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Abstract—In this work, we introduce a new approach for
statistical quantification of differential privacy in a black box
setting. We present estimators and confidence intervals for the
optimal privacy parameter of a randomized algorithm A, as well
as other key variables (such as the “data-centric privacy level”).
Our estimators are based on a local characterization of privacy
and in contrast to the related literature avoid the process of
“event selection” - a major obstacle to privacy validation. This
makes our methods easy to implement and user-friendly. We
show fast convergence rates of the estimators and asymptotic
validity of the confidence intervals. An experimental study of
various algorithms confirms the efficacy of our approach.

Index Terms—Differential privacy, data-centric privacy, local
estimators, confidence intervals

I. INTRODUCTION

Since its introduction in the seminal work of [1], the concept

of Differential Privacy (DP) has become a standard tool to

assess information leakage in data disseminating procedures.

DP characterizes how strongly the output of a randomized al-

gorithm is influenced by any one of its inputs, thus quantifying

the difficulty of inferring arguments (i.e., user information)

from algorithmic releases.

To formalize this situation, we consider a database x =
(x(1), · · · , x(m)) where each data point x(i) takes values

in a set D and corresponds to the data provided by the ith
individual among m users. Furthermore, we introduce the

notion of neighboring or adjacent databases, that is databases

that only differ in one component. Mathematically, we can

express neighborhood of x, x′ by unit Hamming distance

dH(x, x′) = 1, where the Hamming distance is defined as

follows:

dH(x, x′) := |{1 ≤ i ≤ m : x(i) �= x′(i)}|.
Definition 1. An Algorithm A is called ε-differentially private
for some ε > 0, if for any two neighboring databases x, x′

and any measurable event E the inequality

P(A(x) ∈ E) ≤ eε P(A(x′) ∈ E) (1)

holds.

Definition 1 demands that (1) holds for all measurable

events E, but what constitutes a measurable event depends

on the output space Y of the randomized algorithm A. If Y is

discrete (in particular if |Y| < ∞) we require that (1) holds for

all events in the power set P(Y). If however A has outputs in

a continuum (e.g., Y = R
d), then (1) has to hold for all Borel

sets. In both cases, the collection of all measurable events

is large and complex, which is an important obstacle in the

practical validation of DP as we will discuss below.

The privacy parameter ε in Definition 1 quantifies the

information leakage of A, where small values correspond

to small leakage (and thus high privacy). Hence, deploying

differentially private algorithms with appropriate ε provides

users with strong privacy guarantees regarding their data.

Aware of these properties, there has been an increased interest

in and deployment of differentially private algorithms by

companies that handle large amounts of data (such as Google

[2], Microsoft [3] and Uber [4]), as well as government

agencies such as the US Census Bureau [5]. However, in

practice it is often unclear whether an algorithm satisfies DP

and if so, for which parameter ε. It is therefore important

and the main objective of this work to develop procedures

by which we can ascertain the level of privacy afforded by a

given algorithm. We will focus on “pure” DP as defined in

(1) in this work and refer readers interested in “approximate

differential privacy” to [6]–[10].

Related work: A number of languages and verification

tools have been devised to validate differential privacy where

possible and discard it where not (see among others [11]–

[18]). Many of these approaches are designed specifically for

developers and require knowledge of the inner structure of

the algorithm in question. In contrast, in this paper, we want

to investigate a black box scenario where we have little to no

knowledge of the algorithm’s design and have to rely solely on

output samples. This scenario can occur naturally when third

parties are entrusted with validating the privacy claims of a

data collector. In this situation, skeptical users and agencies

can confirm the privacy of a given algorithm, while the data

collector does not have to reveal his (proprietary) source code

and algorithm design. However, black box methods can also

be valuable in settings where an algorithm is known but so

complex, that focusing on its outputs is preferable. In any case,

a procedure tailored to this scenario covers a wide range of

algorithms with few requirements, which is a desirable feature

in a validation scheme.

Relying solely on algorithmic outputs warrants a statistical

approach and such methods are pursued in [19], built directly

on Definition 1. For a fixed triplet (x, x′, E) consisting of

neighboring databases x, x′ and an event E, the privacy
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condition in (1) can be construed as a statistical hypothesis that

needs to be checked. Given a preconceived privacy parameter

ε0 > 0, candidate triplets are generated and a binomial sta-

tistical test is employed to find a counterexample (x0, x
′
0, E0)

that violates the privacy condition (1). These counterexamples

expose faulty, non-private algorithms in a fast and practical

manner and hint at potential weaknesses in the algorithm’s

design.

A related, but distinct approach is the examination of lower

bounds for differential privacy [20]. Here, privacy violations

are determined with the help of the “privacy loss”, which is

defined for any triplet (x, x′, E) as

Lx,x′(E) :=
∣∣∣ ln (P(A(x) ∈ E)

)− ln
(
P(A(x′) ∈ E)

)∣∣∣. (2)

We interpret ∞−∞ := 0 to account for events with 0 proba-

bility. In line with Definition 1, an algorithm A satisfies ε-DP

if and only if Lx,x′(E) ≤ ε for all permissible triplets. Thus,

computing privacy violations Lx,x′(E) for different triplets

naturally provides lower bounds for ε. Note that in this context,

privacy violations and loss are used constructively to gather

information about the privacy parameter. We also want to

point out that this approach can be adapted to counterexample

generation, if for some predetermined ε0 a triplet (x0, x
′
0, E0)

is found s.t. Lx0,x′
0
(E0) > ε0. However, lower bounds are

somewhat more flexible, because they do not require some

hypothesized ε0 in the first place.

Even though [19] and [20] provide effective tools for privacy

validation, they are not entirely compatible with our black box

assumption. While the binomial test in [19] by itself requires

little knowledge of A, the larger scheme, within which it is em-

bedded, is designed to also consider the algorithm’s program

code. A symbolic execution of that code can be performed

to facilitate the detection of counterexamples. Therefore, this

approach is also labeled semi-black-box by its authors [19].

Even less compatible with the black box regime, the approach

in [20] requires access to the program code of algorithm A in

order to alter it in ways that produce a differentiable surrogate

function for Lx,x′ . Numerical optimizers can then be deployed

to find triplets that yield high privacy violations.

A more recent method to quantify DP is the DP-Sniper

algorithm, developed in [21]. For fixed databases x and x′, DP-

Sniper creates an event E∗ which approximately maximizes

(2) and then derives a statistical lower bound for Lx,x′(E∗). To

construct E∗, a machine learning classifier is employed that

approximates the posterior probability of x given an output

of A. Intuitively, E∗ then consists of all those outputs, that

are expected to be generated by A(x) rather than A(x′) with

high certainty. The classifiers used are logistic regression (a

one-layer neural network) and a small neural network (two

hidden layers). Both choices yield relatively simple parametric

models for the posterior, where the classifier based on logistic

regression corresponds to a linear decision rule. The successful

maximization of Lx,x′ in [21] then presupposes that the true

(and unknown) posterior distribution belongs to one of these

classes. Naturally, such a parametric assumption limits the

scope of theoretical performance guarantees and is difficult

to reconcile with a black box setting, where a non-parametric

statistical procedure would be more fitting.

The problem of event selection: As we have seen above,

statistical validation of DP rests on finding a triplet (x, x′, E)
that provokes a high privacy violation. This task is typically

split into two separate parts: First, finding databases x, x′ such

that the loss Lx,x′(E) is large for some event E and, second,

finding this very event. Even though both problems are non-

trivial, the greater challenge lies in the latter one, the event
selection (see [21]).

Starting with the space of potential events, we observe that

if Y consists of a finite number of output values, the number of

measurable events grows exponentially in |Y| with |P(Y)| =
2|Y|. This makes evaluating Lx,x′ on all potential events E
impractical even if |Y| < ∞, and the task becomes impossible

if Y is a continuum. Therefore, a prior restriction is necessary

to narrow down candidate events. In related works, this process

is guided by heuristics [19] or parametric assumptions [21].

However, such approaches are in tension with a genuine black-

box scenario, as they do not offer a template that generalizes

to any given algorithm.

Event selection also poses a challenge from a learning

perspective. Approximating the objective function Lx,x′ over a

class of events entails a bias-variance trade-off: Here a larger

class of events may help to find higher privacy violations,

but it also requires higher sampling efforts to ensure uniform

approximation. Furthermore, it can be difficult to control

the optimization error, as the objective function Lx,x′ eludes

classical numerical treatment (it does not satisfy continuity,

differentiability, etc.).

As a consequence of these difficulties, we propose an

alternative route to assess DP in this work. Rather than

searching for vulnerable events, we approximate the maximum

supE Lx,x′(E) directly using a local loss function (see Section

III). By circumventing event selection, we can effectively re-

duce complexity and algorithmic effort to quantify the privacy

level of a given algorithm (see Section 4 and 5).

Data-specific privacy violations: In this work, a central

object of interest is the quantity

εx,x′ := sup
E

Lx,x′(E) (3)

which we call data-specific privacy violation in x and x′.
Recalling (2), we observe that εx,x′ indicates to which extent

the algorithm outputs are indistinguishable for a fixed pair of

databases x and x′. Note that A satisfies ε0-DP if and only if

εx,x′ ≤ ε0 for all pairs of adjacent databases (x, x′). Thus, we

define the smallest parameter ε, for which ε-DP still holds as

ε := sup
x,x′: dH(x,x′)=1

εx,x′ , (4)

and note that ε is optimal in the sense that privacy guarantees

below ε are not feasible, while any ε0 > ε underestimates the

privacy level that is actually achievable.

We refer to ε as the global privacy parameter which, in

light of identity (4), only provides a “worst-case” guarantee
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for privacy leakage of any pair x, x′. In contrast, the precise

amount of privacy leakage associated with x and x′ is captured

by εx,x′ , which is potentially much smaller than ε. The data-

specific privacy violations comprise more granular information

that we utilize to examine the following privacy aspects:

First, each εx,x′ constitutes a lower bound of ε. Because

Lx,x′(E) ≤ εx,x′ holds for all events E, these lower bounds

are at least equally and potentially even more powerful than

the ones derived in prior work. Lower bounds in themselves

are useful, as they can help expose faulty algorithms [20] and

narrow down the extent to which a given algorithm can be

private at all [21]. This ultimately provides us with a better

understanding of the global privacy parameter ε.

Secondly, data-specific privacy violations can be used to

infer the data-centric privacy level for select databases. More

precisely, suppose that a curator has gathered a database x and

is interested in the amount of privacy conceded specifically to

the individuals with data in x. The maximum privacy violation

associated with x is obtained by forming the supremum over

all data-specific privacy violations in its neighborhood, that is

εx := sup
x′: dH(x,x′)=1

εx,x′ . (5)

Graphically speaking, εx is the maximum privacy loss attained

on a unit sphere around x (with regard to dH ). It also con-

stitutes the maximum privacy loss any individual represented

in x has to at most tolerate (thus, it has also been studied

in the context of ”individual DP” [22]). Evidently, we have

εx ≤ ε for all databases x and we will see later on that the

data-centric privacy level εx can be considerably smaller than

the global privacy guarantee ε (see Section 5).

The relation between specific databases and privacy has

been previously studied in the context of sensitivity [23].

Given a function F that operates on databases x, one can

achieve DP by adding noise proportional to the global sen-

sitivity �F of F to its output F (x). [23] observe that the

local sensitivity �F (x) of F around a fixed database x can be

considerably smaller than �F , allowing for, in principle, less

noise and higher accuracy. The local sensitivity of F is then

leveraged to arrive at the notion of “smooth sensitivity”, which

admits lower levels of noise than �F and can be analytically

determined for some statistically relevant functions.

In the presence of only black box access to the target

function F , [23] avoid computing the sensitivity of F directly

and instead resort to assessing the sensitivity of an aggregation

function operating on outputs of F . In contrast, [24] propose

an approach that provides direct sensitivity estimates of the

target function F that can be used in the privatization process.

As a sampling-based black box method, the approach put

forward in [24] shares some similarities with our methodology,

but also comes with marked differences. The methods in [24]

assist directly in the design of algorithms that conform to

a relaxed version of DP, namely random differential privacy

[25]. We, on the other hand, develop statistical methods

that assess “pure” DP and, given a randomized algorithm,

determine the privacy level εx attached to a database x in

retrospect.

This work: Statistically, our approach is based on novel

estimators ε̂x,x′ for the data-specific privacy violation εx,x′ . In

view of the identities (4) and (5), such estimates are natural

building blocks for the assessment of the global privacy pa-

rameter ε or its data-centric version εx. Contrary to the related

literature, our estimators do not maximize an empirical version

of the loss Lx,x′ , but approximate the supremum εx,x′ directly,

thus avoiding the pitfalls of event selection (see previous part).

Mathematically, these estimates rest on a “local” version of

the privacy loss discussed in Section III. Besides estimators,

we present new tools of statistical inference: In Section IV

we devise the MPL (Maximum Privacy Loss) algorithm,

which generates one-sided confidence intervals [LB,∞) for

the privacy parameters ε and εx respectively. In this situation,

LB is a statistical lower bound (i.e., it holds with a high

degree of certainty) and approximates the true parameter with

increasing sample size. In particular, if MPL is applied to the

quantification of ε and outputs LB, the user can be confident

that algorithm A is at best LB-differentially private. In Section

V we confirm these findings via experiments.

Main contributions: We give a brief summary of our main

contributions:

• A fully statistical black box procedure for the quantifica-

tion of DP (without parametric assumptions).

• A flexible approach based on data-specific privacy viola-

tions εx,x′ as building blocks.

• New estimators ε̂x,x′ for the data-specific privacy viola-

tion that circumvent the problem of event selection and

are proved to converge at a fast rate.

• The MPL algorithm that outputs a confidence interval for

ε (or εx), which demonstrably includes the parameter of

interest with approximate level of confidence.

• A practical evaluation and validation of our methods.

II. STATISTICAL PRELIMINARIES

In this section, we review the statistical concepts of confi-
dence intervals and kernel density estimation, which serve as

technical background for the remainder of this paper. Readers

who are only interested in discrete algorithms can omit Section

II-B.

A. Confidence Intervals

A confidence interval is a statistical method to localize a

parameter of a probability distribution with a prescribed level

of certainty. More concretely, consider a sample of n obser-

vations X1, .., Xn (random variables), following an unknown

distribution P . If a user is interested in a parameter θ = θ(P )
derived from P (e.g. the expectation θ := EPX1), the sample

of observations can be used to approximately locate θ in an

interval Î(X1, ..., Xn) ⊂ R. Notice that the term confidence
interval usually refers to both the output Î(X1, ..., Xn), which

is an interval determined by the data, and the underlying

algorithm Î(·) itself. Given the randomness in the data, there

is always a risk of mislocating θ, i.e. that θ �∈ Î(X1, ..., Xn).
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However, confidence intervals are constructed to guarantee

θ ∈ Î(X1, ..., Xn) with a prescribed probability (level of

confidence). To be more precise, Î(·) has an additional input

parameter α ∈ (0, 1), such that the confidence level 1 − α
holds:

P(θ ∈ Îα(X1, ..., Xn)) = 1− α, (6)

where typically α ∈ {0.1, 0.05, 0.01}. Notice that the choice

of α entails a trade-off: On the one hand a smaller α provides

the user with higher certainty that actually θ ∈ Îα(X1, ..., Xn),
but on the other hand it translates into a wider confidence

interval, which means less precision with regard to the location

of θ. Besides the choice of α, the sample size n affects the

width of the confidence interval, with larger n leading to

narrower intervals.

In order to construct a confidence interval Îα s.t. (6) holds, it is

necessary to have prior knowledge about the underlying distri-

bution of the data sample X1, ..., Xn. For instance, it may be

known that the sample comes from a normal distribution, with

unknown mean and variance, and we want to give a confidence

interval for the mean. In this situation, parametric statistical

theory equips the user with standard tools to construct Îα (see

[26]).

Yet in many cases such prior knowledge about the data is

not feasible and therefore a weaker requirement than (6)

is formulated: It states that the confidence level 1 − α is

approximated with increasing precision, as n grows larger, or

mathematically speaking

lim
n→∞P(θ ∈ Îα(X1, ..., Xn)) = 1− α. (7)

If (7) is satisfied, we call Îα an asymptotic confidence interval
with confidence level 1 − α. The advantages of asymptotic

confidence intervals are their flexibility and robustness against

deviations from a presumed distribution. Common approaches

to prove asymptotic confidence levels include asymptotically

normal estimators, as well as the delta method for differen-

tiable statistics. For details on asymptotic statistical theory, we

refer the interested reader to the monograph of [27].

B. Kernel density estimation
Kernel density estimation is a method to estimate the

unknown distribution of a data sample X1, ..., Xn on R
d. It

can be thought of as the creation of a smoothed, normalized

histogram, where the jumps between the bins are interpolated

continuously (for an introduction see [28]). This procedure is

often preferred to a traditional histogram, particularly if the

data sample is distributed according to a continuous density f
on R

d (we write X1, ..., Xn ∼ f ).

More precisely, let K : Rd → R be a continuous, non-negative

function, such that
∫
Rd K(u)du = 1. We call K a kernel and

define the kernel density estimator (KDE) f̃ for f pointwise

as

f̃(t) :=
1

nhd

n∑
i=1

K

(
t−Xi

h

)
, t ∈ R

d, (8)

where h > 0 is the bandwidth, analogue to the bin-width

in a histogram. For details on kernel density estimators as

| || ||| | | || || ||| ||| | || || ||| || || ||| | || || ||| || | || || | || || | || || || || || || ||| || ||| | ||| ||| || || | | || || | ||| || | |||| || ||| ||| ||| | ||| | |||| ||| || || | | ||||| | ||| | | || || | || || | || | ||| || || | || |||| || | | || || | ||| || || | || | ||| ||| | |||0.0

0.1

0.2

0.3

0.4

0.5

−5.0 −2.5 0.0 2.5 5.0

Fig. 1: Centered Laplace density (light blue) and kernel density

estimate (red) for N = 200, with Gaussian kernel. On the x-

axis we have plotted the observations X1, ..., X200 (dark blue).

well as generalizations such as multidimensional bandwidths,

we refer to [29]. As the number of observations n increases,

the convergence speed of f̃ to f depends on three distinct

factors: First the smoothness of the true density f , secondly

an adequate choice of the kernel K and thirdly the bandwidth

h.

To quantify smoothness we require f to be Hölder continuous,

i.e. for some β ∈ (0, 1] and C > 0 it holds that

|f(t)− f(s)| ≤ C|t− s|β , ∀t, s ∈ R
d , (9)

where | · | denotes the Euclidean norm. Notice that β = 1
corresponds to the well known Lipschitz continuity, which

is satisfied by the densities corresponding to the Laplace,

Gaussian and versions of the Exponential Mechanism. We also

point out that a density which satisfies Hölder continuity for

one β > 0 is Hölder continuous for any other β′ ∈ (0, β].
The choice of the kernel K is a relatively simple task: To attain

optimal convergence speed, K has to fulfill certain regularity

properties (K1) and (K2), that we make precise in Appendix

B. From now on we will always assume that K conforms to

these assumptions. We point out that both of them are satisfied

by all commonly used kernels (in particular by the Gaussian

kernel, that we use in our experiments).

Finally, the choice of the bandwidth h should depend on the

smoothness level β of f , as well as the sample size n. More

precisely, it can be shown that

sup
t∈Rd

|f̃(t)− f(t)| = OP

(
hβ +

√
ln(n)

hdn

)
, (10)

which implies for the specific choice h = O(n− 1
2β+d )

sup
t∈Rd

|f̃(t)− f(t)| = OP

(√
ln(n)n− β

2β+d

)
. (11)

Notice that this h minimizes the error rate (except for log-

terms). For details on convergence rates in density estimation

see [30] and for a definition of the stochastic Landau symbol

OP we refer to the Appendix A.

In practical applications the true smoothness β and hence

the optimal bandwidth is unknown and therefore data-driven

405



procedures, such as cross validation, are used to determine it.

For details on bandwidth selection, see [29].

In the subsequent discussion, we consider log-transformed

density estimators. These objects are potentially unstable for

arguments where the true density f is close to 0, because

small errors in the estimate of f translate into great errors in

the logarithm. For this reason, we define the truncated KDE

pointwise in t as

f̂(t) := f̃(t) ∨ τ ,

where “a∨ b” denotes the maximum of two numbers a, b ∈ R

and τ > 0 is a user-determined floor. In Section IV we discuss

how to choose τ dependent on n and β. The construction of

the truncated KDE is described in Algorithm 1.

Algorithm 1 Truncated kernel density estimator

Input: data sample X = (X1, ..., Xn), evaluation point t,
bandwidth h, kernel function K, floor τ

1: function TKDE(X, t, h,K, τ )
2: out = 0
3: for i = 1, 2, . . . , n do
4: out = out+K((t−Xi)/h)
5: end for
6: out = out/(nhd)
7: return out ∨ τ
8: end function

III. DIFFERENTIAL PRIVACY AS A LOCAL PROPERTY

As we have seen in our Introduction, ε-DP means that for

any neighboring databases x, x′ the bound

εx,x′ = sup
E

Lx,x′(E) ≤ ε (12)

holds, where the loss Lx,x′ is defined in (2). Thus, in principle,

validating DP requires the calculation of Lx,x′(E) for any

measurable event E, a problem that is intractable from a

practical perspective given the complexity of the space of

measurable events (see Introduction). We can, however, dras-

tically reduce the effort of event selection in the supremum

by exploiting that differential privacy is an inherently local
property, i.e. that the level of privacy is determined by the loss

on small events. To get an intuition of this point, consider an

event E that can be decomposed into the disjoint subsets E1

and E2. It is a simple exercise to show that

Lx,x′(E) ≤ max{Lx,x′(E1), Lx,x′(E2)}.
In this sense going from larger to smaller events increases

the privacy loss and thus gets us closer to εx,x′ . Iterating this

process suggests that we should look at “the smallest events

possible”, which are single points. So we expect that ultimately

εx,x′ ≈ sup
t∈Y

|Lx,x′({t})|. (13)

Admittedly, this statement is not formally correct for all

algorithms, but we will make it rigorous for certain classes

of algorithms in the course of this section. Compared with the

supremum over all measurable events in (12), the expression

in (13) is more convenient, because single points are easy to

handle. We will explore this advantage in detail at the end of

this section.

We now begin our formal discussion by specifying two

classes of algorithms that are considered throughout this work:

discrete and continuous ones.

We call an algorithm A that maps a database x to random

values in either a finite or a countably infinite set Y a discrete
algorithm. Without loss of generality, we will assume that

Y ⊂ N. Moreover, we call the corresponding probability

function fx : Y → [0, 1] defined as

fx(t) := P(A(x) = t), ∀t ∈ Y (14)

the discrete density of A in x. With this notation we can write

for any E ⊂ Y
P(A(x) ∈ E) =

∑
t∈E

fx(t). (15)

Examples of discrete algorithms include Randomized Re-

sponse [31], Report Noisy Max [32] and the Sparse Vector

Technique [33].

Next, suppose that Y = R
d. We say that A is a continuous

algorithm, if for any database x, A(x) has a continuous density

fx : Rd → R, such that for any Borel measurable event E

P(A(x) ∈ E) =

∫
E

fx(t)dt.

Typical examples of continuous algorithms are, as mentioned

before, the Laplace [32], the Gaussian [32] and versions of the

Exponential Mechanism [34]. We want to highlight that in this

definition the requirement of continuous densities on the whole

space R
d is only made for convenience of presentation and can

be relaxed to densities on subsets, e.g., [0,∞) ⊂ R in the case

d = 1. Notice that for continuous algorithms (13) is technically

invalid because Lx,x′({t}) = 0 for any point t. However, it

is possible to preserve the idea of (13) by reformulating it in

terms of continuous densities (see Theorem 1).

Given the above definitions, the distribution of an algorithm

A can be thoroughly characterized by its densities and we

use the notation A(x) ∼ fx throughout this paper. In the

following theorem, we give a mathematically rigorous version

of (13). Variants of this theorem can be encountered in the

DP literature and the inequality “≤” in (16) is frequently used

in privacy proofs. However, the exact identity in (16) is not

trivial and therefore worked out here explicitly.

Theorem 1. Given a discrete or continuous algorithm A with
A(x) ∼ fx and A(x′) ∼ fx′ we have

εx,x′ = sup
t∈Y

∣∣ ln(fx(t))− ln(fx′(t))
∣∣, (16)

where ∞−∞ := 0.

Proof: We first consider the discrete setting: In order to

show “≥” we notice that for all t ∈ Y
Lx,x′({t}) = ∣∣ ln(fx(t))− ln(fx′(t))

∣∣.
Recall that εx,x′ = supE |Lx,x′(E)|. Here the supremum is

taken over all elements E of the power set P(Y) (which
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includes in particular sets with only one element) and this

directly implies “≥”.

The proof of “≤” follows by standard techniques. We fix a set

E ⊂ Y and rewrite Lx,x′(E) using (15), s.t.

Lx,x′(E) =
∣∣∣ ln(

∑
t∈E fx(t)∑
t∈E fx′(t)

)∣∣∣. (17)

Without loss of generality, we assume that the numerator is

greater than the denominator and we can therefore drop the

absolute value. Now the inner fraction can be upper bounded

as follows:∑
t∈E fx(t)∑
t∈E fx′(t)

≤
∑

t∈E fx′(t)[fx(t)/fx′(t)]∑
t∈E fx′(t)

≤ sup
t∈Y

fx(t)

fx′(t)
.

Taking the logarithm on both sides and the supremum over all

E on the left maintains the inequality, showing “≤”.

Moving to continuous algorithms, we notice that the proof of

“≤” follows along the same lines as for the discrete case and

is therefore omitted (one simply has to replace all the sums

by integrals).

To prove “≥” we first observe that a probability density in t
gives the probability of a very small region around t. More

precisely it can be expressed as follows

fx(t) = lim
δ→0

P(A(x) ∈ Uδ(t))

vol(Uδ(t))
,

where Uδ(t) := {s ∈ Y : |t − s| ≤ δ} and vol() denotes

the d-dimensional volume. The identity is a special case of

Theorem 6.20 (c) in [35]. The same statement holds for x′

instead of x and we can use that to get

fx(t)

fx′(t)
= lim

δ→0

P(A(x) ∈ Uδ(t))

P(A(x′) ∈ Uδ(t))
≤ sup

E

P(A(x) ∈ E)

P(A(x′) ∈ E)

for any t ∈ Y . Taking the logarithm on both sides and the

supremum over t on the left preserves the inequality. Recalling

(3), this implies supt∈Y
∣∣ ln(fx(t))−ln(fx′(t))

∣∣ ≤ εx,x′ , which

proves the theorem.

Theorem 1 allows us to characterize DP of an algorithm A
by the absolute log-difference of the algorithm’s densities. For

ease of reference we define this difference, the loss function,

explicitly as

�x,x′(t) :=
∣∣ ln(fx(t))− ln(fx′(t))

∣∣. (18)

This definition admits the restatement of Theorem 1 as εx,x′ =
supt∈Y �x,x′(t) and shows that DP is a local property. Here

the term “local” is used as common in real analysis, referring

to features of a function, that are determined by its behavior

in only a small neighborhood (in the case of �x,x′ in a

neighborhood around its argmax).

Figure 2 provides an illustration of the loss function for

some standard examples of randomized algorithms (see e.g.

[31], [32]). The plots help discern the amount of privacy

leakage and where it occurs. For example, we observe that

for Randomized Response (left) only two outputs elicit any

privacy leakage at all, while the maximum loss associated

with the Laplace Mechanism (middle panel) is assumed ev-

erywhere, except for the area enclosed by the density modes.

For the Gaussian Mechanism (right panel) no single t exists

that maximizes the loss. Instead, �x,x′(t) tends to infinity for

growing |t|, which implies decreasing privacy for tail events.

The unbounded loss function for |t| → ∞ shows that the

Gaussian Mechanism does not satisfy pure DP.
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Fig. 2: The top row depicts the densities fx ∼ A(x), fx′ ∼
A(x′) for two neighboring databases x, x′ and algorithm A
chosen (from left to right) as Randomized Response, the

Laplace Mechanism and Gaussian Mechanism. The bottom

row captures the corresponding loss functions �x,x′ from (18).

In the next section, we develop statistical methods based

on Theorem 1. Before doing so, we want to point out the

possibilities and limitations of this approach. Theorem 1 pre-

supposes that an algorithm under consideration must be either

discrete or continuous. One counterexample from the related

literature is a flawed version of the Sparse Vector Technique

(Algorithm 3 in [33]), which is neither fully continuous nor

discrete and therefore lies outside the scope of our methods.

Still, we want to emphasize that algorithms usually considered

in the validation literature fall into either category (in [21] all

except for SVT3, SVT34Parallel and NumericalSVT, which

are all variations of the above Sparse Vector Technique).

The key advantage of dividing algorithms into continuous

and discrete ones is that we can tailor estimation methods

to each case. This notably helps us to handle the tricky

case of continuous algorithms. More precisely, continuous

algorithms will assume any value on a continuum (e.g. an

interval) and therefore the ensuing output space is infinitely

large. To appreciate the practical effects of this, consider

a discretization of the output space: Suppose we discretize

the unit interval Y = [0, 1] into 1000 equally spaced points

Ydiscr := {1/1000, ..., 999/1000, 1}. This discretization may

seem modest in terms of precision, but it already yields an

output space of 1000 distinct elements.

Why is this a problem? As the grid gets finer, the output

probability of any t ∈ Ydiscr decreases and the sampling
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effort to approximate the probability soars (at least for standard

estimators like the empirical measure used in [19] and [21]).

It is thus hard to assess DP on small events, which however

is key for general, continuous algorithms.

To resolve this issue, we turn to the theory of kernel

density estimation: Instead of relying on the all-or-nothing

information “A(x) = t” vs “A(x) �= t” (as the empirical

measure does), KDE draws on the more gradual information

“A(x) is near t”. While sampling a certain output t in the

continuous case may be unlikely (impossible even from a

theoretical perspective), drawing a sample with some values

close to t is highly probable. This implies that KDE can

provide reliable estimates even of small probabilities, which

do not depend on the grid size of a discretization and only

on the smoothness of the underlying density (see Section II-B).

We briefly summarize the key insights of this section:

Instead of examining large and complex sets in order to

quantify εx,x′ , Theorem 1 shows that it suffices to consider

single output values t ∈ Y . In fact, larger events E poten-

tially dilute the observed privacy violation and lead to an

underestimation of privacy leakage. Numerically, the task of

maximizing Lx,x′ (a function with sets as arguments), is much

more difficult than to maximize �x,x′ (which has arguments in

R
d or N), where standard solutions exist (see [36]). Finally,

the loss function �x,x′ is far more amenable to interpretation

than Lx,x′ . In fact, �x,x′ can be plotted and thus problematic

areas with respect to privacy can be easily displayed and

understood (e.g., we see at one glance, that for the Gaussian

Mechanism, which only satisfies approximate DP, the problem

lies in extreme values of t; see Figure 2, right).

We conclude this section with a non-trivial example, where

we utilize the loss function to derive the privacy parameter ε.

Example 1. We consider a database x containing the infor-
mation of only one individual (m = 1). Assuming that said
individual’s data is a vector v = (v1, · · · , vk) ∈ [0, 1]k, i.e.
D = [0, 1]k, we can identify our database as x = v. It is our
intention to publish the maximum entry of v in a differentially
private manner. We can do this by employing a version of
the Noisy Max algorithm (Algorithm 7 in [19]) where we add
independent Laplace noise Li ∼ Lap(0, 1

λ ) to each component
vi and publish the maximum maxi(vi + Li). We demonstrate
how �x,x′ can be used to determine the privacy parameter ε
of this algorithm.
On the one hand, releasing a noisy component vi + Li by
itself satisfies λ-DP by virtue of the Laplace Mechanism. The
maximum can then be understood as a function over the vector
of noisy components and the composition theorem of DP yields
kλ as an upper bound of ε. On the other hand, define Fi

as the distribution function of vi + Li and fi = F ′
i as the

corresponding density. Then the density fv of the random
variable maxi(vi + Li) is of the form

fv(t) =
( k∑

i=1

fi(t)

Fi(t)

)( k∏
i=1

Fi(t)
)
.

In the case where v1 = ... = vk, this can be simplified
to fv(t) = kf1(t)[F1(t)]

k−1. Using this formula, it is a
straightforward calculation to show that for v = (0, ..., 0),
w = (1, ..., 1) and sufficiently large t ∈ R

�v,w(t) = | ln(fv(t))− ln(fw(t))| = kλ.

Theorem 1 especially implies that kλ is also a lower bound
of ε and thus the equality ε = kλ holds.

IV. QUANTIFYING THE MAXIMUM PRIVACY VIOLATION

In this section, we proceed to the statistical aspects of our

discussion. According to Theorem 1 the data-specific privacy

violation εx,x′ defined in (3) can be attained by maximizing

the loss function �x,x′ defined in (18). We devise an estimator

ε̂x,x′ for εx,x′ , by maximizing an empirical version �̂x,x′ of the

loss function, specified in Section IV-A. In Proposition 1, we

demonstrate mathematically that such estimators are consistent

with fast convergence rates. Besides estimation, we consider

confidence intervals for the pointwise privacy loss �x,x′(t) in

Section IV-B. If applied to a t∗ close to the argmax of �x,x′ ,

these can be used to statistically locate εx,x′ ≈ �x,x′(t∗).
Next recall that the global privacy parameter ε as well as

the data-centric privacy level εx, defined in (4) and (5) respec-

tively, can be attained by maximizing εx,x′ over a (sub)space

of databases. It therefore makes sense to approximate them

(from below) by a finite maximum, s.t. for instance

ε ≈ max(εx1,x′
1
, ..., εxB ,x′

B
), (19)

where (x1, x
′
1), ..., (xB , x

′
B) are B pairs of adjacent databases

(approximating εx works by setting x = x1 = ... = xB). If the

databases are chosen appropriately, the maximum on the right

side of (19) comes arbitrarily close to ε. Prior work suggests

that oftentimes simple heuristics already yield databases that

point to the global privacy parameter ε [19]. Furthermore, the

structure of the data space D can naturally motivate search

patterns (typically choosing xb and x′
b to be “far apart” in

some sense).

We use the approximation in (19), combined with our

estimators for the data-specific privacy violations, for the

statistical inference of the parameters ε and εx. We integrate

these methods into the MPL algorithm presented in Section

IV-C and demonstrate that its output [LB,∞) is a one-sided,

asymptotic confidence interval (Theorem 2).

A. Estimating data-specific privacy violations

We now consider the problem of estimating the data-specific

privacy violation εx,x′ for two adjacent databases x, x′ defined

in (3). According to Theorem 1 we can express εx,x′ as the

maximum of the loss function �x,x′ , i.e.

εx,x′ = sup
t∈Y

�x,x′(t),

where �x,x′ is defined in (18). It stands to reason to first esti-

mate the privacy loss �x,x′ by an empirical version �̂x,x′ , which

is then maximized to obtain an estimate for εx,x′ . Suppose that

A is either discrete or continuous, s.t. a realization of A(x) has
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density fx. By running that algorithm n times on databases x
and x′ respectively, we can generate two independent samples

of i.i.d observations X1, ..., Xn ∼ fx and Y1, ..., Yn ∼ fx′ .

Recalling the definition of the loss function in (18), we can

naturally define the empirical loss function as

�̂x,x′(t) :=
∣∣ ln(f̂x(t))− ln(f̂x′(t))

∣∣, (20)

where f̂x, f̂x′ are density estimators for fx, fx′ . In the case

of continuous densities, we can obtain such estimators via the

TKDE algorithm (see Section II-B). For discrete densities, we

can use a truncated version of the relative frequency estimator,

which is described in the TDDE (truncated discrete density

estimator) algorithm and mathematically defined as follows:

f̂x(t) :=
|{Xi : Xi = t}|

n
∨ τ .

As in the TKDE algorithm “∨” denotes the maximum and

τ > 0 a floor to avoid instabilities due to small probabilities.

The floor can be chosen smaller if n is larger and the density

estimate more accurate. We formalize this in the following

assumption for discrete algorithms:

(D) The parameter τ is adapted to n and satisfies

τ = O(ln(n)/
√
n).

Algorithm 2 Truncated discrete density estimator

Input: X = (X1, ..., Xn): data sample, t: evaluation point, τ : floor

Output: f̂(t): density estimate at point t

1: function TDDE(X, t, τ )
2: out := 0
3: for i = 1, 2, . . . , n do
4: if Xi = t then
5: out = out+ 1
6: end if
7: end for
8: out = out/n
9: return out ∨ τ

10: end function

In principle, we could now approximate εx,x′ by maximiz-

ing the empirical loss �̂x,x′ . Yet for algorithms with large

output spaces (in particular continuous algorithms) �̂x,x′ can

yield unreliable estimates for extreme values of t, where

(almost) no observations are sampled. We therefore restrict

maximization to a closed, bounded set C ⊂ Y , usually an

interval (or hypercube in the multivariate case). Notice that

εx,x′,C := sup
t∈C

�x,x′(t) ≈ sup
t∈Y

�x,x′(t) = εx,x′ (21)

in the sense that the difference between εx,x′,C and εx,x′ can

be made arbitrarily small for sufficiently large C. For most

standard algorithms even strict equality holds for some fixed

C (as is the case for all algorithms investigated in Section V).

This is in particular true for discrete algorithms with finite

range, where we can always choose C = Y .

Fig. 3: Loss function �x,x′ (blue) and empirical loss �̂x,x′

(red) for the Laplace algorithm. The vertical line indicates the

location of the argmax t̂ and the horizontal line the maximum

ε̂x,x′ of the empirical loss function.

We now state two regularity conditions that pertain to

continuous algorithms and guarantee reliable inference:

(C1) There exists a constant β ∈ (0, 1], such that for all x the

density fx corresponding to A(x) is β-Hölder continuous.

(C2) For any x, x′ and any sequence (tn)n∈N in C, which

satisfies

lim
n→∞ �x,x′(tn) = sup

t∈C
�x,x′(t),

it holds that (tn)n∈N has a limit point in

argmaxt∈C �x,x′(t).

We briefly comment on these assumptions: Condition (C1)

demands that our algorithm is not only continuous in the

sense that it has probability densities everywhere, but that

these additionally satisfy a weak regularity condition of β-

smoothness (see Section II-B). This guarantees reliable kernel

density estimators and thus a good approximation of �x,x′ by

�̂x,x′ . Condition (C2) is a technical requirement that appears

more complicated than it is: It prohibits the maximum privacy

violation (of A on C) from occurring in locations where

both densities are 0, thus excluding pathological cases. Many

continuous algorithms satisfy both of these conditions (among

them all those discussed in this paper).

We now define the location t̂ of maximum privacy violation:

t̂ ∈ argmax
t∈C

�̂x,x′(t). (22)

In the following we demonstrate that the maximum of the

empirical loss function, i.e.

ε̂x,x′ := �̂x,x′(t̂) (23)

is close to the maximum of the true loss function.

To derive asymptotic convergence rates in the continuous

case, the bandwidths h and h′ of the truncated kernel density

estimators f̂x and f̂x′ in (20) have to be chosen appropriately.

In addition, the floor τ must not be smaller than the precision
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level of the density estimators (see Section II-B). We specify

the proper choice of parameters in the following condition:

(C3) The parameters h, h′ and τ are adapted to n and satisfy

h, h′ = O(
n− 1

2β+d
)
, τ = O(

n− β
2β+d ln(n)

)
.

Proposition 1. Suppose that C is a closed, bounded set and
εx,x′,C ∈ (0,∞). If A is a discrete algorithm and condition
(D) is satisfied, it follows that

|ε̂x,x′ − εx,x′,C | = OP (n
−1/2)

and |�x,x′(t̂)− εx,x′,C | = OP (n
−1/2).

If A is a continuous algorithm such that conditions (C1) −
(C3) are satisfied, it follows that

|ε̂x,x′ − εx,x′,C | = OP

(√
ln(n)n− β

2β+d

)
and |�x,x′(t̂)− εx,x′,C | = OP

(√
ln(n)n− β

2β+d

)
.

Furthermore, if εx,x′,C ∈ {0,∞} it holds that

ε̂x,x′ →P εx,x′,C

where “→P ” denotes convergence in probability (see Ap-
pendix A for a definition).

The first identity for both the discrete and continuous case

in Proposition 1 suggests that the maximum privacy violation

for x, x′ is approximated by its empirical counterpart at the

same rate as the densities fx, f
′
x by their estimators, which

again is different in both settings. This rate -specifically in the

continuous case- should not be taken for granted: Admittedly,

if the two continuous densities fx, fx′ are bounded away from

0 on C, it is not difficult to show that

sup
t∈C

|�̂x,x′(t)− �x,x′(t)| = OP

(√
ln(n)n− β

2β+d

)
,

which implies the Proposition. However, if the densities are not

bounded away from 0, it may not be true that �x,x′ is uniformly

approximated by �̂x,x′ . Still, the approximation of the maxima

holds and is not slowed down in this case (even though the

mathematical proof gets substantially more involved).

The second identity (for both cases) states that t̂ is close

to the argmax of �x,x′ in the sense that the true loss function

evaluated at t̂ is close to its maximum on C. This fact will be

used in the two subsequent sections, where we argue that a

confidence interval for �x,x′(t̂) automatically contains εx,x′,C .

We conclude this section by stating the DPL algorithm

(Algorithm 3) which, given x and x′, calculates the maximum

empirical privacy loss, as well as t̂. In DPL, the binary variable

discr indicates whether a discrete (1) or continuous (0) setting

is on hand and the set C encloses the area of interest.

B. Statistical bounds for pointwise privacy loss

In the previous section, we have considered the problem of

estimating data-specific privacy violations. We now move to

the related topic of statistical inference in the sense of Section

II-A: Finding a confidence interval for εx,x′,C .

Algorithm 3 Data-specific privacy loss

Input: neighboring databases x and x′, closed and bounded set C,
sample size n, specification variable discr

Output: estimated loss ε̂x,x′ , location of loss t̂

1: function DPL(x, x′, n, C, discr)
2: Generate X = (X1, · · · , Xn) with Xi ∼ A(x)
3: Generate Y = (Y1, · · · , Yn) with Yi ∼ A(x′)
4: Set τ in accordance with (D) if discr = 1
5: Set h, h′ and τ in accordance with (C3) if discr = 0
6: Choose appropriate kernel K
7: if discr = 1 then
8: f̂x(·) = TDDE(X, ·, τ)
9: f̂x′(·) = TDDE(Y, ·, τ)

10: else
11: f̂x(·) = TKDE(X, ·, h,K, τ)
12: f̂x′(·) = TKDE(Y, ·, h′,K, τ)
13: end if
14: �̂x,x′(·) = | ln(f̂x(·))− ln(f̂x′(·))|
15: t̂ = argmax{�̂x,x′(t) : t ∈ C}
16: ε̂x,x′ = �̂x,x′(t̂)
17: return (t̂, ε̂x,x′)
18: end function

More precisely, we show in this section how to construct an

asymptotic confidence interval for the pointwise privacy loss

�x,x′(t) for an arbitrary t ∈ C, which we apply later to the

choice t = t̂ (recall that according to Proposition 1 we have

�x,x′(t̂) ≈ εx,x′,C).

Suppose that �x,x′(t) ∈ (0,∞). In this situation it can be

shown by asymptotic normality of the density estimators and

the delta method (see [37]), that for all t ∈ R

lim
n→∞P

(cn
σ
(�̂x,x′(t)− �x,x′(t)) ≤ t

)
= Φ(t). (24)

Here Φ(·) is the distribution function of a standard normal

random variable and cn =
√
n if the algorithm A is discrete

and cn =
√
nhd if it is continuous. In the latter case h denotes

the bandwidth of both f̂x, f̂x′ and is assumed to be adapted to

the sample size n as h = O(n− 1
2β+d−γ) for some γ > 0. This

bandwidth is smaller than the one suggested in (C3) and leads

to a slower uniform convergence of the corresponding density

estimators (see Section II-B, (11)). Such a bandwidth choice,

which makes the variance of the density estimator larger than

its bias, is referred to as “undersmoothing”. Undersmoothing

is a standard tool in the statistical analysis of continuous

densities, where the two tasks of estimation and inference

require different degrees of smoothing (see [38] p.3999).

The variance σ2 on the right side of (24) can be expressed

as follows:

σ2 :=

⎧⎨
⎩

1
fx(t)

+ 1
fx′ (t) − 2, A discrete∫

K2(s) ds
(

1
fx(t)

+ 1
fx′ (t)

)
, A continuous.

Note that σ2 is well-defined in both cases (in particular in

the discrete case 1/fx(t), 1/fx′(t) > 1, s.t. the variance is

indeed positive). Also notice that σ2 is unknown, but easy
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to estimate in practice, replacing the true densities by their

estimators f̂x, f̂x′ , which yields

σ̂2 :=

⎧⎨
⎩

1
f̂x(t)

+ 1
f̂x′ (t)

− 2, A discrete∫
K2(s)ds

(
1

f̂x(t)
+ 1

f̂x′ (t)

)
, A continuous.

It is straightforward to show that σ̂2 = σ2 + oP (1). We can

now use this fact, together with the convergence in (24), to

see that for any α ∈ (0, 1)

1− α ≈ P

(cn
σ̂
(�̂x,x′(t)− �x,x′(t)) ≤ Φ−1(1− α)

)
(25)

= P

(
�̂x,x′(t) +

Φ−1(α)σ̂

cn
≤ �x,x′(t)

)
.

Here Φ−1 denotes the quantile function of the standard normal

distribution and we have used the identity Φ−1(1 − α) =
−Φ−1(α). The approximation of 1−α by the probability gets

more accurate as the sample size n increases and we see that

Îα := [�̂x,x′(t) + σ̂c−1
n Φ−1(α),∞)

is an asymptotic confidence interval for �x,x′(t) (in the sense

of Section II-A).

C. A statistical procedure for the maximum privacy violation

Recall the definition of εx,x′,C in (21). In this section

we construct the algorithm called MPL (Maximum Privacy

Loss) whose output LB lower bounds the maximum of

εx1,x′
1,C

, ..., εxB ,x′
B ,C with prescribed probability 1 − α. The

choice of α is determined by the user but, guided by com-

mon practice in hypothesis testing, we recommend α ∈
{0.1, 0.05, 0.01}. By construction the inequality

max{εx1,x′
1
, ..., εxB ,x′

B
} ≥ max{εx1,x′

1,C
, ..., εxB ,x′

B ,C}
holds and both sides are arbitrarily close for large enough C.

Hence, LB will also constitute a tight lower bound for the

maximum on the left and thus of the privacy parameter ε (see

(19)). An outline of MPL is given in Algorithm 4.

We now study the structure of the MPL algorithm, which

calculates LB for a given set

X = {(x1, x
′
1), ..., (xB , x

′
B)}

of B adjacent pairs and is composed of two parts. The first

part of the algorithm is dedicated to finding the pair of

databases (xmax, x
′
max) ∈ X along with the corresponding

location t̂max that maximize the empirical privacy violation.

For that purpose, MPL runs the DPL algorithm for each

pair (xb, x
′
b) to approximate the data-specific privacy violation

εxb,x′
b

by an estimate ε̂xb,x′
b
. Based on the empirical violations

ε̂x1,x′
1
, ..., ε̂xB ,x′

B
, the pair of databases (xmax, x

′
max) with

the highest privacy loss is chosen. The location where the

empirical privacy loss �̂xmax,x′
max

is maximized is called t̂max

(which is an output of DPL run on (xmax, x
′
max)). Struc-

turally, this part of the algorithm resembles counterexample

generation [19] and the tuple (ε̂xmax,x′
max

, xmax, x
′
max, t̂max)

already yields useful information concerning the location and

magnitude of the maximum privacy violation.

The second part of the MPL algorithm is designed

to establish a confidence region for the privacy loss

at (xmax, x
′
max, t̂max). Notice that by construction

�xmax,x′
max

(t̂max) ≈ εxmax,x′
max

holds (see Proposition

1) and that therefore said confidence region captures the

maximum privacy violation. The methods for deriving

LB are borrowed from Section IV-B and are performed

independently from the first part of the algorithm. MPL

creates two fresh samples X∗
1 , ..., X

∗
N ∼ A(xmax) and

Y ∗
1 , ..., Y

∗
N ∼ A(x′

max) with sample size N > n. These

are used to approximate the loss �xmax,x′
max

(t̂max) by its

empirical version �̂∗xmax,x′
max

(t̂max). The density estimators

f̂∗
x , f̂

∗
x′ underlying this empirical loss function are constructed

with parameters hmax and τ tailored to the construction of

confidence intervals. This choice is expressed in the following

condition:

(C4) Let ν ≥ 0. With N = O(n1+ν) and γ > ν/((1 + ν)6)

we choose hmax = O(N− 1
2β+d−γ) and τ = o(1).

As already indicated in Section IV-B, bandwidths for confi-

dence intervals have to be chosen smaller than for estimation

(realized by γ > 0). The trade-off between γ and ν expresses

that in the second part of the MPL algorithm, a larger sample

size N compared to n requires more undersmoothing to

control the bias. Yet, as ν is usually small in practice (in

our experiments about 0.1), the undersmoothing requirement

is rather weak. The fact that τ can decay at any rate shows

that t̂max (selected by truncated estimators in the first step)

locates automatically in regions where the densities are not too

close to 0 and thus a second truncation by τ is not important.

In applications, one could simply put τ = 0 in this step.

Recalling Section IV-B and particularly (25), we can now

give a confidence interval [LB,∞) for εxmax,x′
max,C

, where

the statistical lower bound LB is defined as follows:

LB := �̂∗xmax,x′
max

(t̂max) +
Φ−1(α)σ̂N

cN
. (26)

Here Φ−1 is, again, the quantile function of the standard

normal distribution and 1 − α is the confidence level. The

normalizing constants cN and σ̂N are described in Section

IV-B. The following theorem validates theoretically the lower

bound LB produced by the MPL algorithm.

Theorem 2. Suppose that A is either a discrete algorithm
and condition (D) is satisfied, or a continuous one such that
conditions (C1)-(C4) are satisfied with regard to A and the
MPL algorithm.

i) If
ε∗C := max(εx1,x′

1,C
, ..., εxB ,x′

B ,C) ∈ (0,∞)

it holds that

lim
n→∞P

(
LB ≤ ε∗C

)
= 1− α. (27)

ii) If ε∗C = ∞, then LB →P ∞. If ε∗C = 0, then LB →P 0.
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The proof of the theorem is technical and therefore deferred

to the Appendix.

Algorithm 4 Maximum Privacy Loss

Input: set of data pairs X , sample sizes n and N , region
of investigation C, specification variable discr, level α

Output: Statistical lower bound for privacy violation LB

1: function MPL(X , n, N , C, discr, α)
2: for b = 1, . . . , B do
3: (t̂xb,x

′
b
, ε̂xb,x

′
b
) = DPL(xb, x

′
b, n, C, discr)

4: end for
5: Set (xmax, x

′
max) ∈ argmax{ε̂xb,x

′
b
: (xb, x

′
b) ∈ X}

6: Set t̂max := t̂xmax,x′
max

7: Generate X∗ = (X∗
1 , ..., X

∗
N ) with X∗

i ∼ A(xmax)
8: Generate Y ∗ = (Y ∗

1 , ..., Y ∗
N ) with Y ∗

i ∼ A(x′
max)

9: Choose τ in accordance with (D) if discr = 1
10: Choose hmax, τ in accordance with (C4) if discr = 0
11: Choose appropriate kernel K
12: if discr = 1 then
13: f̂∗

xmax
(t̂max) = TDDE(X∗, t̂max, τ)

14: f̂∗
x′
max

(t̂max) = TDDE(Y ∗, t̂max, τ)
15: else
16: f̂∗

xmax
(t̂max) = TKDE(X∗, t̂max, hmax,K, τ)

17: f̂∗
x′
max

(t̂max) = TKDE(Y ∗, t̂max, hmax,K, τ)
18: end if
19: �̂∗xmax,x′

max
(t̂max)=| ln(f̂∗

xmax
(t̂max))− ln(f̂∗

x′
max

(t̂max))|
20: Calculate σ̂2

N and cN based on X∗, Y ∗ and discr

21: Define LB := �̂∗xmax,x′
max

(t̂max) +
Φ−1(α)σ̂N

cN
22: return LB
23: end function

We conclude this section by discussing the limitations of

our statistical methods with an example taken from [19].

Example 2. Suppose we have an algorithm A that checks
whether a given database x matches a target database x0.
More precisely, we have A(x) = 0 for any x �= x0 and
A(x0) = 1 with probability e−k and A(x0) = 0 with probabil-
ity 1−e−k. One can easily confirm that A is not differentially
private. However, for large k, a sampling based method such
as ours could falsely identify A as a constant function which
trivially satisfies DP. And while A is actually (ε, δ)−DP for
ε = 0 and δ = e−k and comes close to perfect 0 − DP ,
this would still amount to a misclassification of A. In fact, A
reflects the fundamental limitations of any black box scenario
where we are forced to rely solely on algorithm outputs. In
order to reliably detect such intricate pathologies, one might
have to ultimately access the algorithm’s source code. Here,
formal verification tools (referenced in the Introduction) might
be more suitable.

V. EXPERIMENTS

In this section, we analyze the performance of our method-

ology by applying it to some standard algorithms in DP

validation. We focus mainly on inference for the global privacy

parameter ε, but a subsection concerning the data-centric

privacy level εx is included as well.

Our method is implemented in R and for kernel density

estimation we use the “kdensity” package, which also provides

automatic bandwidth selection. In the following, we give a

short outline of the algorithms and experiment settings before

discussing our empirical findings.

Query model: We briefly discuss the query model used in

[19]. Many discrete algorithms do not operate on databases

x directly, but instead process query outputs q(x). Thus, the

search and selection of databases x = (x(1), · · · , x(m))
translates into a choice of query outputs

q = (q1, · · · , qd) = (q1(x), · · · , qd(x)).
Here counting queries, which check how many data points

x(i) in x satisfy a given property, are of particular interest.

A change in a single data point can affect the output of

each counting query by at most 1. Hence, query answers

on neighboring databases are captured by vectors of natural

numbers q, q′ where qi and q′i can differ by at most 1. Simple

query answers that are created following patterns displayed in

Table I are sufficient to deduce the privacy parameter [19] and

we will draw on vectors resembling these to evaluate discrete

algorithms.

Pattern Query q Query q′

One Above (1, 1, 1, 1, 1, 1) (2, 1, 1, 1, 1, 1)
One Below (1, 1, 1, 1, 1, 1) (0, 1, 1, 1, 1, 1)
One Above Rest Below (1, 1, 1, 1, 1, 1) (2, 0, 0, 0, 0, 0)
One Below Rest Above (1, 1, 1, 1, 1, 1) (0, 2, 2, 2, 2, 2)
Half Half (1, 1, 1, 1, 1, 1) (0, 0, 0, 1, 1, 1)
All Above All Below (1, 1, 1, 1, 1, 1) (2, 2, 2, 2, 2, 2)
X Shape (1, 1, 1, 0, 0, 0) (0, 0, 0, 1, 1, 1)

TABLE I: Input patterns used in [19]

Similar to the discrete case, continuous algorithms are

usually applied to aggregate statistics S of the data and not to

the raw data itself. We therefore consider algorithmic inputs

of the form s = S(x) and s′ = S(x′), that lie in a continuous

domain (in the following examples intervals and cubes).

Algorithms: We test our approach on 8 algorithms in total.

The well known Laplace Mechanism (see [1]) publishes a

privatized version of a real valued statistic s ∈ [0, 1] by adding

centered Laplace noise L ∼ Lap( 1ε ). This mechanism is used

as a subroutine in many differentially private algorithms (e.g.

the versions of Noisy Max discussed here). In the following,

we consider as input statistics sb = 0 and s′b = b/10 for

b = 1, ..., 10. The set C in MPL is chosen as the symmetric

interval [−1, 1].
The Report Noisy Max algorithm [32] publishes the query

with the largest value within a vector of noisy query answers.

More precisely, the index argmax{qi + Li : 1 ≤ i ≤ d} with

Li ∼ Lap( 2ε ) is calculated and returned (see [19], Algorithm

5). We implement Report Noisy Max and our procedure on

vectors that entail 6 query answers and choose databases qb
and q′b, b = 1, ..., 10, that are similar to the patterns described

in Table I.

Given a query vector q and a threshold T , the Sparse Vector
Technique (SVT) goes through each query answer qi and

reports whether said query lies above or below T [32]. The
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maximum number of positive responses M is an adjustable

feature of the algorithm that forces it to abort after M query

answers above T have been reported. We investigate 4 versions

of SVT taken from [33], which are, in accordance with the

denotation in [33] and [21], variants SVT2 and SVT4-SVT6.

We consider query vectors qb and q′b, b = 1, · · · , 10, with 10
entries that are similar to the patterns in Table I. This choice

resembles the one in prior work (see [19], [21]) and we do

the same for the tuning parameters with T = 1 and M = 1
[21].

The continuous Noisy Max algorithm (see Algorithm 7,

[19]) has been discussed in Example 1. Here we use it to

publish the maximum entry of a statistic s ∈ [0, 1]k. We

consider the case k = 3 and input statistics sb = (0, 0, 0)
and s′b = (b/10, b/10, b/10) for b = 1, ..., 10. Furthermore,

we choose C = [−1, 1].
The Exponential Mechanism provides a general principle

for the construction of private algorithms. We consider a

version where we privatize real numbers from the interval

[1, 2], with non-negative outputs. More precisely, for a number

s ∈ [1, 2] the output is sampled according to a continuous

density proportional to exp(−λ|s − t|) for t ≥ 0. Here

λ > 0 is a parameter determining the privacy level. Recall that

this setup fits our (relaxed) notion of continuous algorithms

discussed in Section III (continuous density on the half-line).

It is well known that using this construction, the exponential

mechanism affords (at least) 2λ-DP. We can however employ

Theorem 1 to derive the privacy parameter ε precisely:

ε = λ+ ln(2− exp(−2λ))− ln(2− exp(−λ)).

Notice that ε ≈ 2λ for small λ. In the following simulations,

we consider input statistics sb = 1 and s′b = 1 + b/10 for

b = 1, ..., 10 and choose C = [0, 2].
Experiment settings: To study privacy violations, we em-

ploy the MPL algorithm described in Section IV-C. The

sample sizes and floor in MPL are chosen as n = 2 × 104,

N = 5 × 104 and τ = 10−3 for algorithms (a)-(d) (labels as

in Figure 4), i.e. all algortithms apart from the SVTs. For

the SVTs we use larger sample sizes and a smaller floor

with n = 105, N = 5 × 105 and τ = 10−4. This choice

of parameters is necessary as SVTs allow for extreme events

(with low probability) that otherwise cause instabilities.

For the continuous algorithms, the kernel in KDE is the

Gaussian Kernel (described in Appendix B) and the band-

widths in the first step of MPL are chosen by a pre-

implemented selection rule in the “kdensity” package (both

are the default options).

We examine each algorithm for different targeted privacy

parameters ε0 ∈ {0.2, 0.7, 1.5}, capturing the high, middle and

low privacy regime respectively [19] (we adjust the targeted

privacy level, e.g. by tuning the Laplace noise or changing λ
in the Exponential Mechanism). Correctly designed algorithms

meet their targeted privacy levels, i.e. ε = ε0. Algorithms (a)

- (f) fall into this category, with labels again as in Figure

4. Notice that (f) is sometimes deemed “incorrect” in the

literature [19], as in its original design ε is only equal to the

targeted level ε0 up to a constant (this simple scaling error

has been corrected in our version). Algorithms (g) and (h)

constitute incorrect algorithms that do not satisfy DP at all,

i.e. ε = ∞ [33]. Recalling (4), this especially points to privacy

violations εx,x′ that exceed the targeted privacy parameter ε0.

Results: In order to evaluate MPL, we consider the cu-

mulative distribution function (cdf) of the lower bound LB
defined in (26). Recall that the cdf is defined for some z ∈ R

as P(LB ≤ z). In Figure 4 we display a panel where each

plot corresponds to one algorithm under investigation and

each curve to the empirical cdf for a different choice of ε
(each based on 1000 simulation runs). This presentation is

related to, but more informative than, a standard histogram

and for details on the empirical cdf we refer to [37]. It is

also particularly transparent, as we report the results of 1000
simulated lower bounds (instead of just a single one), giving

insight into the variance of LB. The dashed vertical lines

(in the same color as the corresponding cdfs) indicate the

targeted privacy parameters ε0 and the horizontal, red line

the prescribed confidence level 1− α, where we have chosen

α = 0.05.

For the correct algorithms (a) - (f) an important feature

of the empirical cdfs is their location. Note that evaluated in

the targeted privacy parameter ε0 = ε, the cdf describes the

confidence level P(LB ≤ ε), which according to our theory

should approximately equal 1−α (see Theorem 2). Therefore,

we would expect our empirical cdfs to pass through the

intersection of the horizontal confidence level and the vertical

targeted privacy level. In most scenarios we observe that the

prescribed confidence level is indeed well approximated, while

sometimes it is slightly too large (corresponding to small

values of LB).

This tendency is inherent in the empirical study of DP and

should not surprise us: To approximate ε, one has to first

select the right data pair out of B pairs and then empirically

maximize the privacy loss. Poor performance in either step

biases estimates away from ε towards smaller values - a trend

that has been observed in other empirical studies (see e.g. [19],

where the p-values are in each instance much higher than the

prescribed level).

A second performance measure for our correct algorithms

is the ascent of the cdf in a neighborhood of ε: In most of

our simulations (a)-(f) we observe a rapid increase close to ε,
suggesting that LB is a tight and reliable bound for ε. In the

case of SVT2 and SVT4 the ascent is slightly slower in the

high privacy regime ε0 = 0.2, which hints at higher variance

in LB caused by smaller values of the discrete densities.

As for the incorrect algorithms (g) and (h), the feature that

provides the most conclusive information on the performance

of MPL is the location of the empirical cdfs. To be more

exact, a lower bound LB to the right of the targeted privacy

parameter exposes a false privacy claim (this corresponds to

a right-shift of the empirical cdf). We observe that LB is

usually sampled to the right of its targeted privacy parameter

ε0 (with almost certainty for (g) and in the middle and low

privacy regime for (h)), often with a large margin. In the high
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(a) Laplace Mechanism
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(b) Report Noisy Max
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(c) Continuous Noisy Max
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(d) Exponential Mechanism
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(e) Sparse Vector Technique 2
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(f) Sparse Vector Technique 4
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(g) Sparse Vector Technique 5
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(h) Sparse Vector Technique 6
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Fig. 4: Empirical distribution functions of the lower bound LB in the high (blue), middle (orange) and low (green) privacy

regime, generated by the MPL algorithm. The vertical lines (with corresponding colors) depict the targeted privacy levels, and

the red horizontal line the confidence level of 95%.
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Report Noisy Max
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Continuous Noisy Max

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5
privacy parameter  ε

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

Fig. 5: Empirical distribution function of LB for fixed databases.

privacy regime for (h), we sometimes observe LB ≤ ε0, due

to increased variance. In conclusion, the experiments confirm

the performance of MPL with respect to flawed algorithms.
Sample sizes and runtime: After considering the statis-

tical results of our experiments, we want to briefly discuss

computational aspects. Our MPL algorithm relies on standard

statistical tools that are provided by many programming lan-

guages such as R. It is therefore convenient to implement

for users. Confirming this ease of applicability, we have run

our simulations on a standard desktop computer (3.4 GHz

Intel Core i5 CPU, 4 cores, 16 GB RAM). Under the above

conditions runtimes range from 10 seconds for the smaller

sample sizes (used for algorithms (a)-(d)) to less than one

minute for the larger sample sizes (used for algorithms (e)-(h)).

The precise runtimes are reported in Table II and are shorter

than those given in [21], where the above algorithms are also

analyzed (except for the exponential mechanism). Importantly,

[21] also rely on a much more powerful machine, with 128

cores at 1.2GHz and 500 GB RAM.
Our gains in terms of runtime are mainly achieved by cutting

sampling efforts. For instance, consider B = 10 pairs of

neighboring databases as input for the MPL algorithm and

its counterpart in [21], DD-Search. Then the total sampling

effort associated with one run of MPL amounts to 5×105 for

the smaller samples (algorithms (a)-(d)) and 3 × 106 for the

larger ones (algorithms (e)-(h)). This corresponds to ≈ 0.05%
and ≈ 0.32% of the sample sizes that would be used by the

DD-Search algorithm in [21]. This means that we rely only

on a small fraction of the data used in [21].

Runtime in seconds

Alg. runtime Alg. runtime
Laplace (a) 10.9 SVT 2 (e) 23.8
Noisy Max (b) 4.7 SVT 4 (f) 26.6
Noisy Max (c) 10.5 SVT 5 (g) 25.9
Exponential (d) 11.3 SVT 6 (h) 57.3

TABLE II: Runtimes for one run of the MPL algorithm on

(a)-(h). Times are averaged over 10 simulation runs.

The data-centric privacy level for fixed databases: As

pointed out in Section IV, we can use the MPL algorithm

to determine the data-centric privacy guarantee for select

databases defined in (5). We demonstrate this on both versions

(discrete and continuous) of the Noisy Max algorithm.

Regarding the discrete case, suppose we have a database x
that, given 6 counting queries, evaluates to 0 for each query,

that is q = q(x) = (0, 0, 0, 0, 0, 0). Recalling our discussion

of the query model, we know that any database x′ in the

neighborhood of x evaluates to a binary vector q′ ∈ {0, 1}6.

This means that the entire neighborhood of x can be exhausted

by the collection of all such query pairs (q, q′). We set the

privacy parameter ε = 1.5 and run the MPL algorithm for

Report Noisy Max on that collection of query pairs 1000

times. In Figure 5 (left panel) we plot the empirical cdf of LB
(purple), which exhibits a sharp rise, long before the global

privacy parameter ε (vertical green line). In view of our earlier

results and given the exhaustive search of query pairs, we can

be confident that the empirical cdf captures the data-centric

privacy leakage εx. The plot suggests that the data-centric

privacy parameter is only about half the size of ε, confirming

that the amount of privacy afforded to this specific database

outstrips the worst case guarantee.

For the continuous case, we consider a database x that

produces the statistic s = S(x) = (1/2, 1/2, 1/2) and assume

that S maps neighboring databases x′ anywhere on the unit

cube [0, 1]3. Let s′ ∈ {0, 1/2, 1}3 (which forms an even

grid of 27 points on the unit cube). We can run MPL on

the collection of statistics thus obtained. It can be shown by

similar methods as employed in Example 1, that εx,x′ = εx
is attained for databases x′ with S(x′) = s′ = (0, 0, 0) or

S(x′) = s′ = (1, 1, 1), both of which are covered by our grid.

As for the discrete case, we observe that εx is about half the

size of ε (see Figure 5, right panel). In conclusion, the amount

of privacy ceded to our specific databases x in both examples

is about twice as high as the global privacy parameter suggests

(i.e. εx ≈ ε/2).
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Continuous Noisy Max
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Fig. 6: Mean squared error E(ε̂x,x′ − εx,x′)2 for different

sample sizes n and εx,x′ = 1.5.

Estimation of data-specific privacy violations: Up to this

point we have focused on the lower bound LB, produced by

the MPL algorithm. We now want to consider the estimation

of data-specific privacy violations defined in (3), which is the

key novelty of our local approach and, as an integral part of

MPL, has an outsize effect on the quality of LB. We especially

focus on the two continuous algorithms (Noisy Max and the

Exponential Mechanism), where our estimator ε̂x,x′ differs

most noticeably from prior approaches by virtue of kernel

density estimation.

Regarding the Noisy Max algorithm, suppose we choose

databases x and x′ that produce statistics s = S(x) = (0, 0, 0)
and s′ = S(x′) = (1, 1, 1), and similarly for the Exponential

Mechanism databases x and x′ that result in s = 1 and s′ = 2.

In both situations, the choice of these databases provokes a

privacy violation εx,x′ = ε that is equal to the global privacy

parameter, which we fix at 1.5.

To study the quality of the estimator ε̂x,x′ based on n obser-

vations, we consider the mean squared error E(ε̂x,x′ − εx,x′)2

(approximated by 1000 simulation runs) for both algorithms.

In Figure 6 we display the simulated errors for the two

algorithms and different sizes of n. In both cases we observe

for a sample size as moderate as 5000 only small estimation

errors (less than 4% of the true ε for Noisy Max and less than

0.5% for the Exponential Mechanism) and the errors are less

than half of this for n = 20000 (which is used in our previous

experiments). This shows that the strong performance of MPL

can also be attributed to the precision of our local estimators

for the data-specific privacy violations.

VI. CONCLUSION

In this work, we have discussed a way to assess privacy

with statistical guarantees in a black box scenario. In contrast

to prior works, our approach relies on a local conception of

DP that facilitates the estimation and interpretation of privacy

violations by circumventing the problem of event selection.

Besides quantification of the global privacy parameter, our

methods can be used for a more refined analysis, measuring the

amount of privacy ceded to a specific database. The findings

of this analysis might not only help to understand existing

algorithms better, but also aid the design of new privacy

preserving mechanisms. This can, for instance, be algorithms

that are tailored to provide greater privacy to databases that

require more protection.
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[36] W. Forst and D. Hoffmann, “Optimization—theory and practice.”

Springer-Verlag New York, 2010.
[37] A. W. van der Vaart, “Asymptotic statistics.” Cambridge University

Press, 1998.
[38] J. J. Heckman and E. Leamer, “Handbook of econometrics, volume 5.”

Elsevier Science B.V., 2001.
[39] Y. M. Bishop, S. E. Fienberg, and P. W. Holland, “Discrete multivariate

analysis: Theory and practice.” Springer, 2007.

APPENDIX A

PROOFS AND TECHNICAL DETAILS

The appendix is dedicated to the mathematical details of our

analysis: the definition of stochastic convergence, additional

facts on the kernel K in KDE, as well as the proofs of

Proposition 1 and Theorem 2.

A. Stochastic Landau symbols and convergence in probability

Let (Zn)n∈N be a sequence of random variables and

(an)n∈N a sequence of positive, real numbers. We now say that

Zn = OP (an), if for every ε > 0 there exists a (sufficiently

large) C > 0 s.t.

lim sup
n→∞

P(|Zn|/an ≥ C) < ε.

Notice that analogous rules hold for the stochastic as for the

deterministic Landau notation, such as OP (an) = anOP (1)
or, for another positive sequence (bn)n∈N, that OP (an) +
OP (bn) = OP (an + bn). Next we say that Zn = oP (an),
if for every (arbitrarily small) c > 0

lim
n→∞P(|Zn|/an ≥ c) = 0.

Finally we say that for a constant a ∈ R it holds that Zn →P a
if |Zn−a| = oP (1). We say that Zn →P ∞, if for any C > 0

lim
n→∞P(Zn ≥ C) = 1.

For an extensive explanation of Landau symbols and conver-

gence see [39].

B. Kernel density estimation

Recall the definition of a kernel K as a continuous function

K : R
d → R≥0 with

∫
Rd K(u)du = 1. In our discussion,

we make the following two regularity assumptions, which are

taken from [30] (Assumptions 2 and 3):

(K1) K satisfies spherical symmetry, i.e. there exists a non-

increasing function k : R≥0 → R≥0, s.t. K(u) = k(|u|)
∀u ∈ R

d.
(K2) k has exponentially decaying tails, i.e. there exist

ρ, Cρ, t0, s.t. k(t) ≤ Cρ exp(−tρ), ∀t > t0.

A typical example of a kernel satisfying (K1) and (K2) is

the Gaussian kernel, which corresponds to the density function

of a standard normal and is given for d = 1 as K(t) =

exp(− t2

2 )/
√
2π. We use this kernel in our experiments to

study continuous algorithms.

C. Proof of Proposition 1

We only show the proposition for the case of a continuous

algorithm A and only for d = 1 (the case d > 1 is a

straightforward generalization). The discrete case works by

similar, but simpler techniques. Here, the central limit theorem

can be employed to establish a uniform convergence rate of

OP (n
−1/2) for the relative frequency estimator. By exploiting

the differentiability of the logarithm, this rate of convergence

can then be transferred to ε̂x,x′ . The second identity in the

discrete case follows as �x,x′(t̂) = εx,x′,C with probability

converging to one (which is not true in the continuous case).

In the following, we restrict ourselves to the case where

εx,x′,C ∈ (0,∞). Proving consistency in the remaining cases

εx,x′,C ∈ {0,∞} is easier and therefore omitted.

We begin by defining two sets, that will be used extensively

in our subsequent discussion: the argmax of the loss function

M := argmax
t∈C

�x,x′(t)

and the closed ζ-environment of M
Uζ(M) := {t ∈ C : min

t′∈M
|t− t′| ≤ ζ}.

Notice that M is non-empty and closed. To see this, consider a

sequence (tn)n∈N ⊂ C, such that �x,x′(tn) → supt∈C �x,x′(t).
Condition (C2) implies that there exists a limit point in

C, where the maximum is attained. In particular M �= ∅.

Similarly, we can show that M is closed: If t is in the closure

of M, we can construct a sequence (tn)n∈N ⊂ M with tn → t
and by Condition (C2) it follows that t ∈ M.

We now formulate an auxiliary result, that is the main

stepping stone in the proof of Proposition 1.
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Lemma 1. Suppose that the assumptions of Proposition 1 hold
and εx,x′,C ∈ (0,∞). Then the following statements hold:

i) For any sufficiently small ζ > 0

sup
t∈Uζ(M)

|�̂x,x′(t)− �x,x′(t)| = OP

(√
ln(n)n− β

2β+1

)
.

ii) There exists a κ = κ(ζ) > 0 s.t.

lim
n→∞P

(
sup

t �∈Uζ(M)

�̂x,x′(t) > sup
t∈C

�x,x′(t)− κ
)
= 0.

Let us verify that the Lemma indeed entails Proposition 1.

We first show that for a small enough ζ > 0 it holds that

lim
n→∞P

(
t̂ ∈ Uζ(M)

)
= 1. (28)

To see this we notice that according to Lemma 1, part ii) there

exists a κ > 0, s.t.

sup
t �∈Uζ(M)

�̂x,x′(t) ≤ sup
t∈M

�x,x′(t)− κ+ oP (1).

Here we have used supt∈M �x,x′(t) = supt∈C �x,x′(t). Com-

bining this with part i) of the lemma we have

sup
t �∈Uζ(M)

�̂x,x′(t) ≤ sup
t∈M

�̂x,x′(t)− κ+ oP (1).

As a consequence it holds with probability converging to 1,

that �̂x,x′ does not attain its maximum in C \ Uζ(M) and

conversely that (28) holds. We now have for any t∗ ∈ M
|�̂x,x′(t∗)− �x,x′(t∗)| =OP

(√
ln(n)n− β

2β+1

)
(29)

|�̂x,x′(t̂)− �x,x′(t̂)| =OP

(√
ln(n)n− β

2β+1

)
,

where we have used part i) of the Lemma and for the second

rate additionally (28). Now, the first identity in Proposition 1

(in the continuous case) follows by comparing the empirical

and the true loss function at their respective argmaxes. For

instance, supposing that �̂x,x′(t̂) ≥ �x,x′(t∗) holds, we have

|ε̂x,x′ − εx,x′,C | = �x,x′(t̂)− �x,x′(t∗)

=�x,x′(t̂)− �x,x′(t̂) + �x,x′(t̂)− �x,x′(t∗)

=OP

(√
ln(n)n− β

2β+1

)
+ [�x,x′(t̂)− �x,x′(t∗)] ≥ 0.

Non-negativity follows from �̂x,x′(t̂) ≥ �x,x′(t∗), while the

decay rate in the second equality follows from (29). Since

[�x,x′(t̂)− �x,x′(t∗)] is non-positive, it must also hold that

|�x,x′(t̂)− �x,x′(t∗)| = OP

(√
ln(n)n− β

2β+1

)
.

Reversing the roles of empirical and true loss can be used to

treat the case �̂x,x′(t̂) ≤ �x,x′(t∗). Part ii) of the proposition

also follows from (29), as

|εx,x′,C − �x,x′(t̂)| = �x,x′(t∗)− �x,x′(t̂)

=[�x,x′(t∗)− �̂x,x′(t̂)] + [�̂x,x′(t̂)− �x,x′(t̂)].

In the first step we have used that εx,x′,C = �x,x′(t∗) ≥
�x,x′(t̂) because t∗ ∈ M. We can now treat the two terms

on the right separately. The first term in the square brackets

decays at the desired rate according to Proposition 1 part i)

and the second part according to the second identity in (29).

This shows Proposition 1 in the continuous case.

We now show that Lemma 1 holds. We begin with two

technical observations: For any, sufficiently small ζ > 0 there

exist positive constants κ, ρ > 0, such that simultaneously

min
t∈Uζ(M)

fx(t) ∧ fx′(t) ≥ ρ > 0 (30)

sup
t∈C\Uζ(M)

�x,x′(t) < sup
t∈C

�x,x′(t)− κ, (31)

where “a∧ b” denotes the minimum of two numbers a and b.
We begin by proving (30): For all t ∈ M it holds that

fx(t)∧fx′(t) > 0 (otherwise the assumption supt∈C �x,x′(t) ∈
(0,∞) would be violated). Now fx ∧ fx′ is a continuous

function on the closed (thus compact) set M and it therefore

attains its (positive) minimum. Therefore, for some ρ̃ > 0 it

holds that mint∈M fx(t) ∧ fx′(t) ≥ ρ̃. Now let t ∈ Uζ(M)
and t̃ ∈ M, s.t. |t− t̃| ≤ ζ. According to (C1) it holds that

fx(t) ∧ fx′(t)

≥fx(t̃) ∧ fx′(t̃)− |fx(t) ∧ fx′(t)− fx(t̃) ∧ fx′(t̃)|
≥ρ̃− a|t̃− t|β ≥ ρ̃− aζβ .

Here we have used for the second inequality that the minimum

of two β-Hölder continuous functions is again β-Hölder

(where we have called the constant a). In the last step we have

used that |t − t̃| ≤ ζ. It is now obvious that with sufficiently

small ζ, say ζ < (ρ̃/(2a))1/β , it follows (30) with ρ := ρ̃/2.

Next we show (31). Suppose (31) was wrong. Then there

must exist a sequence (tn)n∈N ⊂ C \Uζ(M) s.t. �x,x′(tn) →
supt∈C �x,x′(t). According to (C2) there exists a limit point

t∗, where the maximum is attained. By definition t∗ ∈ M.

This however is a contradiction to the fact, that |tn − t∗| > ζ
for all n ∈ N, showing (31). In the following we assume that

κ, ρ, ζ are chosen such that (30) and (31) hold.

We now prove part i) of Lemma 1. To show this, we first

notice that for any fixed ρ′ ∈ (0, ρ) it holds that

lim
n→∞P

(
f̃x(t) ∧ f̃x′(t) > ρ′ : ∀t ∈ Uζ(M)

)
= 1, (32)

where f̃x(t), f̃x′(t) are the KDEs defined in (8), Section II-B.

(32) is a direct consequence of the uniform consistency of

KDEs (see (11)). Now recall the definition of the truncated

KDE f̂x := f̃x ∨ τ . Since τ → 0 and (32) holds, it follows

for all t ∈ Uζ(M) simultaneously that f̂x(t) = f̃x(t), with

probability converging to 1. Consequently, the definition of

the empirical loss implies with probability converging to 1

�̂x,x′(t) = | ln(f̃x(t))− ln(f̃x′(t))|, ∀t ∈ Uζ(M).

This means that to establish part i) of the Lemma, it suffices

to show∣∣| ln(f̃x(t))− ln(f̃x′(t))|
− | ln(fx(t))− ln(fx′(t))|∣∣ = OP

(√
ln(n)n− β

2β+1

)
.
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By the triangle inequality we can show the desired rate sepa-

rately for | ln(f̃x(t))− ln(fx(t))| and | ln(f̃x′(t))− ln(fx′(t))|.
We restrict ourselves to the first term (the second one follows

by analogous arguments). By the mean value theorem it

follows that

| ln(f̃x(t))− ln(fx(t))| = |f̃x(t)− fx(t)|
ξ(t)

, (33)

where ξ(t) is a number between f̃x(t), fx(t). The numerator

is of order

sup
t

|f̃x(t)− fx(t)| = OP

(√
ln(n)n− β

2β+1

)
, (34)

where we have used the uniform approximation of kernel

density estimators, from (11). The denominator is bounded

away from 0, with probability converging to 1, as the bound

ξ(t) ≥ fx(t)− |f̃x(t)− fx(t)| ≥ ρ− oP (1), (35)

holds uniformly for t ∈ Uζ(M). Here we have used the lower

bound (30) of the density fx on Uζ(M). Together (34) and

(35) imply the desired rate for the right side of (33). By our

above arguments, this shows part i) of Lemma 1.

Next we prove part ii) of Lemma 1. Let us therefore define

pointwise in t the truncated density

f (τ)
x (t) :=

{
fx(t), if f̂x(t) > τ,

τ, else

and analogously the function f
(τ)
x′ . Therewith define the trun-

cated loss

�
(τ)
x,x′(t) := | ln(f (τ)

x (t))− ln(f
(τ)
x′ (t))|. (36)

By definition it holds for any τ > 0 and any t, that �x,x′(t) ≥
�
(τ)
x,x′(t) (“=” if f̂x(t), f̂x′(t) > τ and “≥” else). Now for any

t ∈ C \ Uζ(M) we consider the following decomposition

sup
s∈C

�x,x′(s)− �̂x,x′(t) = A1 +A2 +A3 +A4, (37)

where A1 := sup
s∈C

�x,x′(s)− sup
s∈C\Uζ(M)

�x,x′(s)

A2 := sup
s∈C\Uζ(M)

�x,x′(s)− sup
s∈C\Uζ(M)

�
(τ)
x,x′(s)

A3 := sup
s∈C\Uζ(M)

�
(τ)
x,x′(s)− �

(τ)
x,x′(t)

A4 :=�
(τ)
x,x′(t)− �̂x,x′(t).

Now A1 ≥ κ holds according to (31). Furthermore A2 ≥ 0

due to the inequality �x,x′(s) ≥ �
(τ)
x,x′(s) and A3 ≥ 0 because

t ∈ C \ Uζ(M). Finally we turn to A4 and show that it is

uniformly in t of order oP (1). Using the triangle inequality,

we can upper bound A4 by

| ln(f (τ)
x (t))− ln(f̂x(t))|+ | ln(f (τ)

x′ (t))− ln(f̂x′(t))|.

Both terms can be treated analogously and so we focus on the

first one. If f̂x(t) ≤ τ it is equal to 0 and thus we consider the

case where f̂x(t) > τ . According to the mean value theorem

| ln(f (τ)
x (t))− ln(f̂x(t))| = |f (τ)

x (t)− f̂x(t)|
ξ′(t)

, (38)

where ξ′(t) lies between f
(τ)
x (t) and f̂x(t). Just as before, the

numerator is uniformly of order

sup
t∈C

|fx(t)− f̃x(t)| = OP

(√
ln(n)n− β

2β+1

)
,

and the denominator is (asymptotically) bounded away from

0, as

ξ′(t) = f̂x(t) +OP (sup
t∈C

|fx(t)− f̃x(t)|) ≥ τ + oP (τ).

In both cases we have used that if f̂x(t) > τ we have fτ
x (t)−

f̂x(t) = fx(t) − f̃x(t). Furthermore we have used for the

denominator the approximation rate (11) and that according

to (C3)

OP

(√
ln(n)n− β

2β+1

)
= oP (τ).

These arguments imply that the right side of (38) is uniformly

in t of order oP (τ)/[τ + oP (τ)] = oP (1). By our above

arguments we now have A1 + A2 + A3 + A4 ≥ κ + oP (1),
which implies by (37) part ii) of Lemma 1 (if we replace κ
by 2κ in the above calculations).

D. Proof of Theorem 2

As with Proposition 1, we only show Theorem 2 for

continuous algorithms and d = 1 (extensions to d > 1 are

straightforward). The proof rests on the asymptotic normality

of �̂∗xmax,x′
max

(t̂max), where the point t̂max and the ran-

domness in the estimator �̂∗xmax,x′
max

are independent. In the

discrete case, the proof is much simpler, as t̂max is eventually

an element of the argmax of �xmax,x′
max

and hence it is easy

to establish an asymptotically vanishing bias. This is not so in

the continuous case, where t̂max is only close to the argmax

(as we have seen above) and the bias has to be controlled by

an undersmoothing procedure.

In the following proof, we confine ourselves to part i) of the

theorem (as the convergence in part ii) follows by similar

but simpler techniques). For clarity of presentation, we will

assume that there exists a unique b∗ ∈ {1, ..., B}, s.t.

εxb∗ ,x′
b∗ ,C

= max(εx1,x′
1,C

, ..., εxB ,x′
B ,C). (39)

Recall that the MPL algorithm consists of two steps: First the

algorithm creates B pairs of samples with n elements each, to

approximate εxb,x′
b,C

by ε̂xb,x′
b
. According to Proposition 1,

these estimates are consistent and therefore with probability

converging to 1 it holds that bmax = b∗ (where bmax is

an estimator defined in the MPL algorithm and b∗ is de-

fined in (39)). For simplicity we will subsequently assume

that (xmax, x
′
max) = (xb∗ , x

′
b∗) (formally we can do this

by conditioning of the event {bmax = b∗}). Next recall

that from the first step of MPL we get empirical estimates
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�̂xmax,x′
max

of the loss function and t̂max of the location of

maximum privacy violation. These estimates are based on

samples X1, ..., Xn ∼ fxmax , Y1, ..., Yn ∼ fx′
max

. We will

use these esimators in our subsequent discussion and it is

important to keep them distinct from the randomness in the

second part of the algorithm.

In the second step, MPL generates fresh samples of size N
X∗

1 , ..., X
∗
N ∼ fxmax , Y ∗

1 , ..., Y
∗
N ∼ fx′

max
. The corresponding

density estimates, generated by the TKDE algorithm are

denoted by f̂∗
xmax

and f̂∗
x′
max

(to distinguish them from the

estimators from the first step of the algorithm). Notice that

these density estimators use the same kernel K as in the first

step, but bandwidth hmax of a smaller size (the asymptotic rate

is described in Condition (C4)). Correspondingly we define the

loss based on the ∗-samples

�̂∗xmax,x′
max

(t) := |f̂∗
xmax

(t)− f̂∗
x′
max

(t)|.
We point out that by the choices of n,N and the bandwidth

hmax (see Condition (C4)) it holds that√
ln(n)n− β

2β+1 = o
( 1√

Nhmax

)
. (40)

Now consider the decomposition√
Nhmax

(
sup
t∈C

�xmax,x′
max

(t)− �̂∗xmax,x′
max

(t̂max)
)

(41)

=:B1 +B2 +B3

where

B1 :=
√

Nhmax

(
sup
t∈C

�xmax,x′
max

(t)− �̂xmax,x′
max

(t̂max)
)

B2 :=
√

Nhmax

(
�̂xmax,x′

max
(t̂max)− �xmax,x′

max
(t̂max)

)
B3 :=

√
Nhmax

(
�xmax,x′

max
(t̂max)− �̂∗xmax,x′

max
(t̂max)

)
.

According to Proposition 1 together with (40) it follows that

B1, B2 = oP (1). Thus to show weak convergence of (41)

(which is key to our asymptotic result) we can show weak

convergence of B3.

In order to study B3 we consider the more general object

G(t) :=
√
Nhmax

(
�xmax,x′

max
(t)− �̂∗xmax,x′

max
(t)

)
which is defined for any t ∈ Uζ(M) (for some small enough,

fixed ζ s.t. (30) and (31) hold), where from now on

M := argmax
t∈C

�xmax,x′
max

(t).

We now notice that with probability converging to 1 it holds

for all t ∈ Uζ(M) that

sign(ln(f̂∗
xmax

(t))− ln(f̂∗
x′
max

(t))) (42)

=sign(ln(fxmax
(t))− ln(fx′

max
(t))).

This follows because the density estimators are uniformly

consistent (see Section II-B, equation (10)), together with

boundedness away from 0 on Uζ(M) (see (30)).

For simplicity of presentation, we subsequently assume that

the signum on the right side of (42) is always 1. This means

that with probability converging to 1

G(t) =
√
Nhmax

(
[ln(f̂∗

xmax
(t))− ln(fxmax

(t))]

− [ln(f̂∗
x′
max

(t))− ln(fx′
max

(t))]
)
.

By the mean value theorem we can transform the right side to

√
Nhmax

( f̂∗
xmax

(t)− fxmax
(t))

ξ1(t)
− f̂∗

x′
max

(t)− fx′
max

(t)

ξ2(t)

)
.

Here ξ1(t) lies between f̂∗
xmax

(t) and fxmax
(t), and ξ2(t)

between f̂∗
x′
max

(t) and fx′
max

(t). We now focus on the fraction

of densities in xmax (the other one is analyzed step by step

in the same fashion). Using (30) and the uniform consistency

of the density estimates it is a simple calculation to show that

f̂∗
xmax

(t)− fxmax
(t))

ξ1(t)
=

f̂∗
xmax

(t)− fxmax
(t)

fxmax(t)
+Rem,

where Rem is a (negligible) remainder of size

oP (1/
√
Nhmax) (here we have applied the same techniques

as in the discussion of (33)). We can rewrite the fraction on

the right side as follows

f̂∗
xmax

(t)− fxmax(t)

fxmax
(t)

=
1

Nfxmax
(t)

N∑
i=1

[
h−1
maxK

( t−X∗
i

hmax

)
− fxmax(t)

]
.

By standard arguments it is now possible to replace fxmax(t)

in the sum by Eh−1
maxK

( t−X∗
i

hmax

)
, while only incurring a (uni-

formly in t) negligible error. More precisely:

Eh−1
maxK

( t−X∗
i

hmax

)
=

∫
h−1
maxK

( t− s

hmax

)
fxmax(s)ds

=

∫
K(s)fxmax

(shmax + t)ds

=fxmax
(t) +

∫
K(s)|fxmax

(shmax + t)− fxmax
(t)|ds

=fxmax
(t) +O(|hmax|β)

Here we have used symmetry of the kernel (K1) in Appendix

B) in the second and Hölder continuity of order β in the

last equality (see Assumption (C1); for a definition of Hölder

continuity recall (9)). We also notice that O(|hmax|β) =
oP (1/

√
Nhmax), which makes the remainder asymptotically

negligible. By similar calculations we can show that

Var
(
h−1
maxK

( t−X∗
i

hmax

))
(43)

=h−1
maxfxmax

(t)

∫
K2(y)dy +Rem2,

where Rem2 is a remainder of negligible order. We can use

the same considerations for fx′
max

to rewrite

G(t) =
1√
N

N∑
i=1

{Zi(t)− EZi(t)}+ oP (1),
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where

Zi(t) = h−1/2
max

[
K
( t−X∗

i

hmax

)
+K

( t− Y ∗
i

hmax

)]
.

All variables Zi are i.i.d. and, according to (43) (and analogous

calculations for fx′
max

), asymptotically have variance

σ2(t) :=

∫
K2(y)dy

(
[fxmax(t)]

−1 + [fx′
max

(t)]−1
)
,

Now define the estimator

σ̂2(t) :=

∫
K2(y)dy

(
[f̂∗

xmax
(t)]−1 + [f̂∗

x′
max

(t)]−1
)
,

which is identical to σ̂2
N in MPL for t = t̂max. By similar

techniques as before, we can show that σ̂2(t) is uniformly

(for t ∈ Uζ(M)) consistent for σ2(t). As a consequence, we

have G(t)/σ̂(t) = S(t) + oP (1), where

S(t) :=
1√
N

N∑
i=1

Z̃i(t) (44)

and Z̃i(t) := {Zi(t)−EZi(t)}/
√
Var(Zi). We can now prove

the identity (27): First notice that

P(LB ≤ ε∗C) = P(LB ≤ εxmax,x′
max,C

) (45)

=P

(
�̂∗xmax,x′

max
(t̂max) +

Φ−1(α)σ̂

cN
≤ sup

t∈C
�xmax,x′

max
(t)

)
=P

(cN
σ̂

(
�xmax,x′

max
(t̂max)− �̂∗xmax,x′

max
(t̂max)

) ≤ Φ−1(α)
)

+ o(1).

In the second equality we have used the decomposition (41),

together with the fact, that B1, B2 = oP (1). We can plug in

the definition of the process G into the probability on the right

of (45), which gives us

P

(G(t̂max)

σ̂
≤ Φ−1(α)

)
(46)

=P

(
S(t̂max) ≤ Φ−1(α)

)
+ o(1).

Here we have used the definition of S in (44), as well as the

(above mentioned) identity G(t)/σ̂ = S(t) + oP (1), which

holds uniformly in t ∈ Uζ(M) (recall that t̂max ∈ M with

probability converging to 1 according to (28)). Moreover,

we have strictly speaking used that S has (asymptotically)

a continuous distribution function (see below). Now recall

that t̂max (which is based on the samples X1, ..., Xn and

Y1, ..., Yn from the first step of the algorithm) is independent

of all X∗
1 , ..., X

∗
N , Y1, ..., Y

∗
N (and so loosely speaking of the

randomness in Z̃i(·)). Thus we can express

P

(
S(t̂max) ≤ Φ−1(α)

)
(47)

=

∫
P

(
S(t) ≤ Φ−1(α)

)
dP t̂max(t),

where P t̂max is the image measure of t̂max. Again we use that

asymptotically the probability that t̂max �∈ Uζ(M) converges

to 0 (see (28)). Now adding and substracting α yields

α+ o(1) (48)

+

∫
Uζ(M)

P

(
S(t) ≤ Φ−1(α)

)
− α dP t̂max(t)

=α+ o(1)

+O
(

sup
t∈Uζ(M)

∣∣P(S(t) ≤ Φ−1(α)
)
− Φ(Φ−1(α))

∣∣).
Given some fixed t, the sum S consists of i.i.d. random vari-

ables with unit variance and expectation 0. We can therefore

apply the Berry-Esseen theorem to see that

sup
t∈Uζ(M)

∣∣P(S(t) ≤ Φ−1(α)
)
− Φ(Φ−1(α))

∣∣ = o(1),

if we can show that (uniformly in t)

E|Z̃1(t)− EZ̃1(t)|3√
N

= o(1).

Similar calculations as before show that

E|Z̃1(t)− EZ̃1(t)|3 = O(h−1/2
max ),

which proves the approximation and thus entails that (48)

equals α + o(1). This again implies by (45), (46), that the

weak convergence in (27) holds and thus Theorem 2 part i).

421


