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Abstract—Embedded and IoT devices often come with a wide
range of hardware functionality, but any particular end user
may only use some small subset of these features. However,
even unused hardware features are accompanied by potentially
buggy driver code, which increases the attack surface of the
device. In this paper, we introduce IRQDebloat, a system for dis-
abling unwanted hardware features through automated firmware
rewriting. Building on the insight that external inputs to the
system are typically delivered through interrupt requests (IRQs),
IRQDebloat systematically explores the interrupt handling code
in the target firmware, identifies the handler function for each
peripheral, and finally rewrites target firmware to disable the
handlers that correspond to undesired hardware features. In
our experiments we demonstrate IRQDebloat’s effectiveness and
generality by identifying IRQ handlers across four different
operating systems (Linux, FreeBSD, VxWorks, and RiscOS)
and seven different embedded platforms, and disabling selected
peripherals on real-world hardware (a Raspberry Pi and a Valve
Steam Link). On the Steam Link, we survey the attack surface
and find that disabling selected peripherals could block up to 44
CVEs found in the Linux kernel over the past five years.

I. INTRODUCTION

Many embedded and IoT devices offer a wide range of
functionality to support the needs of a diverse user population.
However, this breadth of features comes at a price: each
feature requires additional software support, and creates more
opportunities for vulnerabilities. For hardware features, these
vulnerabilities often lurk in kernel-mode driver code, where
bugs can lead to complete compromise of the system.

For example, Cisco Meraki WiFi access points integrate
a Bluetooth Low Energy (BLE) beacon to provide services
such as indoor localization [1]. Although many customers
may not need or desire these features, the software needed
to support it is enabled in the firmware and remains a part of
the device’s exposed attack surface. Indeed, researchers from
Armis discovered multiple remote code execution vulnerabil-
ities (collectively dubbed “BleedingBit”) in the BLE stack of
these devices [42].

Examples like these demonstrate the need for debloating:
the automated removal of unwanted features in software.
Although debloating has been previously studied in the context
of desktop [38], server [31], mobile [47], [27], and web
applications [8], less attention has been paid to disabling
potentially vulnerable hardware features in embedded devices.

In this paper, we demonstrate an approach to debloating
that allows users to selectively disable unwanted hardware
features by automatically rewriting their firmware. Our key
insight is that the the vulnerable attack surface from driver
code can, in most cases, only be reached when input from the
outside world enters the system via a hardware interrupt. Thus,

by enumerating the interrupt handlers on a system, matching
them to actual hardware functionality, and then rewriting the
firmware to disable code that handles interrupts from unneeded
devices, we can effectively close off the driver attack surface
from the outside world.

We envision that this capability will be most useful to tech-
nically sophisticated users who wish to deploy embedded de-
vices without such unwanted hardware functionality that may
render them less secure. A classic (though perhaps apocryphal)
example is the anecdote that some secure government facilities
may have filled the USB ports of their computers with epoxy
to prevent the use of USB [24]; blocking hardware features
through firmware rewriting is similar in spirit to this technique,
but requires less manual effort (and is more reversible). More
prosaically, a large company deploying a fleet of wireless
routers such as the Meraki access points mentioned above
might wish to disable BLE functionality entirely. And finally,
hobbyist users may wish to keep their embedded devices
running past their end-of-life date by disabling peripherals
whose drivers have unfixed vulnerabilities.

To demonstrate this idea, we have built a prototype firmware
debloating system, IRQDebloat. Starting from a snapshot of
the CPU and memory state from a real embedded device,
IRQDebloat migrates this snapshot into a software emula-
tor and collects execution traces by systematically exploring
different paths through a top-level interrupt handler. Once
these traces are collected, we use differential slicing [29] to
precisely identify the handlers available for each peripheral in
the system. Finally, we instrument these handlers on the real
device and replace the interrupt handler for that peripheral
with one that simply ignores the interrupt and returns.

We evaluate our system on two CPU architectures (ARM
and MIPS), four different operating systems (Linux, FreeBSD,
VxWorks, and RiscOS) and across seven different embedded
system-on-chip (SoC) platforms and find that it can success-
fully enumerate and identify all registered interrupt handlers.
We also demonstrate, in a case study, the use of IRQDebloat
to protect a real-world device, the Valve Steam Link, by auto-
matically reverse engineering its interrupt sources, locating the
interrupt used for WiFi and Bluetooth, and then disabling it.
We estimate that this would prevent 13 distinct CVEs found
in the Linux Kernel’s Bluetooth and WiFi drivers over the
past five years. IRQDebloat allows users to effectively reduce
their exposure to unknown vulnerabilities by automatically
removing unwanted hardware functionality.
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CPU

irq_pend = fetch_irq(ic_dev)
mask = fetch_mask(ic_dev)
irq_pend &= mask
if (irq_pend) {
  n = ffs(irq_pend)
  handler = lookup(n)
  handler()
}

Interrupt
Controller

IRQ Pending 
Register

UART

Ethernet

USB

I2C
IRQ Mask 
Register GPIO

Fig. 1. Typical flow for interrupt handling in an embedded system.

II. BACKGROUND

A. Interrupts

In an embedded system, most inputs from the outside
world are delivered via interrupts (sometimes called interrupt
requests or IRQs). Interrupts originate in a hardware peripheral
and cause an asynchronous control flow transfer to an interrupt
handler, a function that services the interrupt. The interrupt
handler then communicates with the peripheral that raised the
interrupt, handles any pending I/O for the peripheral,1 and then
acknowledges the interrupt, marking it as finished.

In hardware, an embedded CPU typically has only a small
number of dedicated interrupt pins (e.g., on ARM, there are
only two top-level interrupt pins, one for standard interrupts
and another for low-latency “fast interrupts”, known as FIQs).
To support a larger number of interrupts, most systems come
with a dedicated interrupt controller (IC), which multiplexes
multiple interrupt pins into a single interrupt source. Interrupt
controllers can also be chained together to support an arbitrary
number of peripherals by tying the output pin of a secondary
interrupt controller to one of the input pins of the primary
interrupt controller.

A typical example of IRQ handling is depicted in Figure 1.
First, the peripheral signals an interrupt; this causes the
interrupt controller to store the interrupt number as a bit in
a bitset in a memory-mapped register and then signal the
main CPU. The CPU responds to the interrupt by jumping
to an architecture-defined top-level interrupt handler. This
handler then retrieves the interrupt number from the interrupt
controller, and uses it to dispatch to the handler for the specific
peripheral. This peripheral-specific handler then handles I/O
for the peripheral using memory-mapped I/O (MMIO), and

1In practice, interrupt handlers will often queue the I/O and handle it later
in a bottom half, in the interest of keeping interrupt latency low. However,
in this paper we are only concerned with identifying the initial per-peripheral
interrupt handlers, so this detail is not essential.

finally acknowledges the interrupt. The details of this process
may differ depending on the specific model of interrupt
controller; for example, the interrupt controller used by the
BeagleBone stores the pending interrupt number as an 8-bit
value rather than a bit in a bitset.

To service interrupts, the embedded operating system must
maintain a mapping between hardware IRQ numbers and
the corresponding handlers. In the simplest case, these could
be hardcoded (e.g., using an array of function pointers to
the individual peripheral handlers), but more sophisticated
operating systems will typically support dynamic registration
of IRQ handlers. For example, in Linux, drivers can register a
handler by calling request_irq, and the mapping between
IRQ numbers and handlers is maintained in a radix tree.

Although the implementation details for interrupt handling
differ between embedded architectures, the core pattern of re-
ceiving a top-level interrupt and then dispatching to a specific
interrupt handler appears to be universal. We leverage this
pattern to build IRQDebloat, which enumerates the individual
peripheral handlers and allows the user to disable them, closing
off that peripheral’s driver attack surface from the outside
world.

B. Execution Indexing

Our trace analysis for finding interrupt handlers relies on
execution indexing [48], a technique for aligning pairs of
program traces that marks points where they diverge and
(importantly) reconverge. Because program traces may diverge
for trivial reasons (such as an extra iteration of a loop), it
is important in practice that we have a technique for re-
identifying alignment after a divergence in order to focus only
on large divergences. We briefly describe the core algorithm
here, and then discuss our modifications to execution indexing
to support whole-system traces on embedded firmware; we
refer readers to Xin et al. [48] for a full treatment of execution
indexing.

An execution index (EI) uniquely identifies a point in
an execution and allows it to be compared across different
execution traces. It uses a stack data structure that identifies
the execution context of a basic block of code, e.g., how many
conditional branches were encountered before the basic block
was reached. Whenever a new code context is encountered,
such as a function call or conditional branch, EI pushes onto
the stack its address and the location of its immediate post-
dominator. Because the immediate post-dominator of a basic
block is, by definition, the earliest node through which every
path from that block to the exit must pass, it identifies the end
of an execution context (Johnson et al. [29] provide the helpful
analogy that the closing curly bracket in C is an example
of an immediate post-dominator). When the immediate post-
dominator at the top of the stack is encountered in the trace,
the stack entry is popped.

To compare two traces, EI starts by assuming they are
initially aligned, with two empty EI stacks for both traces.
It then steps through the two traces in tandem, updating the
EI stacks at every step. Whenever the two EI stacks disagree,

1609



algorithm marks it as a control flow divergence, logs the
divergence point, and enters the disalignment state. After that,
assuming the deviated trace has entered a nested context which
causes its EI stack to increase, the algorithm will try to realign
the traces by stepping through the trace with the larger EI stack
until the EI stacks agree once more, at which point the traces
are considered re-aligned.

C. Assumptions and Usage Scenarios

We assume that (1) the analyst has access to a physical
device for analysis; (2) that the analyst can upload new,
modified firmware to the device; and (3) that the analyst
can capture a snapshot of the device’s CPU and memory at
runtime.

Assumptions (1) and (2) are needed in order to actu-
ally make the modifications to the firmware and to validate
the results. The third requirement is needed because IRQ
handlers are typically dynamically registered during driver
initialization. As a result, static analysis of a firmware image
to uncover the handlers is unlikely to succeed, and so our
system uses dynamic analysis to explore interrupt handling
code. Dynamic analysis in embedded systems is generally
considered a difficult and unsolved problem that requires either
rehosting [22] or hardware-in-the-loop emulation [49]. Our
system uses the CPU and memory state of the embedded
device to resume execution inside a software emulator and
systematically explore paths through the interrupt handling
code by fuzzing the memory-mapped registers of the emulated
interrupt controller.

Although this requirement may initially seem onerous, in
fact it does not require any additional capabilities aside from
those needed for software debloating: if one has the ability
to rewrite the firmware of an embedded device, one can
insert instrumentation that captures the CPU and memory
snapshot as well. In our prototype, we collect memory and
CPU snapshots using JTAG, QEMU, and a custom kernel
module, depending on the target device.

Signed Firmware. Some devices now implement measures
to prevent any modification of firmware by anyone aside from
the vendor, using, e.g., signed firmware and secure boot [5].
This poses an obstacle to systems such as IRQDebloat, which
aim to allow users to modify the firmware of their devices
to improve security. However, we note that this limitation
affects any system based on firmware modification. And in
many cases these limitations need not be fatal: there is an
active hobbyist community around modifying embedded and
IoT devices to better suit their owners’ needs by “jailbreaking”
their devices and loading modified firmware [2].

Target Audience. We envision IRQDebloat as being use-
ful to technically sophisticated users who need to deploy
embedded or IoT devices and wish to modify the firmware
without cooperation from the original firmware provider (in
particular, we do not assume that the user has access to the
source code for the firmware or a data sheet for the SoC).
Examples of such users include businesses and government
agencies, who typically cannot request custom changes from

a vendor but may have security requirements that preclude
the use of some functionality. Other possible users include
hobbyists wishing to secure their own devices, technical users
who wish to continue running devices past their end of life
dates, and even system integrators, who may have the ability
to create authorized firmware images but lack access to source
code or detailed specifications for individual components.

III. DESIGN

Figure 2 shows the high-level design of our system. In the
initial stage, we capture a snapshot of the embedded device’s
CPU and memory state, and migrate it into a full-system
emulator (PANDA [21]). Then, in PANDA, we trigger an inter-
rupt and then fuzz the memory-mapped I/O (MMIO) registers
to collect traces. Next, to discover individual handlers, we
analyze the collected traces with differential slicing [29]. A
given handler can be disabled by patching the firmware to
replace the handler with a no-op function, which effectively
causes the firmware to ignore input from that peripheral.
Once the candidate handlers have been identified, the one
corresponding to undesired functionality can be identified by
a process of elimination: we can disable them one by one
and boot the device to see if the undesired functionality has
been disabled. When the peripheral’s handler is identified and
disabled, the attack surface from the peripheral’s driver code
is effectively closed off from the outside world.

A. Challenges

IRQ handler identification in firmware is not easy. Chal-
lenges arise from both the general difficulty of binary analysis
as well as particular code patterns found in operating systems’
implementations of IRQ handling.

1) Hardware Diversity: The first challenge is the diver-
sity of interrupt controller hardware in embedded systems.
Although there are some standards (e.g., the ARM Generic
Interrupt Controller (GIC) specification [7] or the Nested
Vectored Interrupt Controller (NVIC) [6]), vendors are free
to ignore them (and many do). In our evaluation, we found
that of the seven tested devices only one exclusively used the
standard ARM GIC. As each interrupt controller can define
its own protocol for tasks like retrieving the current interrupt
number or acknowledging an interrupt, our analysis must be
agnostic to particular interrupt controller hardware.

The need to be agnostic to different interrupt controllers
poses some challenges for our analysis. For example, during
the course of normal interrupt handling the OS will generally
acknowledge the interrupt, which tells the interrupt controller
to stop signaling a pending IRQ to the CPU. However, since
the protocol for interrupt acknowledgment is not standardized,
our emulator does not know when to stop signaling a pending
IRQ, which can be problematic for some operating systems,
including VxWorks. We develop a set of heuristics for de-
termining when we should mark an interrupt as finished that
allow IRQDebloat to explore the handlers through fuzzing.
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Fig. 2. Top-level workflow

2) Binary Analysis: Accurately identifying interrupt han-
dlers without symbol information is a challenging binary
analysis problem that currently relies on manual reverse
engineering. From the perspective of the operating system,
interrupt handlers are normally wrapped inside device-specific
data structures with dynamically registered function pointers,
and the handler dispatching routines make heavy use of loops
to fetch device-specific register values and to match against
the registered device drivers. For devices that require extra
controllers, such as GPIO or I2C devices, similar dispatching
subroutines may be chained under a top-level dispatching entry
that binds the handler to the corresponding IRQ register values.
In addition, some embedded operating systems such as RiscOS
make heavy use of handwritten assembly code, which can
break binary analysis heuristics such as function identification.
This pervasive use of function pointers, nested loops, and
chained handlers poses a significant challenge for automated
static binary analysis.

Listing 1 shows an example of a GPIO interrupt dispatch
routine in the Linux drivers for the Romulus BMC platform.
First, the top-level IRQ status register (AVIC IRQ STATUS)
must return 0x00100000 to enter the chained GPIO bus
interrupt handler. Then aspeed_gpio_irq_handler is
invoked to dispatch to the registered device interrupt handlers
(keyboard and sysfs) based on the GPIO controller register
values. The number of loops (banks) could go as high as 8,
while every internal loop (for_each_set_bit) checks all
32 bits with the actual registered devices.

To help address the challenges of binary analysis, our trace
analysis augments the static information from the binary with
dynamic information collected from traces.

Listing 1 Linux GPIO driver code for Romulus BMC.
static void aspeed_gpio_irq_handler(

struct irq_desc *desc
) {
...
banks = DIV_ROUND_UP(gpio->chip.ngpio, 32);
for (i = 0; i < banks; i++) {

const struct aspeed_gpio_bank *bank = &aspeed_gpio_banks[i];
reg = ioread32(bank_reg(data, bank, reg_irq_status));
for_each_set_bit(p, &reg, 32) {
girq = irq_find_mapping(gc->irq.domain, i * 32 + p);
generic_handle_irq(girq);

}
}
...

}

3) Fuzzing Challenges: To make use of dynamic informa-
tion during trace analysis, we collect traces by fuzzing the
memory-mapped I/O values returned by peripherals on the
embedded system in order to explore the IRQ handling code
of the operating system. However, we cannot simply use an
off-the-shelf fuzzer for this, as the code patterns involved in
embedded IRQ handling are problematic for standard fuzzing
techniques.

An example of a problematic code pattern taken from the
Linux kernel code for the Samsung Exynos 4210-based NURI
platform is given in Listing 2. During interrupt handling, the
OS updates the system timer. However, the code to read from
the timer repeatedly reads from the same 32-bit memory-
mapped register (EXYNOS4_MCT_G_CNT_U) and cannot pro-
ceed until it reads the same value twice in a row. For a fuzzer
that generates random values, the probability of generating the
same 32-bit value twice in a row is low (≈ 2−16), so the timer
update function impedes fuzzer progress.

To address this challenge we introduce a set of fuzzing
techniques that are tailored specifically to the patterns we find
in IRQ handling code. This includes systematic exploration of
common representations for IRQ numbers, and a “consistent
I/O” mode that remembers the most recent value generated
for a particular MMIO address and probabilistically returns
the same value for future reads.

Listing 2 Nuri Linux timer register access
static cycle_t exynos4_frc_read(struct clocksource *cs)
{

unsigned int lo, hi;
u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
do {

hi = hi2;
lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);

} while (hi != hi2);
return ((cycle_t)hi << 32) | lo;

}

B. Snapshot Collection

Our prototype can use JTAG, an emulator like QEMU (if
there is support for the target platform), or code running on
the device (i.e., a kernel module) to collect snapshots. We
collect physical memory and registers from the device, and
load them into PANDA to continue emulation. Running the
firmware in PANDA gives us the ability to control low level
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hardware behaviors (i.e., triggering interrupts) and monitor
the execution environment at the same time. We are able to
simulate interrupts and provide responses to MMIO reads,
while inspecting processor states and collecting full execution
traces.

C. Trace Collection

Once the snapshot is loaded into PANDA, the trace col-
lector triggers an interrupt in the emulator, which causes the
emulated CPU to switch into IRQ mode and jump to the
architecture-defined entry point for interrupt handling. From
there, we log the address of every basic block executed by
PANDA. Whenever the firmware reads from a memory address
outside of RAM, we supply a fuzzed MMIO value. After
tracing is complete, we reset the emulator state and try another
sequence of fuzzed MMIO values.

One challenge we face is deciding when to terminate tracing
for a particular execution. Intuitively, we want the trace to
be long enough to capture the execution of the handler for a
particular IRQ, but short enough to allow performant fuzzing.
Tracing until the CPU leaves IRQ mode is one approach
that seems intuitively appealing, but in practice we find that
some operating systems (including FreeBSD, VxWorks and
Linux) leave IRQ mode well before they actually execute any
handlers. Moreover, because many of the values we provide
via MMIO are outside the range that actual hardware could
produce, some traces may get stuck in infinite loops or trigger
crashes or other errors in the emulated firmware.

Leaving IRQ mode is also problematic because, as men-
tioned above, we do not know when we should acknowledge
the interrupt (i.e., clear the IRQ pending flag in the emulator).
If an operating system re-enables interrupts before executing
the actual IRQ handler, this will cause execution to repeatedly
return to the top-level handler without making any progress.
As a workaround, we acknowledge the interrupt after 10 basic
blocks of code are executed in the emulator.

We impose a maximum trace length of 100,000 basic blocks
during tracing so that we can make forward progress in
exploration. Empirically, we have found that this threshold is
sufficient to discover valid handlers, and allows the fuzzing
stage to complete relatively quickly.

D. IRQ Fuzzing

During fuzzing, IRQDebloat attempts to enumerate the IRQ
handlers on the system by triggering an interrupt and then
responding to MMIO reads with values that are likely to be
interpreted as different IRQ numbers by the firmware. This can
be considered a type of fuzzing; however, the goal is not to
uncover bugs but rather to simply explore the space of possible
handlers. We assume that any memory read that falls outside
of the RAM region should be treated as MMIO, and provide
fuzzed values. MMIO writes are silently ignored.

Our IRQ fuzzer component uses a coverage-guided,
generation-based approach. Within each generation we start
with a set of seeds (initially empty) where each seed s =
{v1, v2, ..., vk} is a sequence of MMIO values. We form new

candidate seeds by adding new MMIO values vk+1 to s from
the patterns described in Section III-D1 to get s′ = s‖{vk+1}.
We then use the trace collector to check if this new seed s′

uncovers any new code; if so, we add it to seeds and save
the trace for further analysis. After each trace we reset the
emulator to the snapshot state. A pseudocode version of this
algorithm can be found in Appendix C.

If the provided sequence of MMIO values is exhausted
during tracing before the trace length limit is reached, we
return random MMIO values. During this stage, we can
optionally enable a consistent I/O mode. In this mode, the
values returned for a particular MMIO address will, with a
configurable probability (currently 80%), have the same value.
This is needed because some drivers (such as the timer in
Listing 2) repeatedly poll a memory-mapped I/O address and
check whether the value seen is the same, presumably as a
workaround for spurious values returned by the hardware.

1) Fuzzing Patterns: Because there is a great deal of
diversity in embedded interrupt controllers, we adopt a hybrid
fuzzing strategy that tries common patterns used by known
interrupt controllers as well as random values. We developed
these patterns based on manual exploration of three initial
targets (the Raspberry Pi, BeagleBone, and Romulus) and
found that they worked well on the remaining targets in our
evaluation set; we therefore expect that these patterns will
generalize well to other embedded devices.

We implemented four patterns for MMIO inputs:

• ints provides integers i : i ∈ 1..255 ; this enumerates
possible IRQs for controllers that store pending interrupts
as an integer.

• bitwin provides a sliding window of k one bits in each
possible bit position, for k : k ∈ {1, 2, 3, 4} ; this
enumerates possible IRQ numbers on controllers that
indicate pending IRQs in a 32-bit bitset.

• random provides randomly chosen 32-bit values.
• pattern provides constants like 0, -1, 0xf0f0, etc.

These patterns are designed to give the fuzzer the benefit of
domain knowledge (with the ints and bitwin patterns) while
providing enough randomness to generalize well outside of
what we have seen before (random and pattern). We show in
Section V-B that these strategies are sufficient to thoroughly
explore seven different models of interrupt controller across
multiple operating systems.

E. Trace Preprocessing

Our coverage-guided fuzzing allows us to fully explore
different branches in the IRQ dispatching, but the traces
obtained are somewhat noisy. During interrupt handling, op-
erating systems may take the opportunity to do other book-
keeping such as updating timers, incrementing performance
counters, etc. Moreover, the fuzzer will produce many I/O
values corresponding to invalid IRQs, so many of our traces
will include error handling code and debug messages (which
may include interactions with other peripherals like the serial
UART).
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In the trace preprocessing stage, we attempt to eliminate
common sources of noise in two ways. First, we attempt
to identify the subset of I/O sequences from fuzzing that
relate to the interrupt controller. Starting from the collected IO
sequences from the fuzzing stage, we regroup the IO sequences
into small decoupled sequences, deterministically replay the
IO sequences, and use these replayed traces for the differential
analysis. To decouple the IO sequences, we keep a stack
structure for MMIO addresses by pushing new IO addresses,
and popping the stack until an already seen MMIO address is
out. We log the stack at the same time, as it should represent
the IO sequences in one loop/IRQ dispatch. The assumption
is that the IO addresses related to IRQ handling are only read
once during the time of processing one IRQ exception. In the
rare case that an MMIO address is read multiple times during
one interrupt, we merge the IO sequences with same MMIO
address when they also have the same recorded IO value.

Second, we deduplicate traces by computing a hash of the
sequence of basic block addresses in each trace. Since our
trace alignment operates on pairs of traces, the amount of time
needed grows as the square of the number of traces; thus, it
is important to remove redundant traces. In our experiments,
deduplication typically reduces the size of the trace dataset
from thousands of traces to a few hundred.

F. Trace Analysis

We adapt the trace alignment algorithm from differential
slicing [29] (which in turn is based on execution indexing [48])
to analyze the collected traces in order to infer the different
IRQ handlers. The intuition is that since all the IRQ interrupts
have the same entry point, they should share a common trace
prefix before diverging at certain point into device specific
code. By comparing pairs of traces from the fuzzing process,
we can eventually find all the IRQ-specific divergences.

We found that the standard differential slicing algorithm
required several modifications to make it suitable for analyz-
ing whole-system traces from IRQ processing on embedded
devices. We detail these changes in Section IV-D.

G. Instrumentation

Our instrumentation engine aims to be agnostic to the binary
target file format. To achieve this, we use the memory and
CPU dump (in order to identify where the code will be loaded
at runtime), the list of handlers to disable, and the target
binary to instrument. To actually disable an IRQ, we overwrite
the handler with a dummy function that bypasses the actual
handling code and returns immediately. At the moment, this
still requires a small amount of manual reverse engineering to
identify the correct return value for IRQ handlers on each OS.

To patch the handlers, we first translate the virtual address
of the handler into a physical address. Next, for every patch
point, we extract a small amount of data around the physical
address from the memory dump to form a signature. Using this
signature, we search through the kernel binary for a matching
offset so we can statically instrument it. Although this ap-
proach is unlikely to generalize to cases of packed firmware,

we consider the general problem of firmware unpacking and
modification to be outside the scope of this paper.

IV. IMPLEMENTATION

In this section we describe our implementation of IRQDe-
bloat in more detail. The fuzzing component of IRQDebloat
consists of around 700 lines of C/C++ code in the form
of plugins for the PANDA dynamic analysis platform [21].
The trace processing and binary analysis is implemented as a
Binary Ninja plugin in 1100 lines of Python, and the firmware
patching is implemented with 300 lines of Python.2

A. Snapshot Collection

Our snapshot implementation currently supports JTAG, live
system dump, and QEMU-based snapshot acquisition for 32-
bit ARM and MIPS platforms. It acquires snapshots using
either a patched OpenOCD 0.10.0 (in the case of JTAG),
a patched LiME [3] kernel module, or gdb in the case of
QEMU.

Correctly restoring a snapshot in the emulator also requires
that we collect all CPU registers needed for full system
execution. This can be challenging on architectures like ARM,
which uses banked registers (i.e., some registers have different
values that are saved and restored depending on the CPU
mode). We modified OpenOCD to capture banked registers
by setting the CPU’s mode (using the status bits in the CPSR
register) to each of the available modes, and then dumping
the registers from that mode. We also need to collect many
coprocessor registers. Due to space constraints, the full list
of registers we collect for ARM and MIPS can be found in
Appendix A.

To dump physical memory, we modified OpenOCD’s
dump_image command to use physical rather than virtual
addresses. For QEMU we use the pmemsave command in
the QEMU monitor. And to dump memory on a live system,
we rely on the LiME kernel module [3]. Dumping physical
memory requires that we know the start and size of RAM for
the embedded device. However, this information can usually
be obtained via JTAG or QEMU’s info mtree command.

B. Trace Collection

To collect traces, we created an empty machine model
for PANDA that has an ARM or MIPS CPU, no pe-
ripherals, and a block of RAM at a configurable address
and size. We implemented a PANDA plugin that loads a
saved snapshot and triggers an interrupt (using QEMU’s
cpu_interrupt function). From there, the fuzzing plu-
gin forks child processes, generates the fuzzed values in
response to MMIO reads by registering a callback for
PANDA_CB_UNASSIGNED_IO_READ, and reports informa-
tion about basic block coverage. For embedded devices that
have MMIO regions that overlap with RAM, we could modify
the machine model to create an I/O memory region at the
appropriate location; however, we have not encountered this
case in our testing.

2Source line counts generated using David A. Wheeler’s ‘SLOCCount’.
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C. Trace Analysis
1) Preprocessing: As described in Section III-E, we prepro-

cess traces by deduplicating them using the hash of the basic
block sequence, and minimizing them to create shorter traces
that contain, to the extent possible, only the IRQ handling
code.

We also automatically infer a list of potential I/O addresses
that correspond to polling loops, such as those used by timers
and UARTs. These inferred I/O addresses will be ignored
when we regroup I/O sequences, and will be replayed with
specific values (randomly chosen from 0 or -1) during the I/O
replay. These values were chosen by examining the code of
several timer and UART drivers and identifying values that
minimize the amount of polling needed among the hardware
seen in our evaluation corpus. An example of this sort of
problematic code is given in Listing 3; here, the FreeBSD
kernel repeatedly polls the UART’s FIFO status register until
the FR_TXFF bit is clear. Returning 0 allows this loop to be
bypassed, resulting in a shorter trace.

Listing 3 PL011 UART driver in the FreeBSD kernel.
static void
uart_pl011_putc(struct uart_bas *bas, int c)
{

/* Wait when TX FIFO full. Push character otherwise. */
while (__uart_getreg(bas, UART_FR) & FR_TXFF)

;
__uart_setreg(bas, UART_DR, c & 0xff);

}

To identify timer and UART peripherals, we identify any
MMIO address that has a significantly higher number of
appearances than the first MMIO read address (which cor-
responds to the top-level IRQ source register). Empirically,
we found that a threshold of around 10 times higher than the
appearance number of the first MMIO read address works well
to identify this kind of polling code.

2) Postdominator Computation: The preprocessing stage
augments the trace with immediate postdominator information
so that each basic block address in the trace becomes a pair
(addr, ipdom).

We first collect all functions and possible return nodes using
static analysis to disassemble each function and create a CFG.
In our implementation, we use Binary Ninja (2.4.2846) as
our base disassembler. To help overcome the limitations of
imprecise binary analysis, we guide the disassembly with the
addresses from the traces. To compute postdominators we use
the standard fast dominance algorithm from Cooper et al. [15].

In some cases, we found that the disassembler could miss
basic blocks in a function. To overcome this, we split the
CFG of such functions into multiple sub-CFGs and compute
postdominators for the smaller CFGs. An example of this
occurs when Binary Ninja fails to resolve a switch statement.
Instead of trying to resolve the switch table, we mark the basic
block as a return node, and the switch table targets (observed
from the trace as the next instruction) as the start of a new
function. The EI stack and immediate postdominators will be
computed locally inside those functions without changing any
divergence results.

A B

C

R1

R2

Fig. 3. Example CFG and two traces through the CFG: “A→C→R2” and
“A→B→A→C→R2”.

During preprocessing we also resolve inconsistencies be-
tween QEMU’s translation blocks and actual basic blocks in
the static CFG. For QEMU, a translation block is any straight-
line code that terminates in a branch or call instruction.
However, basic blocks in the static CFG may be split up
further, since incoming edges to the middle of a block are
not allowed.

To fix the issue, we check for missing basic blocks during
the trace re-processing. For every address in the trace, we cross
check the next address after its basic block ends, the outgoing
edges of the basic block, and the next address in the trace,
and determine whether we need to split the translation block
into a true basic block. If so, we create a new trace entry
corresponding to the start of the basic block.

D. Divergence Analysis

Our divergence analysis is an implementation of execution
indexing [48], which we gave an overview of in Section II-B.
To better handle the kind of traces encountered in embedded
IRQ fuzzing, we made several modifications to the core
algorithm, which we detail in this section.

1) Trace Realignment with Multiple Return nodes: One
substantial step in trace analysis is to build an immediate post-
dominator mapping for every basic block inside the function.
In the case of multiple return nodes in a function, a common
approach is to create a fake return node sink, and add an edge
from every actual return node to the fake return node, so that
we can use the fake return node as a single root to compute
the immediate postdominators.

However, during our experiments, we found this approach
can sometimes produce unnecessarily large divergences. Con-
sider the example CFG in Figure 3 and two traces through it,
“A→C→R2” and “A→B→A→C→R2”. If we create a fake
node for R1 and R2, both A and B will have the fake node
as the immediate postdominator. With the update of the EI
stack, two traces will diverge at the first address, but since
their immediate postdominators are both the fake return node,
the two traces would only be able to realign at the fake return
node after R2. As a result, we will miss the node C, especially
if C dispatches to another IRQ handler. However, if we remove
R1, and build the immediate postdominator based on R2, node
A will be the immediate postdominator of B, and C will be
the immediate postdominator of A, so we will still be able to
realign at node C.

As a solution, we build separate postdominator mappings
for each return node. During trace processing, we pick the
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appropriate postdominator mapping by looking ahead in the
trace to see which return was actually invoked.

2) Trace Truncation: Whereas traces of traditional userland
programs are typically complete (i.e., they all eventually
reconverge at the program’s exit point), our IRQ fuzzing traces
are often cut short either because we reach the trace length
threshold or because the execution hits some error during
tracing. This means that some functions in the trace will have
no return node, which is needed to identify the post-dominator
at a function call. To address this problem, we detect trace
truncation and promote the last basic block for that function
in the trace to a return node.

3) Walking Misaligned Traces: When traces diverge, the
original trace alignment algorithm favors shorter EI stacks,
and only proceeds on the trace with a larger EI stack until
they re-align. However, because our traces may be truncated,
we have found that sometimes a shorter EI stack doesn’t mean
the trace is closer to the end.

Instead, our trace alignment first tries to align the traces by
proceeding on the trace with the larger EI stack. If realignment
fails, we re-try with the shorter EI stack. In the case where
a divergence is encountered and both EI stacks are the same
height, we try to proceed on both traces and then pick the
alignment that re-converges earlier (i.e., has a smaller amount
of divergence).

E. Postprocessing

The output from differential analysis is a list of divergence
points, which may also contain unrelated divergence points in
addition to the expected IRQ dispatchers. However, we can
take advantage of the fact that IRQ handlers are registered
dynamically to more precisely identify the handlers. Because
handlers are registered dynamically, they must be stored by
the OS as function pointers; thus, we can filter the results by
including divergences where 1) the divergence is caused by an
indirect call, and 2) the branch target is a function.

On ARM, indirect calls are generally made via the blx
and bx instructions; MIPS uses jr and jalr. To check
function targets, we reuse the results from trace preprocessing
(which gives us an over-approximation of potential functions),
and match the branch target address against the function start
addresses. We will show in Section V-E that although this
filtering strategy is simple, it suffices to eliminate almost all
the false positives in our dataset.

F. Instrumentation

Our instrumentation modifies the target kernel to remove the
handler corresponding to undesired hardware functionality. To
do so, we must locate the function in the binary firmware
image, and then overwrite it. To find the appropriate locations
to patch in the static firmware image, we create a signature
out of the bytes surrounding the hook site. Then, we scan the
firmware image to locate the matching code. Our signature is
32 bytes, which we have found in testing to be sufficient to
uniquely identify the code locations we need to patch.

TABLE I
PLATFORMS AND OPERATING SYSTEMS TESTED

Name OS SoC Snapshot IntC
RasPi Linux BCM2837 JTAG BCM
RasPi FreeBSD BCM2837 JTAG BCM
RasPi RiscOS BCM2837 JTAG BCM
Beaglebone Linux TI AM335x JTAG AM335x
SABRE Lite VxWorks BD-SL-i.MX6 QEMU GICv3
SABRE Lite Linux BD-SL-i.MX6 QEMU GICv3
Samsung NURI Linux Exynos 4210 QEMU GIC+Combiner
Romulus Linux AST2500 QEMU ASPEED VIC
WRT54GL Linux BCM5352 JTAG MIPS
SteamLink Linux MV88DE3108 KMod GIC+APB

Our current prototype supports disabling handlers on Linux,
FreeBSD, and RiscOS. In Linux, we patch the IRQ han-
dler by overwriting the start with mov r0, 2; mov pc,
lr, which sets the return value to IRQ_WAKE_THREAD
(2) and returns. Similarly in FreeBSD, we set the re-
turn value to be FILTER_SCHEDULE_THREAD (4) and
return. In RiscOS, we instead patch the IRQ handler
with bic r11, r11, 1; mov pc, lr, which clears the
IRQDesp_Link_Unshared bit and then returns. We deter-
mined these values by reading the kernel source for each OS,
but in future work we hope to determine appropriate return
values automatically.

V. EVALUATION

In this section, we evaluate IRQDebloat along two dimen-
sions of generality: hardware diversity and firmware diversity.
To demonstrate that our approach to interrupt handler identifi-
cation works across diverse interrupt controller models, we test
it against six ARM-based platforms and one MIPS platform
across four different operating systems, detailed in Table I, for
a total of ten different embedded configurations. By examining
the Interrupt Controller (IntC) column, we can see that only
one of our tested systems, the i.MX6-based SABRE Lite
board, exclusively uses the ARM GIC standard, indicating that
there is considerable diversity in embedded interrupt controller
hardware.

To show that we can generalize across different operating
systems, which may have different code patterns for IRQ
dispatch, we evaluate on Linux, FreeBSD, VxWorks, and
RiscOS. RiscOS in particular serves as a robustness test for
our trace alignment and IRQ handler identification, as the
operating system is quite old (dating to 1987) and written
almost entirely in ARM assembly.

In each case, we begin by establishing ground truth. For
hardware, this means examining the datasheets and open-
source firmware to understand how the interrupt controller
works at the hardware level. For the operating system eval-
uation, we locate the handler registration code in each OS
and then add logging code to collect a trace of all interrupt
handlers known to the OS.

Next, we evaluate the fuzzing, preprocessing, and diver-
gence analysis components of IRQDebloat. We compare the
identified handlers to the ground truth on each platform to
identify false negatives (i.e., registered IRQ handlers that are
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TABLE II
REGISTERED IRQ HANDLERS FOR EACH OS. † INDICATES A THREADED HANDLER.

RasPi RasPi RasPi BeagleBone Romulus Nuri Sabre Sabre WRT54GL SteamLink
Linux FreeBSD RiscOS Linux Linux Linux Linux VxWorks Linux Linux

IPI 1 5 0 0 0 0 0 1 0 0
Mbox 1 1† 1 2 0 0 0 1 0 0
SYS Timer 0 0 1 1 1 2 1 2 0 1
PMU 1 1 0 1 0 0 1 0 0 0
USB 3 1 1 1+1† 1 0 0 0 0 1
GPIO 0 2 0 1 2 1 1 1 0 0
MMC/SD 1 1† 1 1+1† 0 0 1+1† 0 0 1
Loc Timer 1 1 1 0 0 0 1 0 1 0
UART 1 1 1 1 1 1 1 1 1 1
FrameBuf 1 1† 1 0 1 0 3 0 0 1
Video 1 1† 1 1+1† 1† 0 6+1† 1 0 4
DMA 1 0 7 3 0 0 1 1 0 1
Eth 0 0 0 2 1 0 2 1 2 1
I2C 0 0 0 1+1† 1 0 1 0 0 1
SPI 0 0 0 1 0 0 1 0 0 0
Chained/Virtual 3 1 0 2 6 6 4 0 0 4
Other 0 0 0 3+3† 1 0 3+4† 1 0 1

not found during fuzzing or analysis) and false positives (i.e.,
non-handler code mistakenly identified by the divergence anal-
ysis). We also demonstrate that our preprocessing successfully
reduces the size and number of traces we need to analyze.

Finally, we perform two case studies with platforms in our
evaluation dataset. To understand the impact of disabling IRQ
handlers on a real system (the Raspberry Pi), we systematically
evaluate the effect of disabling each handler found across
three operating systems (Linux, FreeBSD, and RiscOS). Next,
we give a practical demonstration of IRQDebloat’s ability to
reduce attack surface with the popular Steam Link stream-
ing device, showing that disabling the IRQ handler for the
WiFi/Bluetooth functionality succesfully blocks a Bluetooth
exploit. We then systematically measure the attack surface
reduction (ASR) on this device by counting how many CVEs
would have been blocked over the past five years by disabling
each interrupt on the device.

A. Hardware Ground Truth

To characterize the types of interrupt controllers in our
evaluation corpus, we analyzed the datasheets, kernel source
code, and (for devices supported by QEMU) the QEMU
emulated peripheral source. Broadly, we find two main ways of
identifying a pending interrupt i: either by setting the i-th bit in
a 32-bit register, or by returning the integer i. This validates
our fuzzing strategy, which systematically enumerates small
integer values as well as setting each possible bit in each 32-
bit MMIO register.

The Raspberry Pi has the most complicated IRQ dispatch
hardware among the tested platforms. The BCM2837 SoC has
4 CPU cores, and each core has an independent 32-bit IRQ
source register to signal which peripheral device raised the
IRQ. Every bit of the IRQ source register is used to determine
one specific device, and device IRQs can be configured to
route to any one of the cores’ IRQ source register, including
Inter-Processor Interrupts (IPI), Performance Monitor Unit
(PMU), Local Timer etc. Among these, there is also a sec-
ondary interrupt controller from the GPU (interrupt 1�8, or

256) chained to the global interrupt controller, which has three
further 32-bit IRQ pending registers that signal which global
device raised the IRQ, such as global timer, UART controller,
GPIO controller etc. The masked bits of these 3 registers in
combination determine the source device during an interrupt.

The ASPEED Romulus has a similar, albeit simpler, hard-
ware design. It has two 32-bit source registers at the top-level,
and each bit of the registers signals one particular device.
Similarly, users can further register chained IRQ handlers
under each device to dispatch device specific interrupts. In
our setup, we have a I2C controller that further dispatches
one hardware IRQ in a bit-masked 32-bit register, and a
GPIO controller that dispatches two registered IRQ handlers
through 8 MMIO registers, each of which can indicate up to
32 interrupt sources (although in practice only the first 29 are
enabled on the Romulus).

Three devices in our evaluation dataset (SABRE Lite,
Samsung NURI, and Steam Link) use the standard ARM
GIC [7], which is thoroughly documented by ARM. To obtain
the IRQ number, the GIC provides a single 32-bit MMIO regis-
ter, GICC_HPPIR which returns the highest-priority pending
interrupt in its lowest 10 bits (for a total of 1024 possible
IRQ numbers, although IRQs 1020-1023 reserved for signaling
conditions such as spurious interrupts). In addition to the GIC,
the NURI and Steam Link have additional secondary interrupt
controllers. The NURI has a “combiner” peripheral that allows
multiple peripherals’ interrupts to be grouped into a single
GIC input and supports five different groups; each group has
a corresponding 32-bit MMIO register that indicates which
member of the group raised the interrupt using a bit set.
The Steam Link has two secondary Synopsys DesignWare
interrupt controllers on the Advanced Peripheral Bus (APB).
Each APB interrupt controller has a 32-bit register where each
bit represents a separate interrupt.

Unlike many of the ARM systems we examined, the MIPS-
based Linksys WRT54GL has a well-documented way of
handling interrupts. The interrupts are signaled in the CP0
Cause register through the IP0–IP7 bit fields (for a maxi-
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mum of 8 interrupts). Each interrupt can be independently
enabled/disabled in the CP0 Status register through the IM0–
IM7 mask bits. Notably, MMIO is not used, meaning that we
do not need to actually fuzz the MMIO values to collect traces.
More complex MIPS devices may include dedicated interrupt
controller peripherals (e.g., the MIPS Malta board uses a PC-
style Intel 82C59 interrupt controller, and the MIPS Boston
board uses the MIPS Global Interrupt Controller (GIC)).

Finally, the BeagleBone has the simplest design compared
to the other boards. It reads a 7-bit integer value (128 total
possible IRQs) from the interrupt controller register, and
dispatches directly using the hardware IRQ number. We did
not encounter any chained IRQ handlers with the BeagleBone
in our setup.

B. OS Ground Truth
To verify our analysis results, we first need to obtain

the ground truth of how many IRQ handlers are actually
registered, and how many of those registered handlers are
actually used at the runtime.

For Linux and FreeBSD, which are open-source, we in-
strumented the kernel source and added print functions to
the interrupt registration APIs. We instrument irq request irq,
irq request percpu irq and request threaded irq in the Linux
kernel and intr setup irq in the FreeBSD kernel. For RiscOS,
which has a fairly simple design for its IRQ handling, we
studied the code for the interrupt handling routine, and then
located and parsed the device and IRQ data structures from the
memory dump to enumerate the registered handlers. Finally,
for VxWorks, we reverse engineered the interrupt handling
code (aided by the presence of debug symbols in our evalua-
tion image) and then used gdb to enumerate the list of handlers
from a running system.

Table II shows the listing of registered IRQ handlers we
found in each operating system. Note that threaded IRQ
handlers are not included in our evaluation. We discuss this
limitation further in Section VI.

C. Fuzzing Evaluation
Different interrupt controllers and implementations of IRQ

dispatching across operating systems may have different be-
haviors for the same sequence of fuzzed MMIO values. In
this section, we evaluate how effective our fuzzing strategies
(described in Section III) are at covering the IRQ handlers for
each platform.

Figure 4 shows the IRQ handler coverage for each platform
as fuzzing proceeds. In our test set, we see that IRQDebloat’s
fuzzer uncovers almost all handlers within 3 hours; in one
case (Linux running on SABRE Lite) it takes up to 24 hours
to uncover the final handler.

By comparing to the ground truth for each platform, we
find only two handlers that the fuzzer is unable to uncover:
mxc epdc irq handler and vdoa irq handler in Linux for
SABRE Lite. On further investigation, we found that these
are masked (i.e., disabled) by the operating system and cannot
be triggered in our configuration. In other words, the fuzzer
successfully finds all of the reachable handlers in our test set.
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Fig. 4. Fuzzing coverage over time.

TABLE III
EFFECT OF TIMER/UART POLLING REMOVAL

# Blacklisted MMIO Before After
Romulus Linux 4 490,446 1087
Sabre VxWorks 0 66 N/A
RasPi FreeBSD 1 25,583 647
RasPi RiscOS 0 50 N/A
Beagle Linux 2 2,166 184
RasPi Linux 1 1,277 681
Nuri Linux 4 41,540 266
Sabre Linux 3 21,293 86
SteamLink Linux 0 15,106 N/A

D. Preprocessing

The goal of our preprocessing stage is to simplify the traces
by minimizing common sources of noise (e.g., timer/UART
polling) and extracting shorter I/O sequences that allow han-
dlers to be found earlier. To evaluate the effect of this prepro-
cessing, we measured the minimum, maximum, and average
position in the trace for each handler on each platform. Across
the platforms tested, we find that I/O sequence grouping
reduces the average number of blocks in the trace needed to
reach a handler from 47,171 to 6,935.

We also investigate the effect of identifying and blacklisting
polling loops. Table III shows the number of grouped I/O
sequences before and after applying the IO blacklist. (We omit
WRT54GL here since it does not use MMIO for interrupt
dispatching.) Each grouped I/O sequence is replayed to create
a trace for the divergence analysis, so reducing the number of
such sequences is critical for performance. We find that our
heuristic effectively reduces the number of sequences we need
to consider by between 1.9X and 451X (151X on average),
indicating that it provides significant savings.

E. Divergence Analysis Results

We report the results of our divergence analysis in Table IV.
In addition to false positives and negatives, we also include
the number of chained handlers (“Chain”) and the number
of default handlers (“Default”). These represent handlers that
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TABLE IV
DIVERGENCE ANALYSIS FALSE POSITIVES AND NEGATIVES

Total FN FP Chain Default
Beagle Linux 23 0 0 2 2
Nuri Linux 11 0 0 6 1
RasPi FreeBSD 12 0 0 1 0
RasPi Linux 14 1 0 3 0
RasPi RiscOS 16 0 0 0 1
Romulus Linux 19 0 2 6 2
Sabre Linux 28 2 0 4 1
Sabre VxWorks 12 0 2 0 0
WRT54GL Linux 4 0 0 0 0
SteamLink Linux 21 0 3 4 1

do not appear in our ground truth (and so would normally
be considered false positives) but which we feel can justifi-
ably considered real handlers. Chained handlers are virtual
handlers that dispatch to more specific handlers. We do not
consider these false positives, since a user may wish to use
such handlers to disable multiple peripherals at once. In some
cases, there may only be a single sub-handler registered under
a chained handler. In this case IRQDebloat will only find the
top-level handler in the chain, since there will be no further
divergences. We consider this a true positive, since disabling
the top-level handler will still disable the desired peripheral.
Default handlers similarly do not appear in our ground truth,
as they are statically registered by the OS as a fallback when
no other handler is suitable. These are found by our divergence
analysis, since invalid IRQ numbers will diverge from valid
IRQs. We do not include these as false positives.

Aside from chained and default handlers, we have two false
negatives for Sabre LITE Linux, two false positives for Sabre
LITE VxWorks, two false positives for Romulus Linux, and
three false positives for Steam Link Linux. The two false
negatives are missed during the fuzzing stage (as mentioned
in Section V-C) and so do not appear in any trace.

The false positives in Sabre LITE VxWorks and Romu-
lus Linux are caused by internal callback functions inside
specific IRQ handlers. For Sabre LITE VxWorks, the false
positive is located at __udivmodsi4, an LLVM compiler
intrinsic for the integer divide and modulus operation, which
has a switch statement at the end of the function for opti-
mization. Romulus Linux has two callback functions regis-
tered under its UART interrupt handler (serial8250 interrupt),
which could invoke either aspeed vuart handle irq or se-
rial8250 default handle irq. The Steam Link false positives
turn out to be caused by Linux softirq tasklets (callbacks which
can be scheduled by drivers and run at the end of IRQ handling
in irq exit).

While not ideal, false positives are not particularly harmful
in our setting. A false positive will mean that the user has one
more handler to check (which just means booting the device
and seeing if the unwanted peripheral has been disabled).

F. IRQ Monitoring and Removal

To evaluate the IRQ monitoring and removal on a real
device, we used the results of our analysis to instrument three

TABLE V
IRQ HANDLER REMOVAL RESULTS.

Linux FreeBSD RiscOS
UART X X X
USB X X X†
Video Controller X N/A X†
DMA X N/A X
GPIO N/A X N/A
PMU X X N/A
Timer A A A
IPI A A A

operating systems (Linux, FreeBSD, and RiscOS) running on
a Raspberry Pi. We selectively disabled all discovered IRQ
handlers on each operating system as shown in Table V. For
the USB and Video IRQ handlers in RiscOS (indicated with
a † in the table), we found that the handlers could not be
disabled during boot, so we used our instrumentation engine
to add code that waits until the system has booted (using a
simple counter) and then disables the handler at runtime. The
“N/A” entries in the table indicate that the OS does not register
a handler for that device. Finally, A entries indicate that the
device cannot function properly with that IRQ disabled.

With the UART disabled, we lose all input/output through
the serial port, while all the other parts (HDMI, USB etc.)
are unaffected. When USB is disabled, we can still interact
through the serial port, but we lose all control from USB-
connected devices (keyboard, mouse etc.), as well as the
Ethernet connection, which is internally connected to the USB
bus on the Raspberry Pi. We did not see any effect from
disabling the video controller interrupt (DMA) or Performance
Monitoring Unit (PMU). The remaining handlers (timer and
inter-processor interrupt (IPI)) are essential for device func-
tionality and cannot be disabled.

G. Case Study: Bluetooth on the Steam Link

We use the Valve Steam Link to illustrate a real-world
case of how IRQDebloat could be used to reduce attack
surface. The Steam Link is based on the Marvell Armada
1500-mini (MV88DE3108) SoC and is used to stream games
from a desktop PC to an external display via HDMI. It runs
Linux and supports connectivity via WiFi, Bluetooth, and
Ethernet. Our scenario considers a user who does not have any
Bluetooth devices and wishes to disable this functionality to
avoid Bluetooth exploits such as BleedingTooth [37]. Indeed,
we found that the Steam Link in its default configuration
is vulnerable to one of the BleedingTooth vulnerabilities,
BadChoice (CVE-2020-12352; the kernel version used, 3.8.13,
is too old to be vulnerable to BadKarma and BadVibes).

Although the Steam Link only accepts signed firmware and
does not have JTAG exposed on the board, Valve has released
information that allows users to log in as root on the device.
This allowed us to create a snapshot using our own custom
kernel module (for the CPU registers) and LiME [3] (for the
memory dump). Root access also means that we can patch the
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kernel in memory in order to disable handlers, even though
we are not able to modify the firmware image itself.

Our analysis finds a total of 21 handlers. We disabled
them one by one and checked whether Bluetooth was still
working on the device. If available, kernel symbols (e.g.,
/proc/kallsyms on Linux) can speed up this process, but
are not required. After some analysis we determined that WiFi
and Bluetooth functionality are both handled by the Marvell
88W8897 peripheral, which uses a shared interrupt on the
SDIO bus for both protocols.

We opted to disable both WiFi and Bluetooth on the device
by overwriting the shared SDIO handler. Although this is not
ideal (we only intended to disable Bluetooth), we note that
the Steam Link can still access the internet over Ethernet, so
the device is still usable. We then checked whether it was
still vulnerable to BadChoice by running the proof-of-concept
exploit code, and confirmed that the exploit failed. Indeed, all
Bluetooth connections to the device failed.

H. Quantifying Attack Surface Reduction

To more rigorously assess the potential attack surface reduc-
tion from disabling handlers on the Steam Link, we collected a
list of all CVEs in the past five years (2016–2021) for which
the Linux Kernel CVEs project [4] could identify a patch,
excluding patches larger than 1MB (as these usually removed
entire subsystems and would not allow precise matching). In
total we found 978 CVEs that met our criteria.

Next we annotated each IRQ on the Steam Link according
to whether it is exposed to external input and then manually
identified which kernel source paths were potentially reachable
from the interrupt handler. We included here both the driver
code for the Steam Link’s particular peripherals as well as code
that handled protocols accessible only via those peripherals
(e.g., the Bluetooth protocol stack). We then matched these
source paths against our CVE patches to determine which
CVEs could have been blocked by disabling the handler.
We used the National Vulnerability Database’s Attack Vector
classification to exclude CVEs that could only be exploited
locally by a process running on the device.

The results are shown in Table VI. We can see that there
are indeed many vulnerabilities in the WiFi and Bluetooth
drivers that would be prevented by disabling the handler (13
CVEs). Similarly, USB devices have been the source of many
vulnerabilities, and disabling this interrupt would have blocked
31 vulnerabilities. This count is conservative in two ways.
First, it does not consider vulnerabilities in the peripheral
firmware itself. For example, the ThreadX-based firmware on
the 88W8897 WiFi/Bluetooth peripheral is vulnerable to CVE-
2019-6496; while disabling the IRQ for this peripheral would
not prevent the peripheral’s firmware from being exploited,
it would prevent further escalation to the main application
processor. Second, the attack surface reduction from disabling
multiple IRQ handlers at once is not just additive: for example,
disabling IRQs 49 and 56 (WiFi/BT and Ethernet) would
disable all network access, preventing any vulnerabilities in
the entire network stack from being exploited.

TABLE VI
STEAM LINK ATTACK SURFACE REDUCTION

IRQ# Peripheral Ext? Source #CVEs

32 Presentation Engine 7 N/A N/A
33 Presentation Engine 7 N/A N/A
38 GPU 7 N/A N/A
44 USB X drivers/usb 31

49 Bluetooth (SDIO) X
drivers/bluetooth,
net/bluetooth 7

49 WiFi (SDIO) X
drivers/net/
wireless/marvell/
mwifiex

6

50 NAND Flash 7 N/A N/A
51 Presentation Engine 7 N/A N/A

56 Ethernet X
drivers/net/
ethernet/marvell/
geth.c

0

57 Presentation Engine 7 N/A N/A
168 APB Timers 7 N/A N/A
176 Two Wire Serial I2C 7 N/A N/A
200 UART X drivers/tty/serial/

8250
0

208 Presentation Engine 7 N/A N/A
Total remotely exploitable kernel CVEs, 2016–2021 157

VI. LIMITATIONS AND FUTURE WORK

Non-IRQ Inputs. A core assumption we make is that
unwanted input to the system is delivered via interrupts. It is
possible that some systems just poll for input from a peripheral
in a loop. In our experience thus far, this type of input handling
is generally only used for very simple peripherals (e.g., simple
sensors), but we hope to more thoroughly explore this type of
input and find ways to disable it automatically in future work.

Shared and Threaded Handlers. There are currently some
OS mechanisms for handling IRQs that we do not yet support.
In particular, some peripherals are handled using threaded
handlers, in which incoming IRQs are queued and then han-
dled asynchronously in a different kernel thread. This can be
particularly problematic when multiple devices share a single
interrupt (the shared WiFi/Bluetooth interrupt on the Steam
Link): although the individual peripherals do have their own
handlers, they are only executed after the initial handler has
ended, so IRQDebloat can only see and disable the initial top-
level handler.

We believe that such handlers can be identified by continu-
ing our fuzzing after the initial IRQ handler returns and then
applying our divergence analysis to the code executed by the
kernel scheduler. Since the same threaded handler will always
be invoked for a given IRQ, the analysis should allow us to
distinguish between threaded handlers and other kernel thread
activity. However, we leave this to future work.

Manual Effort. Some parts of our system still require
manual effort, which we describe and quantify here; note that
the times given are for a user who is relatively skilled at reverse
engineering and embedded device hacking. First, human effort
is required to acquire a snapshot from the device and to figure
out how to flash a modified firmware image. This is currently
one of the more time-consuming pieces, as it depends on the
device and whether any protection measures exist. For three
of the four physical devices in our dataset, we were able to
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obtain a usable snapshot within 2-3 hours of work, but one
device (the WRT54GL) took several days of work due to our
unfamiliarity with MIPS.

It also requires human judgment to validate that the right
peripheral has been disabled. The user must boot the device
with the modified firmware and check whether the disabled
peripheral responds to input. However, this does not require
technical expertise (beyond what is required to modify the
firmware) and only takes a few minutes per candidate handler.

Finally, identifying a return value for a disabled handler
that satisfies the kernel’s IRQ handling API currently requires
manual reverse engineering for each operating system (around
an hour per OS). One possibility for automating this step is
to use the dynamic information from our traces to see what
valid handlers return, and try those values.

Rehosting. Aside from addressing limitations of our system,
we also believe that our techniques for automatically enumer-
ating and identifying interrupt handlers could be useful for
other embedded reverse engineering efforts, such as rehost-
ing [22], [45]. When faced with a new embedded system,
it can be challenging to even enumerate its peripherals and
identify their memory-mapped register ranges. IRQDebloat
could help automate this process, as each interrupt identifies
a unique peripheral, and the interrupt handler usually contains
code to interact with the device’s memory-mapped registers.
In addition, interrupt handling remains a challenge for auto-
mated rehosting systems; we hope to extend IRQDebloat to
automatically create an emulated model of the target interrupt
controller along with stub devices for each interrupt source
that will need to be emulated.

VII. RELATED WORK

As embedded and Internet of Things (IoT) devices have
proliferated, academic research has turned its attention to the
challenges of securing these systems. Embedded analysis is
difficult due to the wide variety of hardware used, and the
relative dearth of embedded security tooling.

One line of embedded research focuses on bringing dynamic
program analysis to embedded systems by emulating them
in an embedded environment. These include pure software
emulation with inferred MMIO inputs or abstracted hardware
interfaces [11], [14], [25], [35], [41], [18], [23], [34], [26]
and hardware-in-the-loop hybrid emulation [49], [36], [44],
[30], [32], [17]. Two recent surveys [22], [45] provide a more
comprehensive picture of the state of the art in rehosting, and
we refer interested readers there for more details.

Aside from dynamic analysis, some work has sought to
analyze embedded firmware statically. FIE [20] lifts MSP430
source to LLVM and then symbolically executes it in
KLEE [9], while Firmalice [43] symbolically executes binary
firmware to identify potential backdoors. On the protection
side, Cui and Stolfo proposed embedded symbiotes [19], in
which embedded firmware is rewritten to inject a runtime
security monitor. Our work also focuses on improving the
security of deployed embedded devices, but does so by re-
moving, rather than adding functionality.

Separately, interest has recently grown in how to eliminate
unwanted features in existing software to reduce its exposed
attack surface. This technique, known as debloating, has been
applied to desktop and server software [12], [39], [38], [31],
[28], mobile applications [47], [27], web applications [8], and
even containers [40].

Work on debloating embedded firmware is somewhat more
scarce. DECAF [13] and me cleaner [16] attempt to remove
unused functionality in UEFI firmware and the Intel ME BIOS,
respectively. Specifically for Linux-based embedded systems,
Lee et al. [33] removes unused syscall and driver code for
hardware that is not present, and Chanet et al. [10] use link-
time binary rewriting to remove unreachable system calls.

Closest to our own work is LIGHTBLUE [46], which
debloats Bluetooth protocol stacks in embedded devices to
reduce the attack surface exposed by Bluetooth. LIGHTBLUE
allows individual portions of the Bluetooth protocol to be
disabled by analyzing an accompanying profile. Although this
allows for more fine-grained control over Bluetooth (IRQDe-
bloat can only enable or disable the Bluetooth peripheral as
a whole), it cannot be used to limit the attack surface caused
by non-Bluetooth peripherals.

VIII. CONCLUSION

In this paper, we presented IRQDebloat, an automated
technique for reducing the exposed attack surface of embedded
devices by rewriting firmware to disable unwanted hardware
functionality. To do so, we identified a key architectural
feature—namely, interrupt handling—that acts as a bottleneck
through which inputs enter the system, and then developed an
automated dynamic analysis to precisely identify and disable
interrupt handlers for unwanted peripherals. We believe that in
addition to giving end users more control over the embedded
hardware deployed on their networks, our techniques may
also be useful for automated reverse engineering of embedded
systems for security.
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APPENDIX A
SNAPSHOT REGISTERS

On ARM, we collect the general purpose registers (R0-
R15), including the banked versions of R13 and R14, which
have separate values for each CPU mode (IRQ, FIQ, SVC,
Undefined, Abort, and User). In addition, to allow virtual
address translation, we collect several important coprocessor
registers: the ttbr and sctlr registers for virtual memory
and page tables, the dacr register for memory domain access
permission, the daif register for masked exception configu-
ration, the tpidrprw register, which holds the current thread
ID, the vbar register to get the exception table base, and the
scr and hcr registers, which control the ARM secure/non-
secure mode and hypervisor mode, respectively.

For MIPS, we currently only support the MIPS Release 1
architecture. We collect the general purpose registers ($0-$31
and pc) as well as the status, cause, and badvaddr
registers for the current CPU exception state, and context
for the page table entry address.

TABLE VII
PERFORMANCE

Analysis Time Traces Blocks
Beagle Linux 6 min 54 324,987
Nuri Linux 1,196 min 104 9,495,362
RasPi FreeBSD 55 min 500 3,402,507
RasPi Linux 214 min 548 15,022,092
RasPi RiscOS 4 min 36 3,373
Romulus Linux 58 min 421 3,797,486
Sabre Linux 173 min 66 3,127,335
Sabre VxWorks 2 min 41 29,694
WRT54GL Linux 30 min 544 1,603,233
SteamLink Linux 21 min 31 1,060,850

APPENDIX B
TRACE ANALYSIS PERFORMANCE

Aside from fuzzing (for which performance results are
reported in Figure 4), the bulk of IRQDebloat’s time is spent
in trace analysis. It is important to note that this is an offline
analysis that only needs to be done once per device, so we do
not believe the analysis time is prohibitive. Nevertheless, we
report it here for the interested reader. Our testbed is a dual-
CPU 64-bit Intel® Xeon® X5690 @3.47GHz with 24 cores
in total, and 192GB RAM. Each trace analysis is run on 16
cores in parallel.

Table VII shows the time taken, number of traces, and total
number of basic blocks. In general, the analysis time required
is proportional to the number of traces and total number of
blocks. An exception to this is Linux on the Nuri platform;
the traces for this system often diverge and re-converge, which
increases the analysis time.

APPENDIX C
FUZZER PSEUDOCODE

1 # random(a,b): uniform random float in [a,b]
2 # randint(a,b): uniform random int in [a,b]
3 # rands(), patterns(), bitwins(), ints():
4 # Return a list of I/O values according to
5 # the patterns described in §III-D1
6

7 # Globals for use in mmio_cb
8 seq, iov = None, None
9

10 # Called by emulator on MMIO reads
11 def mmio_cb():
12 global seq, iov
13 if seq: # Still have some I/O values
14 iov = seq.pop()
15 return iov
16 else:
17 if consistent_io_prob > 0 and \
18 random(0,1) < consistent_io_prob:
19 # Use most recent
20 return iov
21 else:
22 iov = randint(0,2**32)
23 return iov
24

25 # Check for new coverage for an I/O seq
26 def run_trace():
27 trace = []
28 revert_to_snapshot()
29 trigger_interrupt()
30 # Execute and feed I/O values
31 for n, block in enumerate(emulate()):
32 trace.append(block)
33 if n > MAX_BLOCKS: break
34 return trace
35

36 # Generate fuzzed inputs and test if they
37 # produce new coverage
38 def fuzz(MAX_GEN):
39 coverage = set()
40 global seq
41 seeds = [[]]
42 for i in range(MAX_GEN):
43 for s in seeds:
44 for val in rands() + patterns() \
45 + bitwins() + ints():
46 seq = s + [v]
47 # Get trace for this seq
48 trace = run_trace()
49 # Check coverage
50 if new_cov(trace, coverage):
51 coverage.update(set(trace))
52 report(trace)
53 seeds.append(seq)
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