
SAILFISH: Vetting Smart Contract
State-Inconsistency Bugs in Seconds

Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{priyanka, dipanjan, yanju, yufeng, chris, vigna}@cs.ucsb.edu

Abstract—This paper presents SAILFISH, a scalable system for
automatically finding state-inconsistency bugs in smart contracts.
To make the analysis tractable, we introduce a hybrid approach
that includes (i) a light-weight exploration phase that dramati-
cally reduces the number of instructions to analyze, and (ii) a pre-
cise refinement phase based on symbolic evaluation guided by our
novel value-summary analysis, which generates extra constraints
to over-approximate the side effects of whole-program execution,
thereby ensuring the precision of the symbolic evaluation. We
developed a prototype of SAILFISH and evaluated its ability to
detect two state-inconsistency flaws, viz., reentrancy and trans-
action order dependence (TOD) in Ethereum smart contracts.

Our experiments demonstrate the efficiency of our hybrid
approach as well as the benefit of the value summary analysis.
In particular, we show that SAILFISH outperforms five state-of-
the-art smart contract analyzers (SECURIFY, MYTHRIL, OYENTE,
SEREUM and VANDAL) in terms of performance, and precision.
In total, SAILFISH discovered 47 previously unknown vulnerable
smart contracts out of 89,853 smart contracts from ETHERSCAN.

I. INTRODUCTION

Smart contracts are programs running on top of the Ethereum
blockchain. Due to the convenience of high-level programming
languages like SOLIDITY and the security guarantees from
the underlying consensus protocol, smart contracts have seen
widespread adoption, with over 45 million [16] instances
covering financial products [6], online gaming [9], real estate,
and logistics. Consequently, a vulnerability in a contract can lead
to tremendous losses, as demonstrated by recent attacks [15],
[14], [12], [21]. For instance, the notorious “TheDAO” [11]
reentrancy attack led to a financial loss of about $50M in 2016.
Furthermore, in recent years, several other reentrancy attacks,
e.g., Uniswap [17], Burgerswap [7], Lendf.me [8], resulted in
multimillion dollar losses. To make things worse, smart contracts
are immutable—once deployed, the design of the consensus
protocol makes it particularly difficult to fix bugs. Since smart
contracts are not easily upgradable, auditing the contract’s source
pre-deployment, and deploying a bug-free contract is even more
important than in the case of traditional software.

In this paper, we present a scalable technique to detect state-
inconsistency (SI) bugs—a class of vulnerabilities that enables an
attacker to manipulate the global state, i.e., the storage variables
of a contract, by tampering with either the order of execution of
multiple transactions (transaction order dependence (TOD)), or
the control-flow inside a single transaction (reentrancy). In those
attacks, an attacker can tamper with the critical storage variables
that transitively have an influence on money transactions
through data or control dependency. Though “TheDAO” [11]

is the most well-known attack of this kind, through an offline
analysis [59], [50] of the historical on-chain data, researchers
have uncovered several instances of past attacks that leveraged
state-inconsistency vulnerabilities.

While there are existing tools for detecting vulnerabilities
due to state-inconsistency bugs, they either aggressively over-
approximate the execution of a smart contract, and report false
alarms [54], [36], or they precisely enumerate [3], [46] concrete
or symbolic traces of the entire smart contract, and hence, cannot
scale to large contracts with many paths. Dynamic tools [50], [59]
scale well, but can detect a state-inconsistency bug only when
the evidence of an active attack is present. Moreover, existing
tools adopt a syntax-directed pattern matching that may miss
bugs due to incomplete support for potential attack patterns [54].

A static analyzer for state-inconsistency bugs is crucial for
pre-deployment auditing of smart contracts, but designing such
a tool comes with its unique set of challenges. For example, a
smart contract exposes public methods as interfaces to interact
with the outside world. Each of these methods is an entry point
to the contract code, and can potentially alter the persistent
state of the contract by writing to the storage variables. An
attacker can invoke any method(s), any number of times, in
any arbitrary order—each invocation potentially impacting the
overall contract state. Since different contracts can communicate
with each other through public methods, it is even harder to
detect a cross-function attack where the attacker can stitch
calls to multiple public methods to launch an attack. Though
SEREUM [50] and ECFCHECKER [37] detect cross-function
attacks, they are dynamic tools that reason about one single
execution. However, statically detecting state-inconsistency bugs
boils down to reasoning about the entire contract control and
data flows, over multiple executions. This presents significant
scalability challenges, as mentioned in prior work [50].

This paper presents SAILFISH, a highly scalable tool that is
aimed at automatically identifying state-inconsistency bugs in
smart contracts. To tackle the scalability issue associated with stat-
ically analyzing a contract, SAILFISH adopts a hybrid approach
that combines a light-weight EXPLORE phase, followed by a RE-
FINE phase guided by our novel value-summary analysis, which
constrains the scope of storage variables. Our EXPLORE phase
dramatically reduces the number of relevant instructions to reason
about, while the value-summary analysis in the REFINE phase
further improves performance while maintaining the precision
of symbolic evaluation. Given a smart contract, SAILFISH first
introduces an EXPLORE phase that converts the contract into a

161

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Priyanka Bose. Under license to IEEE.
DOI 10.1109/SP46214.2022.00072

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

21

storage dependency graph (SDG)G. This graph summarizes the
side effects of the execution of a contract on storage variables in
terms of read-write dependencies. State-inconsistency vulnerabil-
ities are modeled as graph queries over the SDG structure. A vul-
nerability query returns either an empty result—meaning that the
contract is not vulnerable, or a potentially vulnerable subgraph
g inside G that matches the query. In the second case, there are
two possibilities: either the contract is indeed vulnerable, or g is
a false alarm due to the over-approximation of the static analysis.

To prune potential false alarms, SAILFISH leverages a REFINE
phase based on symbolic evaluation. However, a conservative
symbolic executor would initialize the storage variables as un-
constrained, which would, in turn, hurt the tool’s ability to prune
many infeasible paths. To address this issue, SAILFISH incorpo-
rates a light-weight value-summary analysis (VSA) that summa-
rizes the value constraints of the storage variables, which are used
as the pre-conditions of the symbolic evaluation. Unlike prior
summary-based approaches [31], [34], [20] that compute sum-
maries path-by-path, which results in full summaries (that encode
all bounded paths through a procedure), leading to scalability
problems due to the exponential growth with procedure size, our
VSA summarizes all paths through a finite (loop-free) procedure,
and it produces compact (polynomially-sized) summaries. As our
evaluation shows, VSA not only enables SAILFISH to refute more
false positives, but also scales much better to large contracts com-
pared to a classic summary-based symbolic evaluation strategy.

We evaluated SAILFISH on the entire data set from
ETHERSCAN [16] (89,853 contracts), and showed that our tool
is efficient and effective in detecting state-inconsistency bugs.
SAILFISH significantly outperforms all five state-of-the-art
smart contract analyzers we evaluated against, in the number
of reported false positives and false negatives. For example, on
average SAILFISH took only 30.79 seconds to analyze a smart
contract, which is 31 times faster than MYTHRIL [3], and six
orders of magnitude faster than SECURIFY [54].

In summary, this paper makes the following contributions:
• We define state-inconsistency vulnerabilities and identify

two of its root-causes (Section III), including a new
reentrancy attack pattern that has not been investigated in
the previous literature.

• We model state-inconsistency detection as hazardous access
queries over a unified, compact graph representation (called
a storage dependency graph (SDG)), which encodes the
high-level semantics of smart contracts over global states.
(Section V)

• We propose a novel value-summary analysis that efficiently
computes global constraints over storage variables, which
when combined with symbolic evaluation, enables
SAILFISH to significantly reduce false alarms. (Section VI)

• We perform a systematic evaluation of SAILFISH on the
entire data set from ETHERSCAN. Not only does SAILFISH
outperforms state-of-the-art smart contract analyzers in
terms of both run-time and precision, but also is able to
uncover 47 zero-day vulnerabilities (out of 195 contracts
that we could manually analyze) not detected by any other
tool. (Section VIII)

• In the spirit of open science, we pledge to release both the
tool and the experimental data to further future research.

II. BACKGROUND

This section introduces the notion of the state of a smart
contract, and provides a brief overview of the vulnerabilities
leading to an inconsistent state during a contract’s execution.
Smart contract. Ethereum smart contracts are written in high-
level languages like SOLIDITY, VYPER, etc., and are compiled
down to the EVM (Ethereum Virtual Machine) bytecode. Pub-
lic/external methods of a contract, which act as independent entry
points of interaction, can be invoked in two ways: either by a
transaction, or from another contract. We refer to the invocation
of a public/external method from outside the contract as an event.
Note that events exclude method calls originated from inside the
contract, i.e., a method f calling another method g. A schedule
H is a valid sequence of events that can be executed by the EVM.
The events of a schedule can originate from one or more transac-
tions. Persistent data of a contract is stored in the storage variables
which are, in turn, recorded in the blockchain. The contract state
∆=(V,B) is a tuple, where V={V1,V2,V3,...,Vn} is the set of
all the storage variables of a contract, and B is its balance.
State inconsistency (SI). When the events of a schedule H
execute on an initial state ∆ of a contract, it reaches the final
state ∆′. However, due to the presence of several sources of non-
determinism [55] during the execution of a smart contract on the
Ethereum network, ∆′ is not always predictable. For example,
two transactions are not guaranteed to be processed in the order in
which they got scheduled. Also, an external call e originated from
a method f of a contract C can transfer control to a malicious
actor, who can now subvert the original control and data-flow
by re-entering C through any public method f ′∈C in the same
transaction, even before the execution of f completes. LetH1 be
a schedule that does not exhibit any of the above-mentioned non-
deterministic behavior. However, due to either reordering of trans-
actions, or reentrant calls, it might be possible to rearrange the
events ofH1 to form another scheduleH2. If those two schedules
individually operate on the same initial state ∆, but yield different
final states, we consider the contract to have a state-inconsistency.
Reentrancy. If a contract A calls another contract B, the
Ethereum protocol allows B to call back to any public/external
method m of A in the same transaction before even finishing
the original invocation. An attack happens when B reenters A
in an inconsistent state before A gets the chance to update its
internal state in the original call. Launching an attack executes
operations that consume gas. Though, SOLIDITY tries to prevent
such attacks by limiting the gas stipend to 2,300 when the call
is made through send and transfer APIs, the call opcode
puts no such restriction—thereby making the attack possible.

In Figure 1a, the withdraw method transfers Ethers to
a user if their account balance permits, and then updates the
account accordingly. From the external call at Line 4, a malicious
user (attacker) can reenter the withdraw method of the Bank
contract. It makes Line 3 read a stale value of the account
balance, which was supposed to be updated at Line 5 in the
original call. Repeated calls to the Bank contract can drain it

162

1 c o n t r a c t Bank {
2 f u n c t i o n wi thdraw (u i n t amount) {
3 i f (a c c o u n t s [msg . s e n d e r] >= amount) {
4 msg . s e n d e r . c a l l . v a l u e (amount) ;
5 a c c o u n t s [msg . s e n d e r] −= amount

;
6 }
7 }
8 } (a)

1 c o n t r a c t Queue {
2 f u n c t i o n r e s e r v e (u i n t 2 5 6 s l o t) {
3 i f (s l o t s [s l o t] == 0) {
4 s l o t s [s l o t] = msg . s e n d e r ;
5 }
6 }
7 }

(b)
Fig. 1: In Figure 1a, the accounts mapping is updated after the
external call at Line 4 . This allows the malicious caller to reenter the
withdraw() function in an inconsistent state. Figure 1b presents
a contract that implements a queuing system that reserves slots on a
first-come-first-serve basis leading to a potential TOD attack.

out of Ethers, because the sanity check on the account balance at
Line 3 never fails. One such infamous attack, dubbed “TheDAO”
[11], siphoned out over USD $50 million worth of Ether from
a crowd-sourced contract in 2016.

Though the example presented above depicts a typical
reentrancy attack scenario, such attacks can occur in a more
convoluted setting, e.g., cross-function, create-based, and
delegate-based, as studied in prior work [50]. A cross-function
attack spans across multiple functions. For example, a function
f1 in the victim contract A issues an untrusted external call,
which transfers the control over to the attacker B. In turn, B
reentersA, but through a different function f2. A delegate-based
attack happens when the victim contract A delegates the control
to another contract C, where contract C issues an untrusted
external call. In case of a create-based attack, the victim contract
A creates a new child contract C, which issues an untrusted
external call inside its constructor.
Transaction Order Dependence (TOD). Every Ethereum
transaction specifies the upper limit of the gas amount one is
willing to spend on that transaction. Miners choose the ones
offering the most incentive for their mining work, thereby
inevitably making the transactions offering lower gas starve
for an indefinite amount of time. By the time a transaction T1
(scheduled at time t1) is picked up by a miner, the network
and the contract states might change due to another transaction
T2 (scheduled at time t2) getting executed beforehand, though
t1<t2. This is known as Transaction Order Dependence (TOD)
[10], or front-running attack. Figure 1b features a queuing
system where an user can reserve a slot (Line 3,4) by submitting
a transaction. An attacker can succeed in getting that slot by
eavesdropping on the gas limit set by the victim transaction, and
incentivizing the miner by submitting a transaction with a higher
gas limit. Refer to Section IV where we connect reentrancy and
TOD bugs to our notion of state-inconsistency.

III. MOTIVATION

This section introduces motivating examples of state-
inconsistency (SI) vulnerabilities, the challenges associated with
automatically detecting them, how state-of-the-art techniques
fail to tackle those challenges, and our solution.

A. Identifying the root causes of SI vulnerabilities
By manually analyzing prior instances of reentrancy and

TOD bugs—two popular SI vulnerabilities (Section II), and the
warnings emitted by the existing automated analysis tools [50],
[3], [54], [46], we observe that an SI vulnerability occurs when

the following preconditions are met: (i) two method executions,
or transactions—both referred to as threads (th)—operate on
the same storage state, and (ii) either of the two happens—(a)
Stale Read (SR): The attacker thread tha diverts the flow of
execution to read a stale value from storage(v) before the
victim thread thv gets the chance to legitimately update the same
in its flow of execution. The reentrancy vulnerability presented
in Figure 1a is the result of a stale read. (b) Destructive Write
(DW): The attacker thread tha diverts the flow of execution to
preemptively write to storage(v) before the victim thread
thv gets the chance to legitimately read the same in its flow of
execution. The TOD vulnerability presented in Figure 1b is the
result of a destructive write.

While the SR pattern is well-studied in the existing
literature [54], [50], [46], [23], and detected by the respective
tools with varying degree of accuracy, the reentrancy attack
induced by the DW pattern has never been explored by the
academic research community. Due to its conservative strategy
of flagging any state access following an external call without
considering if it creates an inconsistent state, MYTHRIL raises
alarms for a super-set of DW patterns, leading to a high number
of false positives. In this work, we not only identify the root
causes of SI vulnerabilities, but also unify the detection of both
the patterns with the notion of hazardous access (Section III).

B. Running examples

Example 1. The contract in Figure 2 is vulnerable to reentrancy
due to destructive write. It allows for the splitting of funds held
in the payer’s account between two payees — a and b. For a
payer with id id, updateSplit records the fraction (%) of
her fund to be sent to the first payer in splits[id] (Line 5)
. In turn, splitFunds transfers splits[id] fraction of
the payer’s total fund to payee a, and the remaining to payee
b. Assuming that the payer with id = 0 is the attacker, she
executes the following sequence of calls in a transaction – (1)
calls updateSplit(0,100) to set payee a’s split to 100%
(Line 5); (2) calls splitFunds(0) to transfer her entire fund
to payee a (Line 16); (3) from the fallback function, reenters
updateSplit(0,0) to set payee a’s split to 0% (Line 5);
(4) returns to splitFunds where her entire fund is again
transferred (Line 19) to payee b. Consequently, the attacker is
able to trick the contract into double-spending the amount of
Ethers held in the payer’s account.
Example 2. The contract in Figure 3 is non-vulnerable (safe).
The withdrawBalance method allows the caller to withdraw
funds from her account. The storage variable userBalance is
updated (Line 10) after the external call (Line 9). In absence of
the mutex, the contract could contain a reentrancy bug due to
the delayed update. However, the mutex is set to true when
the function is entered the first time. If an attacker attempts to
reenter withdrawBalance from her fallback function, the
check at Line 4 will foil such an attempt. Also, the transfer
method adjusts the account balances of a sender and a receiver,
and is not reentrant due to the same reason (mutex).

163

1 // [Step 1]: Set split of 'a' (id = 0) to 100(%)
2 // [Step 4]: Set split of 'a' (id = 0) to 0(%)
3 function updateSplit(uint id, uint split) public{
4 require(split <= 100);
5 splits[id] = split;
6 }
7

8 function splitFunds(uint id) public {
9 address payable a = payee1[id];

10 address payable b = payee2[id];
11 uint depo = deposits[id];
12 deposits[id] = 0;
13

14 // [Step 2]: Transfer 100% fund to 'a'
15 // [Step 3]: Reenter updateSplit
16 a.call.value(depo * splits[id] / 100)("");
17

18 // [Step 5]: Transfer 100% fund to 'b'
19 b.transfer(depo * (100 - splits[id]) / 100);
20 }

Fig. 2: The attacker reenters updateSplit from the external call at
Line 16 and and sets splits[id] = 0. This enables the attacker
to transfer all the funds again to b.

C. State of the vulnerability analyses

In light of the examples above, we outline the key
challenges encountered by the state-of-the-art techniques, i.e.,
SECURIFY [54], VANDAL [23], MYTHRIL [3], OYENTE [46],
and SEREUM [50] that find state-inconsistency (SI)
vulnerabilities. Table I summarizes our observations.

Cross-function attack. The public methods in a smart contract
act as independent entry points. Instead of reentering the
same function, as in the case of a traditional reentrancy
attack, in a cross-function attack, the attacker can reenter the
contract through any public function. Detecting cross-function
vulnerabilities poses a significantly harder challenge than
single-function reentrancy, because every external call can jump
back to any public method—leading to an explosion in the
search space due to a large number of potential call targets.

Unfortunately, most of the state of the art techniques cannot
detect cross-function attacks. For example, the No Write After
Call (NW) strategy of SECURIFY identifies a storage variable
write (SSTORE) following a CALL operation as a potential
violation. MYTHRIL adopts a similar policy, except it also warns
when a state variable is read after an external call. Both VANDAL
and OYENTE check if a CALL instruction at a program point
can be reached by a recursive call to the enclosing function.
In all four tools, reentrancy is modeled after The DAO [11]
attack, and therefore scoped within a single function. Since
the attack demonstrated in Example 1 spans across both the
updateSplit and splitFunds methods, detecting such
an attack is out of scope for these tools. Coincidentally, the last
three tools raise alarms here for the wrong reason, due to the
over-approximation in their detection strategies. SEREUM is a
run-time bug detector that detects cross-function attacks. When
a transaction returns from an external call, SEREUM write-locks
all the storage variables that influenced control-flow decisions
in any previous invocation of the contract during the external
call. If a locked variable is re-written going forward, an attack
is detected. SEREUM fails to detect the attack in Example 1

1 function withdrawBalance(uint amount) public {
2 //[Step 1]: Enter when mutex is false
3 //[Step 4]: Early return, since mutex is true
4 if (mutex == false) {
5 //[Step 2]: mutex = true prevents re-entry
6 mutex = true;
7 if (userBalance[msg.sender] > amount) {
8 //[Step 3]: Attempt to reenter
9 msg.sender.call.value(amount)("");

10 userBalance[msg.sender] -= amount;
11 }
12 mutex = false;
13 }
14 }
15

16 function transfer(address to, uint amt) public {
17 if (mutex == false) {
18 mutex = true;
19 if (userBalance[msg.sender] > amt) {
20 userBalance[to] += amt;
21 userBalance[msg.sender] -= amt;
22 }
23 mutex = false;
24 }
25 }

Fig. 3: Line 6 sets mutex to true, which prohibits an attacker from
reentering by invalidating the path condition (Line 4).

(Figure 2), because it would not set any lock due to the absence
of any control-flow deciding state variable 1.

Our solution: To mitigate the state-explosion issue inherent
in static techniques, SAILFISH performs a taint analysis from
the arguments of a public method to the CALL instructions to
consider only those external calls where the destination can be
controlled by an attacker. Also, we keep our analysis tractable
by analyzing public functions in pairs, instead of modeling an
arbitrarily long call-chain required to synthesize exploits.
Hazardous access. Most tools apply a conservative policy,
and report a read/write from/to a state variable following an
external call as a possible reentrancy attack. Since this pattern
alone is not sufficient to lead the contract to an inconsistent
state, they generate a large number of false positives. Example 1
(Figure 2) without the updateSplitmethod is not vulnerable,
since splits[id] cannot be modified any more. However,
MYTHRIL, OYENTE, and VANDAL flag the modified example
as vulnerable, due to the conservative detection strategies they
adopt, as discussed before.

Our solution: We distinguish between benign and vulnerable
reentrancies, i.e., reentrancy as a feature vs. a bug. We only
consider reentrancy to be vulnerable if it can be leveraged to
induce a state-inconsistency (SI). Precisely, if two operations
(a) operate on the same state variable, (b) are reachable from
public methods, and (c) at-least one is a write—we call these
two operations a hazardous access pair. The notion of hazardous
access unifies both Stale Read (SR), and Destructive Write
(DW). SAILFISH performs a lightweight static analysis to detect
such hazardous accesses. Since the modified Example 1 (without
the updateSplit) presented above does not contain any
hazardous access pair, we do not flag it as vulnerable.
Scalability. Any SOLIDITY method marked as either public
or external can be called by an external entity any number of

1A recent extension [18] of SEREUM adds support for unconditional
reentrancy attacks by tracking data-flow dependencies. However, they only
track data-flows from storage variables to the parameters of calls. As a result,
even with this extension, SEREUM would fail to detect the attack in Example 1.

164

TABLE I: Comparison of smart-contract bug-finding tools.

Tool Cr. Haz. Scl. Off.

SECURIFY [54]
VANDAL [23]
MYTHRIL [3]
OYENTE [46]
SEREUM [50]

SAILFISH

Full Partial No support. Cr.: Cross-function, Haz.: Hazardous
access, Scl.: Scalability, Off.: Offline detection

times in any arbitrary order—which translates to an unbounded
search space during static reasoning. SECURIFY [54] relies
on a Datalog-based data-flow analysis, which might fail to
reach a fixed point in a reasonable amount of time, as the size
of the contract grows. MYTHRIL [3] and OYENTE [46] are
symbolic-execution-based tools that share the common problems
suffered by any symbolic engine.

Our solution: In SAILFISH, the symbolic verifier validates
a program path involving hazardous accesses. Unfortunately,
the path could access state variables that are likely to be
used elsewhere in the contract. It would be very expensive
for a symbolic checker to perform a whole-contract analysis
required to precisely model those state variables. We augment
the verifier with a value summary that over-approximates the
side-effects of the public methods on the state variables across
all executions. This results in an inexpensive symbolic evaluation
that conservatively prunes false positives.
Offline bug detection. Once deployed, a contract becomes
immutable. Therefore, it is important to be able to detect bugs
prior to the deployment. However, offline (static) approaches
come with their unique challenges. Unlike an online (dynamic)
tool that detects an ongoing attack in just one execution, a static
tool needs to reason about all possible combinations of the
contract’s public methods while analyzing SI issues. As a static
approach, SAILFISH needs to tackle all these challenges.

D. SAILFISH overview
This section provides an overview (Figure 4) of SAILFISH

which consists of the EXPLORER and the REFINER modules.
Explorer. From a contract’s source, SAILFISH statically builds
a storage dependency graph (SDG) (Section V-A) which
over-approximates the read-write accesses (Section V-B) on
the storage variables along all possible execution paths. State-
inconsistency (SI) vulnerabilities are modeled as graph queries
over the SDG. If the query results in an empty set, the contract
is certainly non-vulnerable. Otherwise, we generate a counter-
example which is subject to further validation by the REFINER.
Example 1 Example 1 (Figure 2) contains a reentrancy bug
that spans across two functions. The attacker is able to create
an SI by leveraging hazardous accesses—splits[id]
influences (read) the argument of the external call at Line 16 in
splitFunds, and it is set (write) at Line 5 in updateSplit.
The counter-example returned by the EXPLORER is 11 → 12

→ 16 → 4 → 5 . Similarly, in Example 2 (Figure 3), when
withdrawBalance is composed with transfer to model a
cross-function attack, SAILFISH detects the write at Line 10, and
the read at Line 19 as hazardous. Corresponding counter-example

Smart
Contract

Explorer
Points-To &
Dataflow
Analyses

Refiner

Feasible paths +
Value summary

Storage
Dependency

Graph

Query

Fig. 4: Overview of SAILFISH

is 4 ... 9 → 17 ... 19 . In both the cases, the EXPLORER
detects a potential SI, so conservatively they are flagged as
possibly vulnerable. However, this is incorrect for Example 2.
Thus, we require an additional step to refine the initial results.
Refiner. Although the counter-examples obtained from the
EXPLORER span across only two public functions P1 and P2,
the path conditions in the counter-examples may involve state
variables that can be operated on by the public methods P∗ other
than those two. For example, in case of reentrancy, the attacker
can alter the contract state by invoking P∗ after the external
call-site—which makes reentry to P2 possible. To alleviate
this issue, we perform a contract-wide value-summary analysis
that computes the necessary pre-conditions to set the values
of storage variables. The symbolic verifier consults the value
summary when evaluating the path constraints.
Example 2 In Example 2 (Figure 3), the REFINER would
conservatively assume the mutex to be unconstrained after the
external call at Line 9 in absence of a value summary – which
would make the path condition feasible. However, the summary
(Section VI) informs the symbolic checker that all the possible
program flows require the mutex already to be false, in
order to set the mutex to false again. Since the pre-condition
conflicts with the program-state δ = {mutex 7→ true} (set by
Line 6), SAILFISH refutes the possibility of the presence of a
reentrancy, thereby pruning the false warning.

IV. STATE INCONSISTENCY BUGS

In this section, we introduce the notion of state-inconsistency,
and how it is related to reentrancy and TOD bugs.

Let ~F be the list of all public/external functions in a contract
C defined later in Figure 9. For each function F ∈ ~F , we denote
F .statements to be the statements of F , and f = F .name to
be the name of F . In Ethereum, one or more functions can be
invoked in a transaction T . Since the contract code is executed by
the EVM, the value of its program counter (PC) deterministically
identifies every statement s∈F .statements during run-time. An
event e= 〈pc,f(~x),inv〉 is a 3-tuple that represents the inv-th
invocation of the function F called from outside (i.e., external
to the contract C) with arguments ~x. Identical invocation of a
function F is associated with the same arguments. For events,
we disregard internal subroutine calls, e.g., if the function F
calls another public function G from inside its body, the latter
invocation does not generate an event. In other words, the
notion of events captures the occurrences when a public/external
method of a contract is called externally, i.e., across the contract
boundary. Functions in events can be called in two ways: either
directly by T , or by another contract. If an external call statement
sc∈Fc.statements results in a reentrant invocation of F , then

165

pc holds the value of the program counter of sc. In this case,
we say that the execution of F is contained within that of Fc.
However, the value pc=0 indicates that F is invoked by T , and
not due to the invocation of any other method in C.
Definition 1 (Schedule). A schedule H = [e1, e2, ..., en],
∀e∈H,e.f ∈{F .name|F ∈ ~F} is a valid sequence of n events
that can be executed by the EVM. The events, when executed
in order on an initial contract state ∆, yield the final state ∆′,
i.e., ∆

e1−→∆1
e2−→∆2...

en−→∆′, which we denote as ∆
H−→∆′.

The set of all possible schedules is denoted by H.
Definition 2 (Equivalent schedules). Two schedules H1 and
H2, where |H1| = |H2|, are equivalent, if ∀e ∈ H1,∃e′ ∈ H2

such that e.f = e′.f ∧ e.inv = e′.inv, and ∀e′ ∈ H2,∃e ∈ H1,
such that e′.f=e.f∧e′.inv=e.inv. We denote it byH1≡H2.

Intuitively, equivalent schedules contain the same set of
function invocations.
Definition 3 (Transformation function). A transformation
function µ : H → H accepts a schedule H, and transforms it
to an equivalent schedule H′ ≡ H, by employing one of two
possible strategies at a time—(i) mutates pc of an event ∃e′∈H′,
such that e′.pc holds a valid non-zero value, (ii) permutes H.
These strategies correspond to two possible ways of transaction
ordering, respectively: (a) when a contract performs an external
call, it can be leveraged to re-enter the contract through internal
transactions, (b) the external transactions of a contract can be
mined in any arbitrary order.

Definition 4 (State inconsistency bug). For a contract instance
C, an initial state ∆, and a scheduleH1 where ∀e∈H1,e.pc=0,
if there exists a schedule H2 = µ(H1), where ∆

H1−−→∆1 and
∆
H2−−→∆2, then C is said to have a state-inconsistency bug, iff

∆1 6=∆2.
Definition 5 (Reentrancy bug). If a contract C contains an
SI bug due to two schedules H1 and H2 = µ(H1), such that
∃e ∈ H2 (e.pc 6= 0) (first transformation strategy), then the
contract is said to have a reentrancy bug.

In other words, e.pc 6= 0 implies that e.f is a reentrant
invocation due to an external call in C.
Definition 6 (Generalized TOD bug). If a contract C contains
an SI bug due to two schedules H1 and H2 =µ(H1), such that
H2 is a permutation (second transformation strategy) of H1,
then the contract is said to have a generalized transaction order
dependence (G-TOD), or event ordering bug (EO) [43].

Permutation of events corresponds to the fact that the trans-
actions can be re-ordered due to the inherent non-determinism in
the network, e.g., miner’s scheduling strategy, gas supplied, etc.
In this work, we limit the detection to only those cases where
Ether transfer is affected by state-inconsistency—which is in line
with the previous work [54], [46]. We refer to those as TOD bugs.

V. EXPLORER: LIGHTWEIGHT EXPLORATION OVER SDG

This section introduces the storage dependency graph (SDG),
a graph abstraction that captures the control and data flow
relations between the storage variables and the critical program
instructions, e.g., control-flow deciding, and state-changing

operations of a smart contract. To detect SI bugs, we then define
hazardous access, which is modeled as queries over the SDG.

A. Storage dependency graph (SDG)
In a smart contract, the public methods are the entry-points

which can be called by an attacker. SAILFISH builds a storage
dependency graph (SDG) N = (V, E, χ) that models the
execution flow as if it was subverted by an attacker, and how
the subverted flow impacts the global state of the contract.
Specifically, the SDG encodes the following information:
Nodes. A node of an SDG represents either a storage variable,
or a statement operating on a storage variable. If V be the set
of all storage variables of a contract, and S be the statements
operating on V , the set of nodes V :={V∪S}.
Edges. An edge of an SDG represents either the data-flow
dependency between a storage variable and a statement, or the
relative ordering of statements according to the program control-
flow. χ(E)→{D,W,O} is a labeling function that maps an edge to
one of the three types. A directed edge 〈u,v〉 from node u to node
v is labeled as (a) D; if u∈V,v∈S, and the statement v is data-
dependent on the state variable u (b) W; if u∈S,v∈V , and the
state variable v is written by the statement u (c) O; if u∈S,v∈S,
and statement u precedes statement v in the control-flow graph.

We encode the rules for constructing an SDG in Datalog.
First, we introduce the reader to Datalog preliminaries, and then
describe the construction rules.
Datalog preliminaries. A Datalog program consists of a set
of rules and a set of facts. Facts simply declare predicates
that evaluate to true. For example, parent("Bill",
"Mary") states that Bill is a parent of Mary. Each Datalog
rule defines a predicate as a conjunction of other predicates.
For example, the rule: ancestor(x, y) :- parent(x,
z), ancestor(z, y)—says that ancestor(x, y) is
true, if both parent(x, z) and ancestor(z, y) are true.
In addition to variables, predicates can also contain constants,
which are surrounded by double quotes, or “don’t cares”, denoted
by underscores.

reach(s1,s2) :− s2 is reachable from s1
intermediate(s1,s2,s3) :− reach(s1,s2),reach(s2,s3)

succ(s1,s2) :− s2 is the successor of s1
extcall(s,cv) :− s is an external call,

cv is the call value
entry(s,m) :− s is an entry node of method m
exit(s,m) :− s is an exit node of method m
storage(v) :− v is a storage variable
write(s,v) :− s updates variable v

depend(s,v) :− s is data-flow dependent on v
owner(s) :− only owner executes s

Fig. 5: Built-in rules for ICFG related predicates.

Base ICFG facts. The base facts of our inference engine
describe the instructions in the application’s inter-procedural
control-flow graph (ICFG). In particular, Figure 5 shows the
base rules that are derived from a classical ICFG, where s,m and
v correspond to a statement, method, and variable respectively.
SAILFISH uses a standard static taint analysis out-of-the-box
to restrict the entries in the extcall predicate. Additionally,
owner(s) represents that s can only be executed by contract

166

owners, which enables SAILFISH to model SI attacks precisely.
Refer to Appendix V-B for details.

sdg(s1,v,
′W′) :− write(s1,v),storage(v)

sdg(s1,v,
′D′) :− depend(s1,v),storage(v)

sdg(s1,s2,
′O′) :− sdg(s1,_,_),reach(s1,s2),sdg(s2,_,_),

¬intermediate(s1,_,s2)
sdg(s1,s2,

′O′) :− extcall(s1,_),entry(s2,_)
sdg(s4,s3,

′O′) :− extcall(s1,_),entry(_,m0),
succ(s1,s3),exit(s4,m0)

Fig. 6: Rules for constructing SDG.
SDG construction. The basic facts generated from the previous
step can be leveraged to construct the SDG. As shown in Fig 6, a
“write-edge” of an SDG is labeled as ’W’, and is constructed by
checking whether storage variable v gets updated in statement
s. Similarly, a “data-dependency edge” is labeled as ’D’, and
is constructed by determining whether the statement s is data-
dependent on the storage variable v. Furthermore, we also have
the “order-edge” to denote the order between two statements, and
those edges can be drawn by checking the reachability between
nodes in the original ICFG. Finally, an external call in SOLIDITY
can be weaponized by the attacker by hijacking the current
execution. In particular, once an external call is invoked, it may
trigger the callback function of the attacker who can perform
arbitrary operations to manipulate the storage states of the
original contract. To model these semantics, we also add extra
’O’-edges to connect external calls with other public functions
that can potentially update storage variables that may influence
the execution of the current external call. Specifically, we add
an extra order-edge to connect the external call to the entry point
of another public function m, as well as an order-edge from the
exit node of m to the successor of the original external call.
Example 3 Consider Example 1 (Figure 2) that demonstrates an
SI vulnerability due to both splitFunds and updateSplit
methods operating on a state variable splits[id]. Figure 7
models this attack semantics. deposits and splits[id]
correspond to the variable nodes in the graph. Line 12 writes to
deposits; thus establishing a W relation from the instruction
to the variable node. Line 16 and Line 19 are data-dependent
on both the state variables. Hence, we connect the related nodes
with D edges. Finally, the instruction nodes are linked together
with directed O edges following the control-flow. To model the
reentrancy attack, we created an edge from the external call node
2 → 4 , the entry point of splitFunds. Next, we remove the

edge between the external call 2 , and its successor 3 . Lastly,
we add an edge between 5 , the exit node of updateSplit,
and 3 , the following instruction in updateSplit.

B. Hazardous access
Following our discussion in Section IV, to detect SI bugs in a

smart contract, one needs to enumerate and evaluate all possible
schedules on every contract state—which is computationally
infeasible. To enable scalable detection of SI bugs statically,
we define hazardous access, which is inspired by the classical
data race problem, where two different execution paths operate
on the same storage variable, and at least one operation is a

deposits[id] = 0deposits splits

a.call.value (depo *
splits[id] / 100)

b.call.value (depo *
(100 - splits[id]) / 100)

W

OD

D

O

D

D

2

1

3

splits[id] = split
require

(split <= 100)

W

O

4 5

O

O

Fig. 7: SDG for Example 1. Ovals and rectangles represent storage
variables and instructions. Blue [] and green [] colored nodes
correspond to instructions from splitFunds and updateSplit
methods, respectively. The O, D, and W edges stand for order, data,
and write edges, respectively. The red [] edges on splits
denote hazardous access.

write. In a smart contract, the execution paths correspond to two
executions of public function(s).

As shown in the hazard(.) predicate in Figure 8, a hazardous
access is a tuple denoted by 〈s1,s2,v〉, where v is a storage vari-
able which both the statements s1 and s2 operate on, and either s1,
or s2, or both are write operations. While deriving the data-flow
dependency predicate sdg(s,v,′D′), we consider both direct and
indirect dependencies of the variable v. We say that a statement
s operates on a variable v if either s is an assignment of variable
v or s contains an expression that is dependent on variable s.

SAILFISH identifies hazardous access statically by querying
the contract’s SDG, which is a path-condition agnostic data
structure. A non-empty query result indicates the existence of a
hazardous access. However, these accesses might not be feasible
in reality due to conflicting path conditions. The REFINER
module (Section VI) uses symbolic evaluation to prune such
infeasible accesses.

C. State inconsistency bug detection

As discussed in Section IV, a smart contract contains an
SI bug if there exists two schedules that result in a different
contract state, i.e., the values of the storage variables. Instead
of enumerating all possible schedules (per definition) statically
which is computationally infeasible, we use hazardous access
as a proxy to detect the root cause of SI. Two schedules can
result in different contract states if: (a) there exist two operations,
where at least one is a write access, on a common storage
variable, and (b) the relative order of such operations differ in two
schedules. The hazardous access captures the first (a) condition.
Now, in addition to hazardous access, SI bugs require to hold
certain conditions that can alter (b) the relative order of the
operations in the hazardous access pair. For reentrancy, SAILFISH
checks if a hazardous access pair is reachable in a reentrant
execution, as it can alter the execution order of the statements in a
hazardous access pair. To detect TOD, SAILFISH checks whether
an Ether transfer call is reachable from one of the statements in
a hazardous access pair. In this case, the relative execution order
of those statements determines the amount of Ether transfer.
Reentrancy detection. A malicious reentrancy query (Figure 8)
looks for a hazardous access pair 〈s1,s2〉 such that both s1 and

167

hazard(s1,s2,v) :− storage(v),sdg(s1,v,
′W′),

sdg(s2,v,_),s1 6=s2
reentry(s1,s2) :− extcall(e,_),reach(e,s1),reach(e,s2),

hazard(s1,s2,_),¬owner(s1),¬owner(s2)
tod(s1,s2) :− extcall(e,cv),cv>0,reach(s1,e),

hazard(s1,s2,_),¬owner(s∗),
s?∈{s1,s2}

Base case :
cex(s0,s1) :− entry(s0,_),succ(s0,s1),f(s1,s2),

extcall(s′,_),reach(s1,s?),
s?∈{s1,s2,s′},f ∈{tod,reentry}

Inductive case :
cex(s1,s2) :− cex(_,s1),succ(s1,s2),f(s3,s4),

extcall(s′,_),reach(s2,s?),
s?∈{s3,s4,s′},f ∈{tod,reentry}

Fig. 8: Rules for hazardous access and counter-examples.

s2 are reachable from an external call in the SDG, and executable
by an attacker.

To detect delegate-based reentrancy attacks, where the
delegatecall destination is tainted, we treat delegatecall in the
same way as the extcall in Figure 8. For untainted delegatecall
destinations, if the source code of the delegated contract is
available, SAILFISH constructs an SDG that combines both the
contracts. If neither the source, nor the address of the delegated
contract is available, SAILFISH treats delegatecall in the same
way as an unsafe external call. For create-based attacks, since the
source code of the child contract is a part of the parent contract,
SAILFISH builds the SDG by combining both the creator (parent)
and the created (child) contracts. Subsequently, SAILFISH
leverages the existing queries in Figure 8 on the combined SDG.
For untainted extcall, and delegatecall destinations, SAILFISH
performs inter-contract (Appendix V-A) analysis to build an
SDG combining both contracts.
Example 4 When run on the SDG in Figure 7 (Example 1), the
query returns the tuple 〈3,5〉, because they both operate on the
state variable splits, and belong to distinct public methods,
viz., splitFunds and updateSplit respectively.
TOD detection. As explained in Section II, TOD happens when
Ether transfer is affected by re-ordering transactions. Hence, a
hazardous pair 〈s1,s2〉 forms a TOD if the following conditions
hold: 1) an external call is reachable from either s1 or s2, and 2)
the amount of Ether sent by the external call is greater than zero.

SAILFISH supports all three TOD patterns supported by
SECURIFY [54]—(i) TOD Transfer specifies that the pre-
condition of an Ether transfer, e.g., a condition c guarding the
transfer, is influenced by transaction ordering, (ii) TOD Amount
indicates that the amount a of Ether transfer is dependent on trans-
action ordering, and (iii) TOD Receiver defines that the exter-
nal call destination e is influenced by the transaction ordering. To
detect these attacks, SAILFISH reasons if c, or a, or e is data-flow
dependent on some storage(v), and the statements corresponding
to those three are involved in forming a hazardous pair.
Counter-example generation. If a query over the SDG returns
⊥ (empty), then the contract is safe, because the SDG models the
state inconsistency in the contract. On the other hand, if the query
returns a list of pairs 〈s1,s2〉, SAILFISH performs a refinement
step to determine if those pairs are indeed feasible. Since the
original output pairs (i.e., 〈s1,s2〉) can not be directly consumed

by the symbolic execution engine, SAILFISH leverages the
cex-rule in Figure 8 to compute the minimum ICFG G that
contains statements s1, s2, and the relevant external call s′. In
the base case, cex-rule includes edges between entry points and
their successors that can transitively reach s1, s2, or s′. In the
inductive case, for every node s1 that is already in the graph, we
recursively include its successors that can also reach s1, s2, or s′.
Example 5 SAILFISH extracts the graph slice starting from
the root (not shown in Figure 7) of the SDG to node 5 . The
algorithm extracts the sub-graph 〈root〉 ∗−→ 2 → 4 → 5 →
3 , maps all the SDG nodes to the corresponding ICFG nodes,

and computes the final path slice which the REFINER runs on.

VI.
REFINER: SYMBOLIC EVALUATION WITH VALUE SUMMARY

As explained in Section V, if the EXPLORER module reports
an alarm, then there are two possibilities: either the contract
is indeed vulnerable, or the current counter-example (i.e.,
subgraph generated by the rules in Figure 8) is infeasible.
Thus, SAILFISH proceeds to refine the subgraph by leveraging
symbolic evaluation (Section VI-B). However, as we show later
in the evaluation, a naive symbolic evaluation whose storage
variables are completely unconstrained will raise several false
positives. To address this challenge, the REFINER module in
SAILFISH leverages a light-weight value summary analysis
(Section VI-A) that output the potential symbolic values of each
storage variable under different constraints, which will be used
as the pre-condition of the symbolic evaluation (Section VI-B).

A. Value summary analysis (VSA)
For each storage variable, the goal of value summary analysis

(VSA) is to compute its invariant that holds through the life-cycle
of a smart contract. While summary-based analysis has been
applied in many different applications before, there is no
off-the-shelf VSA for smart contracts that we could leverage for
the following reasons: (a) Precision. A value summary based
on abstract interpretation [49] that soundly computes the interval
for each storage variable scales well, but since it ignores the
path conditions under which the interval holds, it may lead to
weaker preconditions that are not sufficient to prune infeasible
paths. For the example in Figure 3, a naive and scalable
analysis will ignore the control flows, and conclude that the
summary of mutex is > (either true or false), which will
be useless to the following symbolic evaluation, since mutex is
unconstrained. (b) Scalability. A path-by-path summary [34],
[20] that relies on symbolic execution first computes the pre-
condition prew, post-condition postw, and per-path summary
φw =prew∧postw for every path w. The overall summary φf
of the function f is the disjunction of individual path summaries,
i.e., φf =∨wφw. We identify the following barriers in adopting
this approach out of the box: (i) Generation: The approach is
computationally intensive due to well-known path explosion
problem. (ii) Application: The summary being the unification
of the constraints collected along all the paths, such a summary
is complex, which poses a significant challenge to the solver. In
fact, when we evaluated (Appendix I) our technique by plugging

168

Program P ::= (δ,π, ~F)
ValueEnv δ ::= V →Expr
PathEnv π ::= loc→C

Expr e ::= x | c | op(~e) | S(~e)
Statement s ::= havoc(s) | l :=e | s;s | r=f(~e)

| (if e s s) | (while e s)
Function F ::= function f(~x) s returns y

x,y∈Variable c∈Constant S∈StructName
Fig. 9: Syntax of our simplified language.

in a similar path-by-path summary, the analysis timed out for
21.50% of the contracts due to the increased cost of the REFINE
phase. (iii) Usability: Lastly, such a summary is precise, yet
expensive. Computing a precise summary is beneficial only
when it is used sufficient times. Our aim is to build a usable
system that scales well in two dimensions—both to large
contracts, and a large number of contracts. As the dataset is
deduplicated, the scope of reusability is narrow. Therefore, an
expensive summary does not pay off well given our use case.
What we need in SAILFISH is a summarization technique that
has a small resource footprint, yet offers reasonable precision
for the specific problem domain, i.e., smart contracts.

Therefore, we design a domain-specific VSA (Figure 10)
to tackle both the challenges: (a) Precision: Unlike previous
scalable summary techniques that map each variable to an interval
whose path conditions are merged, we compensate for such pre-
cision loss at the merge points of the control flows using an idea
inspired by symbolic union [53]—our analysis stitches the branch
conditions to their corresponding symbolic variables at the merge
points. (b) Scalability: (i) Generation: This design choice, while
being more precise, could still suffer from path explosion. To mit-
igate this issue, our analysis first starts with a precise abstract do-
main that captures concrete values and their corresponding path
conditions, and then gradually sacrifices the precision in the con-
text of statements that are difficult, or expensive to reason about,
e.g., loops, return values of external calls, updates over nested
data structures, etc. (ii) Application: Lastly, we carefully design
the evaluation rules (If-rule in Figure 10) that selectively drop
path conditions at the confluence points—which leads to simpler
constraints at the cost of potential precision loss. However, our
evaluation of SAILFISH suggests that, indeed, our design of VSA
strikes a reasonable trade-off in the precision-scalability spectrum
in terms of both bug detection and analysis time.

To formalize our rules for VSA, we introduce a simplified
language in Figure 9. In particular, a contract P consists of (a)
a list of public functions ~F (private functions are inline), (b) a
value environment δ that maps variables or program identifiers
to concrete or symbolic values, and (c) a path environment π
that maps a location loc to its path constraint C. It is a boolean
value encoding the branch decisions taken to reach the current
state. Moreover, each function F consists of arguments, return
values, and a list of statements containing loops, branches, and
sequential statements, etc. Our expressions e include common
features in SOLIDITY such as storage access, struct initialization,
and arithmetic expressions (function invocation is handled within
a statement), etc. Furthermore, since all private functions are
inline, we assume that the syntax for calling an external function

with return variable r is r=f(~e). Finally, we introduce a havoc
operator to make those variables in hard-to-analyze statements
unconstrained, e.g., havoc(s) changes each variable in s to >
(completely unconstrained).

Figure 10 shows a representative subset of the inference
rules for computing the summary. A program state consists
of the value environment δ and the path condition π. A rule
〈e,δ,π〉 〈v,δ′,π′〉 says that a successful execution of e in the
program state 〈δ,π〉 results in value v and the state 〈δ′,π′〉.
Bootstrapping. The value summary procedure starts with the
“contract” rule that sequentially generates the value summary for
each public function Fi (all non-public methods are inline). The
output value environment δ′ contains the value summary for all
storage variables. More precisely, for each storage variable s, δ′

maps it to a set of pairs 〈π,v〉 where v is the value of s under the
constraint π. Similarly, to generate the value summary for each
function Fi, SAILFISH applies the “Func” rule to visit every
statement si inside method Fi.
Expression. There are several rules to compute the rules for
different expressions e. In particular, if e is a constant c, the
value summary for e is c itself. If e is an argument of a public
function Fi whose values are completely under the control of
an attacker, the “Argument” rule will havoc e and assume that
its value can be any value of a particular type.
Helper functions. The dom(δ) returns all the keys of an
environment δ. The lhs(e) returns variables written by e.
Collections. For a variable of type Array or Map, our value
summary rules do not differentiate elements under different
indices or keys. In particular, for a variable a of type array,
the “store” rule performs a weak update by unioning all the
previous values stored in a with the new value e0. We omit the
rule for the map since it is similar to an array. Though the rule
is imprecise as it loses track of the values under different indices,
it summarizes possible values that are stored in a.
Assignment. The “assign” rule essentially keeps the value
summaries for all variables from the old value environment δ
except for mapping e0 to its new value e1.
External calls. Since all private and internal functions are
assumed to be inline, we assume all function invocations are
external. As we do not know how the attacker is going to interact
with the contract via external calls, we assume that it can return
arbitrary values. Here is the key intuition of the “ext" rule: for any
invocation to an external function, we havoc its return variable r.
Loop. Finally, since computing value summaries for variables
inside loop bodies are very expensive and hard to scale to
complex contracts, our “loop” rule simply havocs all variables
that are written in the loop bodies.
Conditional. Rule “if” employs a meta-function µ to merge
states from alternative execution paths.

µ(b,v1,v2)=

{〈>,v1〉} if b==true

{〈>,v2〉} if b==false

{〈b,v1〉,〈¬b,v2〉} Otherwise

In particular, the rule first computes the symbolic expression v0
for the branch condition e0. If v0 is evaluated to true, then the
rule continues with the then branch e1 and computes its value

169

P=(δ,π, ~F), 〈F0,δ,π〉 〈void,δ1,π1〉
...

〈Fn,δn,πn〉 〈void,δ′,π′〉
〈P,δ,π〉 〈void,δ′,π′〉

(Contract)

〈s,δ,π〉 〈void,δ′,π′〉
〈(function f(~x) s returns y),δ,π〉 〈void,δ′,π′〉

(Func)

〈c,δ,π〉 〈c,δ,π〉
(Const) isArgument(a) v=havoc(a)

〈a,δ,π〉 〈v,δ′,π〉
(Argument)

〈e1,δ,π〉 〈v1,δ,π〉 ⊕∈{+,−,∗,/}
〈e2,δ,π〉 〈v2,δ,π〉 v=v1⊕v2
〈(e1⊕e2),δ,π〉 〈v,δ,π〉

(Binop)

〈e0,δ,π〉 〈v0,δ,π〉
δ′={y 7→δ(y) | y∈dom(δ)∧y 6=a} ∪ {a[0] 7→(δ(a[0])∪〈π,v0〉)}

〈(a[i]=e0),δ,π〉 〈void,δ′,π〉 (Store)

〈_,v〉=δ(a[0])
〈a[i],δ,π〉 〈v,δ,π〉

(Load)

δ′={y 7→δ(y) | y∈dom(δ)∧y 6=e0} ∪ {e0 7→〈π,e1〉∪δ(e0)}
〈(e0=e1),δ,π〉 〈void,δ′,π〉 (Assign)

δ′={y 7→δ(y) | y∈dom(δ)∧y 6=r} ∪ {r 7→〈π,havoc(r)〉}
〈r=f(~e),δ,π〉 〈void,δ′,π〉 (Ext)

〈e0,δ,π〉 〈v0,δ,π〉 π′=π∧v0
δ′={y 7→δ(y) | y 6∈lhs(e1)} ∪ {y 7→〈π′,havoc(y)〉 | y∈lhs(e1)}

〈(while e0 e1),δ,π〉 〈v0,δ′,π∧¬v0〉 (Loop)

〈e0,δ,π〉 〈v0,δ,π〉 b= isTrue(v0)
〈e1,δ,π∧b〉 〈v1,δ1,π1〉
〈e2,δ,π∧¬b〉 〈v2,δ2,π2〉

δ′=δ ∪ δ1 ∪δ2
〈(if e0 e1 e2),δ,π〉 〈µ(b,v1,v2),δ′,π〉

(If)

Fig. 10: Inference rules for value summary analysis.

summary v1. Otherwise, the rule goes with the else branch
e2 and obtains its value summary v2. Finally, if the branch
condition e0 is a symbolic variable whose concrete value cannot
be determined, then our value summary will include both v1 and
v2 together with their path conditions. Note that in all cases, the
path environment π′ needs to be computed by conjoining the
original π with the corresponding path conditions that are taken
by different branches.

B. Symbolic evaluation
Based on the rules in Figure 8, if the contract contains a pair

of statements 〈s1,s2〉 that match our state-inconsistency query
(e.g., reentrancy), the EXPLORER module (Section V) returns
a subgraph G (of the original ICFG) that contains statement
s1 and s2. In that sense, checking whether the contract indeed
contains the state-inconsistency bug boils down to a standard
reachability problem in G: does there exist a valid path π that
satisfies the following conditions: 1) π starts from an entry point
v0 of a public method, and 2) following π will visit s1 and s2,
sequentially. 2 Due to the over-approximated nature of our SDG

2Since TOD transfer requires reasoning about two different executions
of the same code, we adjust the goal of symbolic execution for TOD as
the following: Symbolic evaluate subgraph G twice (one uses true as pre-
condition and another uses value summary). The amount of Ether in the
external call are denoted as a1, a2, respectively. We report a TOD if a1 6=a2.

that ignores all path conditions, a valid path in SDG does not
always map to a feasible execution path in the original ICFG.
As a result, we have to symbolically evaluate G and confirm
whether π is indeed feasible.

A naive symbolic evaluation strategy is to evaluate G by
precisely following its control flows while assuming that all
storage variables are completely unconstrained (>). With this
assumption, as our ablation study shows (Figure 11), SAILFISH
fails to refute a significant amount of false alarms. So, the key
question that we need to address is: How can we symbolically
check the reachability of G while constraining the range of
storage variables without losing too much precision? This is
where VSA comes into play. Recall that the output of our
VSA maps each storage variable into a set of abstract values
together with their corresponding path constraints in which the
values hold. Before invoking the symbolic evaluation engine, we
union those value summaries into a global pre-condition that is
enforced through the whole symbolic evaluation.
Example 6 Recall in Fig 3, the EXPLORER reports a false alarm
due to the over-approximation of the SDG. We now illustrate
how to leverage VSA to refute this false alarm.
Step 1: By applying the VSA rules in Figure 10 to the contract in
Figure 3, SAILFISH generates the summary for storage variable
mutex: {〈mutex= false, false〉, 〈mutex= false, true〉}. In
other words, after invoking any sequence of public functions,
mutex can be updated to true or false, if pre-condition
mutex==false holds. Here, we omit the summary of other
storage variables (e.g., userBalance) for simplicity.
Step 2: Now, by applying the symbolic checker on
the withdrawBalance function for the first time,
SAILFISH generates the following path condition π:
mutex==false ∧ userBalance[msg.sender] > amount

as well as the following program state δ before invoking the
external call at Line 9: δ={mutex 7→true,...}
Step 3: After Step 2, the current program state δ indicates
that the value of mutex is true. Note that to execute the
then-branch of withdrawBalance, mutex must be
false. Based on the value summary of mutex in Step 1,
the pre-condition to set mutex to false is mutex = false.
However, the pre-condition is not satisfiable under the current
state δ. Therefore, although the attacker can re-enter the
withdrawBalance method through the callback mechanism,
it is impossible for the attacker to re-enter the then-branch
at Line 6, and trigger the external call at Line 9. Thus, SAILFISH
discards the reentrancy report as false positive.

VII. IMPLEMENTATION

Explorer. It is a lightweight static analysis that lifts the
smart contract to an SDG. The analysis is built on top of the
SLITHER [28] framework that lifts SOLIDITY source code to
its intermediate representation called SLITHIR. SAILFISH uses
SLITHER’s API, including the taint analysis, out of the box.
Refiner. SAILFISH leverages ROSETTE [53] to symbolically
check the feasibility of the counter-examples. ROSETTE
provides support for symbolic evaluation. ROSETTE programs
use assertions and symbolic values to formulate queries about

170

program behavior, which are then solved with off-the-shelf
SMT solvers. SAILFISH uses (solve expr) query that
searches for a binding of symbolic variables to concrete values
that satisfies the assertions encountered during the symbolic
evaluation of the program expression expr.

VIII. EVALUATION

In this section, we describe a series of experiments that are
designed to answer the following research questions: RQ1. How
effective is SAILFISH compared to the existing smart contracts
analyzers with respect to vulnerability detection? RQ2. How
scalable is SAILFISH compared to the existing smart contracts
analyzers? RQ3. How effective is the REFINE phase in pruning
false alarms?

A. Experimental setup
Dataset. We have crawled the source code of all 91,921 contracts
from Etherscan [16], which cover a period until October 31, 2020.
We excluded 2,068 contracts that either require very old versions
(<0.3.x) of the SOLIDITY compiler, or were developed using the
VYPER framework. As a result, after deduplication, our evalua-
tion dataset consists of 89,853 SOLIDITY smart contracts. Fur-
ther, to gain a better understanding of how each tool scales as the
size of the contract increases, we have divided the entire dataset,
which we refer to as full dataset, into three mutually-exclusive
sub-datasets based on the number of lines of source code—small
([0,500)), medium ([500,1000)), and large ([1000,∞)) datasets
consisting of 73,433, 11,730, and 4,690 contracts, respectively.
We report performance metrics individually for all three datasets.
Analysis setup. We ran our analysis on a Celery v4.4.4 [19]
cluster consisting of six identical machines running Ubuntu
18.04.3 Server, each equipped with Intel(R) Xeon(R) CPU
E5-2690 v2@3.00 GHz processor (40 core) and 256 GB memory.
Analysis of real-world contracts. We evaluated SAILFISH
against four other static analysis tools, viz., SECURIFY [54],
VANDAL [23], MYTHRIL [3], OYENTE [46], and one dynamic
analysis tool, viz., SEREUM [50]—capable of finding either
reentrancy, or TOD, or both. Given the influx of smart contract
related research in recent years, we have carefully chosen a
representative subset of the available tools that employ a broad
range of minimally overlapping techniques for bug detection.
SMARTCHECK [52] and SLITHER [28] were omitted because
their reentrancy detection patterns are identical to SECURIFY’s
NW (No Write After Ext. Call) signature.

We run all the static analysis tools, including SAILFISH,
on the full dataset under the analysis configuration detailed
earlier. If a tool supports both reentrancy and TOD bug types,
it was configured to detect both. We summarize the results
of the analyses in Table II. For each of the analysis tools and
analyzed contracts, we record one of the four possible outcomes–
(a) safe: no vulnerability was detected (b) unsafe: a potential
state-inconsistency bug was detected (c) timeout: the analysis
failed to converge within the time budget (20 minutes) (d)
error: the analysis aborted due to infrastructure issues, e.g.,
unsupported SOLIDITY version, or a framework bug, etc. For
example, the latest SOLIDITY version at the time of writing is
0.8.3, while OYENTE supports only up to version 0.4.19.

Bug Tool Safe Unsafe Timeout Error

SECURIFY 72,149 6,321 10,581 802
VANDAL 40,607 45,971 1,373 1,902
MYTHRIL 25,705 3,708 59,296 1,144
OYENTE 26,924 269 0 62,660

R
ee

nt
ra

nc
y

SAILFISH 83,171 2,076 1,211 3,395

SECURIFY 59,439 19,031 10,581 802
OYENTE 23,721 3,472 0 62,660

TO
D

SAILFISH 77,692 7,555 1,211 3,395

TABLE II: Comparison of bug finding abilities of tools

B. Vulnerability detection

In this section, we report the fraction (%) of safe, unsafe
(warnings), and timed-out contracts reported by each tool with
respect to the total number of contracts successfully analyzed
by that tool, excluding the “error” cases.
Comparison against other tools. SECURIFY, MYTHRIL,
OYENTE, VANDAL, and SAILFISH report potential reentrancy
in 7.10%, 4.18%, 0.99%, 52.27%, and 2.40% of the contracts.
Though all five static analysis tools detect reentrancy bugs,
TOD detection is supported by only three tools, i.e., SECURIFY,
OYENTE, and SAILFISH which raise potential TOD warnings
in 21.37%, 12.77%, and 8.74% of the contracts.

MYTHRIL, being a symbolic execution based tool,
demonstrates obvious scalability issues: It timed out for
66.84% of the contracts. Though OYENTE is based on symbolic
execution as well, it is difficult to properly assess its scalability.
The reason is that OYENTE failed to analyze most of the
contracts in our dataset due to the unsupported SOLIDITY
version, which explains the low rate of warnings that OYENTE
emits. Unlike symbolic execution, static analysis seems to scale
well. SECURIFY timed-out for only 11.88% of the contracts,
which is significantly lower than that of MYTHRIL. When we
investigated the reason for SECURIFY timing out, it appeared that
the Datalog-based data-flow analysis (that SECURIFY relies
on) fails to reach a fixed-point for larger contracts. VANDAL’s
static analysis is inexpensive and shows good scalability, but
suffers from poor precision. In fact, VANDAL flags as many
as 52.27% of all contracts as vulnerable to reentrancy–which
makes VANDAL reports hard to triage due to the overwhelming
amount of warnings. VANDAL timed out for the least (1.56%)
number of contracts. Interestingly, SECURIFY generates fewer
reentrancy warnings than MYTHRIL. This can be attributed to
the fact that the NW policy of SECURIFY considers a write after
an external call as vulnerable, while MYTHRIL conservatively
warns about both read and write. However, SAILFISH strikes a
balance between both scalability and precision as it timed-out
only for 1.40% of the contracts, and generates the fewest alarms.
Ground truth determination. To be able to provide better
insights into the results, we performed manual analysis on a
randomly sampled subset of 750 contracts ranging up to 3,000
lines of code, out of a total of 6,581 contracts successfully
analyzed by all five static analysis tools, without any timeout
or error. We believe that the size of the dataset is in line with
prior work [51], [42]. We prepared the ground truth by manually
inspecting the contracts for reentrancy and TOD bugs using
the following criteria: (a) Reentrancy: The untrusted external

171

Tool Reentrancy TOD
TP FP FN TP FP FN

SECURIFY 9 163 17 102 244 8
VANDAL 26 626 0 – – –
MYTHRIL 7 334 19 – – –
OYENTE 8 16 18 71 116 39
SAILFISH 26 11 0 110 59 0

TABLE III: Manual determination of the ground truth

call allows the attacker to re-enter the contract, which makes it
possible to operate on an inconsistent internal state. (b) TOD:
A front-running transaction can divert the control-flow, or alter
the Ether-flow, e.g., Ether amount, call destination, etc., of a
previously scheduled transaction.

In the end, the manual analysis identified 26 and 110 contracts
with reentrancy and TOD vulnerabilities, respectively. We then
ran each tool on this dataset, and report the number of correct
(TP), incorrect (FP), and missed (FN) detection by each tool in
Table III. For both reentrancy and TOD, SAILFISH detected all
the vulnerabilities (TP) with zero missed detection (FN), while
maintaining the lowest false positive (FP) rate. We discuss the
FPs and FNs of the tools in the subsequent sections.
False positive analysis. While reasoning about the false
positives generated by different tools for the reentrancy bug, we
observe that both VANDAL and OYENTE consider every external
call to be reentrant if it can be reached in a recursive call to the
calling contract. However, a reentrant call is benign unless it
operates on an inconsistent state of the contract. SECURIFY con-
siders SOLIDITY send and transfer APIs as external calls,
and raisesd violation alerts. Since the gas limit (2,300) for these
APIs is inadequate to mount a reentrancy attack, we refrain from
modeling these APIs in our analysis. Additionally, SECURIFY
failed to identify whether a function containing the external
call is access-protected, e.g., it contains the msg.sender ==
owner check, which prohibits anyone else but only the contract
owner from entering the function. For both the cases above,
though the EXPLORER detected such functions as potentially
unsafe, the benefit of symbolic evaluation became evident as
the REFINER eliminated these alerts in the subsequent phase.
MYTHRIL detects a state variable read after an external call as
malicious reentrancy. However, if that variable is not written in
any other function, that deems the read safe. Since SAILFISH
looks for hazardous access as a pre-requisite of reentrancy, it
does not raise a warning there. However, SAILFISH incurs false
positives due to imprecise static taint analysis. A real-world case
study of such a false positive is presented in Appendix II-C.

To detect TOD attacks, SECURIFY checks for writes to
a storage variable that influences an Ether-sending external
call. We observed that several contracts flagged by SECURIFY
have storage writes inside the contract’s constructor. Hence,
such writes can only happen once during contract creation.
Moreover, several contracts flagged by SECURIFY have
both storage variable writes, and the Ether sending external
call inside methods which are guarded by predicates like
require(msg.sender == owner)—limiting access to
these methods only to the contract owner. Therefore, these
methods cannot be leveraged to launch a TOD attack. SAILFISH
prunes the former case during the EXPLORE phase itself. For

the latter, SAILFISH leverages the REFINE phase, where it finds
no difference in the satisfiability of two different symbolic
evaluation traces. In Appendix II-C, we present a real-world
case where both SECURIFY and SAILFISH incur a false positive
due to insufficient reasoning of contract semantics.
False negative analysis. SECURIFY missed valid reentrancy
bugs because it considers only Ether sending call instructions.
In reality, any call can be leveraged to trigger reentrancy by
transferring control to the attacker if its destination is tainted. To
consider this scenario, SAILFISH carries out a taint analysis to
determine external calls with tainted destinations. Additionally,
SECURIFY missed reentrancy bugs due to lack of support for
destructive write (DW), and delegate-based patterns. False
negatives incurred by MYTHRIL are due to its incomplete state
space exploration within specified time-out. Our manual analysis
did not observe any missed detection by SAILFISH.
Finding zero-day bugs using SAILFISH. In order to
demonstrate that SAILFISH is capable of finding zero-day
vulnerabilities, we first identified the contracts flagged only by
SAILFISH, but no other tool. Out of total 401 reentrancy-only
and 721 TOD-only contracts, we manually selected 88 and
107 contracts, respectively. We limited our selection effort only
to contracts that contain at most 500 lines of code, and are
relatively easier to reason about in a reasonable time budget.
Our manual analysis confirms 47 contracts are exploitable (not
just vulnerable)—meaning that they can be leveraged by an
attacker to accomplish a malicious goal, e.g., draining Ether,
or corrupting application-specific metadata, thereby driving the
contract to an unintended state. We present a few vulnerable
patterns, and their exploitability in Appendix II-A.
Exploitability of the bugs. We classified the true alerts emitted
by SAILFISH into the following categories—An exploitable bug
leading to the stealing of Ether, or application-specific metadata
corruption (e.g., an index, a counter, etc.), and a non-exploitable
yet vulnerable bug that can be reached, or triggered (unlike a false
positive), but its side-effect is not persistent. For example, a reen-
trant call (the attacker) is able to write to some state variable V in
an unintended way. However, along the flow of execution, V is
overwritten, and its correct value is restored. Therefore, the effect
of reentrancy did not persist. Another example would be a state
variable that is incorrectly modified during the reentrant call, but
the modification does not interfere with the application logic, e.g.,
it is just written in a log. Out of the 47 zero-day bugs that SAIL-
FISH discovered, 11 allow an attacker to drain Ethers, and for
the remaining 36 contracts, the bugs, at the very least (minimum
impact), allow the attacker to corrupt contract metadata—leading
to detrimental effects on the underlying application. For example,
during our manual analysis, we encountered a vulnerable con-
tract implementing a housing tracker that the allowed addition,
removal, and modification of housing details. If a house owner
adds a new house, the contract mandates the old housing listing
to become inactive, i.e., at any point, there can only be one house
owned by an owner that can remain in an active state. However,
we could leverage the reentrancy bug in the contract in a way so
that an owner can have more than one active listing. Therefore,
these 36 contracts could very well be used for stealing Ethers as

172

Tool Small Medium Large Full

SECURIFY 85.51 642.22 823.48 196.52
VANDAL 16.35 74.77 177.70 30.68
MYTHRIL 917.99 1,046.80 1,037.77 941.04
OYENTE 148.35 521.16 675.05 183.45
SAILFISH 9.80 80.78 246.89 30.79

TABLE IV: Analysis times (in seconds) on four datasets.

well, however, we did not spend time and effort to turn those into
exploits as this is orthogonal to our current research goal.
Comparison against SEREUM. Since SEREUM is not publicly
available, we could only compare SAILFISH on the contracts in
their released dataset. SEREUM [50] flagged total 16 contracts
for potential reentrancy attacks, of which 6 had their sources
available in the ETHERSCAN, and therefore, could be analyzed
by SAILFISH. Four out of those 6 contracts were developed
for old SOLIDITY versions (<0.3.x)—not supported by our
framework. We ported those contracts to a supported SOLIDITY
version (0.4.14) by making minor syntactic changes not
related to their functionality. According to SEREUM, of those 6
contracts, only one (TheDAO) was a true vulnerability, while five
others were its false alarms. While SAILFISH correctly detects
TheDAO as unsafe, it raises a false alarm for another contract
(CCRB) due to imprecise modeling of untrusted external call.

RQ1: SAILFISH emits the fewest warnings in the
full dataset, and finds 47 zero-day vulnerabilities. On
our manual analysis dataset, SAILFISH detects all the
vulnerabilities with the lowest false positive rate.

C. Performance analysis

Table IV reports the average analysis times for each of the
small, medium, and large datasets along with the full dataset.
As the data shows, the analysis time increases with the size
of the dataset for all the tools. VANDAL [23] is the fastest
analysis across all the four datasets with an average analysis
time of 30.68 seconds with highest emitted warnings (52.27%).
SECURIFY [54] is approximately 6x more expensive than
VANDAL over the entire dataset. The average analysis time
of MYTHRIL [3] is remarkably high (941.04 seconds), which
correlates with its high number of time-out cases (66.84%). In
fact, MYTHRIL’s analysis time even for the small dataset is as
high as 917.99 seconds. However, another symbolic execution
based tool OYENTE [46] has average analysis time close to
19% to that of MYTHRIL, as it fails to analyze most of the
medium to large contracts due to the unsupported SOLIDITY
version. Over the entire dataset, SAILFISH takes as low as 30.79
seconds with mean analysis times of 9.80, 80.78, and 246.89
seconds for small, medium, and large ones, respectively. The
mean static analysis time is 21.74 seconds as compared to the
symbolic evaluation phase, which takes 39.22 seconds. The value
summary computation has a mean analysis time of 0.06 seconds.

RQ2: While the analysis time of SAILFISH is comparable
to that of VANDAL, it is 6, 31, and 6 times faster than
SECURIFY, MYTHRIL, and OYENTE, respectively.

Reentrancy TOD
0

2833

5667

8500

11333

14167

17000

N
u

m
b

er
 o

f w
ar

n
in

gs

33
91

14
48

5

24
36

10
56

0

20
76

75
55

St St+HV St+VS

Fig. 11: Ablation study showing the effectiveness of value-summary
analysis for reentrancy and TOD detection.

D. Ablation study

Benefit of value-summary analysis: To gain a better
understanding of the benefits of the symbolic evaluation
(REFINE) and the value-summary analysis (VSA), we performed
an ablation study by configuring SAILFISH in three distinct
modes: (a) static-only (SO), only the EXPLORER runs, and
(b) static + havoc (St+HV), the REFINER runs, but it havocs
all the state variables after the external call. (c) static + value
summary (St+VS), the REFINER runs, and it is supplied with the
value summary facts that the EXPLORER computes. Figure 11
shows the number of warnings emitted by SAILFISH in each of
the configurations. In SO mode, the EXPLORE phase generates
3,391 reentrancy and 14,485 TOD warnings, which accounts for
3.92% and 16.75% of the contracts, respectively. Subsequently,
St+HV mode brings down the number of reentrancy and TOD
warnings to 2,436 and 10,560, which is a 28.16% and 27.10%
reduction with respect to the SO baseline. Lastly, by leveraging
value summary, SAILFISH generates 2,076 reentrancy and
7,555 TOD warnings in St+VS mode, which is a 14.78%
and 28.46% improvement over St+HV configuration. This
experiment demonstrates that our symbolic evaluation and VSA
are indeed effective to prune false positives. Appendix II-B
presents a real-world case study showing the advantage of VSA.
Additionally, we discuss the relative performance of our VSA
over a path-by-path summary technique in Appendix I.

RQ3: Our symbolic evaluation guided by VSA plays a key
role in achieving high precision and scalability.

IX. LIMITATIONS

Source-code dependency. Although SAILFISH is built on top
of the SLITHER [28] framework, which requires access to the
source code, we do not rely on any rich semantic information
from the contract source to aid our analysis. In fact, our choice
of source code was motivated by our intention to build SAILFISH
as a tool for developers, while enabling easier debugging and
introspection as a side-effect. Our techniques are not tied to
source code, and could be applied directly to bytecode by
porting the analysis on top of a contract decompiler that supports
variable and CFG recovery.
Potential unsoundness. We do not claim soundness with respect
to the detection rules of reentrancy and TOD bugs. Also, the meta-
language our value-summary analysis is based on distills the core

173

features of the SOLIDITY language, it is not expressive enough to
model all the complex aspects [41], e.g., exception propagation,
transaction reversion, out-of-gas, etc. In turn, this becomes
the source of unsoundness of the REFINER. Additionally,
SAILFISH relies on SLITHER [28] for static analysis. Therefore,
any soundness issues in SLITHER, e.g., incomplete call graph
construction due to indirect or unresolved external calls, inline
assembly, etc., will be propagated to SAILFISH.

X. RELATED WORK

Static analysis. Static analysis tools such as SECURIFY [54],
MADMAX [36], ZEUS [42], SMARTCHECK [52], and
SLITHER [28] detect specific vulnerabilities in smart contracts.
Due to their reliance on bug patterns, they over-approximate pro-
gram states, which can cause false positives and missed detection
of bugs. To mitigate this issue, we identified two complementary
causes of SI bugs—Stale read and Destructive write. While the
former is more precise than the patterns found in the previous
work, the latter, which is not explored in the literature, plays a role
in the missed detection of bugs (Section III). Unlike SAILFISH,
which focuses on SI bugs, MADMAX [36] uses a logic-based
paradigm to target gas-focused vulnerabilities. SECURIFY [54]
first computes control and data-flow facts, and then checks for
compliance and violation signatures. SLITHER [28] uses data-
flow analysis to detect bug patterns scoped within a single func-
tion. The bugs identified by these tools are either local in nature,
or they refrain from doing any path-sensitive reasoning—leading
to spurious alarms. To alleviate this issue, SAILFISH introduces
the REFINE phase that prunes significant numbers of false alarms.
Symbolic execution. MYTHRIL [3], OYENTE [46],
ETHBMC [32], SMARTSCOPY [30], and MANTICORE [13]
rely on symbolic execution to explore the state-space of the
contract. ETHBMC [32], a bounded model checker, models
EVM transactions as state transitions. TEETHER [44] generates
constraints along a critical path having attacker-controlled
instructions. These tools suffer from the limitation of traditional
symbolic execution, e.g., path explosion, and do not scale
well. However, SAILFISH uses the symbolic execution only for
validation, i.e., it resorts to under-constrained symbolic execution
aided by VSA that over-approximates the preconditions required
to update the state variables across all executions.
Dynamic analysis. While SEREUM [50] and SODA [26]
perform run-time checks within the context of a modified
EVM, TXSPECTOR [59] performs a post-mortem analysis
of transactions. ECFCHECKER [37] detects if the execution
of a smart contract is effectively callback-free (ECF), i.e., it
checks if two execution traces, with and without callbacks, are
equivalent—a property that holds for a contract not vulnerable to
reentrancy attacks. SAILFISH generalizes ECF with the notion of
hazardous access for SI attacks. Thus, SAILFISH is not restricted
to reentrancy, instead, can express all properties that are caused
by state inconsistencies. Dynamic analysis tools [40], [56], [57],
[2], [47] rely on manually-written test oracles to detect violations
in response to inputs generated according to blackbox or greybox
strategies. Though precise, these tools lack coverage—which
is not an issue for static analysis tools, such as SAILFISH.

State inconsistency (SI) notions. SERIF [25] detects reen-
trancy attacks using a notion of trusted-untrusted computation
that happens when a low-integrity code, invoked by a high-
integrity code, calls back into the high-integrity code before re-
turning. Code components are explicitly annotated with informa-
tion flow (trust) labels, which further requires a semantic under-
standing of the contract. Then, they design a type system that uses
those trust labels to enforce secure information flow through the
use of a combination of static and dynamic locks. However, this
notion is unable to capture TOD vulnerabilities, another impor-
tant class of SI bugs. In SAILFISH, we take a different approach
where we define SI bugs in terms of the side-effect, i.e., creation
of an inconsistent state, of a successful attack. Further, we model
the possibility of an inconsistent state resulting from such an
attack through hazardous access. Perez et. al. [48], VANDAL [23],
OYENTE [46] consider reentrancy to be the possibility of being
able to re-enter the calling function. Not only do these tools con-
sider only single-function reentrancy, but also the notion encom-
passes legitimate (benign) reentrancy scenarios [50], e.g., ones
that arise due to withdrawal pattern in SOLIDITY. In addition,
SAILFISH requires the existence of hazardous access, which en-
ables us to account for cross-function reentrancy bugs, as well as
model only malicious reentrancy scenarios. To detect reentrancy,
SECURIFY [54] looks for the violation of the “no write after
external call” (NW) pattern, which is similar to the “Stale Read”
(SR) notion of SAILFISH. Not all the tools that support reentrancy
bugs have support for TOD. While SAILFISH shares its notion of
TOD with SECURIFY, OYENTE marks a contract vulnerable to
TOD if two traces have different Ether flows. Unlike SAILFISH
for which hazardous access is a pre-requisite, OYENTE raises
alarm for independent Ether flows not even related to SI.

XI. CONCLUSION

We propose SAILFISH, a scalable hybrid tool for automatically
identifying SI bugs in smart contracts. SAILFISH combines
lightweight exploration phase followed by symbolic evaluation
aided by our novel VSA. On the ETHERSCAN dataset, SAILFISH
significantly outperforms state of the art analyzers in terms of
precision, and performance, identifying 47 previously unknown
vulnerable (and exploitable) contracts.

XII. ACKNOWLEDGMENTS

We want to thank our anonymous shepherd and anonymous
reviewers for their valuable comments and feedback to improve
our paper. This research is supported by DARPA under
the agreement number HR001118C006, by the NSF under
awards CNS-1704253, and 1908494, by the ONR under award
N00014-17-1-2897, and by the Google Faculty Research Award.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

174

REFERENCES

[1] Cream finance post mortem: Amp exploit. https://medium.com/cream-
finance/c-r-e-a-m-finance-post-mortem-amp-exploit-6ceb20a630c5.

[2] Echidna. https://github.com/crytic/echidna. [accessed 07/27/2020].
[3] Mythril. https://github.com/ConsenSys/mythril. [accessed 07/27/2020].
[4] Panoramix decompiler. https://github.com/palkeo/panoramix.
[5] Rattle: Evm static analysis framework. https://github.com/crytic/rattle.
[6] Real estate business integrates smart contracts. https:

//tinyurl.com/yawrkfpx/. [accessed 01/09/2019].
[7] Reentering the reentrancy bug: Disclosing burgerswap’s vulnerability.

https://www.zengo.com/burgerswap-vulnerability/. accessed
10/22/2020].

[8] The reentrancy strikes again - the case of lendf.me. https:
//valid.network/post/the-reentrancy-strikes-again-the-case-of-lendf-me.

[9] Smart contracts for shipping offer shortcut. https://tinyurl.com/
yavel7xe/.

[10] Swc 114 - transaction order dependence attack. https:
//swcregistry.io/docs/SWC-114. [accessed 04/26/2020].

[11] The dao attack. https://www.coindesk.com/understanding-dao-hack-
journalists, 2016. [accessed 04/26/2020].

[12] Governmental’s 1100 eth payout is stuck because it uses too much gas.
https://tinyurl.com/y83dn2yf/, 2016. [accessed 01/09/2019].

[13] Manticore. https://github.com/trailofbits/manticore/, 2016.
[14] On the parity wallet multisig hack. https://tinyurl.com/yca83zsg/, 2017.
[15] Understanding the dao attack. https://tinyurl.com/yc3o8ffk/, 2017.
[16] Etherscan. https://etherscan.io/, 2018. [accessed 01/09/2019].
[17] Exploiting uniswap: from reentrancy to actual profit.

https://blog.openzeppelin.com/exploiting-uniswap-from-reentrancy-
to-actual-profit/, 2019.

[18] Sereum repository. https://github.com/uni-due-syssec/eth-reentrancy-
attack-patterns/, 2019.

[19] Celery - distributed task queue. https://celeryproject.org, 2020.
[20] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-

driven compositional symbolic execution. In Tools and Algorithms
for the Construction and Analysis of Systems, 14th International
Conference, TACAS, 2008.

[21] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts (sok). In Principles of Security
and Trust - 6th International Conference, POST, 2017.

[22] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn
Song. Statically-directed dynamic automated test generation. In
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, 2011.

[23] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable
security analysis framework for smart contracts, 2018.

[24] Fraser Brown, Deian Stefan, and Dawson Engler. Sys: A static/symbolic
tool for finding good bugs in good (browser) code. In 29th USENIX
Security Symposium (USENIX Security). USENIX Association, 2020.

[25] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers.
Compositional security for reentrant applications. In IEEE Symposium
on Security and Privacy (SP), 2021.

[26] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Yufei Zhang, Zhou Liao,
Hang Zhu, Gang Chen, Zheyuan He, Xiaodong Lin, and Xiaosong
Zhang. Soda: A generic online detection framework for smart contracts.
In Proc. The Network and Distributed System Security Symposium, 2020.

[27] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. Verifying
systems rules using rule-directed symbolic execution. SIGARCH
Comput. Archit. News, 2013.

[28] J. Feist, G. Grieco, and A. Groce. Slither: A static analysis framework for
smart contracts. In IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), 2019.

[29] Josselin Feist, Laurent Mounier, Sébastien Bardin, Robin David, and
Marie-Laure Potet. Finding the needle in the heap: Combining static
analysis and dynamic symbolic execution to trigger use-after-free. In
Proceedings of the 6th Workshop on Software Security, Protection, and
Reverse Engineering, 2016.

[30] Yu Feng, Emina Torlak, and Rastislav Bodik. Precise attack synthesis
for smart contracts. arXiv preprint arXiv:1902.06067, 2019.

[31] Yu Feng, Emina Torlak, and Rastislav Bodík. Summary-based symbolic
evaluation for smart contracts. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE, 2020.

[32] Joel Frank, Cornelius Aschermann, and Thorsten Holz. ETHBMC: A
bounded model checker for smart contracts. In 29th USENIX Security
Symposium (USENIX Security), 2020.

[33] A. Yu. Gerasimov. Directed dynamic symbolic execution for static
analysis warnings confirmation. Program. Comput. Softw., 2018.

[34] Patrice Godefroid. Compositional dynamic test generation. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL, 2007.

[35] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.
Gigahorse: Thorough, declarative decompilation of smart contracts.
In IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019.

[36] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: surviving out-of-gas
conditions in ethereum smart contracts. In Proc. International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2018.

[37] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky,
Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of
effectively callback free objects with applications to smart contracts.
In Proc. Symposium on Principles of Programming Languages, 2018.

[38] Shengjian Guo, Markus Kusano, and Chao Wang. Conc-ise: Incremental
symbolic execution of concurrent software. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering, 2016.

[39] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti
Gupta. Assertion guided symbolic execution of multithreaded programs.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015.

[40] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: fuzzing smart
contracts for vulnerability detection. In Proc. International Conference
on Automated Software Engineering, 2018.

[41] J. Jiao, S. Kan, S. Lin, D. Sanan, Y. Liu, and J. Sun. Semantic
understanding of smart contracts: Executable operational semantics of
solidity. In IEEE Symposium on Security and Privacy (SP), 2020.

[42] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS:
analyzing safety of smart contracts. In Proc. The Network and
Distributed System Security Symposium, 2018.

[43] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek
Saxena. Exploiting the laws of order in smart contracts. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2019.

[44] Johannes Krupp and Christian Rossow. teether: Gnawing at ethereum
to automatically exploit smart contracts. In Proc. USENIX Security
Symposium, 2018.

[45] Sifis Lagouvardos, Neville Grech, Ilias Tsatiris, and Yannis
Smaragdakis. Precise static modeling of ethereum memory. 2020.

[46] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Proc. Conference on
Computer and Communications Security, 2016.

[47] Tai Nguyen, Long Pham, Jun Sun, Yun Lin, and Minh Quang Tran.
sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proc.
International Conference on Software Engineering, 2020.

[48] Daniel Perez and Ben Livshits. Smart contract vulnerabilities:
Vulnerable does not imply exploited. In 30th USENIX Security
Symposium (USENIX Security), 2021.

[49] Fernando Magno Quintao Pereira, Raphael Ernani Rodrigues, and
Victor Hugo Sperle Campos. A fast and low-overhead technique
to secure programs against integer overflows. In Proceedings of
the IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2013.

[50] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi.
Sereum: Protecting existing smart contracts against re-entrancy attacks.
In 26th Annual Network and Distributed System Security Symposium,
NDSS, 2019.

[51] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo
Maffei. Ethor: Practical and provably sound static analysis of ethereum
smart contracts. In Proc. Conference on Computer and Communications
Security, 2020.

[52] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck:
Static analysis of ethereum smart contracts. In Proceedings of the 1st
International Workshop on Emerging Trends in Software Engineering
for Blockchain, 2018.

175

Speedup

C
on
tr
ac
ts

0

200

400

600

1.0
0

2.0
0

3.0
0

4.0
0

5.0
0

6.0
0

7.0
0

8.0
0

9.0
0
10
.00

11
.00

12
.00

13
.00

14
.00

15
.00

16
.00

17
.00

18
.00

19
.00

20
.00

Fig. 12: Relative speedup due to value summary over a path-by-path
function summary.
[53] Emina Torlak and Rastislav Bodík. A lightweight symbolic virtual

machine for solver-aided host languages. In Proc. Conference on
Programming Language Design and Implementation, 2014.

[54] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur
Gervais, Florian Bünzli, and Martin T. Vechev. Securify: Practical
security analysis of smart contracts. In Proc. Conference on Computer
and Communications Security, 2018.

[55] Shuai Wang, Chengyu Zhang, and Zhendong Su. Detecting
nondeterministic payment bugs in ethereum smart contracts. Proc.
ACM Program. Lang., 3(OOPSLA), 2019.

[56] Valentin Wüstholz and Maria Christakis. Harvey: A greybox fuzzer for
smart contracts. ArXiv, abs/1905.06944, 2019.

[57] Valentin Wüstholz and Maria Christakis. Targeted greybox fuzzing
with static lookahead analysis. 2020.

[58] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo
Kim. Precise and scalable detection of double-fetch bugs in os kernels.
In IEEE Symposium on Security and Privacy (SP), 2018.

[59] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin.
TXSPECTOR: Uncovering attacks in ethereum from transactions. In
29th USENIX Security Symposium (USENIX Security), 2020.

APPENDIX I
EXTENDED EVALUATION

Speedup due to value-summary analysis: To characterize
the performance gain from the value-summary analysis, we have
further designed this experiment where, instead of our value
summary (VS), we provide a standard path-by-path function
summary [31], [34], [20] (PS) to the REFINER module. From
16,835 contracts for which SAILFISH raised warnings (which
are also the contracts sent to the REFINER), we randomly picked
a subset of 2,000 contracts (i) which belong to either medium,
or large dataset, and (ii) VS configuration finished successfully
without timing out—for this experiment. We define speedup
factor s =

tps
tvs

, where tm is the amount of time spent in the
symbolic evaluation phase in mode m. In PS mode, SAILFISH
timed out for 21.50% of the contracts owing to the increased
cost of the REFINE phase. Figure 12 presents a histogram of the
speedup factor distribution of the remaining 1,570 contracts for
which the analyses terminated in both the modes.

Our novel value summary analysis is significantly faster
than a classic summary-based analysis.

APPENDIX II
CASE STUDIES

A. Zero-day vulnerabilities

In this section, we present the unique vulnerabilities found by
SAILFISH—not detected by any other tool. We have redacted

the code, and masked the program elements for the sake of
anonymity and simplicity. The fact that the origin of the smart
contracts can not be traced back in most of the cases makes it
hard to report these bugs to the concerned developers. Also, once
a contract gets deployed, it is difficult to fix any bug due to the
immutable nature of the blockchain.
Cross-function reentrancy: Figure 13 presents a simplified
real-world contract—vulnerable to cross-function reentrancy
attack due to Destructive Write (DW). An attacker can set both
item_1.creator (Line 11), and item_1.game (Line 12)
to an arbitrary value by invoking funcB(). In funcA(),
an amount amt is transferred to item_1.creator through
transferFrom—an untrusted external contract call.
Therefore, when the external call is underway, the attacker
can call funcB() to reset both item_1.creator, and
item_1.game. Hence, item_1.fee gets transferred to a
different address when Line 6 gets executed.

1 function funcA(to, amt) public {
2 ...
3 IERC721 erc721 = IERC721(item_1.game)
4 erc721.transferFrom(_, item1.creator, amt)
5 ...
6 item1.creator.transfer(item_1.fee)
7 }
8

9 function funcB(_creator, _game) {
10 ...
11 item_1.creator = _creator
12 item1_1.game = _game
13 ...
14 } Fig. 13: Real-world cross-function reentrancy
Delegate-based reentrancy: Figure 14 presents a real-world
contract, which is vulnerable to delegate-based reentrancy attack.

1 function funcA(bytes _data) {
2 __isTokenFallback = true;
3 address(this).delegatecall(_data);
4 __isTokenFallback = false;
5 }
6

7 function funcB(){
8 assert(__isTokenFallback);
9 // Write to application data

10 }
11

12 function funcC(address _to) {
13 Receiver receiver = Receiver(_to)
14 receiver.tokenFallback(...)
15 ...
16 } Fig. 14: Real-world delegatecall-based reentrancy

The contract contains three functions—(a) funcA contains
the delegatecall, (b) funcB() allows application data to
be modified if the assertion is satisfied, and (c) funcC contains
an untrusted external call. A malicious payload can be injected
in the _data argument of funcA, which, in turn, invokes
funcC() with a tainted destination _to. The receiver at
Line 14 is now attacker-controlled, which allows the attacker to
reenter to funcB with _isTokenFallback inconsistently
set to true; thus rendering the assertion at Line 8 useless.
CREAM Finance reentrancy attack. By exploiting a
reentrancy vulnerability in the CREAM Finance, a decentralized
lending protocol, the attacker stole 462,079,976 AMP tokens,
and 2,804.96 Ethers on August 31, 2021 [1]. The attack
involved two contracts: CREAM Finance contract C, and AMP
token (ERC777) contract A. The borrow() method of C

176

calls the transfer() method of A, which, in turn, calls the
tokenReceived() hook of the receiver contract R. Such
a hook is simply a function in R that is called when tokens
are sent to it. The vulnerability that the attacker leveraged is
that there was a state (S) update in C.borrow() following
the external call to A.transfer(). Since, A.transfer()
further calls R.tokenReceived() before even the original
C.borrow() call returns, the attacker took this opportunity
to reenter C before even the state update could take place.

Since the version of SLITHER that SAILFISH uses lacks
support for all types of SOLIDITY tuples, we could not run our
tool as-is on the contract C. To see whether our approach can
still detect the above vulnerability by leveraging its inter-contract
analysis, we redacted the contracts to eliminate syntactic
complexity unrelated to the actual vulnerability. When run on
the simplified contract, SAILFISH successfully flagged it as
vulnerable to the reentrancy attack, as expected.
Transaction order dependency: TOD may enable an attacker
to earn profit by front-running a victim’s transaction. For
example, during our manual analysis, we encountered a contract
where the contract owner can set the price of an item on demand.
A user will pay a higher price for the item if the owner maliciously
front-runs the user’s transaction (purchase order), and sets the
price to a higher value. In another contract that enables buying
and selling of tokens in exchange for Ether, the token price was
inversely proportional with the current token supply. Therefore,
an attacker can front-run a buy transaction T , and buy n tokens
having a total price pl. After T is executed, the token price will
increase due to a drop in the token supply. The attacker can
then sell those n tokens at a higher price, totaling price ph, and
making a profit of (ph−pl). We illustrate one more real-world
example of a TOD attack in Figure 15 . recordBet() allows

1 contract Bet {
2 function recordBet(bool bet, uint _userAmount) {
3 userBlnces[msg.sender]= _userAmount;
4 totalBlnc[bet] = totalBlnc[bet] +_userAmount;
5 }
6 function settleBet(bool bet) {
7 uint reward = (userBlnces[msg.sender]*totalBlnc[!bet]
8 / totalBlnc[bet];
9 uint totalWth = reward + userBlnces[msg.sender];

10 totalBlnc[!bet] = totalBlnc[!bet] - reward;
11 msg.sender.transfer(totalWth);
12 }
13 }

Fig. 15: Real-world example of a TOD bug.

a user to place a bet, and then it adds (Line 4) the bet amount
to the total balance of the contract. In settleBet(), a user
receives a fraction of the total bet amount as the reward amount.
Therefore, if two invocations of settleBet() having same
bet value race against each other, the front-running one will
earn higher reward as the value of totalBlnc[!bet], which
reward is calculated on, will also be higher in that case.

B. Advantage of value-summary analysis.

Figure 16 shows a real-world contract that demonstrates
the benefit of the value-summary analysis. A modifier in
SOLIDITY is an additional piece of code which wraps the
execution of a function. Where the underscore (_) is put inside
the modifier decides when to execute the original function. In this

1 interface Corn{
2 function transfer(address to, uint256 value);
3 }
4 contract FreeTaxManFarmer {
5 // Prevents re-entry to the decorated function
6 modifier nonReentrant() {
7 require(!reentrancy_lock);
8 reentrancy_lock = true;
9 _;

10 reentrancy_lock = false;
11 }
12

13 function reapFarm(address tokn) nonReentrant {
14 require(user[msg.sender][tokn].workDone > 0);
15 // Untrusted external call
16 Corn(tokn).transfer(msg.sender, ...);
17 // State update
18 user[msg.sender][tokn].workDone = 0;
19 }
20 }

Fig. 16: The benefit of value-summary analysis.

example, the public function reapFarm is guarded by the mod-
ifier nonReentrant, which sets the reentrancy_lock
(shortened as L) on entry, and resets it after exit. Due to the
hazardous access (Line 14 and Line 18) detected on workDone,
EXPLORER flags this contract as potentially vulnerable. How-
ever, the value summary analysis observes that the require
clause at Line 7 needs to be satisfied in order to be able
to modify the lock variable L, which is encoded as: L =
{〈false,L=false〉,〈true,L=false〉}. In other words, there
does not exist a program path that sets L to false, if the current
value of L is true. While making the external call at Line 16, the
program state is δ={L 7→true,...}, which means that L is true
at that program point. Taking both the value summary and the pro-
gram state into account, the REFINER decides that the correspond-
ing path leading to the potential reentrancy bug is infeasible.

C. False positives for reentrancy and TOD

Reentrancy. Figure 17 features a real-world contract where
bTken is set inside the constructor. The static taint analysis that
SAILFISH performs disregards the fact that Line 5 is guarded
by a require clause in the line before; thereby making the
variable tainted. Later at Line 9 when the balanceOf method
is invoked on bTken, SAILFISH raises a false alarm.

1 contract EnvientaPreToken {
2 // Only owner can set bTken
3 function enableBuyBackMode(address _bTken) {
4 require(msg.sender == _creator);
5 bTken = token(_bTken);
6 }
7 function transfer(address to, uint256 val) {
8 // Trusted external call
9 require(bTken.balanceOf(address(this))>=val);

10 balances[msg.sender] -= val;
11 }
12 } Fig. 17: False positive of SAILFISH (Reentrancy).
TOD. Figure 18 presents a real-world donation collection
contract, where the contract transfers the collected donations
to its recipient of choice. Both SAILFISH and SECURIFY raised
TOD warning as the transferred amount, i.e., donations
at Line 7, can be modified by function pay() at Line 3.
Though the amount of Ether withdrawn (donations) is
different depending on which of withdrawDonations()
and pay() get scheduled first—this does not do any harm as
far as the functionality is concerned. In fact, if pay() front-runs

177

withdrawDonations(), the recipient is rewarded with a
greater amount of donation. Therefore, this specific scenario
does not correspond to a TOD attack.

1 contract Depay{
2 function pay(..., uint donation) {
3 donations += donation;
4 }
5 function withdrawDonations(address recipient) {
6 require(msg.sender == developer)
7 recipient.transfer(donations);
8 }
9 }

Fig. 18: False positive of TOD.

APPENDIX III
EXTENDED RELATED WORK

Hybrid analysis. Composition of static analysis and symbolic
execution has been applied to find bugs in programs other than
smart contracts. For example, SYS [24] uses static analysis to
find potential buggy paths in large codebases, followed by an
under-constrained symbolic execution to verify the feasibility
of those paths. WOODPECKER [27] uses rule-directed symbolic
execution to explore only relevant paths in a program. To find
double fetch bugs in OS kernels, DEADLINE [58] employs static
analysis to prune paths, and later performs symbolic execution
only on those paths containing multiple reads. Several other
tools [22], [29], [33], [39], [38] employ similar hybrid techniques
for testing, verification, and bug finding. Such hybrid analyses
have been proved effective to either prune uninteresting paths, or
selectively explore interesting parts of the program. In SAILFISH,
we use static analysis to filter out interesting contracts, find
potentially vulnerable paths, and compute value-summary to be
used in conjunction with the symbolic execution—to achieve
both scalability, and precision.

APPENDIX IV
EXTENDED DISCUSSION

Imprecise analysis components. SAILFISH performs inter-
contract analysis (Appendix V-A) when the source code of the
called contract is present in our database, and more importantly,
the external call destination d is statically known. If either of the
conditions does not hold, SAILFISH treats such an external call
as untrusted, thereby losing precision. The question of external
call destination d resolution comes only when SAILFISH is
used on contracts that have been deployed already. For cases
where d is set at run-time, our prototype relies on only contract
creation transactions. If d is set through a public setter method,
our current prototype cannot detect those cases, though it would
not be hard to extend the implementation to support this case
as well. Moreover, SAILFISH incurs false positives due to the
imprecise taint analysis engine from SLITHER. Therefore, using
an improved taint analysis will benefit SAILFISH’s precision.
Bytecode-based analysis. SAILFISH relies on control-flow
recovery, taint analysis, and symbolic evaluation as its
fundamental building blocks. Recovering source-level rich data
structures, e.g., array, strings, mappings, etc., is not a requirement
for our analysis. Even for EVM bytecode, recovering the entry
points of public methods is relatively easier due to the “jump-
table” like structure that the SOLIDITY compiler inserts at the

beginning of the compiled bytecode. Typically, it is expected for a
decompiler platform to provide the building blocks in the form of
an API, which then could be used to port SAILFISH for bytecode
analysis. That said, the performance and precision of our analysis
are limited by the efficacy of the underlying decompiler. Thanks
to the recent research [5], [35], [4], [45] on EVM decompilers and
static analysis, significant progress has been made in this front.
Other bugs induced by hazardous access. If a contract
contains hazardous access, but no reentrancy/TOD vulnerability,
that can still lead to a class of bugs called Event Ordering (EO)
bugs [43], due to the asynchronous callbacks initiated from an
off-chain service like Oraclize. We consider such bugs as out
of scope for this work.

APPENDIX V
TECHNICAL DETAILS

A. Inter-contract analysis

To model inter-contract interaction as precisely as possible,
we perform a backward data-flow analysis starting from the
destination d of an external call (e.g., call, delegatecall, etc.),
which leads to the following three possibilities: (a) d is visible
from source, (b) d is set by the owner at run-time, e.g., in the
constructor during contract creation. In this case, we further
infer d by analyzing existing transactions, e.g., by looking into
the arguments of the contract-creating transaction, and (c) d is
attacker-controlled. While crawling, we build a database from
the contract address to its respective source. Hence, for cases
(a) and (b) where d is statically known, we incorporate the target
contract in our analysis if its source is present in our database.
If either the source is not present, or d is tainted (case (c)), we
treat such calls as untrusted, requiring no further analysis.

B. Detecting owner-only statements

In the context of smart contract, the owner refers to one
or more addresses that play certain administrative roles,
e.g., contract creation, destruction, etc. Typically, critical
functionalities of the contract can only be exercised by the owner.
We call the statements that implement such functionalities as
owner-only statements. Determining the precise set of owner-
only statements in a contract can be challenging as it requires
reasoning about complex path conditions. SAILFISH, instead,
computes a over-approximate set of owner-only statements
during the computation of base ICFG facts. This enables
SAILFISH, during the EXPLORE phase, not to consider certain
hazardous access pairs that can not be exercised by an attacker.
To start with, SAILFISH initializes the analysis by collecting the
set of storage variables (owner-only variables) O defined during
the contract creation. Then, the algorithm computes the transitive
closure of all the storage variables which have write operations
that are control-flow dependent on O. Finally, to compute the
set of owner-only statements, SAILFISH collects the statements
which have their execution dependent on O.

178

