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Abstract—SGX enclaves prevent external software from ac-
cessing their memory. This feature conflicts with legitimate
needs for enclave memory introspection, e.g., runtime stack
collection on an enclave under a return-oriented-programming
attack. We propose SMILE for enclave owners to acquire live
enclave contents with the assistance of a semi-trusted agent
installed by the host platform’s vendor as a plug-in of the System
Management Interrupt handler. SMILE authenticates the enclave
under introspection without trusting the kernel nor depending on
the SGX attestation facility. SMILE is enclave security preserving
as breaking of SMILE does not undermine enclave security.
It allows a cloud server to provide the enclave introspection
service. We have implemented a SMILE prototype and run
various experiments to read enclave code, heap, stack and SSA
frames. The total cost for introspecting one page is less than 300
microseconds.

I. INTRODUCTION

Recent years have seen a booming adoption of Intel SGX

among a wide range of applications deployed in a cloud

platform, such as machine learning model development [1],

[2], access control [3], [4] and secure multi-party computa-

tion [5]. In these applications, security-sensitive data and code

are placed into an enclave whose hardware based isolation

prevents external software, including the kernel/hypervisor,

from tampering with its internals. Nonetheless, the security

strength of SGX does not fully relieve users from security

concerns. An adversary may feed a victim enclave thread with

poisonous inputs to exploit its code vulnerabilities leading to

control flow hijacking, data leakage, or even code injection.

The recent use of enclave libraries such as libOS [6], [7], [8]

expands the enclave code and leads to a higher risk of software

exploiting.

For non-SGX applications, such threats can be coped with

by memory introspection which provides the data needed for

attack diagnosis. However, for SGX applications, it is highly

challenging to use the same method due to the compound of

several factors. First, SGX shields the enclave contents against

any software access from the outside. Even if the security

requirement is relaxed to trust the kernel, it still cannot read

the contents stored in the Enclave Page Cache (EPC) pages.

Second, it is imprudent to unconditionally trust the self-report

made from the inside. Since there is no hardware-enforced
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privilege separation within the enclave code, a vulnerability

exploit may affect all code. As SGX2 even allows new EPC

pages to be added to a running enclave, an exploit can lead

to code injection. Third, when the kernel is untrusted, there is

no known solution to determine which enclave an EPC page

belongs to. SGX local/remote attestation is barely helpful as

it is designed for launching time integrity and measures the

enclave’s virtual memory without asserting physical addresses

of EPC pages. Moreover, it is susceptible to side-channel

attacks [9], [10], [11], [12], [13] which extricate cryptographic

keys from an enclave. For instance, Ragab et al. [14] have

demonstrated how to make arbitrary remote attestation after

extracting the root provisioning key. Lastly, an introspection

result is useful only if it is from the expected running instance

of the enclave. If the server’s kernel is malicious, it can use

the same enclave image and launch it in the adversary’s own

computer. Replay attacks [15], [16] can divert the introspection

request and respond with fake data from the relocated enclave.

In this paper, we overcome the challenges above and present

a system called Secure Memory Introspection for Live Enclave
(or SMILE). A cloud service provider can deploy SMILE-

compliant platforms from OEM vendors to provide the en-

clave introspection service to its clients. SMILE allows the

owner of an enclave – and only the owner – to retrieve her

enclave contents at runtime. Against both enclave software

compromise and kernel/hypervisor compromise, it ensures

that introspection is upon the expected enclave (enclave au-
thenticity) and that the results are not faked by corrupted

enclave code (introspection genuineness). Moreover, while

SMILE security failure compromises enclave authenticity and

introspection genuineness, it does not undermine the default

enclave security. We name this property as security preserv-
ing. SMILE relies on an agent running in the enclave platform’s

System Management Mode (SMM). The agent is semi-trusted
as it is trusted to run SMILE but not trusted to learn enclave

secrets, resembling the honest-but-curious server widely used

in privacy-preserving outsourced database systems.

The Trusted Computing Base (TCB) of SMILE is the

union of the default TCBs for SGX and for SMM [17].

We highlight that the SGX TCB alone is insufficient for

memory introspection because SGX neither deals with enclave

software compromise nor supports runtime measurement. To
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use SMILE, enclave users are expected to trust the enclave

hosting platform’s OEM vendor (e.g., DELL) which has duly

checked the SMM agent’s security and ensured its loading

time code integrity. We also stress that, thanks to the security

preserving property, the trust on the OEM and its authorized

SMM code only determines the security of introspection. The

trust model on Intel SGX remains unchanged.

We have implemented a prototype of SMILE on a Gigabyte-

Q170M motherboard. Depending on the introspection work-

load used in our experiments, a SMILE based enclave intro-

spection takes a system-wide performance toll varying from

about 160 microseconds to a dozen milliseconds, which makes

it ill-suited for large scale memory introspection or continuous

enclave monitoring. It is a useful tool for scenarios wherein

the security or functionality needs dominate performance

considerations, e.g., live forensics on enclaves under a software

exploitation attack or debugging data collection from enclaves

throwing out exceptions. We have also conducted four case

studies to show how SMILE is applied to report the enclave’s

call stack, the SSA region and the code region. Note that

the techniques using introspection results for various security

purposes are orthogonal to and beyond the scope of our study.

We summarize our key contributions as follows:

• We study the problem of how an enclave owner intro-

spects her live enclave memory with enclave authenticity,

data genuineness, and enclave security preserving, and

propose SMILE as a solution that leverages a semi-trusted

agent running in SMM.

• We innovate the confined interrogation protocol which

harnesses both system security and cryptography to se-

curely bootstrap trust on an enclave, authenticate its

identity, and verify runtime code integrity. The protocol

does not use SGX local or remote attestation facility.

• We implement SMILE and and measure its performance.

We also run several test cases to show its applications.

ORGANIZATION. The next section briefly explains the back-

ground on SMM and SGX. Section III overviews SMILE

including the adversary/trust models, problem statement, and

our approach. The details of SMILE are presented in Sec-

tion IV. Section V shows the security evaluation. We describe

our prototype implementation in Section VI. Section VII

presents the performance overhead, introspection speed, and

four case studies of SMILE. We survey the related work in

Section VIII. Section IX discusses the limitations. Finally,

Section X concludes the paper.

II. BACKGROUND

This section provides a preliminary explanation of Intel

SMM and SGX. Experienced readers may skip it.

A. System Management Mode

System Management Mode (SMM) [17] is a highly-

privileged CPU execution mode available in all current x86

machines. Its main usage is to handle system-wide functions

such as power management and special functions needed by

OEM. Only the SMM code with an OEM signature can be

accepted and installed by the BIOS/UEFI firmware. It is loaded

into a special memory region named System Management

RAM (SMRAM). The hardware ensures the SMM code’s

exclusive access to SMRAM. Namely, no system software can

read or write contents in SMRAM. Upon receiving a System

Management Interrupt (SMI), the CPU switches from Pro-

tected Mode (PM) to SMM and executes the SMI handler. The

hardware automatically saves the CPU state in the SMRAM

state save area. After handling the SMI, the handler uses RSM
instruction to exit from SMM to PM so that the interrupted

threads continue their executions. The SMI handler’s access to

the platform’s physical memory of the platform is not subject

to the kernel’s paging access control.

An important property about SMI is that, whenever one core

receives it, all cores switch to SMM in a synchronous way.

Each core can have its own separate SMI handler as well as

a separate SMRAM region to save its own state.

B. Software Guard eXtensions (SGX)

With SGX [18], [19], [20], developers can designate a

continuous virtual address region as an SGX enclave. The

hardware ensures that no other software including the OS-

/hypervisor can read or write the contents inside.

The enclave code and data reside in the Enclave Page

Cache (EPC) pages in a region of Processor Reserved Memory

(PRM) [21]. Enclave execution can be multithreaded. Like

normal application threads, enclave threads share the code

section and the heap but have their individual stack. Each

thread has its own State Save Area (SSA) which saves the

CPU states upon an exception, and its own Thread Control

Struct (TCS) which is used exclusively by the hardware to

manage thread execution. The enclave code can freely access

data outside of the enclave whereas it cannot pass the control

to the outside which will trigger an exception.

Enclaves are initialized, launched and managed by the OS.

Enclave code’s internal memory access still involves the MMU

which enforces access controls based on the permission bits

saved inside the enclave’s metadata during enclave initializa-

tion. Nonetheless, the MMU consults the outside page table

to determine whether the EPC page to access is present.

III. SYNOPSIS

We consider the following application setting. A cloud

service provider has its SGX platform (denoted by H) installed

with the SMM code for SMILE (denoted by the SMM agent)
and provides the security-preserving enclave introspection

service to its users. A user (denoted by the owner) builds

her SMILE-compliant enclave E and deploys it on H .

A. Models

Adversary Model. The adversary is malware in H with

the kernel and the hypervisor privileges. It launches various

software attacks, e.g., return-oriented programming attacks

[22], [23] and heap buffer overflow [24], by exploiting E’s

vulnerabilities. It also aims to defeat the enclave introspection

mechanism by using an imposter enclave and/or manipulating
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the introspection outcome. It is capable of launching replay

attacks [15], [16] by colluding with a remote platform under

its full control. In the worst case, the malware possesses a

leaked signing key belonging to one of CAs in Intel Attestation

Service so that it can make arbitrary attestation. Denial-of-

service attacks are out of our scope.

Trust Model. The security of SMILE is built upon the

hardware TCB of SGX and the assumed security of the SMM

code1 in H . Since the SMM code cannot be independently

verified by a third-party, our trust model for SMILE depends on

OEM’s liability to govern SMM code installation, an unneeded

assumption for trusting SGX. Hence, we suppose that the

OEM vendor of H has duly validated and authorized the entire

SMM code which encloses the SMM agent as a plug-in. We

also suppose that the hardware only loads and launches OEM

authorized code in SMM. Moreover, the vendor certifies the

agent’s signing key, so that an agent’s signature is accepted

by an enclave owner if a valid certificate is presented.

CAVEAT. Similar to existing SMM-based systems [25], [26],

SMILE expands the attack surface against SMM. Nonetheless,

SMM compromise does not affect the enclave security. Our

design is in line with the trust on honest-but-curious servers

in privacy-preserving outsourced databases.

B. Problem Statement

Our research problem is how to securely introspect E’s

memory under the aforementioned adversary model. A secure

enclave memory introspection is expected to meet the follow-

ing requirements. (a) The returned bytes are indeed fetched

from the desired EPC pages of E running in H (authenticity).

They should not be from other enclaves or other instances of

E . (b) The introspection result is not tampered with or faked

by the corrupted code inside E (genuineness). In our attack

model, the code and data in E running in H may have been

altered before introspection. (c) The introspection does not

undermine the enclave security. Namely, the adversary cannot

take advantage of introspection to break secrecy and integrity

of E (security-preserving).

Obviously, authenticity is the prerequisite of a secure in-

trospection and also presents the hardest challenge. Since the

enclave authentication cannot use SGX attestation facility, au-

thenticity demands genuine data acquisition from the relevant

EPC pages. Hence, we have to break the cyclic dependence

between authenticity and introspection. Genuineness is an

indispensable mandate for any memory introspection setting,

because the security objective of introspection is to cope with

potential compromise of the target. The challenge arises from

the fact that all enclave code has the same privilege. It is

thus infeasible to assume that some enclave code is free

from tampering and always runs as expected. The security-

preserving requirement is from the usability perspective since

enclave introspection should not be realized at the expense of

enclave security.

1Note that the real-life SMM code in several platforms is found to be
exploitable.

C. The Approach

Overview. The high-level workflow of using SMILE is as fol-

lows. An enclave owner submits to the cloud her enclave and a

public configuration file supplying all information needed for

her enclave introspection. The cloud launches the enclave at

H and passes the configuration to the SMM agent. At runtime,

the introspection proceeds in the following steps.

I. The owner submits an introspection request which spec-

ifies her enclave’s identity (i.e., MRENCLAVE) and the

enclave memory addresses and sizes for introspection.

II. The kernel at H passes to the agent the request and the

enclave thread’s CR3 which serves as a reference for the

agent to locate the enclave.

III. Using the corresponding configuration file, the agent au-

thenticates the referred enclave against the identity in the

request, and checks whether the enclave’s introspection

code is intact. If both affirmed, it signs the request and the

configuration and passes the signature with the request

to the enclave. The signature is a token proving that the

agent has approved the ensuing introspection.

IV. The introspection code in the enclave reads the requested

contents and encrypts them together with the agent’s

signature using the owner’s public key. The ciphertext is

returned to the owner via an open network channel. The

owner accepts the introspection result after verifying the

signature with the agent’s public key certificate.

As shown in the workflow, the SMM agent’s responsibility

is to authenticate the enclave and assess the trustworthiness of

the introspection code therein. It does not access the enclave’s

private data, which makes enclave security-preserving feasible.

The SMM agent is not enclave specific. It can handle multiple

enclaves after receiving their public configurations.

Next, we briefly explain how SMILE achieves authenticity,

genuineness, and security preserving. The details and a deeper

analysis are presented in subsequent sections.

Enclave Authentication. The security of the workflow above

hinges on the security of the agent’s authentication against

the involved enclave and its introspection code. In SMILE,

we introduce the confined interrogation protocol wherein the

agent sets up the confined environment to restrict the enclave’s

capability (e.g., to restrict the available code page and data

page to be used) and challenges it to perform a task only the

expected enclave can accomplish.

SMILE requires that E has two pieces of code participating

in the confined interrogation: the anchor for trust inception and

the worker for enclave identity report and memory introspec-

tion. The outline of the confined interrogation is as follows.

The agent first verifies the anchor’s code integrity followed by

the worker’s, and then verifies the enclave identity reported

by the worker. The crux is the first step which, like a trust

foothold, lays the security foundation for subsequent steps.

Figure 1 illustrates a system view of the confined interroga-

tion on host H having four CPU cores. Besides the anchor and

the worker in E and the SMM agent, SMILE also comprises

the trampoline which is launched by the agent to set up
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Fig. 1. A system view of confined interrogation. Grey boxes represent EPC
pages of E . Only Pages labelled with ‘Y’ are accessible to E .

the confined environment (details in Section IV-B). During

interrogation, E occupies one core and the agent occupies all

others. The confined environment imposes resource restriction

on E . It also ensures that the agent directly interrogates

the enclave without facing the risk of replay attacks [15],

[16] as the enclave is blocked from colluding with other

entities including the kernel. Thus, the authentication outcome

derived by the agent truly reflects the status of the enclave in

engagement.

The confined interrogation protocol (details in Section IV-C)

is in the similar vein to software based attestation [27], [28]

in the sense that it securely bootstraps the trust on the anchor

and then extends the trust chain to the worker. The difference

is that our protocol revolves on the space constraint imposed

by the confined environment instead of the time constraint

[27], [28]. To ensure that only the anchor can pass the

checking, we handcraft it with our best expertise so that its

memory size is as small as possible. An imposter is forced to

occupy more storage and therefore fails to pass the checking

due to its conflict with the confined environment. In short,

SMILE relies on the interrogation protocol running in tandem

with the underlying environment and the anchor to break the

aforementioned cyclic dependance.

Genuineness and Security Preserving. Since confined inter-

rogation verifies the code integrity of the introspection code

(i.e., part of the worker), genuineness ensues from its confined

environment which stalls all untrusted executions. Enclave

security is preserved since the SMM agent neither accesses

the introspection results nor shares any secret with the owner.

All outputs from the enclave during the interrogation are pub-

licly available from the enclave image, and the introspection

outcome is encrypted under the owner’s public key. Hence,

neither a corrupted SMM agent nor an imposter can exploit

SMILE to gain any advantage to break E . A comprehensive

security analysis is presented in Section V.

IV. DETAILS OF SMILE

An enclave introspection transaction using SMILE starts

when the kernel in H fires an SMI upon receiving the

introspection request from the enclave owner. All the CPU

cores are subsequently trapped to SMM, and the SMM agent

takes the full control. Next, the agent sets up the confined

environment in one of the cores for enclave introspection.

We denote it as the enclave core for ease of presentation.

Then, the agent in one of the remaining cores (denoted as the

interrogation core) runs the confined interrogation protocol

against the enclave in the confined environment. At the end

of the protocol, the agent terminates the SMILE transaction by

exiting from SMM and returning all cores to the kernel.

In the following, we first describe the enclave internals,

before elaborating the confined environment and the interro-

gation protocol.

A. Enclave Internals

To successfully run in SMILE, the enclave is required to be

multithreaded with one thread reserved to launch the anchor.

Hence, the developer of E adds four EPC pages for introspec-

tion to the suite of EPC pages for the application logic. The

software’s view of the enclave layout with access permissions

is shown in Figure 2. Specifically, a TCS page and an SSA

page are used to launch the introspection thread. Note that

SGX denies any software access to TCS pages while it requires

the SSA pages to be fully accessible, i.e., with read/write

permissions. The new SSAr page is filled with random bytes

chosen by the developer of E . The anchor page and the worker

page are adjacent which is to facilitate enclave authentication

as explained shortly. Note that the virtual address layout of E
is not a secret as it is available in the enclave image.

Fig. 2. Software view of the address space layout of an application enclave
using SMILE. Only EPC pages accessible to the enclave are shown.

Anchor. The anchor consists of ten instructions only as

shown in Figure 3. It begins with copying the SSA page

and itself to the non-EPC destination specified by the SMM

agent. It then continuously polls a memory location shared

with the agent in order to get synchronized with it. It either

outputs the worker to a non-EPC destination or jumps to the

worker, depending on the bytes in the shared memory. The

details of how the segment of instructions run are relevant to

the confined environment and the interrogation protocol. We

elaborate them in Section IV-B and Section IV-C, respectively.

The anchor code page has two security critical properties.

Firstly, the anchor’s code size must be as small as possible (i.e.,

35 bytes in our implementation). It is within one code page and

has no data page. Secondly, besides the instructions, the page

is fully padded with random bytes and no transfer instruction

appears in them2. Intuitively, the two properties allow the

anchor to respond correctly in the confined environment with

a memory constraint. More security details are provided in

Section V.

Worker. The worker reports the enclave’s identity to the

SMM agent and makes the due introspection on the enclave.

2The developer can scan the random bytes to detect any opcode of transfer
instructions. If found, she can either replace it with other bytes or change the
operand bytes so that it does not form a legitimate instruction.
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1:    mov %r10, %rcx
2:    lea ssa_offset(%rip),%rsi
3:    rep movsd
4:    mov %r10, %rcx
5:    lea anchor_offset(%rip), %rsi
6:    rep movsd

loop:
7:    lock xadd %rcx, (%r9)
8:    jnp worker
9:    rep movsd
10:  jmp loop

Output SSA

Output anchor

Output Worker 
and pass the 
control to it

Fig. 3. The anchor code.

Specifically, it first uses the EREPORT instruction to get an

SGX-generated REPORT object whose MRENCLAVE member

is returned to the agent as the enclave identity. It then makes

introspection on the enclave according to the owner’s request.

The worker page comprises its code and the static data. The

code is embedded with the owner’s public key, pk, so that the

introspection outcome is encrypted using it and safely stored

in non-EPC pages before being returned.

B. Confined Environment Initialization and Enclave Entering

After all cores are trapped to SMM, the agent at the

enclave core initializes the confined environment and passes

the control from SMM all the way down to the enclave

execution. Basically, the confinement is imposed by the page

tables configured by the SMM agent for the enclave core.

Since the agent cannot intervene in runtime events occurring

in enclaves (e.g., an exception raised from the enclave), it

delegates the runtime checking to the trampoline which is

loaded by the agent at the enclave core. The trampoline is

granted with Ring 0 privilege and intercepts all exceptions

and interrupts throughout the interrogation which are abnormal

behaviors (e.g., an imposter enclave’s attempt to trap to the

kernel). The confined environment initialization proceeds in

three steps as below.

First, the agent copies the trampoline instructions from

SMRAM to the main memory and configures the page table

to map it with the supervisor privilege. It modifies the rip
value in the SMRAM state save area with the trampoline entry

address, and exits from SMM. As a result, the trampoline takes

the control of the enclave core in Protected Mode.

Next, the trampoline configures the page tables as follows.

It sets both the SSA frame and the anchor page as present

and all other EPC pages as non-present so that they are not

accessible. Since SGX enforces access permissions for EPC

pages according to the mappings stored inside the enclave, the

trampoline cannot grant or deny permission via the paging

tables. However, any reference to a non-present EPC page

still triggers a page fault. For non-EPC pages, the trampoline

maps four pages with priorly prepared contents: one non-

writable code page P and three read-writable pages P0, P1

and P2. P only has one instruction which is EENTER and

is padded with zero for the rest of the space. It provides

the inputs for interrogation whereas P0, P1 and P2 are empty

pages to store the enclave’s interrogation output. No other non-

EPC page is mapped for the enclave core. Figure 4 depicts

the address space layout with page permissions and presence

statuses initialized for the confined environment.

Fig. 4. Initial memory layout for launching the introspection thread of E .
Only two EPC pages and four non-EPC pages are made accessible.

Thirdly, the trampoline sets itself as the default exception

handler and interrupt handler to intercept any attempted enter-

ing to the kernel mode. It prepares the CPU context for the user

space execution. Specifically, it sets rdi with the address of

P0, rcx with 1024, and r9 with the address of a buffer in P
providing interrogation inputs to the enclave. Then, it flushes

the TLB to prevent the enclave code from using any cached

mappings, which ensures the effectiveness of the page tables

prepared for the confine environment. Finally, it launches E
via the EENTER instruction in P with the TCS dedicated for

introspection.

The whole initialization procedure above is not subject to

runtime attacks because, except the enclave core, all other

cores are occupied by the SMM agent. Hence, no adversary is

live during the procedure. In the end, the enclave core enters

E with no TLB entry storing non-EPC mappings. Since SGX

invalidates all TLB entries for EPC mappings upon an enclave

exit, this new thread of E does not use cached EPC mappings

either. The enclave thread can only access two EPC pages.

The permissions for EPC pages are locked inside the enclave

and are in fact unknown to the SMM agent while permissions

for non-EPC pages follow the aforementioned setting.

C. Confined Interrogation Protocol

In the confined interrogation protocol, the SMM agent

authenticates whether the enclave under interrogation is indeed

E . The protocol proceeds in three steps: (i) anchor integrity

checking; (ii) worker integrity checking; (iii) enclave identity

authentication. Along these steps, the agent progressively

builds up trust on the enclave and relaxes the imposed re-

strictions in the confined environment. The checking against

the anchor is the security bedrock because the anchor, after

passing the verification, becomes the very first trust foothold

in the enclave for subsequent verifications. Consequently, it

turns the enclave under interrogation from a black box to a

white box.

Anchor Integrity Checking. Since there is no trusted code

in the enclave when the interrogation starts, we follow an

approach similar to software based attestation [27], [28], [29]

to authenticate the anchor. Nonetheless, our mechanism hinges

on memory space restriction instead of on execution time as in

those schemes. The rationale behind is that only the genuine
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anchor is small enough to produce the expected result under

the stress of memory limitation. Both the anchor page and

the SSA frame in E are fully filled with random bytes except

the anchor instructions. The anchor is expected to copy and

reproduce all random bytes in these two pages to non-EPC P0

and P1.

Specifically, when the enclave core enters the enclave for

interrogation, the anchor is the first piece of code to run and

inherits the CPU context prepared by the trampoline. The

relevant registers are shown in Table I. With the memory

layout shown in Figure 4, the anchor’s first three instructions

copy all 4096 bytes in the SSA page to P0, and then the next

three instructions copy all 4096 bytes in the anchor page to

P1. Figure 3 shows the copy instructions.

TABLE I
THE CPU CONTEXT IMMEDIATELY PASSED INTO THE ENCLAVE

Registers Content
rdi Address of P0

r9 Address of the shared buffer in P
r10 1024
Others including rsp, rsi 0

The agent on interrogation core verifies whether P0 is

identical to E’s SSA page and whether P1 is identical to E’s

anchor page. If each and every byte is matched, the agent

asserts that the presently running code in the enclave is indeed

the expected anchor, though no conclusion can be drawn about

the enclave identity.

Note that rcx becomes zero after the anchor page is

copied. Since the word pointed to by r9 is also set as zero,

the subsequent instructions forms a loop whose payload is

equivalent to no operations.

Worker Integrity Checking. After the anchor’s code integrity

is verified, the agent proceeds to the second phase of the

interrogation, i.e., to verify the worker integrity. Specifically,

it runs the following steps.

I. Set the present bit in the page table entry corresponding

to the worker page, As a result, the worker page is

released from restriction. The new memory view is

shown in Figure 5(a).

II. Write 1024 to the shared buffer pointed to by r9.

III. Repeatedly detect any change on the first byte of P2. If

any, write 0 to the shared buffer.

(a) View of enclave memory with
the worker page being released

Anchor Agent

loop

copy

loop

(r9)=1024

(r9)=0

Time

rcx=1024

rcx=0

(b) The interaction between the
agent and the anchor

Fig. 5. Worker Integrity Checking

Figure 5(b) depicts the interactions between the agent and

the anchor in this phase of checking. The agent’s first write

to the shared buffer allows the anchor code to load 0x1000

to rcx, which leads to the worker page to be copied over to

P2. After the copy operation, rcx is reduced to 0 again. By

then, the agent has cleared the shared buffer to 0. Hence, the

report’s loop make no more copy operations.

The agent verifies the outputs in P2 against the bytes of E’s

worker. If all are consistent, it asserts that the enclave under

interrogation has the expected worker code.

Enclave Identity Checking. After verifying integrity of the

worker, the agent proceeds to authenticate the enclave entity.

Specifically, it runs the following steps.

I. Release the EPC data page used for enclave report

generation.

II. Write 0xFF to the shared buffer pointed to by r9.

As a result, the anchor breaks out of the loop and jumps to the

worker (Line 8 of the anchor code in Figure 3). The worker

initializes its context including the stack and then executes the

EREPORT instruction to generate its enclave report. It then

returns the MRENCLAVE member within the report structure

to page P0.

The agent checks the returned value against E’s known

identity. If matched, the agent has successfully authenticated

the enclave without using the default SGX local or remote

attestation. This completes the confined interrogation protocol.

D. EPC Introspection

After the confined interrogation, the SMM agent prepares

for EPC introspection. To avoid straining the agent with the

communication task, SMILE is designed to use the normal

network channel to submit the introspection result to the

owner. The main security problem to overcome is to allow

the owner to authenticate whether the received result is indeed

made by the worker during a SMILE session. Our solution is

to cryptographically bind the SMILE session with the intro-

spection result. Specifically, the agent follows the following

steps:

I. Sign the owner’s introspection request and the configu-

ration file in use. Let σ be the resulting signature.

II. Pass the request and the signature σ to the worker through

the shared buffer.

III. Restore the memory view of E’s process so that the entire

enclave is made available.

The worker makes the due introspection and encrypts both

the result and σ using the enclave owner’s public key pk.

It writes the ciphertext blob, Encpk(data, σ), to the non-

EPC page(s) for the application to send it to the owner,

permanently deletes σ from the enclave, and notifies the agent

the completion of introspection. The agent tears down the

confined environment entirely before exiting from SMM to

terminate the entire SMILE session.

When the enclave owner receives the ciphertext blob, she

decrypts it and verifies σ against her request and the expected

configuration file. If both σ and its corresponding pubic key
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certificate issued by the OEM are valid, the introspection result

is indeed obtained by E after successfully passing the confined

interrogation; otherwise, it is faked.

V. SECURITY EVALUATION

In this section, we assess the security of SMILE from

two perspectives: how the trustworthiness of the introspection

result is achieved via the concerted efforts in system security,

algorithm design, and cryptography; and how the enclave

security is preserved by SMILE. For the former, we begin with

the confined environment which lays the system foundation,

followed by analyzing the interrogation protocol. For the

latter, we consider various attack scenarios including SMM

compromise.

A. Security of Confined Environment

The security objective of the confined environment is to re-

strict the enclave’s memory access as intended and prevent its

control flow from leaving the enclave. Throughout the whole

interrogation session, only the enclave core runs in PM while

all others are in SMM. According to our adversary model in

Section III-A, the code and data in SMM is never susceptible

to read or modification from PM. Attacks against the confined

environment can only take place at the enclave core guarded

by the trampoline. Hence, we begin with trampoline security.

Trampoline Security. The trampoline’s launching time in-

tegrity is guaranteed as it is copied from SMRAM to the

main memory. It is not susceptible to runtime software attacks

because other cores are controlled by the SMM agent. The

malicious kernel may schedule a DMA attack to overwrite

the trampoline. There are two approaches to cope with such

attacks. If the platform supports IOMMU, the SMM agent

configures the IOMMU page tables during trampoline loading

to block illicit DMA writes. Otherwise, a randomization based

approach can mitigate the risk of attack to certain degree. The

SMM agent loads the trampoline to a randomly selected non-

EPC page whose contents (if any) are saved before loading

and restored after introspection. Depending on the physical

memory size, the platform may have hundreds of thousands

to millions of page frames for the agent to choose. Since the

DMA attack selects the pages to write prior to trampoline load-

ing, this alternative can reduce the attack’s success probability,

instead of prohibiting it entirely.

User-mode Execution. Throughout the untrusted enclave

execution (i.e., the first instruction after entering enclave might

be malicious), the trampoline guards at the kernel entry to

intercept any user/kernel mode switch. Since the trampoline

guards the entire interrogation session, the adversary can only

launch attacks in user-mode. Without Ring 0 privilege, it can

not alter the page tables, the CPU mode, or tamper with the

trampoline.

Memory Access Control. The enclave code can only access

non-EPC pages according to the page tables provided by the

confined environment, because the trampoline has flushed the

TLBs before entering the enclave. Hence, the environment

dictates what non-EPC pages are accessible with what per-

mission. For EPC pages belonging to the enclave, the MMU

uses the mappings kept inside the enclave. However, a page

fault exception is triggered if the present bit in the page table

entry is cleared. Hence, the confined environment determines

what EPC pages can be accessed though it cannot specify the

permissions.

On the premise of the CPU privilege and the memory access

control, we examine the enclave’s control flow and data flow.

Control Flow. After the interrogation core enters the enclave,

any control transfer to instructions outside of the enclave is

caught by the trampoline. To leave the enclave, the enclave

code must activate either an asynchronous enclave exit (AEX)

by triggering events such as a system call or a controlled exit

by executing EEXIT. The former is trapped to the kernel mode

and is intercepted by the trampoline. The latter triggers an

exception because no executable page is mapped outside of the

enclave. The page fault is also intercepted by the trampoline.

Moreover, the in-enclave control transfers are limited within

the EPC pages presently mapped, regardless the mappings

cached inside the enclave. Specifically, during the anchor

integrity checking step, only the anchor page is present while

the worker page is also available to execute during the worker

integrity checking and the enclave identity checking steps. An

attempt to execute code in other EPC pages triggers a page

fault.

Data Flow. The enclave code is allowed to make memory ref-

erences to the non-EPC pages on the condition that the access

is compliant to the governing page table entry. Throughout the

interrogation session, it can only read P and has the read/write

access to P0, P1, P2. No other non-EPC page is accessible to

the enclave code. Internally, it has the read/write access to the

SSA page. Since the enclave keeps the access permissions to

EPC pages, it may have the full access to the anchor page and

two pages for the worker.

B. Enclave Authenticity

Since the owner verifies the agent’s signature upon the

introspection request and the configuration, she can detect

request or configuration forgery. Hence, our analysis below

assumes that the agent has the correct information about the

introspection target, enclave E . Note that the kernel/hypervisor

in H must provide all relevant address mappings conforming

to E address layout. Otherwise, exceptions are triggered when

a wrong mapping is used. Suppose that the adversary imper-

sonates E using its own enclave E ′ which has the identical

address layout as E but holds different contents. We show

below that E ′ will be caught by the SMM agent during

interrogation.

1) Anchor Authentication: Let A denote the anchor code

as shown Figure 3. Suppose that E ′ uses its fake anchor A′

whose instructions are different from A. Although we do not

have a theoretic proof, we reason below that, if A′ completes

the workflow of interrogation, it occupies more storage than

A. Following this, we deduce that it has a negligent chance
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of reproducing all random bytes correctly and the spoofing is

thus caught by the agent.

During the interrogation, A′ must produce the expected

8192 bytes (i.e., anchor page and SSA page), transfer the

control to the worker, and synchronize with the agent. To

the best of our knowledge, the code in A (Line 1 to Line

6 in Figure 3) is the shortest one copying all bytes in two

separated pages in the confined environment. Note E ′ cannot

place the SSA page and the anchor page adjacent, because

it does not match the confined environment setup and will

trigger a page fault. We also stress that A′ is the very first
piece of code executed upon enclave entry in the interrogation

session and inherits the CPU context (in Table I) prepared

by the trampoline. The rationale is that both the CPU context

prepared by the SMM agent and A are carefully crafted to

fit each other. A′ would need extra instructions to initiate its

registers using data from the two EPC pages.

The second task is also necessary. The size of A′ will be

significantly larger if it measures the enclave and performs

introspection. It should include one jmp instruction to the

worker as in Line 8 of A (2 bytes) in Figure 3. Other control

transfer instructions such as ret and call require additional

instructions to load rsp and the stack, which costs more

storage.

The third task is indispensable because A′ must run in

synchronization with the agent. Otherwise, its behavior will be

caught due to the confined environment. It means that A′ must

continue its execution during the interval between copying two

EPC pages out and the worker page restoration. The shortest

possible code to run in the confinement environment is a loop

that repeatedly polls the shared memory, as used in A which

are 8 bytes in total (Line 7 and Line 10 in Figure 3).

Note that during the worker integrity checking step, the

agent cannot tell whether the output is made by the anchor

or the worker, since A′ may have secretly passed the control

to the worker. However, this attack requires more bytes than A
which completes copying using two bytes (Line 9 in Figure 3).

The attack above needs several instructions to fake the genuine

instructions outside of its code.

In short, A′ uses more storage than A if it passes the

anchor checking. However, we show below that there is no
additional memory space for the adversary to use except the

space occupied by A.

A′ can only access the SSA frame and its own code

page. These two EPC pages are the only storage providing

up to 8192 bytes of input data to produce the response for

authentication. The non-EPC pages, namely P, P0, P1, P2 do

not provide additional information since P0, P1, P2 are empty

pages while P only has the EENTER instruction. Suppose

that A′ uses k more bytes than A. It implies that A′ has to

reproduce 8192−35 = 8157 (size of two pages minus size of

anchor) random bytes using 8157−k bytes storage. However,

the probability that this 8157-byte long random string can be

compressed with k less bytes is ρ = 2−8k+1 − 2−8∗8157 ≈
21−8k, assuming that every random string of such a length

has the same probability to be compressible with k less bytes.

Hence, the success probability of a meaningful attack (with a

large enough k) is overwhelmingly negligible.

To summarize, if the enclave under interrogation returns all

bytes as expected, it is confirmed to run the genuine anchor in

Figure 3. It means that the anchor becomes the trust foothold

for the agent.

2) Worker Authentication & Enclave Authentication: After

the anchor is authenticated, its copy of the worker page is

also trustworthy. Hence, the agent can securely authenticate

the worker’s code integrity using E’s image.

Since the worker’s enclave identity report does not use any

initial data from the enclave and there is no thread running

in parallel during its execution, the code integrity directly

leads to runtime integrity which means that the outcome of its

execution is trustworthy as well. Hence, the agent can use the

result from its EREPORT to verify the enclave’s MRENCLAVE
for enclave identity authentication.

C. Genuineness of Introspection Result

After the confined interrogation, the SMM agent continues

to occupy the CPU cores except the enclave core. Hence,

there is no running adversary against the worker. Since the

worker’s code and data integrity has been verified, its outcome

can be trusted by the owner on the condition that it is

not susceptible to exploits during introspection, which is a

common assumption for all introspection schemes.

Note that the worker does not use any permanent secrets,

as it uses the owner’s public key which has been enclosed in

integrity checking. Hence, even if the adversary invokes the

introspection outside of SMILE, it cannot decrypt the outcome.

Neither can the adversary impersonate the worker to send a

blob to the owner without using SMILE, because it cannot

enclose a proper SMM signature σ inside it.

D. Enclave Security Preserving

We explain below that SMILE does not undermine the

security of E . Namely, even if the SMM agent is compromised

by the adversary, it does not gain additional advantage of

attacking E .

First of all, SGX is engineered to resist attacks from SMM.

Secondly, the agent neither accesses nor stores any secret

pertaining to the enclave as its execution only utilizes data

from E’s image. Therefore, the subverted SMM agent does

not directly compromise any enclave.

It is more intricate to show that the adversary cannot misuse

SMILE to gain advantages. We consider the possible scenario

where the adversary runs the interrogation protocol against E
without even trapping to SMM. The anchor is the only code

interacting with the adversary. Although the anchor inherits the

register context, the adversary can only specify the amount of

bytes to copy. It can neither appoint the source (i.e., rsi)

nor choose an EPC page due to the mask applied to rdi.

Hence, the anchor will always copies three pages to non-EPC
pages. Neither of the pages contain sensitive data. The two

jump instructions use direct transfer. Thus, the control flow

is not susceptible to manipulation. Like other normal enclave
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functions, the worker reads parameters from the outside and

writes to EPC pages. The use of the worker does not weaken

enclave security. In short, the security of SMILE or SMM does

not impair the security of SGX. Using SMM as the TCB for

SMILE does not expand the TCB of SGX.

E. SMM Agent Security

Under the assumption of a secure SMM agent, we have

analyzed how SMILE achieves enclave authenticity, introspec-

tion genuineness and enclave security preserving. It is an open

problem how for a third-party to assess trustworthiness of the

SMM code (including the agent). Since the hardware only

accepts the SMM code signed by the vendor, the owner may

place her trust upon the vendor’s code authorization procedure.

Namely, the hardware vendor duly checks the SMM agent to

be installed on the cloud provider’s platform before signing it

and certifying its public key. The enclave owner can assert the

SMM agent’s loading time integrity if its public key certificate

is valid. At runtime, the malicious kernel/hypervisor cannot

launch a side-channel attack against the agent’s signing key,

because all cores are controlled either by the agent itself or

the trampoline when the key is used.

VI. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of SMILE consisting the

SMM agent, the trampoline module in the kernel, and the

anchor thread. Their code sizes are reported in Table II. Our

platform is a Gigabyte-Q170M motherboard with a four-core

Intel i5-7500 CPU (supporting SGX and SMM). We install

Ubuntu 18.04 and use Intel SGX SDK version 2.5 for enclave

related coding. Figure 6 shows the implemented components

and the high-level workflow.

TABLE II
THE CODE LINES FOR EACH MODULE IN SMILE.

SLOC SMM Agent Trampoline Anchor Thread
anchor worker

Assembly 185 20 10 17
C - 300 - <100

A. The SMM Agent

Components. Our SMM agent consists of three components:

the launcher, the interrogator, and the idler, running in differ-

ent cores. The launcher runs on the enclave core to load the

trampoline and handle the switches from SMM to Protected

Mode (PM). Specifically, it sets the trampoline as the default

exception and interrupt handler in kernel, and modifies the

CPU context stored in the enclave core’s SMRAM state save

area, so that the trampoline immediately takes the control

when the CPU exits from SMM. The interrogator runs in the

interrogation core and implements the confined interrogation

protocol as elaborated in Section IV-C. The idler runs in the

remaining two cores to hold them in SMM. It is essentially

an empty loop which exits after detecting the flag set by the

interrogator in the predefined shared memory.

Deployment. The SMM agent is implemented as one part of

the SMI handler in SMRAM. One of the challenges is the fact

that the entire SMRAM is closed to developers. No user space

code or the kernel can access it. We follow the approach in

[30] to use Intel DCI-based debugging facility [31] to hack

into the SMRAM in our platform. Specifically, we flash a

customized BIOS image into the motherboard’s firmware. The

updated BIOS sets the debugging enabling bits in several

JTAG registers such as HDCIEN so that the DCI debugger

can make read/write accesses to both the host memory and

the SMRAM through the JTAG interface.

The debug facility allows us to tackle the second challenge:

to integrate our agent with the default SMI handler whose

source code is not available. Implementing the agent as an

independent SMI handler is not a feasible option because it

would require the agent to handle all hardware-specific issues

for PM-SMM switches as well as CPU initialization. Note that

the CPU runs in 16-bit real-address mode upon entering SMM.

Hence, the difficulty stems from finding a suitable location to

hijack the SMI handling process and run our agent.

Our reverse-engineering shows that each of the four cores

has its own separate handler although all handlers have the

same logic and a common module. For each of them, we hook

our code at the end of initializing the 64-bit real-address mode

so that it can access the entire host memory. Specifically, we

insert a jmp instruction that redirects the flow to the agent

located in an unused SMRAM region. Since the hook is before

invoking any sub-handler, we use a filter in our agent to resume

the original flow if the SMI event is not for SMILE. The

destinations of the four inserted jmp depend on the expected

workload in the cores. For the enclave core, it jumps to the

launcher function of the agent; while for the interrogation core,

it jumps the interrogator function as shown in Figure 6. For

the remaining two cores, it jumps to the idler.

B. The Trampoline Module

Recall that the trampoline is to build and enforce the

confined environment for the enclave. It is loaded by the

launcher with the kernel privilege so that it can enforce

page-level access control and become the first-responder to

interrupts and exceptions.

The trampoline runs with the CR3 passed by the kernel

so that it runs in the same hierarchy as the target enclave.

The kernel also supplies the VAs of the enclave’s TCS and

SSA pages. Except the given SSA page, its neighboring anchor

page, P, P0, P1 and P2, the trampoline clears the present bit for

all other EPC and non-EPC pages in user space. It updates the

mappings for P, P0, P1 and P2 to four unused physical pages

after zeroing them.

Note that using a false CR3 or faked mappings for the TCS

and SSA only lead to the failure of SMILE. The kernel does not

gain any advantage to pass the confined interrogation protocol.

C. Enclave Building

Although the enclave layout required by SMILE (as shown

in Figure 2) is fully compatible with SGX’s hardware spec-

ification, it unfortunately cannot be directly generated by

the Intel SGX SDK. Firstly, although the SDK supports
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SMM entry:
    init smi_handler    
    config long mode
    jmp launcher
    ......
launcher agent:
    config async-flag
    load trampoline  
    relocate rip
    disable irq
    rsm

anchor :
   config registers
    dump ssa
    dump anchor_seg
    loop{dump worker_seg}
worker :
    fetch identity
    dump target_mem
    [extented function]
    set registers
    eexit

SMM Agent Anchor Thread

Enclave Core

Trampoline
setup:
    init state
    config PAGES
    config EXC_handler
    config INT_handler
init_anchor :
    config parameters
    set registers
    ecall interface
    restore state
    exit

resume eenter SMM entry:
    init smi_handler    
    config long mode
    jmp interrogator
    ......
inter rogator agent: 
    check anchor integrity
    check worker integrity  
    check enclave identiy
    release async-flag
    rsm

SMM Agent

Interrogation Core

(1) interrogate

(2) enclave
introspect

Fig. 6. The implementation details of components and control flow in SMILE.

multithreaded enclaves, all TCS structures’ oentry fields

have the common value as shown in Figure 7(a). Hence, all

threads enter the enclave via one entry only. In contrast, SMILE

requires the anchor thread to have a dedicated entry which

cannot be shared with enclave threads running the application

logic. Figure 7(b) shows the desirable TCS setting for SMILE.

Secondly, for the sake of security and ease of programming,

the SDK injects code in front of the application logic so that

the non-enclave code uses the SDK’s ecall API to invoke

enclave functions. However, SMILE requires that the anchor

code be the very first to execute after enclave entering in the

anchor thread. Even worse, the TCS pages inside the enclave’s

EPC pages are created by the kernel from the template in the

enclave image. Hence, it does not help to add a customized

TCS to the image. Neither does work to modify the kernel’s

enclave creation alone because enclave integrity is broken.

CAVEAT. Note that the adversary is not restricted to use

the SDK to build his malicious enclave. Hence, SMILE does

not assume the enclave layout prepared by the SDK. On the

other hand, since SMILE is to assist enclave developers, it is

desirable to be compatible with the SDK for its easy adoption.

(a) Default TCS structures by SDK (b) TCS structures required by SMILE

Fig. 7. Comparison between the default TCS setup and the one for SMILE

where TCSk is different from others.

Hence, we seek a way to overcome these development

hurdles with minimal changes on the enclave developer side

and the kernel. To use SMILE, the developer still follows the

standard way of programming and compiling, but needs to use

a modified tool to sign the image. The kernel at the deployment

platform needs to use a modified API to create the TCS page

required by SMILE. The details are as follows in three steps.

1. Enclave Programming. The enclave developer defines the

assembly code of the anchor in Figure 3 as an enclave function.

The developer also specifies k ≥ 2 enclave threads including

the anchor thread. The developer compiles her enclave in the

usual way and gets the enclave image.
2. Image Signing. By default, the SDK’s signing tool first

constructs the enclave’s memory footprint in non-EPC pages

with the same layout and contents as the real enclave to be

created in EPC pages, and then produces the signature on the

enclave measurement. We modify the signing tool with two

changes.

• After it loads the anchor function to the memory, it

outputs the anchor’s the offset to the enclave base.

• After it creates the last TCS page, it changes the TCS’s

oentry to the anchor’s offset to the enclave base so that

it will be the entry for a thread using the last TCS.

Hence, when the developer runs the customized tool, she

receives the signature upon the enclave layout and contents

compliant to SMILE.
3. Enclave Creation. At runtime, the kernel at the deployment

platform creates and launches the user enclave. We modify

the build_context() function in the SGX SDK for the

kernel. This function creates an enclave page according to data

in the enclave image and load it to the EPC. The modification

is similar to the changes upon the signing tool. Namely, it

assigns the last TCS’s oentry to the anchor function entry.

These consistent operations allow the created enclave to pass

the hardware’s integrity checking. We also modify the function

that initializes the metadata for the TCS pool to exclude the

last TCS reserved for the anchor thread. This modification

prevents the ecall invocations from the user-space code from

entering the enclave via the anchor.
In short, we resolve the incompatibility between SMILE and

the Intel SGX SDK by making minor changes on TCS page

creation in both the signing tool and the library functions for

the kernel. The introduction of the anchor TCS to support

SMILE does not affect executions of the enclave’s application

thread(s).

D. The Worker
Our prototype provides a template of the worker for enclave

developers to use. In terms of functionality, the worker tem-

plate consists of three components: Enclave identity report,

memory introspection, and secure output. We use 17 instruc-

tions in total to implement the functionality of enclave identity
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TABLE III
TIME OVERHEAD OF DEFAULT SMM HANDLING IN SMILE.

Operations Time

Default SMM handler
SMM enter & exit 2.1 μs
Original SMI handling 27 μs

report. It uses the EREPORT instruction with the platform’s

Quoting Enclave being the target enclave and fetches the

MRENCLAVE from the report structure as the enclave identity.

The other two components are C functions. We use the

hybrid of 3072-bit RSA and 128-bit AES encryption to encrypt

the introspection result with a signature from the SMM agent.

Developers can customize them for their own application

needs. Note that execution of these two functions are after
SMILE’s confined interrogation protocol. Hence, an improper

implementation of them does not affect the authenticity of the

concerned enclave. However, we stress that it may leak enclave

secrets if the introspection results are not properly encrypted.

VII. EVALUATION

We have run extensive experiments with our SMILE proto-

type to assess its performance. In the following, we measure

the overhead of SMILE as well as the speed of introspection,

then describe four cases to demonstrate the usage of SMILE.

A. Overhead of SMILE

We evaluate SMILE’s overhead by running a zero-load

introspection, i.e., zero byte to fetch from the enclave. By

and large, the overhead comprises the time for SMM entering

and exit including execution of the default SMI handler (as

reported in Table III) and the time for a SMILE session without

introspection load.

Since a SMILE session involves two CPU cores, we measure

the time interval of major steps on each core. Figure 8

visualizes these intervals with overlaps.

Fig. 8. The execution and waiting time spent in the enclave core and the
interrogation core for a zero-load introspection. The sizes of blocks are not
proportional to the time interval lengths.

Enclave Core. The launcher agent spends 12.5 μs to load

the trampoline and pass the control to it. The trampoline sets

up the confined environment with about 29.5 μs, including

the overheads for page table configuration, TLB flushing, and

enclave entering. After entering the enclave, it costs 18.6 μs

and 15.7 μs for the anchor to make two reports: one for the

SSA page and itself and the other for the worker page. The

worker’s enclave identity report takes about 33.1 μs.

Interrogation Core. The interrogator waits until it receives

the anchor report. It takes about 8.7 μs to verify it and restore

the worker page. The subsequent worker integrity verification

costs roughly 1.7 μs to restore the mapping while the enclave

identity verification costs 0.4 μs. Lastly, it takes about 15.5 μs

to exit from SMM and tear down the confined environment.

Hence, a SMILE session costs 159.3 microseconds exclud-
ing the worker’s time for memory introspection. The cost

slightly grows with the enclave size and the application size

since more operations are incurred to configure the page table

entries. Among the overhead, the interrogation session takes

about 72.7 μs, most of which is due to the operations inside

the enclave. Note that the time cost of the agent’s signature

generation is not counted within 159.3 μs because it is in

parallel with the worker’s introspection including the RSA

encryption. Note that the agent can use hash-chained based

signature schemes such as SAS [32] whose runtime overhead

is merely due to hash operations.

B. Introspection Speed

The worker reads the enclave memory in the same way

as other enclave code. Its main overhead is entailed by the

hybrid encryption, i.e., one RSA encryption over a randomly

generated one-time AES key and an AES encryption over the

introspection data. The former takes about 121.7 μs, and the

latter’s cost is at the rate of 2.1 μs per page. Hence, the total

overhead of a SMILE enclave introspection is dominated by the

fixed cost of 281 μs including 159.3 μs for interrogation and

121.7 μs for RSA encryption. However, for bulky tasks such

as checking the entire code region, the overhead is dominated

by the AES encryption on memory pages.

Bulky Introspection. To understand the overhead of a bulky

introspection, we run experiments with SGX-FS [33], a secure

user-space file system by using Intel SGX. We instrument

it with the worker function that reads and encrypts various

enclave contents without invoking the confined interrogation.

The experiment results are reported in Table IV.

TABLE IV
THE AES MEMORY ENCRYPTION TIME ON SGX-FS.

Section # of Introspected Pages Time
Code & Data Sections 172 383.35 μs
Enclave Heap 7,192 14.26 ms
Enclave Stack 4,094 8.21 ms
SSA 4 15.82 μs

As shown in Table IV, when the number of introspected

pages is large, the AES encryption alone costs several mil-

liseconds, far above 150 microseconds SMI processing time

recommended by Intel [34]. Hence, SMILE is not suitable

for such introspection workloads. The enclave owner may

break a large task into several smaller subtasks so that each

subtask’s duration is slightly higher than the recommended

length. Supposing that a SMILE session only reports r page,
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its cost is 281+2.1r microseconds. A task for n-page intro-

spection is divided into n/r sessions and costs 281n/r+2.1n
microseconds in total. However, this simple breakdown faces

the consistence issue as the memory under introspection may

change due to enclave thread executions between sessions.

A more advanced method is that the worker blocks other

threads from execution by hooking their common enclave

entry in Figure 7(a). Moreover, all sessions can safely use

the same AES key without running RSA encryptions for

each session. Specifically, the overhead for the first session

remains as 281+2.1r microseconds and each of the subsequent

sessions takes 159.3+ 2.1r microseconds. In total, an n-page

introspection task costs 121.7+159.3n/r+2.1n microseconds.

If setting r = 2, the full introspection of SGX-FS’s heap

of 7,192 pages is expected to cost around 588 milliseconds

in total, comprising 3,596 sessions with the average session

length being 163 microseconds.

C. Applications of SMILE

Due to its performance limitation, we do not recommend

SMILE for large scale introspection or continuous enclave

monitoring. It is more suitable for situations when the func-

tionality/security demand outweighs performance considera-

tions. For instance, the owner suspects an enclave compromise

or the enclave continuously throws out asynchronous excep-

tions due to bugs. In both scenarios, the owner may use SMILE

to collect the enclave’s runtime information for forensics or

debugging purposes.

We run four case studies to demonstrate potential SMILE

applications ranging from the basic problem of enclave code

integrity checking to the more intrigue problem of enclave

location verification. Due to the length limit, the fourth case

is presented in Appendix A.

1) Case 1: Code Integrity Checking: The recently pub-

lished Plundervolt [35] and VoltJockey [36] are physical

attacks that can flip bits in EPC pages. Attackers may use them

to modify the enclave code, e.g., changing a branch condition.

These modifications cannot be caught by SGX attestation since

it reports the enclave’s state upon its inception, instead of the

runtime state. SMILE can be applied to check the code running

in an enclave.

In this case study, we emulate Plundervolt by flipping one

bit in the instruction cmpl $0x1, -0x4(%rbp) so that

it becomes cmpl $0x0, -0x4(%rbp). The attack swaps

the conditions for two branches. The comparison between the

original bytes and the modified bytes is shown in Figure 9.

We use SMILE to copy out all code pages in the enclave. As

a verifier, we first compare the hash of the code pages against

the expected result. After detecting a mismatch, we further

make bit-wise comparison to locate the attacked site.

The security of this SMILE application is similar to the

traditional code integrity attestation using a TPM or other

forms for root-of-trust for measurement since it only provides

a snapshot of the code. It cannot detect ephemeral code

changes.

Fig. 9. Memory analysis of enclave code with SMILE.

2) Case 2: SSA State Checking: AEX is a popular attack

vector against enclaves. In SGX-Step [37], the adversary uses

timer interrupts to nearly single-step the enclave execution

for improved side-channel attacks. More powerful attacks are

shown in SmashEx [23] where the adversary smashes the

enclave stack by interrupting the enclave context restoration

during an ocall return.

Since the SSA frames of an enclave store the enclave’s reg-

ister state during AEX and are used to resume an interrupted

enclave execution, our second case study uses SMILE to dump

the entire SSA region for each anchor thread. Note that the

SSA contents are not cleared out by the hardware. The results

contain rich information for the enclave owner to understand

the execution history of the stack. In our experiment, the

worker dumps the entire SSA region for each thread. Since all

active enclave threads are interrupted by SMI when a SMILE

session starts, the forensics function at the owner end begins

with the current SSA frame for each thread.

Current SSA Frame. The GPRSGX portion of an SSA frame

stores the thread’s CPU context and other state information.

In particular, the owner checks the following:

• whether RSP points to the expected address region within

the enclave’s range. In SmashEx, the attack can change

the enclave stack to an non-EPC page fully under the

attacker’s control. The stack location screening can detect

drastic stack relocation attacks. Figure 10(a) shows such a

scenario where the enclave stack is outside of the enclave

range (0x7f1bb0000000,0x7f1bb8000000).

(a) Enclave using external stack. (b) Embedded AEX.

Fig. 10. SSA introspection results.

• whether RIP points to the expected code region. Note

that SGX2 allows the enclave code to modify page

permissions. A compromised enclave may collude with

the kernel to insert new code.

• whether uRSP is in a reasonable range. This field holds

the RSP used when entering the enclave and will be

restored to RSP when an AEX occurs. Hence, uRSP
reflects the outside stack interfacing with the enclave.
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Other SSA Frames. SGX organizes an enclave thread’s

SSA frames in a stack fashion in order to support embedded

AEX. Hence, the owner also checks non-empty frames below

and above the current one. A frame below indicates that the

current SMILE session takes place during an AEX handling.

Such a scenario is shown in Figure 10(b) where two non-

empty SSA frames are captured. A frame above indicates that

there has been embedded AEX events prior to the SMILE

session. A large number of non-empty frames in the SSA

region is a strong signal indicating external interfering with

enclave execution, e.g., the SGX-Step attack. The forensics

function further checks the SSA frame’s EXITINFO to obtain

the exception type.

3) Case 3: Stack Checking: Memory corruption due to

enclave code vulnerability is another popular attack vector.

SGX-ROP [22] has shown the feasibility of launching an ROP

attack inside a victim enclave. SMILE can help a forensics

tool to analyze the attack, provided that the adversary does

not restore the stack after tampering.

We launch an ROP attack upon our experimental enclave

with a stack overflow vulnerability. After the attack, we start

a SMILE session introspecting all stack frames. Figure 11 lists

the gadget chain in the ROP as well as their manifestation in

the runtime stack acquired from the introspection session.

Fig. 11. Memory analysis of stack memory with SMILE.

Note that the worker runs in the anchor thread which

uses a different stack from the enclave application thread’s.

Therefore, the introspection itself does not pollute the attack

scene and is not compromised by the gadget chain either.

VIII. RELATED WORK

Our work is motivated by the surge of attacks on enclaves,

including passive attacks [9], [14], [38], [39], [40] using

a side-channel and proactive attacks [41], [35], [23], [37]

by injecting faults. Like other programs, enclave code may

have vulnerabilities. Most exploits are code-reuse attacks [22],

[42], [43]. However, the growing adoption of SGX2 (which

allows EPC permission changes) may meet with more attacks

modifying/injecting enclave code modification/inject after an

ROP exploit.

Our work is the first that studies enclave live memory intro-

spection. One of its core challenges is to identify the engaged

enclave, a security problem related to remote attestation. Intel’s

SGX remote attestation focuses on proving the initial code and

constant data integrity and the legitimacy of the enclave (i.e.,

properly launched by an Intel certified platform). Although

several work such as OpenSGX [44] and OPERA [45] have

been proposed to enhance it, these remote attestation schemes

neither reflect the runtime enclave code nor check its location.

For instance, Biondo et al. [43] showed a user-space code

reuse attack bypassing attestation. Moreover, the attestation

mechanism itself has attracted many side-channel attacks [46]

aiming at extracting the secret keys in use. The success of

these attacks seriously undermine the trustworthiness of SGX

attestation.

Besides the risk of key compromise, the scheme of attesta-

tion is susceptible to the replay attack, a problem similar to the

one against TPM attestation as described by Parno et al. [15].

ProximiTEE [16] detects replay attacks by converting the

remote attestation into a distance-bounding protocol with the

assistance of an external trusted device. Our scheme does not

depend on SGX remote attestation. Our confined interrogation

protocol is in the same vein as software-based attestation [27],

[28]. Since the confined interrogation protocol does not rely

on the response time and CPU speed, it is more reliable than

other software-based attestation schemes.

SMILE uses SMM with a different trust model while other

SMM-based schemes for various purposes such as integrity

checking [47], [26], [48], transparent malware analysis [25],

and reliable kernel patching [49]. SMMDumper [50] leverages

SMM to directly acquire physical memory, however, it cannot

deal with enclave memory. Additionally, the SMM code is

fully trusted in existing SMM-based systems, while it is semi-

trusted in SMILE wherein its compromise does not affect

enclave security.

Enclave introspection is a much harder problem than virtual

machine introspection [51], [52] where the main obstacle

is to cross the boundary set by the target kernel. It is

also much harder than normal memory introspection, e.g.,

SMMDumper [50] which addresses the problem of non-

intrusiveness, namely, no data altering due to introspection.

IX. DISCUSSION

SMM Alternatives. SMM is an isolated execution environ-

ment that does not depend on the OS running in Protected

Mode, so SMILE leverages it to setup the confined environ-

ment for enclave memory introspection. Next, we would like

to discuss the potential alternatives of SMM. Since SMILE

assume that OS is untrusted, one of the alternatives is the

Intel Management Engine (IME) [53], an isolated execution

environment running within the CPU. Unfortunately, IME

might not be a good choice because the communication

between IME and CPU is restricted and cannot meet the needs

of SMILE without hardware modification. Another alternative

is the hypervisor because it can intercept the above OS and

provide a confined environment for SMILE; note that the TCB

of hypervisor is larger compared to SMM.

SMM and SGX Security. SMM and SGX enclaves are the

two key components involved in SMILE, so we might wonder

which one is more secure? On one hand, SMM is not designed

for security while SGX aims to provide a secure enclave that

excludes SMM out of its TCB, so SGX seems to provide a
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better security. On the other hand, we believe SGX is more

complex than SMM, since enclave is intended for executing

user-level applications while SMM is only for supporting

several system functions; moreover, the attack surface of SMM

may be smaller than that of SGX, because the number of

interactions (i.e., SMI/rsm or ecall/ocall) with untrusted

code is less for SMM. Both SGX and SMM are potentially

vulnerable to side-channels [9], [14], [54], [55] and software

bugs [56], [57], however, we believe the security levels of

SMM and SGX are not directly comparable, and SMILE

leverages them to enable enclave introspection at runtime.
Though SMM is in the TCB of SMILE, it does not weaken

the security of SGX. As shown in the security analysis of Sec-

tion V, a compromised SMM does not break SGX guarantees.

SMILE needs to add a small amount of logical code in SGX

SDK, and enter the enclave anchor thread without using the

SDK provided interface. This bypasses the checking function

in the enclave. However, the anchor thread is protected by our

confined execution environment, which does not degrade the

security.

X. CONCLUSION

This paper presents SMILE, a novel system for SGX enclave

live memory introspection with enclave authenticity, data

genuineness, and security-preserving assurance. At the core

of SMILE is the confined interrogation protocol that harnesses

the power of x86 SMM and cryptography to securely bootstrap

trust on an enclave. We have implemented a prototype of

SMILE on COTS hardware. The overhead of SMILE based

introspection comprises a fixed overhead of 281 microseconds

and the in-enclave encryption overhead growing linearly with

the workload. While SMILE is not fit for bulky introspection

or continuous enclave monitoring, it is the first tool that

empowers an enclave owner to collect on-demand runtime data

from her enclave under a software exploitation attack.
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APPENDIX

A. Case 4: Enclave Location Verification

In a typical SGX application, an enclave owner remotely

communicates with her enclave running a designated server.

After the owner verifies the enclave’s remote attestation,

a secret key is shared between them to establish a secret

network channel. Due to security and legal needs, the owner

may demand to ensure whether the running enclave (i.e.,

the endpoint of the secure channel) is indeed located on the

designated server. However, as noted in [16], Intel SGX’s

remote attestation facility does not assert the physical location

of the enclave due to the privacy protection. Figure 12 depicts

the attack scenario exploiting the limitation of SGX attestation.

The owner of E expects it to run on Host H . However, the

malicious kernel in H collude with the adversary physically

controls H ′. The relay attack in [16] allows E in H ′ to pass

the attestation checking and subsequently establish the secure

channel with the owner.

SMILE offers a simple solution to verify the location of the

enclave sharing the secret key with the owner, supposing that

the owner trusts the SMM agent in H to honestly run SMILE.

As shown in Figure 12, the owner initiates a SMILE session

to introspect the shared secret key used in the present secure
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Fig. 12. The adversary controls the OS in H and the entire H′. The owner
interacts with her enclave in H′ instead of H via a secure network channel.

channel. If the outcome is identical to her current key for

the channel, she is ensured that she is communicating with

E presently running in H , because only the SMM agent in

H has the signing key to generate the signature enclosed in

the introspection result. In our experiments, we set the secret

shared key derived from the remote attestation as a global

variable so that the worker directly accesses this variable.

REMARK. The recent Data Center Attestation Primitives

(DCAP) released by Intel for cloud service providers can

bind a provisioning key with an identifiable processor identity

by using certificates. However, it is not an ideal solution

for individual users. Moreover, the trust on DCAP implies

unconditional trust on those CAs managed by Intel, which

may conflict with some organisation’s policy which distrusts

computers beyond their administration. SMILE offers a nimble

and lightweight alternative to DCAP.

401


