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Abstract—We introduce the SPIRAL family of single-server
private information retrieval (PIR) protocols. SPIRAL relies
on a composition of two lattice-based homomorphic encryp-
tion schemes: the Regev encryption scheme and the Gentry-
Sahai-Waters encryption scheme. We introduce new ciphertext
translation techniques to convert between these two schemes
and in doing so, enable new trade-offs in communication and
computation. Across a broad range of database configurations,
the basic version of SPIRAL simultaneously achieves at least a
4.5× reduction in query size, 1.5× reduction in response size, and
2× increase in server throughput compared to previous systems.
A variant of our scheme, SPIRALSTREAMPACK, is optimized for
the streaming setting and achieves a server throughput of 1.9
GB/s for databases with over a million records (compared to
200 MB/s for previous protocols) and a rate of 0.81 (compared
to 0.24 for previous protocols). For streaming large records
(e.g., a private video stream), we estimate the monetary cost
of SPIRALSTREAMPACK to be only 1.9× greater than that of
the no-privacy baseline where the client directly downloads the
desired record.

I. INTRODUCTION

A private information retrieval (PIR) [1] protocol enables
a client to download an element from a public database
without revealing to the database server which record is
being requested. Beyond its direct applications to private
database queries, PIR is a core building block in a wide
range of privacy-preserving applications such as anonymous
messaging [2, 3, 4, 5], contact discovery [6, 7], private contact
tracing [8], private navigation [9, 10], and safe browsing [11].

Private information retrieval protocols fall under two main
categories: (1) multi-server protocols where the database is
replicated across multiple servers [1]; and (2) single-server
protocols where the database lives on a single server [12].
We refer to [13, 14] for excellent surveys of single-server
and multi-server constructions. In many settings, multi-server
constructions have reduced computational overhead compared
to single-server constructions and can often achieve information-
theoretic security. The drawback, however, is their reliance on
having multiple non-colluding servers; this assumption can be
challenging to realize in practice.

Conversely, single-server PIR protocols do not assume
non-colluding servers. Instead, existing single-server PIR
implementations have significantly higher computational costs
compared to multi-server constructions. Indeed, it was believed
that single-server PIR would never outperform the “trivial PIR”
of simply having the client download the entire database [15].
While this assumption applied to earlier number-theoretic

PIR schemes [12, 16, 17, 18], recent lattice-based construc-
tions [19, 5, 20, 21, 22, 23] have made significant strides in
concrete efficiency and are much faster than the trivial PIR in
many settings.

When studying PIR protocols, we are primarily interested in
the (1) rate, which is the ratio of the response size to the size
of the retrieved record; and (2) the server throughput, which
is the ratio of the database size to the server’s computation
time. The rate measures the overhead in the server-to-client
communication while the throughput measures how fast the
server can answer a PIR query as a function of the database
size. A third quantity of interest is the query size. Recent
constructions are able to achieve relatively compact queries
(e.g., 32–64 KB queries in the case of [5, 23] for databases
with millions of records and tens of gigabytes of data).

The current state-of-the-art single-server PIR, OnionPIR [23],
achieves a rate of 0.24 and a throughput of 149 MB/s. In
contrast, the fastest two-server PIR scheme can achieve an
essentially optimal rate of≈1 and a throughput of 5.5 GB/s [24].
Thus, there remains a large gap between the performance of the
best single-server PIR and the best two-server PIR protocols.

This work. In this work, we introduce SPIRAL, a new family of
lattice-based single-server PIR schemes that enables new trade-
offs in communication and computation. The basic instantiation
of SPIRAL simultaneously achieves a 4.5× reduction in query
size, a 1.5× increase in the rate, and a 2× increase in the
server throughput compared to OnionPIR [23] (see Table I).

Like previous PIR protocols [5, 20, 21, 25, 23, 22], the
SPIRAL protocol works in the model where the client starts by
sending the server a set of query-independent public parameters.
The server uses these parameters along with the client’s query to
compute the response. Since these parameters can be reused for
an arbitrary number of queries and they are independent of the
query, the client can transmit these parameters to the server in
a separate “offline” phase. For this reason, we often distinguish
between the offline cost of generating and communicating the
public parameters and the online cost of generating the query
and computing the response.

We also introduce several variants of SPIRAL that achieve
higher server throughput and rates (i.e., reduced online cost)
in exchange for larger queries and/or public parameters:

• SPIRALSTREAM: The SPIRALSTREAM protocol variant is
optimized for the streaming setting. In the streaming setting,
the client’s query is reused across multiple databases, so we
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can amortize the cost of query generation and communication
over multiple PIR responses. The SPIRALSTREAM protocol
has larger queries (30 MB), but achieves a rate of 0.49 (2×
higher than OnionPIR) and an effective server throughput
of up to 1.5 GB/s (roughly 10× higher than OnionPIR).
We provide more detailed benchmarks in Section V-C
and Table III.

• SPIRALPACK: The SPIRALPACK protocol leverages a new
response packing technique that reduces the online costs of
SPIRAL (for databases with large records) at the expense
of requiring a larger set of (reusable) public parameters.
As we show in Section V-C and Table II, when database
records are large, SPIRALPACK can achieve a 30% higher
rate compared to SPIRAL while simultaneously providing a
similar or higher server throughput.

The two optimizations we describe above can also be combined
and we refer to the resulting protocol as SPIRALSTREAMPACK.
Compared to the other SPIRAL variants, SPIRALSTREAMPACK
has the largest public parameter and query sizes, but is able
to simultaneously achieve a high rate (0.81) and a high server
throughput (1.9 GB/s) on databases with over a million records.
This represents a 2.1× increase in rate and 5.5× increase in
throughput compared to the base version of SPIRAL. However,
the size of the public parameters is 4.2× higher and the
query size is over 2000× higher. In absolute terms, the public
parameter size increases from 30 MB to 125 MB and the
query size increases from 14 KB to 30 MB. We believe these
remain reasonable for many streaming applications. Overall, for
settings where both the public parameters and the query will
be reused for a large number of queries, SPIRALSTREAMPACK
likely offers the most competitive performance.

We note that for databases with sufficiently-large records (≥
30 KB), the server throughput of our streaming constructions
is 2–4× higher than that of full database encryption using a
software-based AES implementation. We believe that this is
the first single-server PIR where the server throughput is faster
than applying a symmetric cryptographic primitive over the full
database. Although this is still 2.9× slower than the best two-
server PIR using hardware-accelerated AES [24], hardware
acceleration for the lattice-based building blocks underlying
our construction could help bridge this gap (e.g., [26]).

A limitation of SPIRAL is that it generally requires larger
public parameters compared with previous schemes. To com-
pare, the public parameters in SealPIR [5], FastPIR [22],
and OnionPIR [23] are 3.4 MB, 1.4 MB, and 4.6 MB,
respectively. In SPIRAL, they range from 14 to 18 MB and for
SPIRALSTREAM, they range from 344 KB to 3 MB. The larger
parameters in SPIRAL are needed to enable our new ciphertext
translation procedures (Sections I-B and III) that are critical for
reducing the online costs of our protocol. The SPIRALPACK
variant requires public parameters that range from 14 to 47
MB (in order to support ciphertext packing).

A. Background on Lattice-Based PIR

The most efficient single-server PIR protocols [4, 19, 5, 20,
21, 25, 23] use lattice-based fully homomorphic encryption

(FHE) schemes [27, 28, 29, 30, 31, 32].1 These protocols follow
the general paradigm of constructing PIR from homomorphic
encryption [12]. In these protocols, the database is represented
as a hypercube, and the client sends encryptions of basis
vectors selecting for each dimension of the hypercube. To
compute the response, the server either relies on multiplicative
homomorphism, where the server iteratively multiplies the
response for each dimension with the client’s query vectors,
or by using a recursive composition approach that only needs
additive homomorphism. While earlier PIR protocols [4, 19, 5]
relied on recursive composition and additive homomorphism,
more recent protocols [20, 21, 25, 23] have shown how to
leverage multiplicative homomorphism for better efficiency.
The challenge: ciphertext noise management. A key chal-
lenge when working with lattice-based FHE schemes is manag-
ing noise growth. In these schemes, the ciphertexts are noisy en-
codings of the plaintext messages, and homomorphic operations
increase the magnitude of the noise in the ciphertext. If the noise
exceeds a predetermined bound, then it is no longer possible to
recover the message. The lattice parameters are chosen to ensure
that the scheme can support the requisite number of operations
and achieve the target level of security. Most lattice-based PIR
constructions [19, 4, 5, 20, 25, 23] are based on either the Regev
encryption scheme [33], which is additively homomorphic,
or its generalization, the Brakerski/Fan-Vercauteren (BFV)
scheme [29, 30], which additionally supports homomorphic
multiplication. In the BFV scheme, the ciphertext noise scales
exponentially in the multiplicative depth of the computation.2

Consequently, initial lattice-based PIR schemes did not use
multiplicative homomorphism [19, 4, 5].
A solution: FHE composition. Recently, Chillotti et al. [35,
36] introduced an “external product” operation to homomor-
phically multiply ciphertexts from two different schemes. They
specifically show how to multiply a ciphertext encrypted under
Regev’s encryption scheme [33] with a ciphertext encrypted
under the encryption scheme of Gentry, Sahai, and Waters
(GSW) [32]. The requirement is that the two Regev and GSW
ciphertexts are encrypted with respect to the same secret key.

The advantage of the GSW encryption scheme is its asymmet-
ric noise growth for homomorphic multiplication. Specifically,
in the setting of PIR, one of the inputs to each homomorphic
multiplication is a “fresh” ciphertext (i.e., a query ciphertext).
In this case, the noise growth after k sequential multiplications
increases linearly with k rather than exponentially with k
(as would be the case with BFV). The drawback of GSW
ciphertexts is their poor rate: encrypting a scalar requires a
large matrix. Conversely, Regev ciphertexts have much better
rate; over polynomial rings, the amortized version [37] can
encrypt n × n plaintext elements with a ciphertext of size
n× (n+ 1).

1Technically, these constructions (including SPIRAL) only require leveled
homomorphic encryption, which support a bounded number of computations.
For ease of exposition, we will still write FHE to refer to leveled schemes.

2While it is possible to use bootstrapping [27] to reduce the noise, the concrete
cost of bootstrapping in the BFV encryption scheme remains high (e.g., a
few minutes to refresh a single ciphertext) [34].
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The external product operation from [35, 36] enables us to
get the best of both worlds. Namely, if each homomorphic
multiplication is between a Regev ciphertext and a fresh GSW
ciphertext, then the noise scales additively in the number
of multiplications, and the result is still a high-rate Regev
ciphertext. This is the basis of the theoretical PIR construction
of Gentry and Halevi [20] and the recently-implemented
OnionPIR protocol [23]. Our approach further builds upon
and expands this technique of composing Regev encryption
with GSW encryption to get a better handle on noise growth
while enabling fast computation.

B. Our Contributions and Construction Overview

In this work, we present the SPIRAL family of single-server
PIR protocols that leverages the combination of matrix Regev
and GSW encryption schemes to simultaneously reduce the
query size, response size, and the server computation time
compared to all previous implemented protocols (see Section V).
Here, we provide an overview of our techniques.

High rate via ciphertext amortization. To achieve higher
rate, we take the Gentry-Halevi [20] approach of using the
amortized version of Regev encryption [37] (over rings [38])
as our base encryption scheme. Here, the rate of the encryption
scheme (i.e., the ratio of plaintext size to ciphertext size) scales
with n2/(n2 + n) where n is the plaintext dimension. Higher
dimensions enable a better rate at the cost of higher server
computation. For example, by using the high-rate version of
Regev encryption, the base version of SPIRAL is able to achieve
a rate that is 1.5×–6× better than OnionPIR (Table I) on a
broad range of database configurations.

Ciphertext translation and query compression. To take
advantage of the Regev-GSW homomorphism, the client would
have to include GSW ciphertexts as part of their query. Even
with the query compression techniques of [5, 39], Gentry and
Halevi estimate that the size of the queries in their construction
to be 30 MB, which is more than 450× worse compared
to existing schemes. The reason for this blowup is that the
Angel et al. query compression technique [5] relies on the
ability to homomorphically compute automorphisms; while
this is possible on matrix Regev ciphertexts, the same does
not seem to hold for GSW ciphertexts. As such, in the Gentry-
Halevi construction, the client has to send multiple large GSW
ciphertexts as part of its query. The OnionPIR scheme avoids
this issue by observing that in the 1-dimensional case, a GSW
ciphertext can be viewed as a BFV ciphertext, in which case,
they can use the same type of packing approach from [5, 39].

In this work, we describe a general technique for translating
between matrix Regev ciphertexts (of any dimension) and
GSW ciphertexts (Section III). Our transformations leverage
the similar algebraic structure shared by Regev ciphertexts and
GSW ciphertexts, and can be viewed as a particular form of key
switching between two different encryption schemes. We then
compose our translation algorithms with the query-packing
approach from [5, 39], and compress our query into a single
scalar Regev ciphertext of just 14 KB. Our query expansion

procedure expands this single Regev ciphertext into a collection
of matrix Regev ciphertexts and GSW ciphertexts encoding
the client’s query along each dimension of the database
hypercube. More generally, our ciphertext translation protocols
can be viewed as a way to “compress” GSW ciphertexts
(Remark III.1), and may be useful in other settings where
users are sending/receiving GSW ciphertexts.

The SPIRAL family of PIR protocols. The SPIRAL family of
PIR protocol follows a similar high-level structure as previous
lattice-based PIR protocols (Section I-A). We describe the main
steps here and also visually in Fig. 1:
• Query generation: The client’s query consists of a single

scalar Regev ciphertext that encodes the record index the
client wants to retrieve. We structure the database of N =
2ν1×ν2 records as a 2ν1 × 2× · · · × 2 hypercube. A record
index can then be described by a tuple (i, j1, . . . , jν2) where
i ∈ {0, . . . , 2ν1 − 1} and j1, . . . , jν2 ∈ {0, 1}. The query
consists of an encoding of the vector (i, j1, . . . , jν2), which
we can pack into a single scalar Regev ciphertext using the
Angel et al. [5] technique.

• Query expansion: Upon receiving the client’s query, the
server expands the query ciphertext as follows:
– Initial expansion: The server starts by applying the

expansion technique from [5] to expand the query into a
collection of (scalar) Regev ciphertexts that encode the
queried index (i, j1, . . . , jν2). This yields two collections
of Regev ciphertexts, which we will denote by CReg and
CGSW.

– First dimension expansion: Next, the server uses CReg

to expand the ciphertexts into a collection of 2ν1 matrix
Regev ciphertexts that “indicate” index i: namely, the
ith ciphertext is an encryption of 1 while the remaining
ciphertexts are encryptions of 0. We can view this
collection of ciphertexts as an encryption of the ith basis
vector. This step relies on a scalar-to-matrix algorithm
ScalToMat that takes a Regev ciphertext encrypting a bit
µ ∈ {0, 1} and outputs a matrix Regev ciphertext that
encrypts the matrix µIn, where In is the n-by-n identity
matrix. We describe this construction in Section III-A.

– GSW ciphertext expansion: The server then uses CGSW

to construct GSW encryptions of the indices j1, . . . , jν2 ∈
{0, 1}. This step relies on a Regev-to-GSW translation
algorithm RegevToGSW that we describe in Section III-B.

• Query processing: After expanding the query into matrix
Regev encryptions of the first dimension and GSW encryp-
tions of the subsequent dimension, the server follows the
Gentry-Halevi blueprint [20] and homomorphically computes
the response as follows:
– First dimension processing: First, it uses the matrix

Regev encryptions of the ith basis vector to project the
database onto the sub-database of records whose first index
is i. This step only requires linear homomorphisms since
the database records are available in the clear while the
query is encrypted. At the end of this step, the server has
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Fig. 1: Server processing for a single SPIRAL query. The parameter z here is a decomposition base and is used for the translation
between Regev ciphertexts and GSW ciphertexts. We refer to Section III-B for more details.

matrix Regev encryptions of the projected database.
– Folding in subsequent dimensions: Next, the server uses

the Regev-GSW external product to homomorphically
multiply in the GSW ciphertexts encrypting the subsequent
queries. Each GSW ciphertext selects for one of two
possible dimensions. Since each multiplication involves a
“fresh” GSW ciphertext derived from the original query,
we can take advantage of the asymmetric noise growth
property of Regev-GSW multiplication. The result is a
single matrix Regev ciphertext encrypting the desired
record.

• Response decoding: At the conclusion of the above protocol,
the server replies with a single matrix Regev ciphertext
encrypting the desired record.

We provide the full protocol description in Section IV and a
high-level illustration in Fig. 1.

SPIRALPACK: New trade-offs via response packing. Using
matrix Regev ciphertexts for the bulk of the computation
improves the rate of the protocol but does incur some compu-
tational overhead (from the need to operate on matrices rather
than scalars). The SPIRALPACK protocol is a variant of SPIRAL
that allows the server to simultaneously operate on scalar Regev
ciphertexts while retaining the high rate benefits of using matrix
Regev ciphertexts. In particular, we show how to adapt our
ciphertext translation techniques to pack multiple scalar Regev

ciphertexts into a single matrix Regev ciphertext. The server
processing then operates on 1-dimensional ciphertexts, while
the response consists of n-dimensional ciphertexts. The main
cost of this packing procedure is it requires a larger set of
public parameters. We describe the construction details in
Section IV-A.

Automated parameter selection. Our design introduces mul-
tiple tunable parameters that allow us to explore new trade-
offs between server computation, query size, and response
size. Since the overall server computation and communication
of our PIR protocol is a complex function of the underlying
parameters of our scheme, we introduce an automatic parameter
selection procedure that takes as input a database configuration
(i.e., number of records and record size), and systematically
searches through the space of possible parameters to minimize
the server cost. A similar approach was also used in the XPIR
system [19]. We describe our parameter selection methodology
in Section V-A. Our system allows choosing parameters that
either minimize the estimated cost of the protocol (based on the
costs associated with server computation and communication),
or focuses solely on maximizing either the server throughput or
rate. The system also supports selecting parameters that satisfy
a constraint on the query size or the public parameter size.
The parameter selection tool searches over candidate parameter
sets for all of the SPIRAL variants described in this paper and

4933



selects the system that best achieves the target objective.

Performance evaluation and trade-offs. Finally, we pro-
vide a complete implementation of SPIRAL and a detailed
experimental analysis and comparison with previous PIR
protocols. We provide the full evaluation and accompanying
microbenchmarks in Section V-C. In Appendix D, we also
estimate the concrete monetary costs of applying the SPIRAL
family of protocols to support several privacy-preserving
applications. For instance, based on current cloud computing
costs, we show that SPIRALSTREAMPACK enables a user to
privately stream a 2 GB movie from a library of 214 movies
with a server cost of $0.34, which is just 1.9× higher than the
no-privacy baseline (where the client directly downloads the
movie of interest). This is a 9× reduction in cost compared to
the previous state of the art, OnionPIR [23].

II. PRELIMINARIES

We write λ to denote the security parameter. For a positive
integer n ∈ N, we write [n] to denote the set {1, . . . , n}. For
integers a, b ∈ Z, we write [a, b] to denote the set {a, a +
1, . . . , b}. For a positive integer q ∈ N, we write Zq to denote
the integers modulo q. We write poly(λ) to denote a function
that is O(λc) for some c ∈ N and negl(λ) to denote a function
that is o(λ−c) for all c ∈ N. An algorithm is efficient if it runs
in probabilistic polynomial time in its input length. We say
that two families of distributions D1 = {D1,λ}λ∈N and D2 =
{D2,λ}λ∈N are computationally indistinguishable if no efficient
algorithm can distinguish them with non-negligible probability.
We recall the formal definition of a private information retrieval
protocol in Appendix A.

A. Lattice-Based Homomorphic Encodings

Like previous lattice-based PIR protocols [19, 5, 20, 25, 23,
22], SPIRAL operates over cyclotomic rings R = Z[x]/(xd+1)
where d is a power of two. For a positive integer q ∈ N, we
write Rq = R/qR.

Ring learning with errors. The security of our PIR protocol
relies on the ring learning with errors (RLWE) problem [38].
Very briefly, the RLWE assumption (in normal form [40])
states that the following two distributions are computationally
indistinguishable: (a, sa+e) and (a,u), where a

R← Rmq , s←
χ, e← χm, u

R← Rmq , m = poly(λ) is the number of samples,
and χ is an error distribution (typically a discrete Gaussian).

Gadget matrices. In this work, we use gadget matrices with
different bases [41]. Fix a dimension n ∈ N, and a base z ∈ N.
Let gT

z = [1, z, z2, . . . , zblogz qc] ∈ Rtq where t = blogz qc+ 1.
We define the gadget matrix Gn,z = In ⊗ gT

z ∈ Rn×mq , where
m = nt. We write g−1z : Rq → Rtq to denote the function that
expands the input into a base-z representation where each digit
is in the range [−z/2, z/2]. We write G−1n,z : Rnq → Rmq to
denote the function that applies g−1z to each component of the
input vector, and extend G−1n,z to operate on matrices M by
applying G−1n,z to each column of M.

Regev encoding scheme for matrices. SPIRAL uses the matrix
version of Regev encryption over rings [33, 37, 38]. When

describing our construction, it is more convenient to view
Regev encryption as a noisy encoding scheme over Rq , which
does not support decryption for all encoded values. If we apply
a redundant encoding of a message (i.e., scaling the message
as in standard Regev encryption) then it is possible to recover
the encoded value. Here, we provide an informal description
of the encoding scheme and defer the formal description to
the full version of this paper [42].

Let n be the plaintext dimension and q be the encoding
modulus. The encoding scheme consists of a pair of efficient
algorithms (KeyGen,Encode). The KeyGen algorithm samples
a secret key S ∈ R(n+1)×n

q . The Encode algorithm takes the
secret key S and a matrix M ∈ Rn×nq , and outputs an encoding
C ∈ R(n+1)×n

q where STC = M+E and the entries of E are
small (i.e., sampled from the error distribution χ). The Regev
encoding scheme supports homomorphic addition (Add) and
scalar multiplication (ScalarMul). In particular, if C1 and C2

are encodings of M1 and M2, then C1 + C2 is an encoding
of M1 + M2 with a larger error. Similarly, if T ∈ R(n+1)×n

q ,
then C1T is an encoding of M1T.

Finally, if p � q is a plaintext modulus, we say that C
is a redundant encoding of a plaintext matrix M̂ ∈ Rn×np

if STC = bq/pc M̂ + E, for some ‖E‖ � q/(2p). In this
case, we can recover the encoded message M by computing
p/q · STC and rounding to the nearest integer. We denote this
operation by Decode(STC).

GSW encodings. Next, we describe the key properties of
the Gentry-Sahai-Waters encryption scheme [32]. Similar to
the case for Regev encodings, we describe the scheme as an
encoding scheme (without an explicit decryption functionality).
We provide the high-level details here and defer the formal
description to the full version of this paper [42].

Let n be the dimension and z ∈ N be a decomposition base.
The GSW encoding scheme also consists of a pair of algorithms
(KeyGen,Encode). The KeyGen algorithm is identical to that
for the Regev encoding scheme while Encode takes the secret
key S and a scalar µ ∈ Rq and outputs an encoding C ∈
R

(n+1)×n
q where STC = µSTGn+1,z + E and the entries of

E are small. By construction, if C is a GSW encoding of a bit
µ ∈ {0, 1}, then Complement(C) := Gn+1,z −C is a GSW
encoding of the complement 1− µ.

Regev-GSW multiplication. The main homomorphism that we
rely on in this work is a way to multiply a Regev encoding with
a GSW encoding to obtain a Regev encoding of the product [36,
20, 39, 23]. In particular, if CRegev is an encoding of a matrix
M ∈ Rn×nq and CGSW is an encoding of a scalar µ ∈ Rq

under the same secret key S ∈ R(n+1)×n
q , the multiplication

algorithm Multiply(CGSW,CRegev) outputs the Regev encoding
CGSWG−1n+1,z(CRegev). By definition,

STCGSWG−1(CRegev) = (µSTG + EGSW)G−1(CRegev)

= µM + Ẽ,

where we write G = Gn+1,z and Ẽ = µERegev +
EGSWG−1(CRegev). Thus, CGSWG−1n+1,z(CRegev) is a Regev
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encoding of µM with error Ẽ, which is small as long as µ,
ERegev, and EGSW are small.

III. ENCODING COMPRESSION AND TRANSLATION

Similar to previous PIR protocols based on homomorphic
encryption, we view our database as a hypercube. A PIR
query consists of a collection of encodings encrypting 0/1
indicator vectors that select for the desired index along each
dimension (see Section I-A). A naïve implementation would
require at least one encoding for each dimension of the
hypercube in the query. Previously, Angel et al. [5] and
Chen et al. [39] introduced a query compression algorithm to
pack the ciphertexts for the different dimensions into a single
RLWE ciphertext (specifically, a BFV ciphertext [29, 30]).

To achieve higher rate and reduce noise growth, SPIRAL
follows the Gentry-Halevi approach [20] of encoding the index
along the first dimension using a matrix Regev encoding and the
subsequent dimensions using GSW encodings (see Section IV).
In this section, we introduce new building blocks to enable an
analogous query compression approach as [5, 39] that allows us
to compress the query encodings into a single Regev encoding
of a scalar. Using our transformations, a PIR query in SPIRAL
consists of a single RLWE ciphertext, which precisely matches
schemes like SealPIR [5] or OnionPIR [23]. However, due to
better control of noise growth, SPIRAL can be instantiated with
smaller lattice parameters, thus resulting in smaller queries (see
Section V-C). Our approach relies on four main ingredients
which we describe in this section:

• In Section III-A, we show how to expand a Regev encoding
of a scalar µ ∈ Rq into a matrix Regev encoding of µIn for
any n > 1. In the SPIRAL protocol, this is used to obtain
the matrix Regev encoding of the query index along the first
database dimension.

• In Section III-B, we show how to take Regev encodings
of the components of µ · gz to obtain a GSW encoding of
µ with respect to the gadget matrix Gn+1,z for any n ≥ 1
(Section III-B). In the SPIRAL protocol, this is used to derive
the GSW encodings of the query index along the subsequent
dimensions of the database.

• To compress the query itself, we rely on previous tech-
niques [5, 39] to pack multiple Regev encodings of scalars
into a single Regev encoding (of a polynomial).

• Finally, after server processing, we apply modulus switch-
ing [28, 31] to the output Regev encoding to reduce the
encoding size. Here, we describe a simple variant of modulus
switching that rescales the Regev encoding by two different
scaling factors to achieve a higher rate (Section III-D). This
is especially beneficial when working with matrix Regev
encodings.

We believe that our transformations are also useful in other
settings that combine Regev and GSW encodings. Overall, they
allow us to take advantage of the high rate of matrix-Regev
encodings and the slower (asymmetric) noise growth of GSW
homomorphic operations, but without needing to communicate
low-rate GSW encodings.

The scalar-to-matrix and Regev-to-GSW transformations
we develop here are very similar to “key switching” trans-
formations used in FHE [28, 31]. Much like key switching
in FHE, the client needs to publish additional key-switching
components (as part of the public parameters of the PIR
scheme). The key-switching matrices are essentially encryptions
of the secret key for the encoding scheme, so security relies
on a key-dependent message security assumption (e.g., a
circular security assumption). We note that previous query
expansion algorithms [5, 39] also require publishing key-
switching matrices (to support automorphisms), which also
necessitate making a circular security assumption.

A. Scalar Regev Encoding to a Matrix Regev Encoding

First, we describe a method to expand a Regev encoding of
a scalar µ ∈ Rq into a matrix Regev encoding of µIn ∈ Rn×nq .
The conversion procedure consists of a setup algorithm that
samples a conversion key (i.e., a key-switching matrix):
• ScalToMatSetup(s0,S1, z): On input the source key s0 =

[−s̃0 | 1]T ∈ R2
q , the target key S1 = [−s̃1 | In]T ∈

R
(n+1)×n
q , and a decomposition base z ∈ N, sample

a
R← Rmq and E ← χn×m, where m = n(blogz qc + 1).

Then, output the key

W =

[
aT

s̃1a
T + E

]
+

[
01×m

−s̃0 ·Gn,z

]
∈ R(n+1)×m

q .

• ScalToMat(W, c): On input a key W ∈ R
(n+1)×m
q and

an encoding c = (c0, c1) ∈ R2
q , output WG−1n,z(c0In) +

[ 0n | c1In ]T.
We refer to Appendix B for a sketch of the correctness proof
and to the full version of this paper [42] for the full details.

B. Converting Regev Encodings into GSW Encodings

Next, we describe an approach to construct a GSW encoding
of a message µ ∈ Rq (with decomposition base zGSW)
from a collection of scalar Regev encodings of µgzGSW

=
[µ, µ · zGSW, . . . , µ · ztGSW−1

GSW ] where tGSW = blogzGSW
qc + 1.

Chen et al. [39] previously showed an approach for the special
case where n = 1 that builds up the GSW ciphertext row by
row using homomorphic multiplications. It is not clear how
to extend this approach to higher dimensions (e.g., to allow
homomorphic multiplication with matrix Regev encodings).
Here, we describe a general transformation for arbitrary n.

To have finer control over noise growth, we introduce an
additional decomposition base zconv used for the conversion
algorithm. The decomposition base zconv for conversion does
not have to match the decomposition base zGSW for the GSW
encoding. This will enable more flexibility in parameter
selection (see Section V-A) and better concrete efficiency.
• RegevToGSWSetup(sRegev,SGSW, zGSW, zconv): On input

the Regev secret key sRegev = [−s̃Regev | 1]T ∈ R2
q , the

GSW secret key SGSW = [−s̃GSW | In]T ∈ R(n+1)×n
q , and

decomposition bases zGSW, zconv ∈ N, proceed as follows:
– Define tGSW =

⌊
logzGSW

q
⌋

+ 1, tconv =
⌊
logzconv

q
⌋

+ 1,
and mGSW = (n+ 1)tGSW.
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– Sample W← ScalToMatSetup(sRegev,SGSW, zconv).
– Sample a

R← R2tconv
q and E← χn×2tconv and construct the

matrix

V =

[
aT

s̃GSWaT + E

]
+

[
01×2tconv

−s̃GSW · (sT
Regev ⊗ gT

zconv
)

]
.

(III.1)
– Define the permutation matrix Π ∈ {0, 1}mGSW×mGSW such

that [
gT
zGSW

01×ntGSW

0n×tGSW gT
zGSW
⊗ In

]
Π = Gn+1,zGSW

.

Output the conversion key ck = (V,W,Π).
• RegevToGSW(ck, c1, . . . , ctGSW

): On input the conversion
key ck = (V,W,Π) and Regev encodings c1, . . . , ctGSW

∈
R2
q , compute Ci ← ScalToMat(W, ci) for each i ∈ [tGSW].

Then, output

C = [ Vg−1zconv
(Ĉ) | C1 | · · · | CtGSW

] ·Π

where Ĉ = [ c1 | · · · | ctGSW
] ∈ R2×tGSW

q .
We refer to Appendix B for a sketch of the correctness proof
and to the full version of this paper [42] for the full details.

Remark III.1 (Compressing GSW Encodings). The
RegevToGSW algorithm takes tGSW Regev encodings
(consisting of 2 · tGSW elements of Rq) and outputs a single
GSW encoding with (n+ 1)mGSW = (n+ 1)2tGSW elements
of Rq . Thus, our Regev-to-GSW transformation can be viewed
as a way to achieve a (n+ 1)2/2 factor compression on GSW
encodings at the cost of a small amount of additional noise
and needing to store a (large) conversion key ck. However, ck
can be generated in a separate offline phase and reused across
multiple protocol invocations. This provides an effective way
to reduce the online communication costs of sending GSW
encodings.

C. Coefficient Extraction on Regev Encodings

The next ingredient we require is the coefficient expansion
algorithm by Angel et al. [5] and extended by Chen et al. [39].
The algorithm takes a polynomial f =

∑
i∈[0,2r−1] fix

i ∈ Rq
as input and outputs a (scaled) vector of coefficients 2r ·
(f0, . . . , f2r−1) ∈ Z2r

q . This algorithm relies on the fact that
we can homomorphically evaluate automorphisms on Regev-
encoded polynomials. We use the same approach from [5, 39],
so we defer the description to Appendix C.

D. Modulus Switching

Modulus switching [28, 31] reduces the size of Regev-based
encodings by rescaling the encoding down into a smaller
ring while preserving the encoded message. This allows
performing homomorphic operations over a larger ring Rq
(which accommodates more homomorphic operations) and
then rescaling the final encoding (e.g., the PIR response) to a
smaller ring Rq′ to obtain a more compact representation.

While previous approaches [28, 31, 43, 20] rescale all of
the ciphertext components from Rq to Rq′ for some q′ < q,
we can achieve further compression by re-scaling some of the

components of the Regev ciphertext to one modulus q1 and
the remaining components to a different modulus q2. The
advantage of this variant is that we can use a very small value
of q1 (e.g., q1 = 4p) and still ensure correctness. We refer to the
the full version of this paper [42] for additional discussion. We
now describe our variant of the modulus switching procedure
ModulusSwitch along with an encoding-recovery procedure
Recover that takes a rescaled encoding (ĉ1, Ĉ2) (as output by
ModulusSwitch) and the secret key S as input, and outputs
an encoding Z (over Rq1) satisfying Z = bq1/pcM + E′. If
E′ is sufficiently small, we can recover M from Z using the
Decode procedure from Section II-A. Both the ModulusSwitch
and Recover algorithms are parameterized by a pair of moduli
q1, q2 ∈ N. We provide the correctness analysis in the full
version of this paper [42].

• ModulusSwitchq1,q2(C): On input an encoding C =[
cT
1

C2

]
, where c1 ∈ Rnq and C2 ∈ Rn×nq , let ĉ1 =

bc1 · q2/qe ∈ Rnq2 and Ĉ2 = bC2 · q1/qe ∈ Rn×nq1 . Both
the division and rounding are performed over the rationals.
Output (ĉ1, Ĉ2)

• Recoverq1,q2(S, (ĉ1, Ĉ2)): On input the secret key S =

[−s̃ | In] ∈ Rn×(n+1)
q , and an encoding (ĉ1, Ĉ2) where ĉ1 ∈

Rnq2 , and Ĉ2 ∈ Rn×nq1 , compute Z =
⌊
(q1/q2)(−s̃ĉT

1 )
⌉
+Ĉ2,

and output Z mod q1.

IV. THE SPIRAL PROTOCOL

The structure of the basic SPIRAL protocol follows recent
constructions of PIR based on composing Regev-based encryp-
tion with GSW encryption [20, 23]. The primary difference
is that it uses the techniques from Section III for query
compression. Very briefly, the database of N = 2ν1+ν2 records
is arranged as a hypercube with dimensions 2ν1×2×2×· · ·×2.
Processing the initial (large) dimension only requires scalar
multiplication (since the database is known in the clear) and is
implemented using matrix Regev encodings. After processing
the first dimension, the server has a (2×2×· · ·×2)-hypercube
containing 2ν2 matrix-Regev encodings. The client’s index
for each of the subsequent dimensions is encoded using
GSW, so using ν2 rounds of the Regev-GSW homomorphic
multiplication, the server can “fold” the remaining elements
into a single matrix Regev encoding. We refer to Section I-B
and Fig. 1 for a general overview.

Construction IV.1 (SPIRAL). Let λ be a security parameter,
and R = Z[x]/(xd + 1) where d = d(λ) is a power of two.
Let p = p(λ) be the plaintext modulus and n = n(λ) be the
plaintext dimension.

Database structure. Each database record di is an element
of Rn×np , where ‖di‖∞ ≤ p/2. We represent a database D =
{d1, . . . , dN} of N = 2ν1+ν2 records as a (ν2+1)-dimensional
hypercube with dimensions 2ν1×2×2×· · ·×2. In the following
description, we index elements of D using either the tuple
(i, j1, . . . , jν2) where i ∈ [0, 2ν1 − 1] and j1, . . . , jν2 ∈ {0, 1},
or the tuple (i, j) where i ∈ [0, 2ν1 − 1] and j ∈ [0, 2ν2 − 1].
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Scheme parameters. A notable feature of our PIR protocol is
that it relies on several additional parameters that will be helpful
for enabling new communication/computation trade-offs:
• Let q = q(λ) be an encoding modulus (for the query) and
q1 = q1(λ), q2 = q2(λ) be the smaller moduli associated
with the PIR response. We require that q is odd.

• Let χ = χ(λ) be an error distribution. We use the same
error distribution for all sub-algorithms.

• Let zcoeff , zconv, zGSW ∈ N be different decomposition bases
that will be used for query expansion and homomorphic
evaluation:
– zcoeff is the decomposition base for evaluating the auto-

morphisms in the coefficient expansion algorithm (Sec-
tion III-C and Algorithm 1);

– zconv is the decomposition base used to translate scalar
Regev encodings into matrix Regev encodings (Sec-
tion III-A); and

– zGSW is the decomposition base used in GSW encodings.
The decomposition bases are chosen to balance the server
computational costs with the total communication costs (see
Section V-A for details on how we choose these parameters).
For ease of notation, in the following, we will write GGSW

to denote the gadget matrix Gn+1,zGSW
∈ R(n+1)×mGSW

q asso-
ciated with GSW encodings, where mGSW = (n+ 1) · tGSW

and tGSW =
⌊
logzGSW

q
⌋

+ 1.
We give the SPIRAL protocol in Fig. 2.

Remark IV.2 (Query Size Trade-off and the SPIRALSTREAM
Protocol). To reduce noise growth in Construction IV.1, the
client can directly upload the Regev encodings c

(Reg)
i and

c
(GSW)
j for i ∈ [2ν1 ] and j ∈ [tGSWν2] as part of its query

rather than compress them into a single encoding. This yields
larger queries, but eliminates the noise growth from query
expansion. As we discuss in Section V, this setting is appealing
for streaming scenarios where the same query is reused for
a large number of consecutive requests. Note that it still
remains advantageous to use our Regev-to-GSW transformation
(Section III-B and Remark III.1) rather than send GSW
encodings directly. This is because GSW encodings are much
larger than Regev encodings and the expansion process is fast
and only introduces a small amount of noise. We refer to this
variant of SPIRAL as SPIRALSTREAM.

Correctness. Correctness of Construction IV.1 holds as long
as the encoding modulus q is large enough to accommodate the
noise accumulation from the homomorphic operations. We give
a detailed description of our parameter selection methodology
in Section V-A. We provide a formal statement in the full
version of this paper [42].

Security. Security of our construction follows from the RLWE
assumption and a circular security assumption (for the public
parameters). Specifically, the query in SPIRAL is a Regev
encryption of the query, and the public parameters consist of
key-switching matrices, which are encryptions of key-dependent

messages. Security can thus be based on RLWE and similar
circular-security assumptions as those underlying previous
lattice-based PIR schemes [5, 23]. We provide the formal
statement and analysis in the full version of this paper [42].

A. SPIRALPACK: Higher Rate via Encoding Packing

In this section, we describe a variant of SPIRAL (called SPI-
RALPACK) that enables a higher rate and a higher throughput
(for large records) at the expense of larger public parameters.
As we discuss in greater detail in Section V-A, the plaintext
dimension n in SPIRAL directly affects the rate and the
throughput. A larger value of n yields a higher rate (i.e., the
rate scales with n2/(n2 +n)). However, the cost of processing
the first dimension scales quadratically with n.

Here, we describe an encoding packing approach that allows
us to enjoy the “best of both worlds.” At a high level, our
approach takes n2 Regev encodings of scalars and packs them
into a single matrix Regev encoding of an n× n matrix. To
leverage this to achieve higher rate, we modify SPIRAL as
follows:
• Break each record in the database into n2 blocks of equal

length. This yields a collection of n2 different databases,
where the ith database contains the ith block of each record.
To process a query, the server applies the query to each of
the n2 databases.

• The query consists of packed Regev encodings of scalar
values (i.e., 1-dimensional values). As noted above, this
minimizes the server’s computational cost when processing
the first dimension.

• After applying the query to each of the n2 databases, the
server has n2 Regev encodings of scalars. Transmitting these
back to the client would yield a protocol with a low rate (at
best, the rate is 1/2, and typically, it is much lower). Instead,
the server now applies a “packing” technique to pack the n2

Regev encodings into a single n×n matrix Regev encoding.
The rate now scales with n2/(n2 + n) > 1/2 whenever
n > 1.

The packing transformation used here requires publishing an
additional set of translation matrices in the public parameters.
Thus, this approach provides a trade-off between the size of
the public parameters and the online costs of the protocol
(measured in terms of server throughput and rate). Since
the public parameters can be reused over many queries,
SPIRALPACK is better-suited for settings where a client will
perform many database queries and the server is able to store the
client’s public parameters. We describe our packing approach
in the full version of this paper [42].

V. IMPLEMENTATION AND EVALUATION

In this section, we describe the implementation of the SPIRAL
system as well as our automated parameter selection procedure.
We conclude with a detailed experimental evaluation.

A. Automatic Parameter Selection

Parameter selection trade-offs. We now describe our general
methodology for selecting parameters to support a database
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• Setup(1λ, 1N ): On input the security parameter λ and the database size N , the setup algorithm proceeds as follows:
1) Key-generation: Sample two secret keys S ← KeyGen(1λ, 1n) and s ← KeyGen(1λ, 11) that are used for response encoding

and query encoding, respectively.
2) Regev-to-GSW conversion keys: Compute ck← RegevToGSWSetup(s,S, zconv).
3) Automorphism keys: Let ρ = 1 + max(ν1, dlog tGSWν2e). For each i ∈ [0, ρ − 1], compute Wi ←

AutomorphSetup(s, τ2ρ−i+1, zcoeff).
Output the public parameters pp = (ck,W0, . . . ,Wρ−1) and the querying key qk = (s,S).

• Query(qk, idx): On input the querying key qk = (s,S) and an index idx = (i∗, j∗1 , . . . , j
∗
ν2) where i∗ ∈ [0, 2ν1−1] and j∗1 , . . . , j∗ν2 ∈

{0, 1}, the query algorithm does the following:
1) Encoding the first dimension: Define the polynomial µi∗(x) = bq/pc · xi

∗
∈ Rq .

2) Encoding subsequent dimensions: Define the polynomial µj∗ =
∑
`∈[ν2] µj

∗
`

where for each ` ∈ [ν2],

µj∗
`
(x) = j∗`

∑
k∈[tGSW]

(zGSW)k−1x(`−1)tGSW+k.

3) Query packing: Define the “packed” polynomial

µ(x) := 2−r1µi∗(x
2) + 2−r2xµj∗(x

2) ∈ Rq, (IV.1)

where r1 = 1 + ν1 and r2 = 1 + dlog(tGSWν2)e.
4) Query encryption: Compute the encrypted query c← Regev.Encode(s, µ) ∈ R2

q . Output the query q = c and an empty query
state st = ⊥.

• Answer(pp,D, q): On input the database D, the public parameters pp = (ck,W1, . . . ,Wρ), and a query q = c, the server response
algorithm parses ck = (V,W,Π) and proceeds as follows:
1) Query expansion: The server expands the query ciphertext c into 2ν1 matrix Regev encodings (for the first dimension) and ν2

GSW encodings (for the subsequent dimensions) as follows:
a) Initial expansion: Homomorphically evaluate a single iteration of the coefficient expansion algorithm (Algorithm 1) on c. Let

cReg, cGSW ∈ R2
q be the output encodings.

b) First dimension expansion: Continue homomorphic evaluation of Algorithm 1 for ν1 additional iterations on cReg to obtain
encodings c

(Reg)
1 , . . . , c

(Reg)
2ν1 ∈ R

2
q . For each i ∈ [0, 2ν1 − 1], let C

(Reg)
i ← ScalToMat(W, c

(Reg)
i ).

c) GSW ciphertext expansion: Continue homomorphic evaluation of Algorithm 1 for dlog(tGSWν2)e additional iterations on
cGSW to obtain encodings c

(GSW)
1 , . . . , c

(GSW)
tGSWν2

∈ R2
q . Discard any additional encodings output by Algorithm 1 whenever

tGSWν2 is not a power of two. For each j ∈ [ν2], compute C
(GSW)
j ← RegevToGSW

(
ck, c

(GSW)

(j−1)tGSW+1, . . . , c
(GSW)
jtGSW

)
.

Note that the above invocations of Algorithm 1 will use the automorphism keys W0, . . . ,Wρ−1.
2) Processing the first dimension: For every j ∈ [0, 2ν2 − 1], the server does the following:

a) Initialize C
(0)
j ← ScalarMul

(
C

(Reg)
0 , d0,j

)
.

b) For each i ∈ [2ν1 − 1], update C
(0)
j ← Add

(
C

(0)
j , ScalarMul

(
C

(Reg)
i , di,j

))
.

3) Folding in the subsequent dimensions: For each r ∈ [ν2], and each j ∈ [0, 2ν2−r − 1], compute

C
(r)
j = Add

(
Multiply

(
Complement(C(GSW)

r ),C
(r−1)
j

)
,Multiply

(
C(GSW)
r ,C

(r−1)

2ν2−r+j

))
. (IV.2)

4) Modulus switching: Output the rescaled response r← ModulusSwitchq1,q2(C
(r)
0 ).

• Extract(qk, st, r): On input the query key qk = (s,S), an (empty) query state st, and the server response r, the extraction algorithm
first computes Z← Recoverq1,q2(S, r) ∈ Rn×nq1 and outputs C← Decode(Z) ∈ Rn×np .

Fig. 2: The SPIRAL PIR protocol.

D with up to N records, where each record is at most S
bits. The parameters of interest in Construction IV.1 are
the lattice parameters d, q, χ, the plaintext modulus p, the
plaintext dimension n, the database configuration ν1, ν2, the
decomposition bases zcoeff,Reg, zcoeff,GSW, zconv, zGSW

3, and a
correctness parameter C. A single invocation of the PIR
protocol yields an element of Rn×np , which encodes dn2 log p
bits. When the record size S satisfies S > dn2 log p, we
break each record into T ≥ S/(dn2 log p) blocks, each of

3For finer control over the noise introduced by the ciphertext expansion
algorithm [5, 39], we use different decomposition bases to expand the Regev
and the GSW ciphertexts (denoted zcoeff,Reg and zcoeff,GSW, respectively).
We refer to the full version of this paper [42] for additional details.

size dn2 log p. We then construct T databases where the ith

database contains the ith block of each record and run the
Answer protocol T times to compute the response. Importantly,
the query expansion step only needs to be computed once in this
case since the same query is applied to each of the T databases.
The subsequent homomorphic evaluation is performed over
each of the T databases. Our goal is to choose parameters that
minimize the estimated cost of the protocol (estimated based
on current AWS computing costs and the total computation
and communication required of the protocol; see Section V-B).
We choose parameters to tolerate a correctness error of at most
2−40 and a security level of 128 bits of (classical) security. We
refer to the full version of this paper [42] for a more detailed
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discussion of the different scheme parameters.

Automatic parameter selection. Balancing the different
scheme parameters is important for obtaining a good trade-
off between computational costs and communication. Similar
to XPIR [19], we introduce a heuristic search algorithm for
parameter selection based on a given database configuration
(i.e., the number of records N and the record size S). We set the
ring dimension d = 2048 and use a 56-bit encoding modulus
q. This ensures 128 bits of security and suffices to support
databases of size N ≤ 222. For the base SPIRAL protocol,
we set the plaintext dimension to n = 2. It then suffices to
choose the plaintext modulus p, the decomposition dimen-
sions tcoeff,Reg, tcoeff,GSW, tconv, tGSW (which are functions of
zcoeff,Reg, zcoeff,GSW, zconv, zGSW), database configuration ν1, ν2,
and the number of executions T . For each of these parameters,
there is a small number of reasonable values, and we can
quickly search over all of the candidate configurations.

We set the plaintext modulus p to be a power of two with
maximum value 230. Using larger p would require using a
larger modulus q and ring dimension d ≥ 4096. We consider
tcoeff,Reg, tconv ∈ {2, 4, 8, 16, 32, 56} and tGSW ∈ [2, 56].4 We
fix the decomposition base zcoeff,GSW = 2, which fixes the
dimension tcoeff,GSW = 56. Finally, we consider all database
configurations ν1, ν2 ∈ [2, 11].5 With these constraints, there
are ≈3 million candidate parameter sets for each database set-
ting. After pruning out parameter settings where the correctness
error exceeds the threshold (2−40), we are left with ≈700,000
parameter sets. This initial pruning step takes 3 minutes on
our benchmarking platform, and the pruned set of feasible
parameters can be cached in a single 40 MB file.

We now need a way to estimate the concrete performance
(e.g., server computation time) for each set of candidate
parameters. We do so by fitting a series of linear models
based on empirically-measured running times for the different
steps of the protocol. We provide the full description in the full
version of this paper [42]. Applying the AWS monetary cost
model (see Section V-B) for CPU time and network download,
we then select the parameter setting that minimizes the server’s
total cost to answer a query. The search process takes about
10 seconds on our platform. For all of the parameter sets
selected using this approach, the estimated server computation
time is within 10% of the actual measured running time. We
use an almost identical procedure to select parameters for
SPIRALPACK.

Remark V.1 (Other Optimization Objectives). By default,
we configure our parameter-selection method to minimize
the total cost on an AWS-based deployment. However, the
system naturally supports optimizing other objectives such

4While we could also consider the full range of values for tcoeff,Reg, tconv , this
would increase the size of our search space by ≈ 100×. In our experiments,
we did not observe a significant benefit to the overall system efficiency with
the expanded search space.

5Our vectorized implementation for processing the first dimension requires
that ν1 > 1. We exclude ν2 = 1 because this settings makes it infeasible to
pack all of the query coefficients into a small number of ciphertexts for even
a moderate-size database with just a few thousand records.

as minimizing the estimated server computation time or to
maximize the rate. We also support selecting parameter sets
with a size constraint on the public parameter size or the query
size. This provides a way to systematically explore different
trade-offs in the final protocol. We elaborate on some of these
trade-offs in Section V-C.

B. Implementation and Experimental Setup

We now describe some system optimizations used in our
implementation as well as our experimental setup.

SPIRAL configurations. The vanilla version of SPIRAL is
designed to be a general-purpose PIR protocol. However, in
a streaming setting, the SPIRALSTREAM variant of SPIRAL
(Remark IV.2) can achieve even better performance. In our
experimental evaluation (Section V-C), we consider both a
static setting and a streaming setting:
• Static setting: This is the basic setting where the client

privately retrieves a single record from a database. For this
setting, we choose the parameters to balance query size,
response size, and the server computation time. This is the
default operating mode of SPIRAL (and its packed version,
SPIRALPACK).

• Streaming setting: In the streaming setting, a client uploads
a single query that is reused across many databases. This
captures two general settings: (1) applications with large
records that we want to consume progressively (e.g., a private
video streaming service like Popcorn [44]); and (2) metadata-
hiding messaging systems where a user is repeatedly reading
from a “mailbox” (e.g. Pung [4] or Addra [22]). Since the
query can be reused in the streaming setting, we can amortize
the cost of transmitting the query over the lifetime of the
stream. Systems like FastPIR [22] are designed specifically
for the streaming setting and as such, achieve higher server
throughput compared to SealPIR [5], but require larger
queries. We can easily adapt SPIRAL to the setting using the
approach from Remark IV.2. Namely, in SPIRALSTREAM,
the client uploads all of the Regev encodings directly without
using the query packing approach from [5]. As we show
in Section V-C, SPIRALSTREAM has larger queries, but
achieves a much better rate and server throughput. We define
the streaming version of SPIRALPACK analogously and refer
to the resulting scheme as SPIRALSTREAMPACK.

We use our automatic parameter selection tool (Section V-A)
to select parameters for all of the SPIRAL variants.

Compressing Regev encodings. In SPIRAL (and all of its
variants), the PIR query consists of one or more scalar Regev
encodings. A scalar Regev encoding c is a pair c = (c0, c1),
where c0 ∈ Rq is uniformly random. Instead of sending c0, the
client can instead send a seed s for a pseudorandom generator
(PRG) and derive c0 by evaluating the PRG on the seed s.
Security holds if we model the PRG as a random oracle. This is
a standard technique to compress Regev encodings [45, 46, 47].

Modulus choice. In our implementation, we use a 56-bit
modulus q that is a product of two 28-bit primes α, β. By
the Chinese remainder theorem (CRT), Rq ∼= Rα × Rβ .
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We implement arithmetic operations in Rα and Rβ using
native 64-bit arithmetic. We choose α, β = 1 mod 2d so Zα
and Zβ have a subgroup of size 2d (i.e., the (2d)th roots
of unity). Polynomial multiplication in Rα and Rβ can be
efficiently implemented using a standard “nega-cyclic” fast
Fourier transform (also called the number-theoretic transform
(NTT)) [48, 49]. To allow faster modular reduction, we also
choose α, β to be of the form 2i − 2j + 1 for integers i, j
where 2i > 2j > 2d.

Database representation. Database elements in our system
are elements of Rn×np . We represent all ring elements in their
evaluation representation (i.e., the FFT/NTT representation).
This enables faster homomorphic operations during query
processing.

SIMD operations. Like previous constructions [23], we take
advantage of the Intel Advanced Vector Extensions (AVX) to
accelerate arithmetic operations in Rα and Rβ (recall Rq ∼=
Rα × Rβ). In particular, we use the AVX2 and AVX-512
instructions when computing the scalar multiplications and
homomorphic additions for the first dimension processing in
Construction IV.1.

Code. Our implementation consists of roughly 4,000 lines of
C++.6 We adapt the procedure from the SEAL homomorphic
encryption library [50] to implement the FFTs for homomorphic
evaluation. We use the Intel HEXL library [51] to implement
FFTs in the response decoding procedures.

Experimental setup. We compare our PIR protocol against
the public implementations of SealPIR [5], FastPIR [22],
and OnionPIR [23]. Since the memory requirements vary
between protocols, we use an implicit representation of the
database across all of our measurements to ensure a consistent
comparison. To minimize any variance in running time due
to cache accesses, we set the minimal size of the implicitly-
represented database to be 1 GB. Based on our measurements,
using this implicit database representation only has a small
effect on the measurements (at most a 1% difference in server
compute time).

We measure the performance of our system on an Amazon
EC2 c5n.2xlarge instance running Ubuntu 20.04. The
machine has 8 vCPUs (Intel Xeon Platinum 8124M @ 3
GHz) and 21 GB of RAM. We use the same benchmarking
environment for all experiments, and compile all of the systems
using Clang 12. The processor supports the AVX2 and AVX-
512 instruction sets, and we enable SIMD instruction set
support for all systems. We use a single-threaded execution
for all of our experiments and report running times averaged
over a minimum of 5 trials.

Metrics. For each database configuration, we measure the total
computation and communication for the client and the server,
as well as the size of the public parameters. Similar to previous
works [5, 23, 22], we assume the public parameters have been
generated and transmitted in a separate offline phase, and focus
exclusively on the online computation and communication.

6Our implementation is available here: https://github.com/menonsamir/spiral.

This is often justified since the public parameters only needs
to be generated once and can be reused for many PIR queries.

We also estimate the server’s monetary cost to respond to
a single query. This is the sum of the server’s CPU cost and
the cost of the network communication. We estimate these
costs based on the current rates for a long-term Amazon EC2
instance: $0.0195/CPU-hour and $0.09/GB of outbound traffic
at the time of writing [52]. Finally, we report the rate of the
protocol (i.e., the ratio of the record size to the response size),
and the server’s throughput (i.e., the number of database bytes
the server can process each second). We generally do not report
the response-decoding times, since they are very small (Fig. 4).

C. Evaluation Results for SPIRAL

We start by comparing the performance of SPIRAL and
SPIRALSTREAM to existing systems on three different database
configurations in Table I:
• A database with many small records (220 records of size

256 B). This is a common baseline for PIR [4, 25, 22].
• A database with moderate-size records (218 records of size

30 KB). This is the optimal configuration for OnionPIR [23].
• A database with a small number of large records (214 records

of size 100 KB).
When the record size is small, all of the lattice-based PIR
schemes have low rate. This is because lattice ciphertexts
encode a minimum of a few KB of data, so there is a significant
amount of unused space for small records. When the record
size is comparable or greater than the amount of data that can
be packed into a lattice ciphertext, the rate essentially becomes
the inverse of the ciphertext expansion factor. Due to better
control of noise growth, the use of matrix Regev encodings, and
improved modulus switching, SPIRAL and SPIRALSTREAM
achieve a higher rate than previous implementations of single-
server PIR.

In all three settings, SPIRAL has the smallest query size.
For the databases with 30 KB and 100 KB records, SPIRAL’s
throughput is at least 2.2× higher than competing schemes
(while achieving a higher rate and smaller queries). In the small
record case, SPIRAL’s server throughput is only outperformed
by FastPIR, which is optimized for the streaming setting and
requires a query that is over 2400× larger. The main limitation
of SPIRAL is its larger public parameter size. This is due to
the additional keys needed for the query compression approach
from Section III. Note though that these public parameters are
reusable and the cost of communicating them can be amortized
over multiple queries.

Turning next to SPIRALSTREAM, we see that it achieves
a higher rate and server throughput compared to all previous
schemes. For instance, on the database with moderate-size
records, SPIRALSTREAM achieves a throughput of over 800
MB/s, which is 5.6× higher than the previous state-of-the-art;
SPIRALSTREAM simultaneously achieves a 2× increase in rate
as well. Measured in terms of monetary cost, SPIRALSTREAM
is 5.4× less expensive compared to OnionPIR for this database
configuration. The trade-off is SPIRALSTREAM requires larger
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Database Metric SealPIR FastPIR MulPIR* OnionPIR SPIRAL SPIRALSTREAM

Param. Size 3 MB 1 MB - 5 MB 14–18 MB 344 KB–3 MB

Query Size 66 KB 33 MB 122 KB 63 KB 14 KB 8 MB
Response Size 328 KB 66 KB 119 KB 127 KB 21 KB 20 KB

220 × 256B Computation 3.19 s 1.44 s - 3.31 s 1.69 s 0.85 s

(268 MB) Rate 0.0008 0.0039 0.0024 0.0020 0.0122 0.0125
Throughput 84 MB/s 186 MB/s - 81 MB/s 159 MB/s 314 MB/s
Server Cost $0.000047 $0.000014 - $0.000029 $0.000011 $0.000006

Query Size 66 KB 8 MB - 63 KB 14 KB 15 MB
Response Size 3 MB 262 KB - 127 KB 84 KB 62 KB

218 × 30KB Computation 74.91 s 50.52 s - 52.73 s 24.46 s 8.99 s

(7.9 GB) Rate 0.0092 0.1144 - 0.2363 0.3573 0.4803
Throughput 105 MB/s 156 MB/s - 149 MB/s 322 MB/s 875 MB/s
Server Cost $0.000701 $0.000297 - $0.000297 $0.000140 $0.000054

Query Size 66 KB 524 KB - 63 KB 14 KB 8 MB
Response Size 11 MB 721 KB - 508 KB 242 KB 208 KB

214 × 100KB Computation 19.03 s 23.27 s - 14.38 s 4.92 s 2.38 s

(1.6 GB) Rate 0.0092 0.1387 - 0.1969 0.4129 0.4811
Throughput 86 MB/s 70 MB/s - 114 MB/s 333 MB/s 688 MB/s
Server Cost $0.001076 $0.000191 - $0.000124 $0.000048 $0.000032

∗ To date, there is not a public implementation of the MulPIR system. Here, we report the query and response sizes on a similar
database of size 220 × 288B from [25].

TABLE I: Comparison of SPIRAL and SPIRALSTREAM with recent PIR protocols (SealPIR [5], FastPIR [22], MulPIR [25],
OnionPIR [23]) on different database configurations. All measurements are collected on the same computing platform using a
single-threaded execution. SealPIR and OnionPIR provide 115 and 111 bits of security, respectively. All other schemes provide
at least 128 bits of security. The public parameter size (“Param. Size” column) for SPIRAL (and SPIRALSTREAM) varies
depending on database configuration and we report the range here. The rate is the ratio of the record size to the response size,
the throughput is the ratio of the server’s computation time to database size, and the server cost is the estimated monetary cost
needed to process a single query based on current AWS prices (see Section V-B).

queries, though this is a less significant factor in streaming
settings where the same query is reused across multiple
requests.
Packing. In Table II (Appendix D), we compare the packed ver-
sions of SPIRAL and SPIRALSTREAM with the vanilla versions
on each of the main benchmarks. As shown in Table II, packing
enables higher rates and throughput, but requires larger public
parameter for the packing keys (Section IV-A). For instance,
the size of the public parameters ranges from 14–18 MB for
SPIRAL and increases to 14–47 MB for SPIRALPACK. On
the flip side, when considering larger databases, SPIRALPACK
achieves a 30% increase in the rate with comparable or higher
server throughput. If we consider the streaming variant (which
optimizes for throughput and rate at the expense of public
parameter size and query size), the packed variant achieves
substantially higher throughput compared to previous PIR
schemes and the other SPIRAL variants. On the larger databases,
SPIRALSTREAMPACK achieves 10× higher throughput com-
pared to previous systems (1.5 GB/s) and a 1.7× improvement
over the non-packed scheme SPIRALSTREAM.
System scaling. Fig. 3 shows how the server’s computation
time for different PIR schemes scales with the number of
records N in the database. When the database consists of
relatively small records (10 KB), SPIRAL achieves similar
performance as existing systems when the numbers of records
is small, but is up to 2× faster for databases with a million

records. When considering databases with larger records (100
KB), SPIRAL is always 1.8–3× faster for all choices of N
we considered. The server computation time of SPIRALPACK
is generally comparable to that of SPIRAL. Packing is most
beneficial when the number of records is large; in these
cases SPIRALPACK achieves up to a 1.5× reduction in server
computation time. As we discuss next, packing makes the most
difference in the streaming setting.

Throughput in the streaming setting. As noted in Sec-
tion V-B, we also consider using PIR in a streaming setting,
where the same query is reused across multiple PIR invocations
(on different databases). In this case, query expansion only
needs to happen once and its cost can be amortized over the
lifetime of the stream. Thus, when considering the streaming
setting, we measure the server’s processing time without the
query expansion process. We apply the same methodology to
all SPIRAL variants, SealPIR, OnionPIR, and FastPIR. The
effective server throughput for different schemes is shown
in Fig. 5 and Table III (Appendix D). When choosing the
parameters for the streaming protocol variants SPIRALSTREAM
and SPIRALSTREAMPACK, we impose a maximum query
size of 33 MB to ensure a balanced comparison with the
FastPIR protocol [22] which have queries of the same size.
FastPIR is a PIR protocol tailored for the streaming setting that
leverages a large query size to achieve better server throughput.
We note that increasing the query size in SPIRALSTREAM
and SPIRALSTREAMPACK beyond 33 MB can enable further
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Fig. 3: Server computation time as a function of database size for different PIR protocols.

improvements to the server throughput and the rate, and we
explore these trade-offs in more detail in the full version of
this paper [42].

For the database configurations we considered, the base
version of SPIRAL achieves a 1.7–3.7× higher throughput in
the streaming setting compared to previous systems. The packed
version SPIRALPACK achieves higher throughput with the same
query size, but at the expense of larger public parameters.
The streaming-optimized systems SPIRALSTREAM and SPI-
RALSTREAMPACK achieve significantly higher throughput; on
databases with roughly a million records, the server throughput
of SPIRALSTREAMPACK is 1.9 GB/s, which is 9.7× higher
than FastPIR. The rate is also 5.8× higher than that of FastPIR
(i.e., the number of bits the client has to download is 5.8×
smaller with SPIRALSTREAMPACK).
Microbenchmarks and other measurements. Due to space
limitations, we include additional microbenchmarks and system
analysis in Appendix D and the full version of this paper [42].
We also estimate the concrete costs of SPIRAL to support
several application settings.

VI. RELATED WORK

Number-theoretic constructions. Many early constructions
of single-server PIR [17, 53] follow the Kushilevitz-Ostrovsky
paradigm [12] based on homomorphic encryption. These
were typically instantiated using number-theoretic assumptions
such as Paillier [54] or the Damgård-Jurik [55] encryption
schemes. Another line of works [16, 18] gave constructions with
polylogarithmic communication from the φ-hiding assumption.
Döttling et al. [56] showed how to construct rate-1 PIR (on
sufficiently-large) records based on trapdoor hash functions,
which can in turn be based on a broad range of classic number-
theoretic assumptions.
Lattice-based PIR. The more concretely efficient single-server
PIR protocols are based on lattice-based assumptions. Starting
with XPIR [19], a number of systems have progressively
reduced the computational cost of single-server PIR [4, 5,
20, 21, 25, 22, 23]. While early constructions only relied
on additive homomorphism, more recent constructions also
incorporate multiplicative homomorphism for better concrete
efficiency [20, 21, 25, 23]. The design of SPIRAL follows the
recent approach of composing Regev encryption with GSW
encryption to achieve a higher rate and slower noise growth.

PIR variants. Many works have introduced techniques to
reduce or amortize the computation cost of single-server PIR
protocols. One approach is batch PIR [57, 58, 59, 5] where
the server’s computational cost is amortized over a batch of
queries. In particular, Angel et al. [5] introduced a generic
approach of composing a PIR protocol with a probabilistic
batch code to amortize the server’s computational cost.

Another line of works has focused on stateful PIR [60, 23,
61, 62] where the client retrieves some query-independent
advice string from the database in an offline phase and uses
the advice string to reduce the cost of the online phase. The
recent OnionPIR system [23] introduces a general approach
based on private batch sum retrieval that reduces the online cost
of performing PIR over a database with N records to that of a
PIR over a database with O(

√
N) records (the overall online

cost is still O(N), but the bottleneck is the PIR on the O(
√
N)

record database). Corrigan-Gibbs and Kogan [61] show how to
obtain a single-server stateful PIR with sublinear online time;
however, the advice string is not reusable so the (linear) offline
preprocessing has to be repeated for each query. More recently,
Corrigan-Gibbs et al. [62] introduce a stateful PIR protocol
with a reusable advice string which yields a single-server PIR
with sublinear amortized cost.

Another variant is PIR with preprocessing [57] or doubly-
efficient PIR [63, 64] where the server first performs a linear
preprocessing step to obtain an encoding of the database. Using
the encoding, the server can then answer online queries in
strictly sublinear time. Boyle et al. [63] and Canetti et al. [64]
recently showed how to construct doubly-efficient PIR schemes
from virtual black-box obfuscation, a very strong cryptographic
assumption that is possible only in idealized models [65] (and
also currently far from being concretely efficient).

Multi-server PIR. While our focus in this work in the single-
server setting, many PIR protocols [1, 66, 67, 68, 69, 70,
24] consider the multi-server setting where the database is
replicated across several non-colluding servers (see also the
survey by Gasarch [13] and the references therein). Multi-server
constructions are highly efficient as the server computation
can be based purely on symmetric operations rather than more
expensive public-key operations. However, the non-colluding
requirements imposes logistic hurdles to deployment.
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APPENDIX A
PIR DEFINITION

We now recall the standard definition of a two-message
single-server PIR protocol [12]. Like most lattice-based PIR
schemes [5, 20, 21, 22, 25, 23], we allow for an initial query-
independent and database-independent setup protocol that
outputs a query key qk (known to the client) and a set of
public parameters pp (known to both the client and the server).
The same pp and qk can be reused by the client and server
for multiple queries, so we can amortize the cost of the setup
phase over many PIR queries. Note that we can also obtain a
standard 2-message PIR protocol without setup by having the
query algorithm generate qk and pp and including pp as part
of its query.

Definition A.1 (Two-Message Single-Server PIR [12, adapted]).
A two-message single-server private information retrieval (PIR)
scheme ΠPIR = (Setup,Query,Answer,Extract) is a tuple of
efficient algorithms with the following properties:

• Setup(1λ, 1N )→ (pp, qk): On input the security parameter
λ and a bound on the database size N , the setup algorithm
outputs a query key qk and a set of public parameters pp.

• Query(qk, idx)→ (st, q): On input the query key qk and an
index idx, the query algorithm outputs a state st and a query
q.

• Answer(pp,D, q) → r: On input the public parameters pp,
a database D = {d1, . . . , dN}, and a query q, the answer
algorithm outputs a response r.

• Extract(qk, st, r)→ di: On input the query key qk, the state
st, and a response r, the extract algorithm outputs a database
record di.

The algorithms should satisfy the following properties:

• Correctness: For all λ ∈ N, all polynomials N = N(λ), ` =
`(λ), and all databases D = {d1, . . . , dN} where each di ∈
{0, 1}`, and all indices idx ∈ [N ],

Pr[Extract(qk, st, r) = di] = 1,

where (pp, qk)← Setup(1λ, 1N ), (st, q)← Query(qk, idx),
and r← Answer(pp,D, q).

• Query privacy: For all polynomials N = N(λ) and all
efficient adversaries A, there exists a negligible function
negl(·) such that for all λ ∈ N,∣∣∣∣Pr

[
AOb(qk,·,·)(1λ, pp) = b

]
− 1

2

∣∣∣∣ = negl(λ),

where (pp, qk)← Setup(1λ, 1N ), b R← {0, 1}, and the oracle
Ob(qk, idx0, idx1) outputs Query(qk, idxb). This definition
captures reusability of pp and qk.

APPENDIX B
CIPHERTEXT TRANSLATION ALGORITHMS

In this section, we give a sketch of the correctness proofs for
the main ciphertext translation algorithms from Section II-A.
We refer to the full version of this paper [42] for the formal
analysis.

ScalToMat. To see correctness of ScalToMat, let c0 = (c0, c1)
be a Regev encoding of a scalar µ ∈ Rq with respect to the se-
cret key s0 and error e. Let W← ScalToMatSetup(s0,S1, z)
and C1 ← ScalToMat(W, c0). Observe that ST

1W = E −
s̃0Gn,z . Then,

ST
1C1 = ST

1WG−1n,z(c0In) + ST
1

[
01×n

c1In

]
= EG−1n,z(c0In)− s̃0c0In + c1In

= EG−1n,z(c0In) + In(sT
0 c)

= µIn + eIn + EG−1n,z(c0In),

and we see that C1 is an encoding of µIn with new error
eIn + EG−1n,z(c0In). This transformation introduces a fixed
additive error of EG−1n,z(c0In), where E is freshly sampled
from the error distribution.

RegevToGSW. To see correctness of RegevToGSW,
suppose c1, . . . , ctGSW

are Regev encodings of
µ, µzGSW, . . . , µz

tGSW−1
GSW ∈ Rq under sRegev with errors

e1, . . . , etGSW
∈ Rq. Let SGSW be the GSW secret

key, ck ← RegevToGSW(sRegev,SGSW, zGSW, zconv),
and C ← RegevToGSW(ck, c1, . . . , ctGSW

). Let
ê = [ e1 | · · · | etGSW

]T. Consider now the components
of ST

GSWC:

• By construction of V from Eq. (III.1), we have that
ST

GSWV = E− s̃GSW · (sT
Regev ⊗ gT

zconv
).

ST
GSWVg−1zconv

(Ĉ) = Eg−1zconv
(Ĉ)− s̃GSWsT

RegevĈ

= Eg−1zconv
(Ĉ)− s̃GSW(µgT

zGSW
+ êT).
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• By correctness of ScalToMat (Section III-A), for i ∈
[tGSW], we have ST

GSWCi = zi−1GSW · µIn + Ei. Letting
Ẽ = [ E1 | · · · | EtGSW

], we can then write

ST
GSW[ C1 | · · · | Ct ] = µgT

zGSW
⊗ In + Ẽ.

Let Ẽ′ = [ Eg−1zconv
(Ĉ)− s̃GSWêT | Ẽ ] ·Π ∈ Rn×mGSW

q . Now,
putting everything together, we can write

ST
GSWC =

[
−µs̃GSWgT

zGSW
| µgT

zGSW
⊗ In

]
Π + Ẽ′

= µST
GSWGn+1,zGSW

+ Ẽ′.

Thus, C is a GSW encoding of µ with error Ẽ′. This
transformation scales the initial error ê in the Regev encodings
by s̃GSW. Since the components of the secret key are drawn
from the error distribution, this only increases the noise
magnitude by a few bits. Otherwise, the noise increases by
a small additive factor, much like the case with the scalar-to-
matrix transformation from Section III-A.

APPENDIX C
COEFFICIENT EXTRACTION ON REGEV ENCODINGS

In this section, we recall the coefficient expansion algorithm
by Angel et al. [5] and extended by Chen et al. [39]. This
approach relies on the ability to homomorphically compute
automorphisms on Regev-encoded polynomials. We review this
below.

Automorphisms. As usual, let R = Z[x]/(xd + 1) where d is
a power of two. For a positive integer `, we write τ` : R→ R
to denote the ring automorphism r(x) 7→ r(x`). We can define
a corresponding set of automorphisms over Rq . For notational
convenience, we use τ` to denote both sets of automorphisms.
We extend τ` to operate on vectors and matrices of ring
elements (in both R and Rq) in a component-wise manner.

Automorphisms on Regev encodings. Similar to the other
translation protocols (Sections III-A and III-B), supporting
automorphisms requires knowledge of additional key-switching
matrices. We give the parameter-generation and automorphism
algorithms below:
• AutomorphSetup(s, τ, z): On input the secret key s =

[−s̃ | 1]T, an automorphism τ : Rq → Rq, and a decom-
position base z ∈ N, let t = blogz qc+ 1. Sample a

R← Rtq,
e← χt, and output the key

Wτ =

[
aT

s̃aT + eT

]
+

[
01×t

−τ(s̃) · gz

]
∈ R2×t

q

• Automorph(Wτ , c): On input the automorphism key Wτ ∈
R2×t
q associated with an automorphism τ : Rq → Rq, and

encoding c = (c0, c1) ∈ R2
q , output Wτg

−1
z (τ(c0)) +

[ 0 | τ(c1) ]T.
We refer to previous works [31, 71] for the correctness and
noise analysis for the automorphisms.

Coefficient expansion algorithm. We recall the coefficient
expansion procedure by Angel et al. [5] and extended by
Chen et al. [39]. The algorithm takes a polynomial f =∑
i∈[0,2r−1] fix

i ∈ Rq as input and outputs a (scaled) vector

of coefficients 2r · (f0, . . . , f2r−1) ∈ Z2r

q . The algorithm
only relies on ring automorphisms τ` : Rq → Rq and linear
operations, and can be implemented homomorphically on
encodings.

Algorithm 1: Coefficient expansion [5, 39].

Input: a polynomial f =
∑
i∈[0,2r−1] fix

i ∈ Rq where
R = Z[x]/(xd + 1) and 2r ≤ d

Output: the scaled coefficients
2r · (f0, . . . , f2r−1) ∈ Z2r

q

1 f0 ← f
2 for i = 0 to r − 1 do
3 `← 2r−i + 1
4 for j = 0 to 2i − 1 do
5 f ′j ← fj · x−2

j

. x−2
j

= −xd−2j ∈ R
6 fj ← fj + τ`(fj) fj+2i ← f ′j + τ`(f

′
j)

7 end
8 end
9 return f0, f1, . . . , f2r−1

Remark C.1 (Homomorphic Expansion). By construction,
Algorithm 1 only requires scalar multiplication, addition, and
automorphisms over Rq. Thus, we can homomorphically
evaluate Algorithm 1 on a Regev encoding of a polyno-
mial f ∈ Rq to obtain (scaled) Regev encodings of the
coefficients of f . To homomorphically compute r rounds of
Algorithm 1 on an encoding c, the evaluator will need access
to key-switching matrices W0, . . . ,Wr−1 where Wi ←
AutomorphSetup(s, τ2r−i+1, z), s is the secret key associated
with c, and z ∈ N is the desired decomposition base (chosen
to control noise growth).

APPENDIX D
ADDITIONAL EXPERIMENTS

In this section, we provide some additional benchmarks and
evaluation of our system.

Optimizing for rate or throughput. In the the full version
of this paper [42], we also explore how we can trade-off the
server throughput or the rate of the protocol for query size or
the public parameter size.

Microbenchmarks. Finally, we provide a more fine-grained
breakdown of the different components of the client’s and
server’s computation in Fig. 4. The client’s cost is dominated by
the key-generation procedure (which samples the key-switching
matrices needed for the query generation algorithm). While this
cost is non-trivial (≈ 700 ms), this only needs to be generated
once and can be reused for arbitrarily many queries. The
query-generation completes in under 30 ms, and the response-
decoding completes in under 1 ms.
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Database Metric Best Previous SPIRAL SPIRALSTREAM SPIRALPACK SPIRALSTREAMPACK

Param. Size 1 MB 14 MB 344 KB 14 MB 16 MB
Query Size 34 MB 14 KB 8 MB 14 KB 15 MB

220 × 256B Response Size 66 KB 21 KB 20 KB 20 KB 71 KB
(268 MB) Computation 1.44 s 1.69 s 0.86 s 1.37 s 0.42 s

Rate 0.0039 0.0122 0.0125 0.0125 0.0036
Throughput 186 MB/s 159 MB/s 312 MB/s 196 MB/s 635 MB/s

Param. Size 5 MB 18 MB 3 MB 18 MB 16 MB
Query Size 63 KB 14 KB 15 MB 14 KB 30 MB

218 × 30KB Response Size 127 KB 84 KB 62 KB 86 KB 96 KB
(7.9 GB) Computation 52.99 s 24.52 s 9.00 s 17.69 s 5.33 s

Rate 0.2363 0.3573 0.4803 0.3488 0.3117
Throughput 148 MB/s 321 MB/s 874 MB/s 444 MB/s 1.48 GB/s

Param. Size 5 MB 17 MB 1 MB 47 MB 24 MB
Query Size 63 KB 14 KB 8 MB 14 KB 30 MB

214 × 100KB Response Size 508 KB 242 KB 208 KB 188 KB 150 KB
(1.6 GB) Computation 14.35 s 4.92 s 2.40 s 4.58 s 1.21 s

Rate 0.1969 0.4129 0.4811 0.5307 0.6677
Throughput 114 MB/s 333 MB/s 683 MB/s 358 MB/s 1.35 GB/s

TABLE II: Comparison for all four Spiral variants with the best alternative system: FastPIR [22] for the database with small
records (220 × 256B) and OnionPIR otherwise [23].

N Metric FastPIR OnionPIR SPIRAL SPIRALPACK SPIRALSTREAM SPIRALSTREAMPACK

Param. Size 1 MB 5 MB 31 MB 156 MB 3 MB 125 MB
212 Query Size 131 KB 63 KB 14 KB 14 KB 15 MB 15 MB

Rate 0.1392 0.2419 0.4348 0.7143 0.4918 0.8057
Throughput* 23 MB/s 159 MB/s 544 MB/s 640 MB/s 1.20 GB/s 1.57 GB/s

Param. Size 1 MB 5 MB 30 MB 31 MB 5 MB 125 MB
216 Query Size 2 MB 63 KB 14 KB 14 KB 30 MB 30 MB

Rate 0.1392 0.2419 0.4000 0.7013 0.4918 0.8057
Throughput* 142 MB/s 157 MB/s 433 MB/s 614 MB/s 1.52 GB/s 1.93 GB/s

Param. Size 1 MB 5 MB 30 MB 91 MB 5 MB 125 MB
220 Query Size 34 MB 63 KB 14 KB 14 KB 30 MB 30 MB

Rate 0.1392 0.2419 0.3902 0.6857 0.4918 0.8057
Throughput* 201 MB/s 158 MB/s 355 MB/s 521 MB/s 1.46 GB/s 1.94 GB/s

∗ This throughput measurement does not include query expansion costs, since these are amortized away in the streaming scenario.

TABLE III: Performance of FastPIR [22], OnionPIR [23], and the different SPIRAL variants in the streaming setting as a
function of the number of records N in the database. In the streaming setting, we ignore all query expansion costs (if present)
and use the optimal record size for each system.

For server computation, the cost of query expansion is mostly
fixed, while the cost of processing the initial dimension and the
subsequent folding steps (Steps 2 and 3 of the Answer algorithm
in Construction IV.1, respectively) both scale linearly with the
size of the database. The parameters chosen by our parameter
generation algorithm favor those that balance the cost of the
initial dimension processing and the cost of the subsequent
folding operations.

CRT/SIMD optimizations. As noted in Section V-B, we
choose the 56-bit modulus q to be a product of two 28-
bit primes and use the Chinese remainder theorem (CRT)
in conjunction with the AVX instruction set to accelerate the
integer arithmetic. Choosing a modulus q that splits into 32-bit
primes is important for concrete efficiency. We observe that
using the AVX instruction sets, we can compute four 32-bit-
by-32-bit integer multiplications in the same time it takes to
compute a single 64-bit-by-64-bit integer multiplication. Thus,

using CRT with AVX gives us a factor of 2× speed-up for
arithmetic operations. Note that this is helpful primarily when
processing the first dimension and less so for the subsequent
GSW folding operations. Indeed, if we compare against a
modified implementation where we use 64-bit-by-64-bit integer
multiplications, we observe a 2.1× slowdown in the time it
takes to process the first dimension. As a function of the overall
computation time, using CRT provides a 1.3–1.4× speed-up
(since the first dimension processing accounts for slightly less
than half of the total server computation).

We also note that our implementation uses AVX-512,
whereas previous systems only used AVX2. However, AVX-
512 is not the main source of speedup in our implementation.
If we disable AVX-512, we only observe moderate slowdowns
of 6–14%. AVX2 is more critical to our system’s performance;
for large databases, disabling AVX2 results in a 2× slowdown.
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Fig. 4: Microbenchmarks for client and server computation in SPIRAL for processing databases with 100 KB records. The
client computation consists of the Setup, Query, and Extract algorithms while the server computation consists of the Answer
algorithm from Construction IV.1. We separately measure the costs of the query expansion (Step 1), first dimension processing
(Step 2), and ciphertext folding (Step 3) in the Answer algorithm.
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Fig. 5: Server throughput in the streaming setting as a
function of the number of database records. In the streaming
setting, we ignore the query expansion costs (if present)
and use the optimal record size for each system. The query
sizes for SealPIR, FastPIR, SPIRAL/SPIRALPACK, SPIRAL-
STREAM/SPIRALSTREAMPACK and SPIRALSTREAM1/2, are
65 KB, 33 MB, 14 KB, 33 MB, and 16 MB, respectively.
In particular, we choose parameters for SPIRALSTREAM and
SPIRALSTREAMPACK so as to match the query size from
the FastPIR system (a PIR protocol tailored for the streaming
setting).

Application scenarios. We now estimate the concrete cost of
using SPIRAL to support various privacy-preserving applica-
tions based on PIR:

• Private video streaming. Suppose a user is interested in
privately streaming a 2 GB movie from a library of 214

movies. Using SPIRALSTREAMPACK, this would require a
30 MB upload, a 2.5 GB download, and 5.6 CPU-hours of
computation. The overall server cost using SPIRALSTREAM-
PACK is $0.33. This is just 1.9× higher than the no-privacy
baseline where the client just downloads the movie directly
($0.18). Using OnionPIR for the same task would require a
63 KB upload, an 8.3 GB download, and 59.3 CPU-hours of

compute. This is 17× more expensive than the non-private
solution, and 9× more expensive than SPIRALSTREAMPACK.

• Private voice calls. Next, we consider the Addra application
for private voice communication [22]. In Addra, a 5-
minute voice call can be implemented with 625 rounds,
and in each round, the user downloads 96 bytes. If we
use SPIRALSTREAM to support a system with up to 220

users, a private 5-minute voice call would require a 29 MB
upload, 11 MB of download, and 112 seconds of CPU
time. The per-user server cost is $0.0016, which is a 3.9×
improvement compared to FastPIR (used for the Addra
system). On an absolute scale, running a system like Addra
using SPIRALSTREAM remains costly at over $300/minute
to support a million users.

• Private Wikipedia. We can also consider a non-streaming
setting where we use PIR to privately access a Wikipedia
article. We consider the end-to-end latency needed to retrieve
an entry from a 31 GB database (which would contain all
of the text in English Wikipedia and a subset of article
images) with a maximum article size of 30 KB. We split the
database into 16 independent partitions and process the query
in parallel on a 16-core machine with 42 GB of memory.
Running this setup would require $229 USD monthly on
AWS. We model network conditions based on a median
mobile upload speed of 8 Mbps and download speed of
29 Mbps [72]. Under these conditions, SPIRALPACK could
deliver an article in just 4.3 seconds. This is a 2.1× reduction
in the end-to-end time compared to OnionPIR. Unlike the
movie streaming setting above, the non-streaming setting
remains one where the private solution remains much slower
than non-private retrieval.
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