible performance
tax on the operating system, even if logging is disabled. For
instance, the nested kernel (generally faster than trusted hyper-
visors) imposes up to a 20% performance penalty if invoked
frequently [57]. Further, trusted hypervisors have attack surface

Host machine

Logger Admin
query

logs

Storage

Service

result

(a) Existing audit systems.

Host machine
Logger Admin

query

logs

Audit
device

Service

result

(b) HARDLOG.

Fig. 1. Comparison between system auditing models of widely-used existing
audit systems [44] and HARDLOG.

and compatibility problems. For example, operating systems
like Windows already leverage the hypervisor layer [59].

Given that the most feasible existing option already requires
extra hardware (i.e., virtualization with a separate storage
device), we design new hardware that avoids its drawbacks. If
the new hardware enables remote management and implements
internal storage access control, it can (a) avoid system overhead
when not in use, (b) have a clear small attack surface, and (c) be
compatible with operating systems that are already virtualized.

V. THREAT MODEL

This paper considers a remote adversary who can compro-
mise the operating system on an audited machine. Such an ad-
versary obtains a non-privileged foothold on the machine (e.g.,
through a vulnerable network-facing process) and exploits a
privilege escalation vulnerability in the operating system. The
vulnerability exploit must (a) overcome standard defense mech-
anisms, such as Address Space Layout Randomization (ASLR)
and non-executable pages, which takes time, and (b) execute
security-related events that are logged by the audit system. The
logs are kept in a place (e.g., kernel memory) inaccessible to
non-privileged processes. However, once privilege escalation
is achieved, the adversary attempts to tamper with logs as a
forensic countermeasure.

Prior to operating system compromise, the audited machine is
trusted and configured honestly (i.e., no rootkits or backdoors).
Hence, the operating system correctly logs all security-related
events and complies with all requests (e.g., task and resource
prioritization) made by the audit system.

We assume that the adversary cannot compromise or corrupt
the external audit device storing the logs even after the operating
system is compromised. We discuss the device’s concise and
confined attack surface in §VIII-C. We ignore any log entries
generated after an operating system compromise because they
are not trustworthy. In addition, like prior audit systems, we do
not consider physical attacks and make standard assumptions
that the adversary is unable to break cryptographic protocols
and compromise key management.

VI. HARDLOG DESIGN

HARDLOG is an audit system that leverages our proposed
principles (§IV) to enable practical and effective log protection.
With HARDLOG, an audited host machine stores its logs for

41794

security-related events in a new local audit device, which
prevents overwrite of previous logs and allows remote adminis-
trators to securely retrieve logs and reuse storage (§VI-A). We
also propose a small set of specifications for the audit device,
requiring only existing well-known hardware and software
features (§VI-B).

HARDLOG implements criticality-aware log protection,
ensuring that the log entries for critical events are always
synchronously written to the audit device (along with any non-
critical log entries buffered in memory at that time). Conversely,
to ensure minimal performance slowdown, frequent non-critical
events are logged asynchronously (§VI-C), but with a bounded-
asynchronous (§VI-D) guarantee—their log entries are written
to the device within a tiny, bounded delay from their execution.

HARDLOG further enables system administrators to remotely
retrieve logs from the audit device using a secure communica-
tion channel that is relayed by the host machine (§VI-E).

A. System Model

HARDLOG considers an enterprise system auditing
model (Fig. 1) with three participants: (a) host machine, (b)
audit device, and (c) system administrator.
Host machine. This is an enterprise machine that must be
audited (e.g., employee laptop or desktop, company servers). It
has a system component called a logger that monitors security-
related events and generates log entries for them. On machine
startup, the logger waits for the audit device to be ready to
receive logs before letting security-related events happen. Once
the device is ready, the logger sends the logs to the device
for secure storage. The host also runs an audit service, a
communication relay between the device and the administrator
that enables remote log retrieval.
Audit device. The audit device receives logs from the host
machine via a device communication interface. Once logs are
received, the device does not permit modification or deletion,
except through commands sent by the system administrator
through a secure cryptographic channel.
System administrator. The administrator consumes logs
produced by the host machine for forensic analysis and periodic
health checks. The administrator is remote and communicates
with the host through the network. Then, the administrator uses
the host machine’s audit service (i.e., a relay) to communicate
with the device. The connection between the device and the
administrator is secured cryptographically. Through this secure
connection, the administrator can retrieve system logs and ask
the device to delete logs that are not required anymore.

B. Audit Device Specifications

We design a trusted audit device which supports tamper-
proof storage with remote device management, unlike existing
tamper-proof storage devices. Importantly, the audit device
is designed using commodity hardware features, so hardware
vendors can easily implement it either directly on main boards
or as a standalone device that can be connected to machines
through a generic communication interface (e.g., USB). In fact,
we built a prototype device using a commodity development

board to demonstrate its feasibility (§VII). Note that vendors
routinely implement extra security hardware (e.g., Trusted
Platform Module (TPM) [60], Microsoft Cerberus [61], Google
Titan [62], and Apple T2 [63]) for various machines.

Generally, the audit device has four specifications: (a) device-
interposed storage, (b) multitasking processing unit, (c) device
key pair, and (d) fail-safe power management.

Device-interposed storage. The device interposes between
the host machine and the persistent storage medium under its
control to store logs. Using trusted software, the audit device
receives logs in its memory and then stores them in the storage
medium. This interposition allows the device to implement
comprehensive access-control policies on the logs.

The audit device enforces an append-only policy for all
received logs, which ensures tamper-proofness of all stored
logs. The append-only policy is enabled by a monotonically-
increasing index to describe the position (e.g., a file offset)
where an incoming log entry is stored. This index is safely
stored inside the audit device and only the system administrator
can re-initialize the index through a secure communication
channel (§VI-E) to reuse device storage.

The storage medium for the logs is contained in the device.
There are no special requirements for the storage medium—
any regular storage medium like SD card, eMMC, or SSD is
sufficient. In practice, however, if the storage is slower than
the communication interface between the device and the host,
it would affect performance. In particular, the host might have
to wait for the device to be able to accept new log entries by
flushing log entries in its memory to the storage (§VI-D).

When the storage medium is almost full, the audit device
does not accept new log entries to preserve all stored log entries.
Simultaneously, the device (a) sends a request to the system
administrator using a secure communication channel (§VI-E)
to ask them to retrieve stored logs and (b) signals the host that
it has no storage left. Upon receiving this device signal, the
host (using its logger) blocks any threads that execute security-
related events to do not generate new log entries. The device
reserves a small space (e.g., a few megabytes) in the storage
medium to store the last few log entries generated before the
host blocks the threads. After the administrator retrieves and
deletes stored logs, the device allows the host to generate new
log entries (e.g., resume the execution of blocked threads). A
compromised host may ignore the signal and keep sending
logs, but these are simply discarded by the device. As stated
in §V, post-compromise logs have no value.

It is the administrator’s responsibility to establish a logging
policy that does not exhaust log storage before the logs are
consumed (e.g., sent off to network storage). In general, such
policies result in only up to a gigabyte of logs each day in
enterprise machines [8], [14], [17]. Hence, in benign situations,
even a moderately-sized (e.g., 64 GB) storage medium gives
the system administrator ample time (e.g., a few months) to
consume logs and ensure the storage medium is never full.

Multitasking processing unit. The audit device performs
multiple tasks simultaneously, thus it should either be able

51795

Apps

EventsUser
Kernel

Query
handler Logger

Log
storer

Query
executor

Logs

Query
relay

Query
relay

Wait4a

Log
sender

Log
receiver

Keystore

Admin

Audit device

Host machine

Keystore

Audit
service

lt-4
lt-5

lt-7

lt-8

lt-6

qt-1qt-2 qt qt+1

lt

lt+1

lt+3lt+2

lt-1lt-3 lt-2
DevBuf HostBuf

1

2

12

1
23

critical?

no

yes

Proceed4b

3

A

B

C

DAB

C
E

Fig. 2. Overall design of HARDLOG.

to time-share a single processing unit between these tasks or
have dedicated processing units for each task. In particular, the
audit device performs three tasks: (a) receive logs from the
host machine in its memory, (b) securely store collected logs
in its storage medium, and (c) respond to system administrator
requests. In practice, since all tasks could simultaneously arrive,
having dedicated processing units improves performance but it
is not an essential requirement.
Device key pair. The system administrator and the device
must mutually authenticate each other to realize secure remote
management. To achieve this, while provisioning each audit
device (e.g., the first time an enterprise host machine is set-up),
the administrator generates an asymmetric key pair for the
device and certifies its public portion using their signing key.
The administrator also embeds their public key in the device
to allow mutual authentication (§VI-E). These keys are kept
in the device’s storage, which is shielded from the adversary.
Fail-safe power management. The audit device can be
powered by the host machine for normal operation, but it
requires a power backup to gracefully handle power failures.
Otherwise, the device could lose logs that are still in the
device’s memory or its monotonically-increasing index for
append-only storage policy (mentioned prior). This is also
important because the adversary might try to shut down the
audit device as an attack (§VIII-A). In practice, the device only
needs a very short period (e.g., 1 s) power backup to ensure
graceful and secure shutdown, which can be achieved using a
capacitor [64] even for our unoptimized prototype (§VII).

C. Log Protection and Storage

HARDLOG employs criticality-aware log protection (§IV).
On every infrequent critical event, HARDLOG synchronously
sends the event’s log entry and all buffered (non-critical)
log entries to the audit device before the event is allowed

to proceed and the adversary could potentially gain control
over the machine. In contrast, on frequent non-critical events,
HARDLOG asynchronously sends buffered log entries within a
tiny bounded delay (discussed in §VI-D). HARDLOG ensures
that the audit device flushes the received log entries, currently in
device memory, to persistent device storage as fast as possible
in an asynchronous manner.
Synchronous critical event log protection. Fig. 2 (1 – 4)
illustrates how log entries are sent synchronously to the audit
device on critical events. In particular, an application thread
tries to execute a security-related event (e.g., system call),
thus the operating system moves its execution to the kernel
logger (1). The logger creates an entry for the security-related
event and stores it within HOSTBUF, a circular buffer that
keeps transient log entries in the host machine’s memory (2).
Then, the logger checks whether the event is critical based
on a provisioned list of critical events (3 , §IX-A). If the
event is critical, the logger waits for log sender to protect
log entries (4a). Log sender transfers all entries stored within
HOSTBUF (i.e., prior non-critical entries and the current critical
entry) to the audit device (1 , 2). After log sender receives
confirmation from the audit device, the logger allows the
application thread to proceed and execute the critical event (4b).
Asynchronous non-critical event log protection. Fig. 2 (1 –
4) also illustrates how non-critical log entries are created and

sent asynchronously to the audit device. After creating a log
entry for an event and storing it in HOSTBUF, the logger checks
whether the event is critical (1 – 3). If the event is non-critical,
the logger allows the application to proceed its execution (4b)
without waiting for log sender to have sent the non-critical entry
to the audit device (i.e., skip 4a). Log sender asynchronously
sends the buffered non-critical log entries within a bounded
time interval (§VI-D) (1 , 2).
Asynchronous log storage. Fig. 2 (1 – 3) illustrates how

61796

all log entries (critical and non-critical) are asynchronously
stored at the audit device. In particular, HARDLOG implements
log receiver, a device thread that accepts log entries from the
host machine (i.e., log sender). Log receiver stores all received
entries in a circular in-memory buffer, DEVBUF, instead of
the contained storage medium (1). This allows log receiver to
quickly acknowledge to the host machine that the log entries
have arrived on the device (2). The log entries (stored in
DEVBUF) are flushed to the storage medium by another thread,
log storer (2 , 3), which appends log entries to the storage
using the monotonic index (§VI-B) and increases the index
based on how many entries were stored.

D. Bounded-Asynchronous Protection Guarantees

HARDLOG provides a bounded-asynchronous guarantee on
non-critical log entry protection—each non-critical log entry is
sent to the audit device within a tiny bounded delay from the
execution of the corresponding non-critical event. HARDLOG
achieves bounded-asynchronous guarantees by controlling each
aspect of a non-critical log entry’s protection pipeline, from
its creation on the host machine to its storage within the
device, using well-known real-time techniques. Such control
restricts a non-privileged adversary and other background tasks
from slowing down non-critical log entry protection. This is
important since otherwise the adversary would attempt to detain
as many attack-related log entries as possible in the host to
tamper with them after gaining privilege [17].

The simplest real-time technique is to exclusively dedicate
resources—CPU, communication interface, and storage—across
a log entry’s protection pipeline, but this is not always feasible
since the resources are required for multiple purposes. First,
the host machine’s and audit device’s CPU cores are shared
with other user, system, and HARDLOG tasks. Second, the
host uses the single communication interface to send both logs
and administrator queries to the audit device as well as to
receive responses from it. Third, the device uses its storage
medium to store logs received from the host and retrieve logs
on administrator queries.

To reason about controlling these resources given HARD-
LOG’s constraints, we classify them based on whether they can
be acquired (or preempted) when needed into (a) preemptible
resources (i.e., CPU) and (b) non-preemptible resources (i.e.,
communication interface and storage). For preemptible re-
sources, HARDLOG employs task prioritization to control these
resources whenever needed. In contrast, HARDLOG controls
all usage of non-preemptible resources to assign them to the
critical tasks with a small, bounded delay. Furthermore, HARD-
LOG isolates micro-architectural components (e.g., Translation
Lookaside Buffer (TLB) and caches) at the host to ensure that
the adversary and background tasks do not affect log protection.
Preemptible resource task prioritization. HARDLOG em-
ploys CPU preemption to ensure that log transmission and
handling proceed whenever necessary. For robust prioritization,
HARDLOG ensures the following two configurations with the
help of the host and device operating systems.

First, HARDLOG executes the log sender and log receiver
threads at the highest priority on the host and device, respec-
tively. Thus, other processes (both benign and malicious) cannot
preempt the execution of these threads. Note that assigning
such high thread priority requires root privileges [65], [66];
hence, it cannot be manipulated by the non-privileged adversary.
However, a system might have multiple highest priority threads.
In such scenarios, HARDLOG restricts the remaining (non-
HARDLOG) highest priority threads to a number less than
the machine’s CPU cores, ensuring it can always preempt a
CPU core (e.g., to run log sender when needed). Importantly,
HARDLOG does not indefinitely reserve a CPU core. Instead,
its threads go to sleep when no log entries are being produced,
allowing other threads to use the CPU core.

Second, HARDLOG disables all hardware device interrupts,
except interrupts from the audit device, and Inter-Processor
Interrupts (IPIs) on a CPU core when it runs log sender. This
avoids uncontrolled delays during log sender’s execution (e.g.,
due to adversarial interrupts [67]).

Both hardware interrupts and IPIs are disabled using the Lo-
cal Advanced Programmable Interrupt Controller (LAPIC) on
CPU cores [68], [69]. Log sender can ignore IPIs [70] because
they are for (a) process rescheduling, which must not happen
to log sender (given its highest priority), (b) TLB shootdown,
which is irrelevant to log sender because it does not share
memory with other user or non-HARDLOG threads as well as
it allocates or frees memory by itself, or (c) signaling, which
is not required by log sender.

Although other interrupts—System Management Inter-
rupts (SMIs) and Non-Maskable Interrupts (NMIs)—cannot be
disabled, they are not useful to the non-privileged adversary.
In particular, to arbitrarily insert SMIs via software (to stall
log sender’s execution), the adversary must modify the LAPIC
configuration [71] which requires root privileges. Also, NMIs
are generally raised for critical hardware errors (e.g., power
and RAM failure [72]), so the machine halts.
Non-preemptible resource usage control. HARDLOG uses
two non-preemptible resources, namely the host to device
communication interface and the storage medium at the audit
device. Since requests sent to these resources are handled by
Direct Memory Access (DMA) engines, they cannot be directly
preempted after requests are sent. This can result in priority
inversion [73], where higher-priority requests (e.g., sending
logs to the device) are delayed since they are enqueued behind
lower-priority requests (e.g., sending queries to the device).

To prevent priority inversion, HARDLOG controls all threads
that access non-preemptible resources, allowing it to implement
indirect resource preemption with a tightly bounded delay. In
particular, at the host, log sender and host query relay, a kernel
thread that forwards administrator queries to the device, are the
only threads allowed to send DMA requests to the device. At
the device, only log receiver and device query relay, a thread
that sends query responses to the host, can send messages
across the device interface. In addition, only log storer and
query executor, a thread that responds to system administrator
queries, are allowed to send DMA requests to the storage

71797

medium. Please refer to §VI-E for additional details about the
query relays and query executor threads.

HARDLOG uses chunking [74] to ensure that lower-priority
threads (i.e., both query relays and query executor) break-
down their requests to non-preemptible resources into small
chunks (512 B for storage and communication devices). These
requests complete in a small bounded amount of time, allowing
HARDLOG to preempt a lower-priority thread’s execution and
resource usage when higher-priority threads must execute.

Importantly, the interface between host machine and audit
device must be dedicated for HARDLOG to avoid uncontrolled
transmission delays. This is trivial if the device is embedded in
a main board or connected using a link that provides a dedicated
point-to-point connection (e.g., PCIe). For other shared bus
interfaces (e.g., USB), the machine or user should ensure that
no other device shares the same bus.

Micro-architectural component isolation. HARDLOG iso-
lates the use of shared micro-architectural components (e.g.,
TLBs and caches) to ensure the non-privileged adversary cannot
abuse them to slow down log sender’s execution [75]–[78]. For
instance, if Simultaneous Multithreading (SMT) is enabled at
the host, the adversary might try to abuse sharing of per-core
components like L1/L2 caches to evict log sender’s cache-lines,
which forces log sender to retrieve its cache-lines from memory.
Similar eviction scenarios can occur at the cross-core Last-
Level Cache (LLC) if the adversary accesses a lot of memory
from another CPU core to fill up the LLC.

To isolate per-core components, HARDLOG preempts any
thread that is executing simultaneously on log sender’s CPU
core when log sender is scheduled. This prevents the adversary
from abusing any per-core components. Furthermore, to prevent
the abuse of the cross-core LLC, HARDLOG employs cache par-
titioning using Intel Cache Allocation Technology (CAT) [68],
which is widely available in recent Intel machines. This ensures
efficient and comprehensive partitioning of log sender’s LLC
lines from all other CPU cores [79].

Bounded thread execution. Once HARDLOG ensures that the
adversary and other tasks cannot interfere with its log sender
and log receiver threads, as mentioned in the previous headings,
it must bound the execution time of these threads to set the
maximum protection delay for non-critical log entries.

Bounded thread execution for log sender and receiver
requires (a) no indefinite code execution paths (e.g., no infinite
loops without sleep or reschedule) and (b) a bounded amount
of data is sent and received by these threads. The former is
achieved by carefully writing the log sender and receiver code.
The latter is achieved by controlling the HOSTBUF size to
ensure, even in the worst case where HOSTBUF is full, log
sender takes a fixed amount of time to send log entries.

After bounding thread execution, the maximum log protec-
tion delay dp is 2tb+ c, where tb is the maximum time it takes
for log sender to send the entire HOSTBUF across the device
communication interface and receive an acknowledgment from
log receiver, while c represents the (constant) maximum time
it takes to preempt other resources. It is 2tb because, in the

worst case, a non-critical log entry might arrive right after log
sender has started to send the previous entries.
tb is decided by whether log receiver is ready to receive

logs in memory (DEVBUF). Log receiver is always ready if
DEVBUF is large and storage write throughput is higher than
that of the communication interface, ensuring DEVBUF always
has free space. In this case, tb is the time to send HOSTBUF
across the communication interface. Otherwise, tb is both the
time it takes (a) to send HOSTBUF across the communication
interface and (b) to flush DEVBUF to storage at the device.

HOSTBUF’s size also affects application performance. In
particular, if HOSTBUF is full, the logger blocks application
threads that execute any security-related events until all log
entries kept in HOSTBUF are sent to the device in order to not
drop them. Thus, the administrator should select HOSTBUF’s
size based on the maximum acceptable log protection delay and
performance requirements. We show that our prototype imple-
mentation achieves a 15 ms bounded protection delay (§VIII-B)
with only a 6.3% performance slowdown (§IX).

E. Remote Log Retrieval and Filtration

HARDLOG enables the system administrator to securely
retrieve all or a filtered set of log entries from the audit device
through a remote connection. HARDLOG achieves this using
(a) a host-based communication relay between the device and
administrator and (b) a device query execution library that
handles queries from the administrator.
Secure host-based communication relay. HARDLOG enables
the host machine to forward administrator queries using the
host’s communication interface to the device. Importantly, the
communication between the administrator and the device is
mutually-authenticated and encrypted based on an Authenti-
cated Key Exchange (AKE) protocol such as Transport Layer
Security (TLS). The administrator can initiate the AKE protocol
whenever they want to manage the audit device (e.g., retrieve
logs and free device storage). The audit device does the same
to notify the administrator when its storage is full.

HARDLOG uses the device key pair and administrator’s
public key provisioned on the audit device (§VI-B) to create
the AKE channel, which is terminated inside the device. This is
similar to how Intel Software Guard Extensions (SGX) employs
the host machine as an untrusted network transport [80], [81].
Even after a host compromise, the attacker cannot pretend to be
the administrator. Nevertheless, attackers can stop relaying net-
work communication and prevent remote administrators from
retrieving logs until a compromised machine is recovered (using
mechanisms discussed in §X).

Fig. 2 (A – E , A – C) illustrates how the communication
relay works. In particular, HARDLOG implements an audit
service at the host machine which creates a network channel
with the system administrator to receive queries (A). The
audit service sends received queries to the in-kernel query
handler (B) which buffers the query in host memory (C).
Then, query relay in the host kernel sends the query to the audit
device (D , E). The audit device then receives the query (A ,
B) and executes it using query executor (C). Afterwards, the

81798

TABLE III
SOURCE LINES OF CODE [82] OF THE HARDLOG IMPLEMENTATION.

Component Base SLoC

Host machine
Logger Linux kernel audit 1613
Audit service N/A 148

Audit device
Receiver USB mass storage gadget 626
Query executor N/A 410

device sends back the query result to the host audit process
which relays the result to the administrator.
Device query execution. HARDLOG implements a query
execution library on the audit device to handle administrator
queries, which supports log retrieval and filtration as well
as authenticated log deletion. The library also compresses
query results to reduce data transmitted through the network.
Like some prior audit systems [44], HARDLOG supports the
following parameters for log filtration: (a) process name or
identifier and (b) event type. Also, HARDLOG allows the
administrator to delete logs that are no longer needed to reuse
storage on the audit device.

VII. IMPLEMENTATION

We implemented HARDLOG for a Linux host machine to
demonstrate its feasibility and effectiveness (Table III).

A. Host Machine Components

Hardware. This machine featured an Intel Core i7-8700 CPU
with 6 cores (12 SMT threads), 12 MiB LLC, 16 GiB RAM, and
a 512 GB NVMe SSD (Samsung 970 Pro) connected through
a PCIe 3.0 (x4) interface.
Software. The host machine ran Elementary OS 5.1.7 (Hera)
with Linux kernel v5.4.97. We implemented two components
for the host machine: (a) a logger and (b) an audit service.

The logger extends the Linux kernel Audit (kaudit) using
a loadable kernel module to send log entries to the audit
device (§VI-C). The logger (a) creates and manages HOSTBUF
and (b) spawns log sender and host query relay threads (Fig. 2).
Log sender and query relay use Block IO (BIO) [83], which
bypasses the Virtual File System (VFS), to directly send the
audit device log entries and queries.

The logger uses task priority and interrupt control to
implement real-time techniques. Log sender is set to the maxi-
mum (real-time) priority using Linux scheduling primitives. To
ensure selective interrupt delivery, the logger sets log sender’s
affinity to a CPU core and configures the operating system to
only send audit device interrupts to the core when it runs log
sender. Specifically, it uses smp_affinity to control hardware
interrupts and preempt_disable to control IPIs.

The logger uses Intel CAT [68] to isolate the LLC. In
particular, it uses Model-Specific Registers (MSRs) to allocate
a small partition (LLC/8) to the CPU core where log sender
is always scheduled and the rest to the other CPU cores. We
experimentally verified (using the workloads in §VIII-B) that

HARDLOG’s log protection delay did not change when we
partitioned log sender’s core to LLC/8 (1.5 MiB) or left it
unpartitioned. This shows that log sender’s working set is
smaller than 1.5 MiB. Based on our code inspection, it must
be significantly smaller than 1.5 MiB because log sender only
accesses a few statically allocated variables and BIO structures.
More importantly, it is effectively constant: it does not depend
on background tasks or anything the attacker could affect.

The audit service relays administrator queries to the audit
device. It employs the IOCTL interface with the logger kernel
module to send queries to the device and receive responses.
This allows the logger to break down and pause query-related
traffic to prioritize the sending of log entries (§VI-D).

B. Audit Device Components

Hardware. We used a ROCKPro64 development board [34]
for our audit device. The board is significantly more powerful
than what HARDLOG requires (§VI-B)—we chose it because
it supports a USB 3.0 OTG connection that we used as a
device-interposed communication interface. The board has two
big (Cortex A72 at 1.8 GHz) and four little (Cortex A53 at
1.4 GHz) cores with 2 GiB of on-board system memory. We
attached a 250 GB NVMe SSD (WD SN550) to the board
using its PCIe 2.0 (x4) interface. In practice, the audit device
does not require such a large storage (§VI-B). We provisioned
the device key pair in the storage.

Our prototype is powered independently from the host
machine. Thus, the attacker cannot shut it down. Based on our
analysis, a capacitor [64] can also power our prototype for a
few seconds. This does not affect our evaluation.

The monetary cost for our prototype device was $120 ($60
each for the ROCKPro64 and storage). However, this is an
unoptimized implementation with components purchased at
retail cost. We expect that hardware vendors can build an
optimized implementation at a significantly lower cost.
Software. The audit device ran Armbian 21.05.1 (Buster)
with Linux kernel v4.4.213 and presented itself as a USB mass
storage drive to the host. We implemented two components
for the audit device: (a) log receiver and (b) query executor.

Log receiver extends the USB mass storage gadget [84] to
implement append-only storage for incoming log entries and
respond to queries from the administrator. Log receiver exposes
three interposed device endpoints—log, query, and response—
to the host. The log endpoint is for receiving log entries, while
the rest are used for queries and responses, respectively.

Log receiver keeps a monotonically-increasing index to
enforce append-only semantics for received logs. The index
is persisted to storage. On startup, it (a) allocates DEVBUF
to store incoming log entries in device memory, (b) spawns
a log storer thread to asynchronously flush log entries from
DEVBUF to a persistent file, and (c) spawns a query relay
thread to deliver a query to query executor.

We configured DEVBUF’s size to 256 MiB—this was enough
to ensure the device always had space to keep incoming log
entries in memory. As mentioned in §VI-D, if DEVBUF is small
and storage write throughput is less than device communication

91799

TABLE IV
POTENTIAL ATTACKS ON HARDLOG AND DEFENSES. THE HORIZONTAL

LINE DEMARCATES ATTACKS BEFORE AND AFTER PRIVILEGE ESCALATION.

Attack HARDLOG defense

Log protection slowdown
Run many threads [17] Prioritize log sender (§VI-D)
Raise interrupts [67] Do not send to log sender (§VI-D)
Abuse micro-arch. components Isolate log sender components (§VI-D)
Execute many events [17] Bound HOSTBUF size (§VI-D)

Log deletion
Delete entry at host Protect before attack (§VI-C–§VI-D)
Delete entry in device Require signed requests (§VI-B)
Shut down device Use fail-safe power (§VI-B)

Log modification
Insert entry in prior logs Only append entries (§VI-B)
Reorder prior entries Only append entries (§VI-B)
Change a prior entry Only append entries (§VI-B)
Fill device with entries Do not overwrite entries (§VI-B)

Relay communication
Forge entries sent to sysadmin Authenticated secure conn. (§VI-E)
Replay sysadmin commands Authenticated secure conn. (§VI-E)

throughput, DEVBUF can get full. This is not the case for our
prototype as the observed write throughput from DEVBUF to
the device storage (PCIe 2.0, ∼800 MB/s) is higher than the
observed write throughput from the host machine to the audit
device (USB 3.0, ∼240 MB/s) as shown in Table II.

Query executor responds to queries (i.e., log retrieval, filtra-
tion, and authenticated deletion) from the system administrator.
For log filtration, it accepts two filters: process identifier and
event type. Once a query is serviced, query executor compresses
the response using the pigz compression software and writes
the result to the response endpoint. While reading from or
writing to storage, query executor breaks down its storage
accesses into 512 B chunks, allowing rapid preemption (§VI-D).
The host machine (using its audit service) polls the response
endpoint periodically to check whether a response is ready.

VIII. SECURITY ANALYSIS AND VALIDATION

This section analyzes HARDLOG’s security through possible
attacks, evaluates its bounded-asynchronous guarantees, and
discusses its concise attack surface.

A. Defense Analysis

The adversary (whose capabilities are mentioned in §V) can
launch attacks before and after privilege escalation. Table IV
provides a list of possible attacks and HARDLOG’s defenses.
Prevent log protection slowdown attacks. Before escalating
privilege, the adversary can stress HARDLOG’s log entry
protection pipeline (§VI-C) to delay protection of non-critical
log entries to tamper with as many log entries as possible. They
can try to (a) create many threads to stress CPU resources and
potentially hinder log sender’s execution, (b) raise frequent
interrupts to slow down log sender, (c) abuse micro-architectural
contention to delay log sender, and (d) execute many security-
related events to cause a delay in sending HOSTBUF. To prevent
these attacks, HARDLOG uses robust techniques (§VI-D),

including real-time ones, to ensure that log protection is not
affected by the adversary. Please refer to §VIII-B for an
experimental validation.

First, HARDLOG ensures that log sender always executes at
the highest priority and the number of non-HARDLOG threads
at the highest priority is always smaller than the CPU cores.
Hence, log sender is not preempted by adversary-controlled
threads, no matter how many threads the adversary creates.

Second, HARDLOG ensures all IPIs and hardware device
interrupts, except from the audit device, are not sent to the
CPU core running log sender. Therefore, the adversary cannot
slow down log sender’s execution through these interrupts.
Also, recall that the remaining interrupts (i.e., SMIs and NMIs)
cannot be controlled by the adversary (§VI-D).

Third, HARDLOG isolates the per-core micro-architectural
components (e.g., TLB and L1/L2 cache) and cross-core LLC
partition used by log sender. Hence, the adversary cannot affect
log sender’s execution through these components.

Finally, HOSTBUF’s size is fixed by the system administrator
to a certain worst-case delay bound (tb) for sending the entire
buffer. If HOSTBUF is full, HARDLOG pauses application
threads which try to execute security-related events to ensure
that no log entry is dropped. Hence, even if the attacker executes
many security-related events, they can neither slow down log
protection nor cause log entries to be dropped.
Prevent log deletion attacks. After escalating privilege,
the adversary can try to (a) delete log entries on the host
machine (in HOSTBUF), (b) ask the audit device to delete logs,
or (c) cut off the audit device’s power to make the device lose
its transient in-memory log entries (in DEVBUF).

To prevent log deletion, HARDLOG ensures that logs
are synchronously sent to the audit device before critical
events are executed and the adversary potentially gains priv-
ilege (§VI-C). For non-critical events, HARDLOG ensures a
bounded-asynchronous protection delay (§VI-D). Our experi-
ments suggest that this delay can be as small as 15 ms for our
prototype, suitable to prevent strong attacks (§VIII-B).

Once entries are protected inside the audit device, it does not
accept log deletion requests that are not from the administrator.
Since the adversary cannot circumvent the secure connection
between the administrator and the audit device (§VI-E), they
have no way to send valid log deletion requests.

In addition, HARDLOG requires that the audit device has fail-
safe power management (§VI-B). Thus, transient in-memory
logs (in DEVBUF) are stored persistently, even if the adversary
cuts off the device’s main power supply.
Prevent log modification attacks. A privileged adversary can
try to tamper with existing logs (already stored on the audit
device). HARDLOG implements a simple defense for all log
modification attacks: the device only accepts logs from the
host in an append-only manner (§VI-B).

The adversary can also try to fill the device with log entries
to overwrite their attack trace. However, if the audit device’s
storage is full, it will stop accepting new log entries. Hence,
the adversary is unable to overwrite existing logs.

101800

0 10 20 30 40 50 60 70 80 90
Time Taken (ms)

0

0.2

0.4

0.6

0.8

1
C

om
pl

et
io

n
R

at
io

1 MB
3 MB
5 MB
10 MB

Fig. 3. CDF shows relation between HOSTBUF size and HARDLOG’s bounded-
asynchronous guarantees for non-critical events.

Recall that, if the adversary fills up device storage before
compromise to evade attack logging, the host pauses any thread
trying to execute security-related events until the administrator
has freed up enough storage space on the device (§VI-B). Thus,
no log entries before the compromise are lost.
Prevent relay communication attacks. A privileged adversary
can attempt to subvert the host-relayed communication between
the device and the administrator. In particular, they can
attempt to forge query responses or replay previous commands.
To prevent this, HARDLOG establishes a secure mutually-
authenticated connection (§VI-E) between the device and the
system administrator (using their public-private key pairs).

B. Bounded-Asynchronous Guarantee Validation

HARDLOG provides a bounded-asynchronous delay on non-
critical log protection (§VI-D). In this regard, this section
first describes the maximum delay for non-critical log entry
protection when the adversary, before escalating privilege, is
actively trying to stress HARDLOG’s log protection pipeline by
producing many log entries. Then, it discusses why HARDLOG
ensures real-world attack traces are protected even under
asynchronous protection delays.
Experiment description. Our adversarial process spawns 12
threads, one for each logical core of our host machine (§VII).
Each thread sequentially executes the getpid system call 10,000
times. Since getpid is the fastest system call [85], the machine
produces log entries as fast as possible.

Note that this is an aggressive test of HARDLOG’s protection
pipeline by a non-privileged attacker. In particular, HARDLOG
disables attacker-controlled interrupts against its log sender
and isolates micro-architectural components (§VI-D), hence
attacks through them are entirely ineffective.

Given bounded-asynchronous protections (§VI-D) and our
implementation with sufficient DEVBUF (§VII-B), the maxi-
mum log protection delay should be decided by HOSTBUF’s
size, hence we tested various sizes from 1 MB to 10 MB.
We also configured the audit service to continuously send
administrator log retrieval queries to the device for observing
the impact of relay query communication on the maximum
delay. We repeated this experiment 1000 times for each buffer
and measured the maximum log protection delay each time.

Maximum log protection delay results. Fig. 3 shows the
Cumulative Distribution Function (CDF) of non-critical log
entry protection delay on each run with different HOSTBUF
sizes. We observe that a 1 MB HOSTBUF results in a maximum
delay of less than 15 ms for non-critical log entries, while a
10 MB HOSTBUF has a maximum delay of 83 ms. In addition,
we noticed a negligible difference with or without background
query communication, hence we did not show the curve without
background query communication in the figure.

The observed maximum delay is close to the theoretical
maximum delay, dp = 2tb + c (§VI-D), as tb for a 1 MB
buffer sent to our prototype audit device is ∼6 ms (Table V).
This shows that HARDLOG’s real-time techniques (§VI-D)
are effective at preventing the adversary from affecting the
protection delay as we analyzed in §VIII-A.
Attack trace protection. Attackers must bypass existing
kernel protections, such as Kernel ASLR and Supervisor Mode
Access Prevention (SMAP), before having enough control over
the system to destroy logs. This may involve many security-
related events. For example, both in our experiments with real
exploits [86] and in the proof-of-concept of prior research [17],
we observe that attacks consist of long system call sequences
which can easily take more than hundreds of milliseconds.
Hence, even if attacks only use non-critical events and attempt
to remove log entries immediately after gaining privileges,
HARDLOG’s small protection delay (e.g., 15 ms for a 1 MB
HOSTBUF) ensures that the vast majority of attack-related
events are logged safely.

Importantly, HARDLOG synchronously protects all buffered
logs on critical events. Hence, for attacks where a machine is
compromised at a critical event—most real-world attacks [1],
[31], [32]—the entire attack trace is available.

C. Attack Surface Analysis

HARDLOG’s audit device attack surface is tiny and confined.
In particular, unlike the host machine that exposes a broad
collection of interfaces to potential attackers (e.g., applications
and hardware devices), the audit device only has a single
exposed interface (e.g., a USB interface for our prototype).
Also, although we used Linux to rapidly prototype the audit
device, in practice, verified operating system kernels [87] or
tiny real-time operating systems [88] can support our simple
requirements. The device can be further shielded using existing
interface hardening techniques [89]–[92], verified parsers [93],
and verified cryptographic libraries [94].

IX. PERFORMANCE EVALUATION

This section describes HARDLOG’s application perfor-
mance (using several micro-benchmarks and real-world pro-
grams) and query handling performance.

A. Setup

Monitored critical and non-critical events. We monitored
forensically-relevant system calls using the rule set employed
by prior audit systems [3], [14], [17], [95]. Amongst these,
we selected 11 system calls to be critical since they are

111801

prevalent in exploit payloads [1], [31], [32], [54]–[56]. These
system calls are for process creation, binary execution, or
tracing (fork, vfork, clone, execve, execveat, and ptrace)
and permission changes (chmod, setgid, setreuid, setresuid,
and setuid). The remaining 33 system calls—open, close,
creat, openat, read, readv, write, writev, sendto, recvfrom,
sendmsg, recvmsg, connect, accept, accept4, mmap, link,
symlink, mknod, mknodat, dup, dup2, dup3, bind, rename, pipe,
pipe2, truncate, sendfile, unlink, unlinkat, socketpair,
and splice—were configured as non-critical events. They
include important file system and network system calls that
are used by attackers to prepare exploit payloads.
Audit system configurations. We compared HARDLOG with
Linux’s default audit system, AUDITD. We chose this system
because it is widely deployed in enterprise machines (e.g., Red
Hat Enterprise Linux uses AUDITD [96]). Additionally, other
audit systems [14], [17] are even slower than AUDITD be-
cause they incorporate tamper-evident protection into AUDITD.
Hence, HARDLOG’s comparison to AUDITD also provides a
performance reference against such audit systems.

AUDITD employs a user-level daemon to collect and asyn-
chronously store all log entries in the host’s unprotected storage.
With AUDITD, the kernel keeps all log entries in an in-memory
backlog queue before sending them to the user-level daemon.
We configured a 1 million entry space in the backlog queue
(taking up to ∼300 MB memory) and ensured that AUDITD
waits for entries to be flushed if the queue is full.

We configured HARDLOG with a 1 MB HOSTBUF, ensuring
a small maximum protection delay of 15 ms (§VIII-B). In
practice, keeping a larger buffer improves performance at the
cost of a higher maximum protection delay and vice versa.

B. Synchronous Log Protection Microbenchmarks
HARDLOG pauses application threads to synchronously

protect logs on critical events, which reduces performance. This
section quantifies the pause time for synchronous protection.
AUDITD does not synchronously protect any logs, so it is
irrelevant to this experiment.
Settings. On a critical event, the pause time depends on (a)
the number of log entries residing in HOSTBUF and (b) the
speed of the storage device and interface. To measure the
worst-case protection time, we ran a workload that executes
numerous non-critical events (i.e., getpid) to fill HOSTBUF
with non-critical log entries and then executes a critical event
(i.e., execve). At the critical event, we measured the time taken
to send all buffered log entries to a storage device using DMA
requests. This is the additional time that a thread is paused
for. We repeated this experiment with various HOSTBUF sizes
(1–10 MB). For comparison, we used four different storage
devices—state-of-the-art commercial WORM 32 GB USB 2.0
drive [49] and SD card [50], a Toshiba 256 GB BG3 NVMe
SSD [97] connected using a USB 3.0 enclosure, and our
prototype USB 3.0 audit device. We ran each experiment 100
times and averaged the results.
Results. Table V shows the results. The audit device’s pause
time is up to 23.6× and 3.1× lower than that of the WORM

TABLE V
AVERAGE SYNCHRONOUS LOG PROTECTION TIME FOR VARIOUS HOSTBUF

SIZES AND STORAGE DEVICES.

Storage Device Delay (ms) per HOSTBUF size

1 MB 3 MB 5 MB 10 MB

WORM USB 2.0 Drive [49] 128.2 364.6 651.0 1392.3
WORM SD Card [50] 23.9 52.4 96.2 228.4
USB 3.0 NVMe SSD [97] 4.2 12.8 21.4 46.1
HARDLOG’s USB 3.0 Audit Device 5.9 16.7 28.7 56.5

0K �le cre
ate

0K �le delete

10K �le cre
ate

10K �le delete
mmap

read
write

open+clo
se

0

5

10

15

Pe
rf

. o
ve

rh
ea

d
(t

im
es

)

Auditd
Hardlog

Fig. 4. Comparison between HARDLOG and AUDITD on lmbench file creation
and system call benchmarks.

drives. This is expected since both WORM drives are built for
archival purposes and not optimized for fast storage. Compared
to the USB 3.0 SSD, the audit device takes up to 40% more
time. We believe this is because the SSD firmware is specialized
for fast storage operations, unlike our audit device’s USB mass
storage gadget [84] that emulates USB storage.

C. lmbench System Call Benchmarks

Since systems calls are typically monitored by enterprise
audit systems, we measured the slowdown of individual system
calls using both HARDLOG and AUDITD.
Settings. We ran lmbench [35], a popular operating system
test suite. In particular, we ran its latency benchmarks for (a)
file system creates and deletes and (b) general system calls,
which were most relevant to our monitored events. Note that
all these benchmarks produced non-critical events only, and
both HARDLOG and AUDITD asynchronously handled them.
Results. Fig. 4 shows the results of our experiment. In par-
ticular, over native (non-audited) Linux execution, HARDLOG
incurs 0.0–6.9× performance overhead while AUDITD incurs
0.1–14.8× performance overhead.

This performance overhead is expected because, for both
HARDLOG and AUDITD, the Linux kernel performs two heavy
tasks [14]: (a) passes each system call invocation through a
filter to determine whether it must be monitored and (b) creates
an ASCII-based log entry (of 200–1024 B) for each monitored
system call. The log entry has this size since it contains detailed
information to aid analysis, such as a timestamp, system call
parameters, and process (or user) context (§II).

In addition, we observe that some tests (read, write, and
open+close in Fig. 4) incur higher overheads than the rest.
The reason is that these tests are very short system call tests,

121802

which perform fast in-memory computations. For example, the
read test measures how long it takes to read one byte from
/dev/zero while the write test measures the time to write
one byte to /dev/null [98]. Thus, the performance impact of
filtering and creating a log entry for these tests is high.

Interestingly, HARDLOG’s overhead is up to 2.1× lower
than AUDITD’s in these tests. Our analysis revealed two main
reasons for such lower overhead.

First, AUDITD sends log entries from the kernel to its user-
level daemon—to store them in host storage—via the Linux
Netlink interface [99]. However, AUDITD’s use of Netlink is
inefficient because it encapsulates each log entry into a network
packet along with a large packet header [100].

Second, AUDITD uses the Linux event queues for its backlog
queue, requiring multiple memory copies to enqueue or dequeue
log entries. In contrast, HARDLOG directly sends log entries
from the kernel to the audit device using a circular buffer (i.e.,
HOSTBUF) that is directly accessible to the DMA engine. Thus,
it realizes zero-copy within the host kernel memory.

D. Real-world Programs

We evaluate HARDLOG’s real-world performance using
eight popular applications in various categories for enterprise
machines and compared this with AUDITD.
Settings. Web browsers like Firefox [36] and scientific
computation software like GNU Octave [37] are common
productivity tools. We evaluated Firefox using the Speedome-
ter [101] benchmark which measures the responsiveness of web
applications. For GNU Octave, we used the built-in benchmark
to run reference GNU Octave scripts.

Network-facing programs like web servers are employed in
many enterprise servers and face threats from remote attackers.
Thus, we evaluated NGINX [38] using the ApacheBench (ab)
benchmark [102] to send 10,000 requests for a 1 kB file using
12 concurrent threads in a local setting.

Like web servers, key-value stores and database systems
are also essential to enterprise servers. Hence, we evaluated
two key-value stores, Redis [39] and memcached [40], and
a database program, SQLite [41]. We ran the key-value
stores using their official benchmarks, redis-benchmark [103]
and memaslap [104], respectively. In particular, for redis-
benchmark, we ran its individual GET and SET benchmarks us-
ing default benchmark settings. Also, we configured memaslap
to retrieve a 9:1 split of GET and SET key-value pairs for
1 minute using a concurrency level of 16. Finally, we ran the
official speedtest for SQLite.

We also evaluated file compression (7-Zip [42]) and cryp-
tographic programs (OpenSSL [43]) using their benchmarks
written for the Phoronix Test Suite [105].

We ran each application ten times and averaged the results.
Results. Fig. 5 illustrates HARDLOG and AUDITD’s perfor-
mance overhead over native Linux execution. Fig. 6 shows
how many log entries were produced by each program per
second and how many of these entries were critical.

Considering all evaluated programs, HARDLOG’s geometric
mean performance overhead was 6.3%, while AUDITD’s was

Firefox

GNU Octa
ve

NGINX
Redis

Memcached
SQLite 7zip

OpenSSL

GEOMEAN
0

20

40

60

80

Pe
rf

. o
ve

rh
ea

d
(%

) Auditd
Hardlog
Hardlog (no isolation)

Fig. 5. Performance of HARDLOG and AUDITD on diverse real-world programs.
The time taken to execute each program without auditing from left to right
was (in seconds) 120.3, 39.9, 3.8, 60.0, 5.4, 64.9, 82.2, and 82.0.

Fig. 6. Event statistics for real-world programs.

9.5%. The performance difference between HARDLOG and
AUDITD is especially pronounced in memcached (10% versus
50%) and Redis (48% versus 64%). The reason is that these
key-value store programs executed a significant number of
read and write system calls, thus they produced many log
entries per second (487k and 313k, respectively).

We also ran the real-world programs while disabling HARD-
LOG’s micro-architectural component isolation, illustrated as
HARDLOG (no isolation) in Fig. 5, which showed an overhead
of 4.7% (a 1.6% improvement). This is expected since HARD-
LOG’s micro-architectural component isolation protections are
lightweight. Specifically, HARDLOG only preempts a CPU
core (both SMT threads in it) when needed for log entry
protection. Moreover, HARDLOG allocates a small (1/8) LLC
partition to log sender. This has a low system impact on the
remaining threads (for most programs) because they can still
access a significant portion (7/8) of the LLC [79], [106].

Our evaluated real-world programs executed critical events
significantly less frequently than non-critical events (Fig. 6).
Except for GNU Octave, all programs executed less than 20
critical events per second, thus the impact of synchronously
storing critical log entries was minimal. GNU Octave (the
worst case) produced 73 critical events per second on average,
mostly for binary execution (i.e., execve). This explains why
GNU Octave was slower with HARDLOG than AUDITD which
does not synchronously protect log entries.
Takeaway. Across diverse programs, HARDLOG performs
comparably to AUDITD, a widely deployed audit system in
enterprise machines [44]. These results indicate that there is not

131803

a significant performance hurdle towards HARDLOG’s practical
deployment on enterprise machines.

E. Query Handling

This section describes HARDLOG’s performance related to
administrator’s log retrieval queries.
Settings. We ran an assorted set of programs continuously to
send 1 GiB worth of logs (the average size of logs generated
daily on an enterprise machine [8]) to the audit device. Then,
we sent a log retrieval query to the device from the host’s
audit service. Concurrently, to keep the device communication
interface busy, we ran a stress testing program at the host
machine that executes 100,000 getpid system calls each second
while logging them using HARDLOG.
Results. The response was received at the host machine’s audit
service in 26 s. In particular, the device’s query executor took
9 s to read logs from its storage and 5 s to compress them. Once
compressed, the response size became ∼30 MB only because
logs are ASCII strings that can be compressed significantly.
These operations took long, based on the storage performance
(∼1 GB/s read throughput), because query executor reads from
storage in 512 B chunks (§VI-D).

When the response was ready, the host’s query relay thread
took 12 s to retrieve it through the USB 3.0 interface to the
audit device. This is expected since host query relay’s access
to the USB interface is paused frequently by log sender to
prioritize log protection. Without concurrent logging, it only
took 8 s to retrieve this response. While our experiment did
not include sending data to a remote system administrator, in
practice, this time merely depends on the uplink speed.

X. DISCUSSION

Frequent critical events. Certain programs could execute
some critical events frequently and introduce a non-negligible
synchronous log protection overhead. Thus, the administrator
can decide to asynchronously protect some frequent critical
events for such programs. Recall that HARDLOG’s bounded-
asynchronous guarantees ensure that an overwhelming portion
of an attack trace is still protected (§VIII-B).
Other micro-architectural components. Apart from the
LLC, other components (e.g., cache directories [107] and CPU
ring interconnects [108]) are shared between different CPU
cores, but the hardware does not currently support isolating
these components. If such isolation is supported in the future,
HARDLOG can be extended to apply it. Note that contention
on many of these remaining components likely introduces a
minor delay because their contention does not evict cached
contents [108]. Thus, even with such contention, HARDLOG’s
log protection delay is still likely bounded to a low number.
Post-compromise log retrieval. HARDLOG securely keeps
logs even after a host compromise. However, if the com-
promised host stops relaying network communications, an
administrator must recover the machine to retrieve logs either
physically or through remote recovery mechanisms (e.g.,
CIDER [109], Baseboard Management Controller (BMC) [110],

Intel vPRO [111], and AMD PRO [112]). Alternatively, the
audit device could be extended with a network card to enable
direct remote management from a system administrator.
System slowdown through HOSTBUF. Every audit system,
including HARDLOG, must pause threads that execute any
security-related event when the in-memory log buffer (e.g.,
HOSTBUF) is full to avoid losing log entries. Attackers might
abuse this feature to slow down the system. One way to prevent
such attacks is to establish rate-limited quotas on how many
security-related events allowed per second by profiling benign
program behavior [113]. We leave this to future work.

XI. OTHER RELATED WORK

Efficient logging. Existing audit systems (e.g., AUDITD) rely
on user-level software components to store logs in local or
remote storage. Thus, their performance bottleneck is the slow
communication channel between the kernel and user-space (e.g.,
Netlink) [100]. To avoid this bottleneck, more efficient audit
systems [100], [114], [115] employ shared memory between
kernel and user-space components. Unlike them, HARDLOG
enables its kernel component to directly send logs to the audit
device without relying on user-space components.

Log storage overhead is also a problem for audit systems.
To decrease storage overhead, some audit systems use either
lossy [116]–[120] or lossless [121]–[125] log reduction tech-
niques. If a powerful audit device is used, HARDLOG can be
programmed to employ such extensive compression techniques
to reduce device storage utilization.
Secure storage and TEEs. Researchers have proposed secure
storage for TEEs and general-purpose secure storage based on
TEEs. For example, several researchers have developed secure
local storage for SGX with a custom FPGA [126] or SSD [127].
An audit system can potentially use these techniques as a secure
location for system logs (i.e., first send log entries to a user-
space SGX application and then to a secure storage device),
but this will incur significant protection delay due to multiple
privilege transitions and data copies. General-purpose secure
storage based on Intel Trusted Execution Technology (TXT)
and a Self-Encrypting Drive (SED) [128] does not require a
user-space service. However, its overhead is still substantial
because all CPU execution context must be suspended to
securely store or retrieve data [129], [130]. Although Arm
TrustZone-based solutions [131]–[134] are generally efficient,
TrustZone is unavailable on most enterprise machines (which
are overwhelmingly x86-based). In contrast, HARDLOG’s audit
device enables fast secure storage on any architecture.

XII. CONCLUSION

HARDLOG employs a novel storage device to protect system
logs in the case of a machine compromise. On critical events,
HARDLOG synchronously protects all buffered log entries. On
all other events, HARDLOG bounded-asynchronously protects
log entries (i.e., within a small delay from their creation).
Our evaluation across diverse real-world programs shows that
HARDLOG ensures a protection delay of only 15 ms for non-
critical entries with a small performance overhead of 6.3%.

141804

ACKNOWLEDGMENT

We want to thank the anonymous reviewers for their valuable
comments and suggestions, which significantly improved the
presentation and quality of this work.

REFERENCES

[1] S. T. King and P. M. Chen, “Backtracking Intrusions,” in Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP),
Bolton Landing, NY, Oct. 2003.

[2] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Provenance
Tracing by Alternating Between Logging and Tainting,” in Proceedings
of the 2016 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2016.

[3] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI: Multiple
Perspective Attack Investigation with Semantic Aware Execution
Partitioning,” in Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, Canada, Aug. 2017.

[4] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso,
and W. Lee, “RAIN: Refinable Attack Investigation with On-Demand
Inter-Process Information Flow Tracking,” in Proceedings of the 24th
ACM Conference on Computer and Communications Security (CCS),
Dallas, TX, Oct.–Nov. 2017.

[5] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso,
and W. Lee, “Enabling Refinable Cross-Host Attack Investigation with
Efficient Data Flow Tagging and Tracking,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, Aug. 2018.

[6] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a Timely Causality Analysis for Enterprise Security,” in
Proceedings of the 2018 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2018.

[7] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“NoDoze: Combatting Threat Alert Fatigue with Automated Provenance
Triage,” in Proceedings of the 2019 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[8] W. U. Hassan, A. Bates, and D. Marino, “Tactical Provenance Analysis
for Endpoint Detection and Response Systems,” in Proceedings of
the 41st IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2020.

[9] G. Hombrebueno, “Securing Remote Work: Protecting Endpoints the
Right Way - Cisco Blogs,” 2020, https://blogs.cisco.com/security/
securing-remote-work-protecting-endpoints-the-right-way.

[10] Symantec, “ISTR 24: Symantec’s Annual Threat Report Reveals
More Ambitious and Destructive Attacks,” https://symantec-enterprise-
blogs.security.com/blogs/threat-intelligence/istr-24-cyber-security-
threat-landscape.

[11] CIS Center for Internet Security, “The SolarWinds Cyber-Attack: What
You Need to Know,” 2021, https://www.cisecurity.org/solarwinds/.

[12] The White House, “Executive Order on Improving the Nation’s
Cybersecurity,” 2021, https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/05/12/executive-order-on-improving-
the-nations-cybersecurity/.

[13] Flexxon, “WORM,” https://www.flexxon.com/worm/.
[14] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. Fletcher, A. Miller,

and D. Tian, “CUSTOS: Practical Tamper-Evident Auditing of Operating
Systems Using Trusted Execution,” in Proceedings of the 2020 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2020.

[15] V. Karande, E. Bauman, Z. Lin, and L. Khan, “SGX-Log: Securing
System Logs with SGX,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security (ASIA CCS),
2017.

[16] A. Sinha, L. Jia, P. England, and J. R. Lorch, “Continuous Tamper-Proof
Logging Using TPM 2.0,” in International Conference on Trust and
Trustworthy Computing (Trust). Springer, 2014, pp. 19–36.

[17] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the
Danger Zone: Race Condition Attacks and Defenses on System Audit
Frameworks,” in Proceedings of the 27th ACM Conference on Computer
and Communications Security (CCS), Nov. 2020.

[18] C. Cimpanu, “Hackers are increasingly destroying logs to hide
attacks.” [Online]. Available: https://www.zdnet.com/article/hackers-
are-increasingly-destroying-logs-to-hide-attacks/

[19] “BlackEnergy APT Attacks in Ukraine,” 2021. [Online]. Available:
https://www.kaspersky.com/resource-center/threats/blackenergy

[20] MITRE ATT&CK, “Indicator Removal on Host: Clear Windows Event
Logs, Sub-technique T1070.001 - Enterprise,” https://attack.mitre.org/
techniques/T1070/001/.

[21] ——, “Indicator Removal on Host: Clear Linux or Mac System
Logs, Sub-technique T1070.002 - Enterprise,” https://attack.mitre.org/
techniques/T1070/002/.

[22] rsyslog, “Receiving Messages from a Remote System,” https://www.
rsyslog.com/receiving-messages-from-a-remote-system/.

[23] S. Marwedel, “Secure logging with syslog-ng: Forward integrity and
confidentiality of system logs,” Free and Open Source Software
Developers’ European Meeting (FOSDEM), 2020.

[24] E.-O. Blass and G. Noubir, “Secure Logging with Crash Tolerance,”
in 2017 IEEE Conference on Communications and Network Security
(CNS), 2017.

[25] B. Schneier and J. Kelsey, “Cryptographic Support for Secure Logs
on Untrusted Machines,” in Proceedings of the 7th USENIX Security
Symposium (Security), San Antonio, TX, Jan. 1998.

[26] D. Ma and G. Tsudik, “A new approach to secure logging,” ACM
Transactions on Storage (TOS), vol. 5, no. 1, pp. 1–21, 2009.

[27] S. A. Crosby and D. S. Wallach, “Efficient Data Structures for
Tamper-Evident Logging,” in Proceedings of the 18th USENIX Security
Symposium (Security), Montreal, Canada, Aug. 2009.

[28] A. A. Yavuz, P. Ning, and M. K. Reiter, “Efficient, Compromise Resilient
and Append-Only Cryptographic Schemes for Secure Audit Logging,” in
International Conference on Financial Cryptography and Data Security
(FC). Springer, 2012, pp. 148–163.

[29] K. D. Bowers, C. Hart, A. Juels, and N. Triandopoulos, “PillarBox:
Combating Next-Generation Malware with Fast Forward-Secure Log-
ging,” in International Workshop on Recent Advances in Intrusion
Detection (RAID). Springer, 2014, pp. 46–67.

[30] T. Pulls and R. Peeters, “Balloon: A Forward-Secure Append-Only
Persistent Authenticated Data Structure,” in European Symposium on
Research in Computer Security (ESORICS). Springer, 2015, pp. 622–
641.

[31] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Enhancements to
the Linux Kernel for Blocking Buffer Overflow Based Attacks,” in
Proceedings of the 4th Annual Linux Showcase & Conference, 2000.

[32] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal
System Call Specialization for Attack Surface Reduction,” in Proceed-
ings of the 29th USENIX Security Symposium (Security), Boston, MA,
Aug. 2020.

[33] “Real-time systems,” http://www.cse.unsw.edu.au/~cs9242/08/lectures/
09-realtimex2.pdf.

[34] Pine64, “RockPro64 | Pine64,” https://www.pine64.org/rockpro64/.
[35] L. McVoy and C. Staelin, “lmbench: Portable tools for performance

analysis,” in Proceedings of the 1996 USENIX Annual Technical
Conference (ATC), Jan. 1996.

[36] “Firefox - protect your life online with privacy-first products.” [Online].
Available: https://www.mozilla.org/en-US/firefox/

[37] J. W. Eaton, “GNU Octave.” [Online]. Available: https://www.gnu.org/
software/octave/index

[38] NGINX Inc., “NGINX High Performance Load Balancer, Web Server,
& Reverse Proxy,” https://www.nginx.com.

[39] Redis Ltd., “Redis,” https://redis.io/.
[40] Dormando, “memcached - a distributed memory object caching system,”

https://memcached.org/.
[41] SQLite Consortium, “SQLite home page.” [Online]. Available:

https://www.sqlite.org/index.html
[42] I. Pavlov, “7-Zip.” [Online]. Available: https://www.7-zip.org/
[43] OpenSSL Software Foundation, “OpenSSL: Cryptography and SSL/TLS

Toolkit,” https://www.openssl.org/, 2017.
[44] SUSE, “Understanding Linux Audit,” https://documentation.suse.com/

sles/12-SP4/html/SLES-all/cha-audit-comp.html.
[45] MITRE ATT&CK, “Remote Data Storage, Mitigation M1029 - Enter-

prise,” https://attack.mitre.org/mitigations/M1029/.
[46] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Druschel,

R. Rodrigues, J. Gehrke, and A. Post, “Guardat: Enforcing Data Policies
at the Storage Layer,” in Proceedings of the 10th European Conference
on Computer Systems (EuroSys), Bordeaux, France, Apr. 2015.

[47] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia,
and C. Fetzer, “PESOS: Policy Enhanced Secure Object Store,” in

151805

Proceedings of the 13th European Conference on Computer Systems
(EuroSys), Porto, Portugal, Apr. 2018.

[48] B. Gregg, Systems Performance: Enterprise and the Cloud. Pearson
Education, 2014.

[49] Flexxon, “WORM (Write-Once-Read-Many) USB Device,” https://www.
flexxon.com/worm-usb-data-storage-integrity/.

[50] ——, “Read-only Mode Memory Card,” https://www.flexxon.com/read-
only-mode-memory-card/.

[51] rsyslog, “KSI Signature Provider,” https://www.rsyslog.com/doc/master/
configuration/modules/sigprov_ksi12.html.

[52] R. N. Williams, “Common reasons for computer failure in business in-
dustry,” https://www.streetdirectory.com/travel_guide/116177/computers/
common_reasons_for_computer_failure_in_business_industry.html.

[53] Pew Research Center, “When technology fails,” https://www.
pewresearch.org/internet/2008/11/16/when-technology-fails/.

[54] Metasploit, “Metasploit | Penetration Testing Software, Pen Testing
Security,” https://www.metasploit.com.

[55] Offensive Security, “Exploit Database - Exploits for Penetration Testers,
Researchers, and Ethical Hackers,” https://www.exploit-db.com.

[56] J. Salwan, “Shellcodes database for study cases,” http://shell-storm.org/
shellcode/.

[57] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested Kernel: An Operating System Architecture for Intra-Kernel
Privilege Separation,” in Proceedings of the 20th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Istanbul, Turkey, Mar. 2015.

[58] Microsoft Docs, “Overview of single root i/o virtualization
(SR-IOV),” https://docs.microsoft.com/en-us/windows-hardware/drivers/
network/overview-of-single-root-i-o-virtualization--sr-iov-.

[59] ——, “Virtualization-based Security (VBS),” https://docs.microsoft.com/
en-us/windows-hardware/design/device-experiences/oem-vbs.

[60] Trusted Computing Group, “TPM Main Specification Version 1.2
Rev. 116,” 2011, https://trustedcomputinggroup.org/resource/tpm-main-
specification/.

[61] K. Vaid, “Microsoft Creates Industry Standards for Datacenter
Hardware Storage and Security,” 2018, https://azure.microsoft.com/en-
us/blog/microsoft-creates-industry-standards-for-datacenter-hardware-
storage-and-security/.

[62] U. Savagaonkar, N. Porter, N. Taha, B. Serebrin, and N. Mueller, “Titan
in Depth: Security in Plaintext,” 2017, https://cloud.google.com/blog/
products/gcp/titan-in-depth-security-in-plaintext.

[63] Apple, “Apple T2 Security Chip: Security Overview,” 2018, https:
//www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf.

[64] Mouser Electronics, “SCCT47B356SRB AVX,” https:
//www.mouser.com/ProductDetail/AVX/SCCT47B356SRB?qs=
vmHwEFxEFR8mN0UvpotaNw==.

[65] Red Hat Customer Portal, “Red Hat Enterprise Linux for Real Time 7:
4.5. Setting Real-time Scheduler Priorities,” https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/
tuning_guide/setting_realtime_scheduler_priorities.

[66] Microsoft Docs, “Increase Scheduling Priority (Windows 10) -
Windows Security,” https://docs.microsoft.com/en-us/windows/security/
threat-protection/security-policy-settings/increase-scheduling-priority.

[67] Y. Lee, C. Min, and B. Lee, “ExpRace: Exploiting Kernel Races
through Raising Interrupts,” in Proceedings of the 30th USENIX Security
Symposium (Security), Aug. 2021.

[68] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
Volume 3A: System Programming Guide, 2016.

[69] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
Verifiable Trusted Path on Commodity x86 Computers,” in Proceedings
of the 33rd IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2012.

[70] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd Edition.
O’Reilly, 2006.

[71] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun, “Using Hardware
Features for Increased Debugging Transparency,” in Proceedings of the
36th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2015.

[72] Red Hat Customer Portal, “Red Hat Enterprise Linux
for Real Time 7: 3.3. Non-Maskable Interrupts,” https:
//access.redhat.com/documentation/en-us/red_hat_enterprise_linux_
for_real_time/7/html/reference_guide/non-maskable_interrupts.

[73] B. W. Lampson and D. D. Redell, “Experience with Processes and
Monitors in Mesa,” Communications of the ACM, vol. 23, no. 2, pp.
105–117, 1980.

[74] S. J. Daigle and J. K. Strosnider, “Disk Scheduling for Multimedia
Data Streams,” in High-Speed Networking and Multimedia Computing,
vol. 2188. International Society for Optics and Photonics, 1994, pp.
212–223.

[75] D. Grunwald and S. Ghiasi, “Microarchitectural Denial of Service:
Insuring Microarchitectural Fairness,” in Procedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2002.

[76] J. Hasan, A. Jalote, T. Vijaykumar, and C. Brodley, “Heat Stroke: Power-
Density-Based Denial of Service in SMT,” in Proceedings of the 11th
International Symposium on High-Performance Computer Architecture
(HPCA), 2005.

[77] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and Y. Yarom,
“Amplifying Side Channels through Performance Degradation,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications (ACSAC), 2016.

[78] A. C. Aldaya and B. B. Brumley, “HyperDegrade: From GHz to MHz
Effective CPU Frequencies,” in Proceedings of the 31st USENIX Security
Symposium (Security), Aug. 2022.

[79] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee,
“CATalyst: Defeating Last-Level Cache Side Channel Attacks in Cloud
Computing,” in Proceedings of the IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2016.

[80] Intel, “Code sample: Intel® software guard extensions remote
attestation end-to-end example,” https://www.intel.com/content/www/us/
en/developer/articles/code-sample/software-guard-extensions-remote-
attestation-end-to-end-example.html.

[81] The Gramine Project, “RA-TLS Minimal Example,” https://github.com/
gramineproject/graphene/tree/master/Examples/ra-tls-mbedtls.

[82] D. Wheeler, “Sloccount,” https://dwheeler.com/sloccount/.
[83] N. Brown, “A block layer introduction part 1: The bio layer,” https:

//lwn.net/Articles/736534/, 2017.
[84] The kernel development community, “Mass Storage Gadget (MSG),”

https://www.kernel.org/doc/html/latest/usb/mass-storage.html.
[85] S. Soller, “Measurements of System Call Performance and Over-

head – Arakanis Development,” http://arkanis.de/weblog/2017-01-05-
measurements-of-system-call-performance-and-overhead.

[86] A. Popov, “Four Bytes of Power: Exploiting CVE-2021-26708 in
the Linux kernel,” https://a13xp0p0v.github.io/2021/02/09/CVE-2021-
26708.html.

[87] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: formal verification of an OS kernel,”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, Oct. 2009.

[88] E. Lubbers and M. Platzner, “ReconOS: An RTOS supporting hard-
and software threads,” in IEEE International Conference on Field
Programmable Logic and Applications (FPL), 2007.

[89] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo, Z. Sun, A. J.
Blumberg, and M. Walfish, “Defending Against Malicious Peripherals
with Cinch,” in Proceedings of the 25th USENIX Security Symposium
(Security), Austin, TX, Aug. 2016.

[90] D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor, “Making USB
Great Again with USBFILTER,” in Proceedings of the 25th USENIX
Security Symposium (Security), Austin, TX, Aug. 2016.

[91] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, P. C. Johnson, and K. R.
Butler, “LBM: A Security Framework for Peripherals within the Linux
Kernel,” in Proceedings of the 40th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2019.

[92] K. Zhong, Z. Jiang, K. Ma, and S. Angel, “A file system for safely
interacting with untrusted USB flash drives,” in Proceedings of the
12th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2020.

[93] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Cha-
jed, N. Kobeissi, and J. Protzenko, “EverParse: Verified Secure Zero-
Copy Parsers for Authenticated Message Formats,” in Proceedings of
the 28th USENIX Security Symposium (Security), Santa Clara, CA, Aug.
2019.

[94] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Four-
net, N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. M.

161806

Wintersteiger, and S. Zanella-Béguelin, “EverCrypt: A Fast, Verified,
Cross-Platform Cryptographic Provider,” in Proceedings of the 41st
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2020.

[95] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing in
Distributed Environments,” in Proceedings of The Annual ACM/IFIP
Middleware Conference (Middleware), 2012.

[96] Red Hat Customer Portal, “Red Hat Enterprise Linux 7: 7.4. Starting the
Audit Service,” https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/7/html/security_guide/sec-starting_the_audit_service.

[97] “Toshiba BG3 SSD,” https://pcpartsoutletstore.com/toshiba-
kbg30zmv256g-256gb-ssd-m-2-2280-nvme-pcie-solid-state-drive-
l22028-002.html.

[98] C. Staelin and L. McVoy, “Lat_syscall (man page),” http://lmbench.
sourceforge.net/man/lat_syscall.8.html.

[99] “netlink(7) - linux manual page,” https://man7.org/linux/man-pages/
man7/netlink.7.html.

[100] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, “Kernel-Supported Cost-Effective
Audit Logging for Causality Tracking,” in Proceedings of the 2018
USENIX Annual Technical Conference (ATC), Boston, MA, Jul. 2018.

[101] “Speedometer 2.0,” https://browserbench.org/Speedometer2.0/.
[102] The Apache Software Foundation, “ab - Apache HTTP server benchmark

tool,” https://httpd.apache.org/docs/2.4/programs/ab.html.
[103] Redis Ltd., “Redis benchmark,” https://redis.io/docs/reference/

optimization/benchmarks/.
[104] M. Zhuang and B. Aker, “memaslap - load testing and benchmarking a

server,” http://docs.libmemcached.org/bin/memaslap.html.
[105] Phoronix Media, “Phoronix test suite.” [Online]. Available: https:

//www.phoronix-test-suite.com/
[106] X. Dong, Z. Shen, J. Criswell, A. L. Cox, and S. Dwarkadas, “Shielding

software from privileged side-channel attacks,” in Proceedings of the
27th USENIX Security Symposium (Security), Baltimore, MD, Aug
2018.

[107] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in Proceedings of the 40th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2019.

[108] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,” in
Proceedings of the 30th USENIX Security Symposium (Security), Aug.
2021.

[109] M. Xu, M. Huber, Z. Sun, P. England, M. Peinado, S. Lee, A. Marochko,
D. Matoon, R. Spiger, and S. Thom, “Dominance as a New Trusted
Computing Primitive for the Internet of Things,” in Proceedings of
the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[110] J. Frazelle, “Opening Up the Baseboard Management Controller,”
Communications of the ACM, vol. 63, no. 2, pp. 38–40, 2020.

[111] O. Levy, A. Kumar, and P. Goel, “Advanced Security Features of Intel
vPro Technology,” Intel Technology Journal, vol. 12, no. 4, 2008.

[112] AMD, “AMD PRO Technologies,” https://www.amd.com/en/
technologies/pro-technologies.

[113] M. Abubakar, A. Ahmad, P. Fonseca, and D. Xu, “Shard: Fine-grained
kernel specialization with context-aware hardening,” in Proceedings of
the 30th USENIX Security Symposium (Security), Aug. 2021.

[114] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical Whole-System Provenance Capture,” in Proceedings
of the 2017 Symposium on Cloud Computing (SoCC), 2017, pp. 405–
418.

[115] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Bacon,
and M. Seltzer, “Runtime Analysis of Whole-System Provenance,”
in Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, ON, Canada, Oct. 2018.

[116] K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage Collecting Audit
Log,” in Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), Berlin, Germany, Oct. 2013.

[117] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang,
and G. Jiang, “High Fidelity Data Reduction for Big Data Security
Dependency Analyses,” in Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria,
Oct. 2016.

[118] M. N. Hossain, J. Wang, R. Sekar, and S. D. Stoller, “Dependence-
Preserving Data Compaction for Scalable Forensic Analysis,” in

Proceedings of the 27th USENIX Security Symposium (Security),
Baltimore, MD, Aug. 2018.

[119] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,
F. Xu, and Q. Li, “NodeMerge: Template Based Efficient Data Reduction
For Big-Data Causality Analysis,” in Proceedings of the 25th ACM
Conference on Computer and Communications Security (CCS), Toronto,
ON, Canada, Oct. 2018.

[120] N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Hassan, and A. Bates, “On
the Forensic Validity of Approximated Audit Logs,” in Proceedings of
the 36th Annual Computer Security Applications Conference (ACSAC),
2020, pp. 189–202.

[121] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen, “Eidetic
Systems,” in Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broomfield, CO, Oct.
2014.

[122] A. Quinn, D. Devecsery, P. M. Chen, and J. Flinn, “JetStream: Cluster-
Scale Parallelization of Information Flow Queries,” in Proceedings
of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Savannah, GA, Nov. 2016.

[123] K. Rodrigues, Y. Luo, and D. Yuan, “CLP: Efficient and Scalable
Search on Compressed Text Logs,” in Proceedings of the 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Jul. 2021.

[124] P. Fei, Z. Li, Z. Wang, X. Yu, D. Li, and K. Jee, “SEAL: Storage-
efficient Causality Analysis on Enterprise Logs with Query-friendly
Compression,” in Proceedings of the 30th USENIX Security Symposium
(Security), Aug. 2021.

[125] H. Ding, S. Yan, J. Zhai, and S. Ma, “ELISE: A Storage Efficient
Logging System Powered by Redundancy Reduction and Representation
Learning,” in Proceedings of the 30th USENIX Security Symposium
(Security), Aug. 2021.

[126] H. Oh, A. Ahmad, S. Park, B. Lee, and Y. Paek, “TRUSTORE:
Side-Channel Resistant Storage for SGX using Intel Hybrid CPU-
FPGA,” in Proceedings of the 27th ACM Conference on Computer and
Communications Security (CCS), Nov. 2020.

[127] J. Ahn, J. Lee, Y. Ko, D. Min, J. Park, S. Park, and Y. Kim, “DiskShield:
A Data Tamper-Resistant Storage for Intel SGX,” in Proceedings of the
15th ACM Asia Conference on Computer and Communications Security
(ASIA CCS), 2020, pp. 799–812.

[128] L. Zhao and M. Mannan, “TEE-aided Write Protection Against
Privileged Data Tampering,” in Proceedings of the 2019 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb. 2019.

[129] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for TCB Minimization,” in
Proceedings of the 3rd European Conference on Computer Systems
(EuroSys), Glasgow, Scotland, Mar. 2008.

[130] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Broomfield, CO, Oct. 2014.

[131] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using Arm TrustZone
to Build a Trusted Language Runtime for Mobile Applications,” in
Proceedings of the 19th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Salt Lake City, UT, Mar. 2014.

[132] D. Hein, J. Winter, and A. Fitzek, “Secure Block Device – Secure,
Flexible, and Efficient Data Storage for Arm TrustZone Systems,” in
Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, 2015.

[133] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“TrustShadow: Secure Execution of Unmodified Applications with Arm
TrustZone,” in Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2017.

[134] L. Guo, Y. Zhang, and F. X. Lin, “Let the Cloud Watch Over Your IoT
File Systems,” arXiv preprint arXiv:1902.06327, 2019.

171807

