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Abstract—Cryptographic communication protocols provide
confidentiality, integrity and authentication properties for end-to-
end communication under strong corruption attacks, including,
notably, post-compromise security (PCS). Most protocols are
designed for one-to-one communication. Protocols for group
communication are less common, less efficient, and tend to
provide weaker security guarantees. This is because group
communication poses unique challenges, such as coordinated
key updates, changes to group membership and complex post-
compromise recovery procedures.

We need to tackle this complex challenge as a community.
Thus, the Internet Engineering Task Force (IETF) has created a
working group with the goal of developing a sound standard for
a continuous asynchronous key-exchange protocol for dynamic
groups that is secure and remains efficient for large group sizes.
The current version of the Messaging Layer Security (MLS)
security protocol is in a feature freeze, i.e., no changes are made
in order to provide a stable basis for cryptographic analysis. The
key schedule and TreeKEM design are of particular concern since
they are crucial to distribute and combine several keys to achieve
PCS.

In this work, we study the MLS continuous group key derivation
(CGKD) which comprises the MLS key schedule, TreeKEM and
their composition, as specified in Draft 11 of the MLS RFC, while
abstracting away signatures, message flow and authentication
guarantees. We establish the uniqueness and key indistinguisha-
bility properties of the MLS CGKD as computational security
properties.

I. INTRODUCTION

We expect modern-day messaging applications to provide
end-to-end security, guaranteeing confidentiality and authen-
ticity of the transmitted messages. This expectation has been
made a reality over the course of 25 years through the design
of cryptographic protocols, which nowadays guarantee secure
communication, potentially even after a participant’s key is
compromised.

Our everyday communication protocols inherit their security
from the properties of the keys they use, which, in turn, are
established via key-exchange protocols.

Key exchange protocols therefore have been designed to
achieve strong security guarantees: Entity Authentication [7],
[28] ensures that the key is shared only with the intended re-
cipient. Key Indistinguishability [21], [28], in turn, guarantees
that no one but the participants involved has information about
the key. A stronger variant of key indistinguishability called
Forward Secrecy (FS) ensures that short-term communication
keys exchanged in past sessions are secure if a party’s current
state or long-term key gets compromised [28].

With the introduction of continuous key-exchange, for ex-
ample by protocols such as OTR [11] or ZRTP [32], parties
are able to recover from compromise if the adversary remains
passive for a brief period of time. This counterpart to FS was

first described as Post-Compromise Security (PCS) by Cohn-
Gordon et al. [16], [23].

Modern messaging protocols require that messages can be
sent even if a recipient is offline, requiring an asynchronous
protocol. As a consequence, protocol sessions don’t naturally
end when one participant goes offline, leading to sessions that
remain active for months and years. To cover this use-case,
non-interactive key exchange protocols were introduced that
perform key-exchange and entity authentication continuously
even in an asynchronous setting. Most notably, the Signal
protocol [27] (formerly TextSecure) achieves strong FS and
PCS guarantees [18], [16] due to the use of double ratcheting
(formerly Axolotl).

As users of messaging protocols tend to use more than
one device and/or communicate with more than one party
at a time, messaging protocols are commonly required to be
group messaging protocols. This gives rise to the definition of
continuous group key exchange protocols by Alwen et al. [2].

MLS. The Message Layer Security (MLS) Working Group
of the Internet Engineering Task Force (IETF) aims to create
a new continuous, asynchronous group key-exchange proto-
col [5] that is efficient even for large groups [30]. To achieve
this, the current draft makes use of the TreeKEM protocol
(based on [9]).

In short, TreeKEM, which is inspired by the Asynchronous
Ratcheting Tree (ART) by Cohn-Gordon et al. [17], is a
continuous group key distribution based on a tree structure
where each leaf node represents a member’s Key Encapsula-
tion Method (KEM) key pair and all other nodes represent a
secret value and KEM key pair shared by the members in the
node’s sub-tree. As a result, secrets can be shared efficiently
by encrypting it to individual subtrees. The secret value at the
root node of the tree is a secret shared by the entire group.

Each member can update their keying material by updating
the key pairs and values of their leaf-to-root path, and transfer
the new key material to all other members efficiently by
encrypting it to the set of subtrees below the path nodes. Each
member can also remove a member or add a new member,
and update the key material so that previous group members
cannot access key material any longer. In Section III, we
explain TreeKEM in more detail. The updating of keys allows
members to achieve PCS and FS similar to ART.

Note that TreeKEM does not have an internal mechanism
for members to reconcile differing views of individual groups
and thus relies on members agreeing on a total order of group
operations. One straightforward way of achieving this is a
central distribution service enforcing that order.

Once a new secret value is distributed via TreeKEM, MLS
combines the new secret with existing key material used for
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communication. From these two keys, a new communication
key is derived for the next epoch. In addition, key derivation
includes information about the group and, optionally, allows
to inject one or more external keys. The combination of keys
allows MLS to achieve PCS and FS guarantees, and the
inclusion of group parameters such as membership ensures
agreement on said parameters. The processing and combining
of the key material and context information is described in the
MLS key schedule.

Related Work. The MLS design process has been accompa-
nied by security analyses and proposals for changes to the
protocol which we summarize below.

Bhargavan, Beurdouche and Naldurg (BBN, [10]) use F?

to create a novel symbolic verification tool and use it to
perform a symbolic analysis of MLS Draft 7. They uncover
two attacks and several other weaknesses in the protocol that
are subsequently fixed.

In [2], Alwen, Coretti, Dodis and Tselekounis (ACDT)
introduce the Continuous Group Key Agreement (CGKA)
security notion and introduce the notion of Post-Compromise
Forward Security (PCFS), which encodes the security of a
given session despite state compromise both before and after
the session. They analyze the security of TreeKEM in MLS
Draft 7, finding that while it provides the desired Post-
Compromise Security (PCS) guarantees, its Forward Secrecy
(FS) guarantees are very weak. They propose to modify
TreeKEM in order to improve FS guarantees based on an
algebraic KEM construction that requires keys to be updatable.

Alwen, Capretto, Cueto, Kamath, Klein, Markov, Pascual-
Perez, Pietrzak, Walter and Yeo (ACCK+ [1]) build on ACDT
by proving the CGKA security of TreeKEM in MLS Draft 9
in a stronger adversarial model. They also propose the notion
of Tainted TreeKEM as an alternative to TreeKEM with a
different performance profile, but with comparable security.

Following ACCK+, Alwen, Coretti, Jost and Mularczyk
(ACJM, [3]) prove the CGKA security of TreeKEM in MLS
Draft 9 against an even stronger adversary, allowing active
interference of the adversary in the protocol flow.

Continuing the work of ACJM, Alwen, Jost and Mularczyk
(AJM, [4]) analyze the CGKA security of TreeKEM in MLS
Draft 10 with regard to insider security, formalizing and
proving the as-of-yet strongest security notion for TreeKEM,
with their work resulting in a number of changes to the MLS
protocol. Even though in this work we only analyze a subset of
MLS (compared to the whole protocol as analyzed by AJM)
and with a different adversarial model, we reach a similar
conclusion in terms of the security of MLS. See Section IV
for a more detailed comparison of model and results.

Independent of other works, Weidner [31] proposes an
alternative version of TreeKEM, named Causal TreeKEM, that
does not require a strict total order of group operations. This
would allow a relaxation of MLS’ requirement of a strict order
of handshake messages, but similar to the proposal by ACDT
would require a specialized KEM construction.

In the only work considering the multi-group setting, Cre-
mers, Hale and Kohbrok (CHK, [20]) compare MLS with a
straightforward group messaging protocol made of 1:1 Sig-

nal sessions, showing that MLS provides significantly worse
authentication PCS guarantees.

Our security game for the MLS Key Schedule and its
analysis are inspired by the analysis of TLS 1.3 by Brzuska
et al. [13] in a similar way as the MLS key schedule is
inspired by the TLS 1.3 key schedule. Note, however, that
the MLS key schedule enjoys better domain separation which
avoids complications such as evolved invariant proofs ([13],
Appendix C). Our analysis of TreeKEM and its composition
with the key schedule do not build on [13].

Contributions. In this work, we study the security claims
made in Draft 11 of the MLS RFC via a cryptographic
analysis of the MLS key derivation, which includes the key
derivation structure of both TreeKEM and the key schedule.
Excluded from our analysis is authentication, as well as the
Secret Tree component of the key schedule. Key schedule
analysis was implicitly suggested in Krawczyk’s study of
Sigma protocols [24] and used for the analysis of TLS 1.3 [13].
We develop security models for TreeKEM, the key schedule
and their composition. Interestingly, our models themselves
are composable, and the composed model is derived from the
composition of the TreeKEM model and the key schedule
model. This composability feature is enabled via the use of
the State Separating Proofs methodology (SSP) [14] which
specifies security models via modular pseudocode and enables
code reuse (see Section V and Section VIII for details).

Assumptions. We make standard key indistinguishability and
collision-resistance assumptions on the key derivation func-
tions (KDF) and assume indistinguishability under chosen-
ciphertext attacks (IND-CCA) secure public-key encryption,
as well as that the Extract function in Krawczyk’s HKDF
design [25] is a dual pseudorandom function and thus, we
assume that HKDF is a dual KDF, which has also been
assumed in the analysis of Noise [22] and TLS 1.3 [13].
Following the approach of [15], [13], we model the security
of our symmetric primitives as multi-instance primitives with
static corruptions. Our analysis relies on inclusion of the group
context into the derivation of the joiner secret, as we suggested
in a pull request awaiting to be merged [19].

Methodology. We rely on modular proofs and pseudocode-
reuse as specified by the state-separating proofs (SSP) method-
ology [14]. SSPs allow us to iterate the proof quickly as the
MLS draft is developed. Given an initial model of the protocol,
we make and verify incremental changes to the model with
relative ease. This is what allows us to release this analysis of
the protocol shortly after the current feature freeze and it will
also allow us to quickly analyse the security of future features.

Overview. Section II introduces notation. Section III explains
the TreeKEM, the MLS key schedule and their composition.
Section V introduces the state-separating proofs methodology
and our assumptions. Section IV conceptually discusses our
security models and Section VI introduces them formally,
Section VII states our three main theorems, Section VIII
explains our proof methodology, and the appendix contain the
proofs of the theorems.
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II. PRELIMINARIES AND NOTATION

Binary Trees. A binary tree is a finite, connected, and directed
graph with a single source — called root — such that each
node has at most two outgoing edges. For two nodes nx and
ny , if there is an edge nx → ny , then we call nx the parent
of ny and ny the child of nx. All nodes which can be reached
from nx are its descendants, and all nodes from which ny
can be reached are its ancestors. Every node can be reached
starting from the root, and we call the set of ancestors of a
leaf node its direct path. We allow for nodes to be marked
as blank (the marking will later take on the meaning of no
associated data). We call the co-path a list of the closest non-
blank descendent nodes of the nodes along the direct path.

We leave the encoding of the tree abstract in this paper and
only assume that given the size of a tree and the index i of a
node, we can find the indices of its direct path.

Notation. We use pseudocode to describe algorithms. We
denote sets and tables by capital letters, e.g. S or T . We denote
algorithms in lowercase and sans serif. x ← a assigns value
a to variable x, and x ← algo(a) runs algo on value a and
assigns the result to variable x. When algo is a randomized
algorithm, x←$ algo(a) runs algo on value a with fresh
randomness and assigns the result to variable x. When S is
a set, x←$S samples a uniformly random value from S and
assigns that value to variable x. A common set is {0, 1}λ, the
set of bitstrings of length λ. We use a for a vector of variables,
and x

vec← algo(a) means, we run algo separately on each value
in the vector a and then assign the results to the corresponding
indices in vector x . Analogously, x

vec $← S means that we
sample each value in the vector x independently and uniformly
at random. For two tables T and U , the operation T

merge← U
overwrites values T [i] by values U [i] whenever U [i] is defined,
and the operation T

rem← U removes all values T [i] from T
where U [i] is defined. assert cond abbreviates that a special
error message is sent unless cond holds.

III. MLS CONTINUOUS GROUP KEY AGREEMENT

ACDT define continuous group key agreement (CGKA) as a
protocol which allows the members of a group to agree on key
material and group membership. In a CGKA such as MLS, a
group is a continuous session which
• distributes a secret among group members in each epoch;
• allows for efficient updates to the key material of a

member and the group;
• allows for efficiently adding clients as new members to

the group;
• allows for efficiently removing members from the group.

In this work we analyse the continuous group key derivation
(CGKD) protocol used by the MLS CGKA to derive the keys
that result from each of the operations above.

MLS CGKA vs. CGKD. In this section, we describe the MLS
CGKA and define the CGKD as one of its components.

We split both the MLS CGKA and CGKD into a weak
variant (wCGKA and wCGKD respectively) and the syntax of
a key schedule (KS), where the wCGKA is often referred to
as TreeKEM. The main difference between the strong and the
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Figure 1: The tree represents a group with members A, B, C,
D, E, G and H. Inside a node, we display TreeKEM secrets
known to members in the corresponding sub-tree. The pink
values are used in the derivation and not stored long-term.
The blue part is only used for external add operations.

weak variants is that the group keys of the weak variants are
corrupt whenever one group member’s current private keys are
corrupted. This property is, indeed, rather weak, since in large
groups, individual members might use weak randomness, and
for insecurity, it suffices if a single member of the group uses
weak randomness to generate their current own keys. In turn,
the strong variants rely on key material which is chained across
epochs. If the key material from a previous epoch was secure,
then security in the current epoch is maintained—unless the
key material is leaked by encrypting it to a client with corrupt
keys that joins the group. As we will see for MLS, a wCGKD
can be combined with a key schedule to obtain a CGKD.
Similarly, on the protocol level, a wCGKA can be combined
with a key schedule to obtain a CGKA. We describe the MLS
CGKA formally in the extended version of this paper [12]
and here only give a textual description.

Updates of the key material are initiated by one group
member and we refer to this procedure as (w)update in
(w)CGKA. In order for other group members to keep their key
material in sync with an updating party, they need to process
the messages generated by the update algorithm. Since new
group members might perform processing in different way
than existing group members, the join algorithm models the
computation performed by new joiners. Last, but not least,
pke.kgen allows to generate new public keys.

We now describe the behaviour of the wCGKD and the
key schedule and how they relate to the (w)CGKA operations
(w)update, process and join.

MLS Key Schedule. A key schedule combines existing key
material into new key material and chains keys across epochs
via the internal key sint , which is referred to as the init secret
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in the MLS RFC. In addition, the key schedule allows to
combine sint with an external key sext , pre-shared key (PSK)
in the MLS RFC, and a commit secret kcs , which is derived via
the MLS wCGKD. We abstract away the details of how MLS
pre-processes external key material in case several external
keys are combined and work directly with a single sext .

The MLS key schedule ks uses a key derivation function
(KDF) which is constructed based on an extract (XTR) and
an expand (XPD) function, following Krawczyk’s HKDF
standard [25]. ks chains two full KDFs and then a single XPD
function, see top of Figure 1. In OPTLS [26], it was suggested
to use the salt position in HKDF to combine two keys, and
therefore, the chained call of two KDFs allows to combine the
aforementioned three secrets sint , sext , and kcs .

While update and process know sint and kcs , the join
algorithm of the MLS CGKA only knows kjoi, but neither sint
nor kcs and thus starts the computation of the key schedule
only at kjoi. In practice, kwel is used by the joiner to decrypt the
group ctx . In our key schedule model kwel is only modelled
to proof its indistinguishability. The key schedule uses one of
the secrets it derives as input to a key pair derivation function
(DKP), which is a deterministic algorithm that corresponds to
running pke.kgen using its input as explicit randomness. We
now turn to the MLS wCGKD/wCGKA.

MLS wCGKA and wCGKD. The MLS wCGKA is called
TreeKEM, and we use the terms MLS wCGKA and TreeKEM
interchangeably in this work. The main purpose of TreeKEM
is to provide new kcs values to ks, i.e., fresh key material
which is shared between all group members. As the name
suggests, TreeKEM stores key material in a tree data structure.
The leaf nodes of the tree represent group members, the other
nodes represent shared secrets known by members in the
subtree, i.e., members which correspond to the leaves in the
subtree below a node. E.g., kcs is shared by all members of the
group and indeed derived from the value ps which is stored
at the root of the tree. Figure 1 illustrates the data associated
with each node as well as the members to which the secret
node data is known. Every node in the tree is associated with a
KEM key pair known to the members represented by the leaves
in the sub-tree. To share a secret value with some members,
a member can encrypt the value either to the public key of a
node whose secret key all intended members know or encrypt
to several public keys for a more fine-grained information-
sharing.

The wCGKD part of TreeKEM is the Derive Node proce-
dure dn, see right side of Figure 1. dn uses an expand function
(XPD) and a key encapsulation method (KEM) as building
blocks. dn takes as input the secret of a node, referred to
as the path secret psi of node i, and uses XPD to derive two
random values: The path secret psp(i) (where p(i) refers to the
parent of node i) and randomness for DKP to computes a KEM
key pair (pk i, sk i) associated with node i. Jumping ahead, our
wCGKD model allows arbitrary dn operations within a tree, as
well as encryption and decryption using the derived keypairs.

Roughly, in the tree of Figure 1, each arrow can be
interpreted as a possible application of dn with the restriction
that if a node i has two non-blank children, then its path secret

A

(a)

A

(b)

A

(c)

A

B

(d)

A B H

(e)

A B H

(f)

A H

(g)

A H

(h)

A

(i)

Figure 2: (a-c): Member A updates their their key material.
(a) original tree for the group. (b) tree during the update,
highlighting the direct path in black and the co-path in dark
grey. (c) tree during the update if there are blank nodes in the
tree.
(d-f) Adding a new member to a group. (d) tree for the original
group. (e) tree with H added to the group in an add-only
operation, highlighting blanked nodes in white. (f) tree for the
update performed by A, highlighting the direct path in black
and the co-path in dark grey. Note that H’s unmerged leaf is
part of the co-path.
(g-i) Removing a member from a group. (g) tree for the
original group. (h) tree with H removed. (i) tree for the update
after the removal, highlighting the direct path in black and the
co-path in dark grey. Blanked nodes are highlighted in white
in both (h) and (i).

was only derived from one of them. The keys associated with
each node evolve over time via updates which start from a
leaf node and proceed along the direct path to the root. The
path secret psi of a node i is derived from the child which
was last contained in the direct path of an update.

We next explain key updates. In addition, one can also
combine an update with the adding and/or the removing of one
or more members. While adding and removing is implemented
simultaneously, we describe the conceptual idea for each
separately below.

Updating Key Material. Consider the group represented by
the tree in Figure 2a. The group member Alice (A) can update
the group secret by the following process. First, A samples
a random value kupd for the key update and uses it as the
new path secret associated with A’s leaf node, i.e., ps ← kupd.
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Then, Alice runs (ps ′, pk , sk) ← dn(ps) and stores pk in
PK ′mem [icur ] and PK ′upd [icur ], where icur is the index of
Alice’s leaf node, PK ′mem is a table which represents Alice’s
view of the public keys of the group members, and PK ′upd
is a table which contains the public-keys that Alice will tell
other group members to change. Additionally, Alice also stores
the secret key in SK ′own [icur]. SK is a table of secret keys
which Alice knows. Then, Alice computes the parent index of
icur and proceeds in the same way for the parent index: First,
she computes (ps ′′, pk , sk) ← dn(ps′), then stores pk and
sk in the adequate tables, then moves to the parent node and
applies dn to ps ′′ etc. until reaching the root node. This loop
is captured by dopath which is hinted at in Figure 1. Note that
dopath needs to encrypt to the entire co-path and not only to
a single node as hinted at in Figure 1.In the end, Alice has
replaced all the path secrets, public-keys and secret-keys of
the direct path, marked in black in Figure 2b.

As only Alice knows the path secrets used along this path,
she now also shares the path secret with the other group
members. Thus, for each node icur on her direct path, she
considers the child ichild of icur which is not on her direct path
(but, instead, is on the co-path) and encrypts the path secret of
icur under PKmem [ichild ], the public-key associated with this
node. In this way, the entire sub-tree below PKmem[ichild ] can
decrypt the ciphertext. In Figure 2b, the co-path is marked in
grey, i.e., for each grey node, Alice encrypts to the public-key
associated with it.

Figure 2a and Figure 2b illustrate a case where there are no
blank nodes in the tree—blank nodes are nodes which do not
have data associated with it. Figure 2c depicts the case that the
tree contains some blank nodes. In this case, Alice encrypts
to the nodes marked in grey in Figure 2c. Note that we
nevertheless refer to these nodes as co-path even though our
co-path definition does not coincide with the graph-theoretic
notion of co-path. In order to simplify the computation of the
co-path, we give a description of the co-path CP as input to
update. CP is a table of sets, i.e., for each tree index i, CP [i]
contains a set of the indices to which Alice needs to encrypt. It
is a set because Alice may need to encrypt to multiple public
keys due to blank and unmerged nodes.

Adding a New Member. There are two ways to add a
new member. One can either add a member in an add-only
operation, or one can add a member and perform an update
at the same time. (In this case, one can also remove members
simultaneously, but let us ignore this operation for now.) To
add Henry (H) to group in an add-only operation, the group
member Alice (A) adds H to the tree (more on this shortly),
then runs the key schedule (Figure 1) with an empty kcs and
encrypts kjoi to H using a public-key which A knows belongs
to H. Running the key schedule in an add-only operation
ensures that new joiners cannot read previous messages. If
A performs an update at the same time, then kcs is instead
derived from a fresh, random kupd as previously described
for updates. I.e., A additionally updates her path as described
in Section III and encrypts the relevant path-secrets to the
co-path, marked in grey. Note that the co-path is not the
graph-theoretic co-path, since A also encrypts a message to

H separately. We now describe how H is added to the tree.
When performing the add operation, A either find the left-
most empty leaf node (there might be empty leaf nodes due
to previous removals) or, if the tree is full, A replaces a leaf
node by a 3-node sub-tree. E.g., consider the original group in
Figure 2d. Here, to add H to this group, A blanks Bob’s (B)
node, creates below it a node for H and a new node for B and
associates H’s node with H’s aforementioned KEM public-key.
Moreover, A associates B’s new node with the same public-key
which B had before.

A special case is the situation where the add operation is
not performed from inside the group, but instead, an outside
member adds itself to the group. In this case, the external
group public-key pkext is used (marked in blue in Figure 1)
to transmit sint .

Removing a Member. Consider the group represented by the
tree in Figure 2g. To remove a group member Henry (H) from
this group, the group member Alice (A) blanks the nodes on
the path from node H to the root, shown in Figure 2h. As a
result, a co-path that included those nodes before, now, instead
includes their non-blank child nodes.

Notice that the removal by itself does not update the group
secret and therefore, A also needs to perform an update to
ensure that H cannot decrypt messages sent by group members
anymore. As the tree now contains blanked nodes, the path
secrets along the new direct path must be encrypted under the
keys of a larger co-path, as shown in Figure 2i.

IV. CGKD AND CGKA SECURITY

In Section VI, we introduce our security models for ks,
MLS wCGKD and MLS CGKD formally. In this section,
we discuss these models conceptually and relate them to the
security properties of the MLS wCGKA and CGKA. We then
compare our model to the recent model by Alwen, Jost and
Mularczyk (AJM, [4]). In addition, we provide a brief proof
sketch in the end of the section.

Our security models will establish the pseudorandomness
and uniqueness of the output keys. Uniqueness will hold for
all output keys, while pseudorandomness is achieved for all
output keys which are not trivially known to the adversary.

Honesty and Freshness. All our security models will maintain
honesty tables to keep track of keys that are known to the
adversary (i.e. dishonest keys) and keys which we expect to
provide security (i.e. honest keys). Traditional key exchange
models have a similar concepts for sessions and their associ-
ated keys, usually referred to as freshness condition. In our
models for key derivation (CGKD, wCGKD, ks), base keys
are either registered by the adversary (and thus dishonest)
or sampled uniformly at random by the game (and thus
honest). Derived keys inherit their honesty from the keys from
which they were derived. Similarly, the freshness condition
in key exchange protocols is computed based on which key
material is known to the adversary. Thus, we can now relate
the honesty conditions in our key derivation models to the
freshness conditions in the analogous key exchange model.
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Figure 3: Honesty graph of
CGKD. id indicates that the
honesty is passed on and ∨
indicates that the result is honest
if at least one of the inputs is
honest. A pink arrows indicate
that the input value is either a
fresh input value or a derived
one. Each node has an additional,
implicit input, which turns the
output to 0, indicating that an
adversary can corrupt each value
upon derivation.

We can express the
honesty of a key in
our model by a hon-
esty graph, which is a
directed, acyclic graph,
where each edge repre-
sents the boolean hon-
esty value of a key and
each node represents an
operation on the values
of its incoming edges.
Edges without an origin
or destination node rep-
resent the honesty val-
ues of input or output
keys, respectively. If a
key is derived from a sin-
gle key, it either inherits
that key’s honesty or it
is immediately corrupted
by the adversary. If a key
is derived from two keys,
it is honest if at least
one of the input keys is
honest and the adversary
doesn’t decide to com-
promise it immediately.
This inductive definition
now yields the following honesty definition for a key k: The
key k is honest only if there is at least one root key which
is (a) honest and (b) where none of the keys on the path
from the root key to k is corrupted. We provide the honesty
graph which is induced by CGKD in Figure 3. The honesty
graph of each individual output key is a subgraph of the
entire model’s structural graph, and the honesty graphs of key
schedule and wCGKD are subgraphs of the CGKD graph, see
Figure 3. In addition, in each derivation, the adversary can
corrupt upon derivation (CUD), and thus, the resulting honesty
value of an (intermediate or output) key is always the ∧ of
the honesty value shown in Figure 3 and the value provided
by the adversary in the derivation. For simplicity, we do not
depict the CUD in the graph—it would amount to adding and
∧ node right after each derivation.

Forward Secrecy (FS). Traditionally, key exchange models
define forward secrecy in terms of long term keys and in a
scenario where sessions terminate. The first does not apply,
as our model does not consider long term keys. The second
does not apply, because MLS considers long-term group
conversations that do not explicitly terminate. Thus, messaging
protocols —and MLS in particular— seek to achieve fine-
grained FS by constantly deriving keys, such that old keys
can be deleted after use.

In our model, FS is expressed by the fact that the honesty
graph is directed, i.e. the honesty of a key does not depend
on keys that are derived from it. If an adversary compromises
a key, keys from earlier epochs are still considered honest.

Post-Compromise Security (PCS). PCS was defined in the

context of messaging protocols in [16] and expresses that a
party can recover from compromise by introducing new key
material into an existing session (and sharing that key material
with group members), as long as the adversary is passive
during that procedure.

PCS is expressed in the honesty graph by the fact that a
key derived from two input keys (one corresponds to the old
session key and one to the new key material) is honest if at
least one of the input keys is honest (and the adversary doesn’t
decide to compromise again).

For example, the PCS property of MLS is expressed through
the fact that even if the init secret sint is dishonest, the
joiner secret kjoi of the subsequent epoch can be honest if
the commit secret kcs is honest.

Freshness on Protocol-Level. MLS is a complex protocol
and our work analyses a component of it. While we leave a
full analysis based on our model for future work, we now
extrapolate from the key derivation freshness to the protocol-
level freshness.

For example, one could be led to conclude from the honesty
graph in Figure 3 that in MLS, a single honest input key (for
example a leaf key) and thus a single honest group member
suffices to guarantee the security of an output key. However,
this is obviously not the case, as in MLS, the keys of the
honest party are encrypted to the public keys of other group
members. For a protocol to implement this mechanic on top
of our model, it would have to manually (i.e. using the CUD
mechanic) corrupt any key that needs to be encrypted to a
dishonest public key. Thus, on a protocol level, all public keys
need to be honest for the resulting commit secret to be honest.

This procedure allows protocol-level models to encode
protocol-level attacks such as active insider attacks or the
double join scenario, where a party has access to secrets that
are not in its direct path. Here, the corruption mechanism of
the protocol-level model would then corrupt these intermediate
secrets and provide the adversary with access.

This means that a protocol-level freshness condition is
usually not specified by a fine-grained honesty graph such as
the one in Figure 3, (which would show the corruption upon
derivation of a secret, but not the reason for the corruption,
e.g. a corrupt public key to which it is encrypted). Instead, it
would more likely encode freshness in terms of the corruption
of parties, which is what one would expect and what is the
case, e.g. in the work of AJM (Figure 15 in [4]).

In summary, while our model doesn’t consider protocol-
level attacks directly, we can still show that any protocol-level
model built on CGKD will give a number of guarantees, for
example, that the output keys of the key schedule are fresh
only if either the previous epoch’s init secret is fresh or the
injected PSK is fresh or the new input secret after an update
operation, as well as any public key it is encrypted to.

Adversarial Model. The models introduced in Section VI
allow the adversary to corrupt all base secrets statically,
and to decide to corrupt derived keys upon derivation. This
corruption-upon-derivation (CUD) model simplifies the secu-
rity analysis (in comparison to fully adaptive corruption) and
captures the security aimed for by MLS in a meaningful way.
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We chose this limitation in adversarial capabilities, as our
model can’t allow the adversary to corrupt keys after they are
used, as it would allow them to trivially win the distinguishing
game. This problem is known as the commitment problem, ini-
tially uncovered by Nielsen [29]. Still, there is a gap between
the minimal restriction required by avoiding the commitment
problem and forcing the adversary to decide on corruption in
the moment of derivation. It seems an interesting direction
to explore whether this gap can be partially bridged by (1)
postponing the onset of idealized behaviour and (2) delaying
a derivation query to the point where a key is used, since else,
the model does not produce any key-dependent information
(and everything else can be simulated).

Comparison to AJM As the security model used in AJM
is strictly stronger than that of ACDT, ACCK+, as well as
ACJM, we now compare our model with AJM.

The first difference to AJM is that we analyze the key
derivation of MLS rather than the protocol itself. Specifically,
the adversary doesn’t have access to MLS protocol operations
such as update, add, etc, but can instead control the inputs
to the various key generation and derivation structures of
the protocol directly. This means that in contrast to AJM
(and traditional (key exchange) protocol security models in
general), our model does not consider parties, but instead
presents the adversary with access to each part of a more
global protocol state (across sessions).

This allows adversaries to inject or generate key material at
the various interfaces of the components of MLS and perform
key derivation operations based on these keys without the
strict separation of state into parties, groups or even epochs.
For example, an adversary could generate a (honest) key for
injection into the MLS key schedule as a PSK. That key
could then be injected into the key schedule in epoch of any
group and of any party and in conjunction with any other
key material. The only restriction we pose is that given by
the structure of the protocol: An honest key generated for
injection at a given point in the key schedule cannot be used,
for example, for injection at another point in the key schedule.
Of course, the adversary can still inject the same (dishonest)
key in multiple places.

Additionally, our work differs from AJM in that we don’t
model the authentication properties of MLS and in particular
don’t consider the compromise of any signature keys. Instead,
our model focuses on providing the adversary with fine-
grained capabilities to compromise symmetric key material.
We argue that overall, this gives the adversary more state
compromise capabilities compared to AJM (with the exception
of the signature key). This is because firstly, any compromise
an adversary would make on a protocol level can be simulated
by compromising the individual keys on a more granular
level and secondly, the fine-grained access our model provides
allows it to capture additional scenarios such as cross-group
and cross-epoch attacks.

Finally, the findings of our analysis as detailed in this sec-
tion correlate closely with those of AJM: Given our adversarial
model, we establish that the keys produced by TreeKEM and
the key schedule of MLS are pseudorandom if the output key

is fresh. Extrapolating our freshness condition to that of a
protocol-level model such as that of AJM (Figure 15 in [4])
is not straightforward, but we have shown examples earlier
in this section of how our CGKD can allow a protocol-level
model to express fine-grained security guarantees comparable
to those proven by AJM.

Security proof overview. Our proof consists of a series
of idealization steps (i.e. game hops, where with each hop,
a different component of the protocol changes from real
behaviour to ideal behaviour). We perform these steps once
for a wCGKD of arbitrary depth d and then, starting from
epoch 0, idealize the key derivation steps in the key schedule
for each following epoch inductively, i.e., the structure of the
proof follows the structure of the construction, cf. Figure 1.

V. ASSUMPTIONS

Game-Based Security Notions. We formulate security proper-
ties via indistinguishability between games, a real game which
models the real behaviour of a cryptographic primitive, and
an ideal game which models an ideally secure variant of the
primitive. For example, security of a pseudorandom function
is captured by demanding that the input-output behaviour of
the (keyed) pseudorandom function is indistinguishable from
the input-output behavior of a truly random function which
draws a uniformly random output for each input.

Especially since Bellare and Rogaway promoted code-based
game-hopping [8], it has been popular to formulate games in
pseudocode, and we follow this approach here. I.e., a game G
provides a set of oracles to the adversary A, these oracles are
specified by pseudocode and operate on a common state which
is secret to the adversary. This hidden state might contain,
e.g., a secret key. In this work, we denote by A ◦ G that
the adversary A interacts with the oracles of game G. I.e.,
the adversary is the main procedure that makes queries to
the oracles of G, which returns an answer to A, and then,
in the end, the adversary A returns a bit indicating their
guess whether the game is indeed real or ideal. The advantage
AdvG0,G1(A) measures an adversary A’s ability to distinguish
between G0 (real) and G1 (ideal).

Definition V.1 (Advantage). For an adversary A and two
games G0,G1, the advantage AdvG0,G1(A) denotes the term∣∣Pr[1 = A ◦ G0

]
− Pr

[
1 = A ◦ G1

]∣∣ .
We formulate security statements by relating advantages.

E.g., we upper bound an adversary A’s advantage against a
game pair for MLS key derivation security by an adversary
B’s advantage against a game pair for the base primitive (e.g.,
a pseudorandom function) security. Importantly, the runtime of
A and B will be similar. Namely, we often write B as A ◦ R
where R is referred to as a reduction which translates A’s
oracle queries to its own game (in this case, the game pair for
MLS key derivation security) into oracle queries to the game
for the base primitive.

State-Separating Proofs. The previous description lacks a
natural way to compose games. However, if games are not
described as a single block of pseudocode but rather sliced
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KEYb,λ

Package Parameters

b: idealization bit
λ: key length
i: package index

Package State

K[h 7→ k]: key table
H[h 7→ b]: honesty table

SET(h, hon, s)

assert |s| = λ

h ← (h, i)

if K[h] 6=⊥:
ret h

if b ∧ hon:

s ←$ {0, 1}λ

h ′ ← UNQ(h, hon, s)

if h ′ 6= h : ret h ′

K[h]← s

H[h]← hon

ret h

REG(hon, s)

assert |s| = λ

h ← reg〈|K| , i〉
if K[h] 6=⊥:
ret h

if hon:

s ←$ {0, 1}λ

h′ ← UNQ(h, hon, s)

if h′ 6= h : ret h′

K[h]← s

H[h]← hon

ret h

GET(h)

assert K[h] 6=⊥
ret K[h]

CGET(h)

assert H[h] = 0

ret K[h]

HON(h)

assert H[h] 6=⊥
ret H[h]

LOGb

Package Parameters

b: idealization bit

Package State

L: log table
M : collision tracking log

UNQ(h, hon, s)

if L[h] 6= ⊥ :

(h′, hon ′, s′)← L[h]

assert s′ = s

if hon′ = hon:

ret h′

for (h′, hon′, s′) ∈ L
with s = s′:

r ← (level(h) = set)

r′ ← (level(h′) = set)

if r 6= r′ ∧ M [s] = ⊥
∧ hon = hon ′ = 0:

M [s]← 1

L[h]← (h′, hon, s)

ret h′

if hon = hon′ = 0

∧ r = r′: abort

if b ∧ r = r′ = 1:

abort

L[h]← (h, hon, s)

ret h

Figure 4: Definition of the KEY and LOG package, where
reg〈·〉 is an injective handle constructor, creating a tuple from
the inputs. Oracle REG is useful since it can be exposed to
the adversary without leading to malformed handles, unlike
SET which allows the caller to specify arbitrary handles. The
level function returns reg when h is of the form reg〈INT, i〉
and set, else.

into individual packages of code, then the same package of
code can be reused. This notion of code-reuse, together with
a separate state for each package results in a natural notion of
package composition to form games.

A frequent example of a natural, re-usable code package
is the KEY package described in Figure 4. Cryptographic
primitives often share key material (e.g., in the MLS key
schedule, KDF produces outputs which become keys of KDF
which produces outputs which become keys of XPD etc., see
Figure 1). Now, if KDF computes keys and stores them in
a KEY package using the SET oracle, then XPD can retrieve
them via the GET oracle.

We now explain how to use KEY packages to model security.
For convenience we use orange boxes to indicate b = 0 and
blue boxes to indicate b = 1. Figure 6 and Figure 7 describe
the security games for KDF, XPD and HPKE, decomposed
into several packages. For KDF and XPD, the upper KEY mod-
els the input key, the lower KEY package models the output
keys. KDF and XPD are stateless packages, (see Figure 6d)
which retrieve an input key from the upper KEY package,

PKEYb,pke

Package Parameters

b: idealization bit
pke: pub. key enc. sch.
i: package index

Package State

K[h 7→ k]: key table
H[h 7→ b]: honesty table
Q[h 7→ h]: handle table

SET(h, hon, pk , sk)

assert pke.valid(pk , sk)
if Q[h] 6=⊥:
ret Q[h]

if b ∧ hon:
(pk , sk)←$ pke.kgen()

h′ ← (h, i, pk)

K[h′]← sk

H[h′]← hon

Q[h]← h′

ret h′

REG(hon, pk , sk)

assert pke.valid(pk , sk)

if hon:

(pk , sk)←$ pke.kgen()

h← reg〈(|K|, i, pk)〉
K[h]← sk

H[h]← hon

Q[h]← h

ret h

GET(h)

assert K[h] 6=⊥
ret K[h]

CGET(h)

assert H[h] = 0

ret K[h]

HON(h)

assert H[h] 6=⊥
ret H[h]

Figure 5: Definition of the PKEY package. reg〈·〉 is an injective
handle constructor, creating a tuple from the inputs.

perform a computation, and store the result in the lower KEY
package. The lower KEY package models security, namely
pseudorandomness of the output keys.

Recall that our security notion aims to capture that output
keys are indistinguishable from uniformly random values of
the same length. Thus, if b = 0 in KEYb,λ, the concrete key
values are stored, and if b = 1 in KEYb,λ, then uniformly
random keys of the same length are drawn. Finally, the
adversary can retrieve the output keys via the GET oracle.

Note, that we want to model multi-instance security, where
some of the keys might be known to the adversary. We track
the adversary’s knowledge of a key by marking the key as
dishonest (sometimes also called corrupt). In that case we will
say that the honesty value hon is 0. In turn, for honest keys,
hon is 1. In the case that hon = 0, the concrete keys (i.e. the
real result of the key computations) are stored regardless of
whether b = 1 or b = 0. It is important that the adversary can
access also honest keys via GET and not only dishonest keys,
since the game models pseudorandomness of honest keys, and
for dishonest keys, the ideal and real game behave identically.

We model multi-instance security with static corruptions
on the input keys and corrupt-upon-derivation (CUD) on the
output keys. If all input keys are corrupt, then the output value
is marked as corrupt as well. Moreover, if the adversary uses
hon = 0 as a parameter in its oracle query to EVAL, then the
key will be marked as corrupt, too. Else, keys are marked as
honest. Note, that in the upper KEY package, honest keys are
sampled uniformly at random and secret from the adversary, as
the adversary cannot access them via GET, because the GET
query cannot be asked by the adversary—the arrows specify
which package may call which oracles of which package.
Importantly, this means that the graphs are part of the formal
game definitions.

Handles. If an adversary wants to interact with a specific
key, e.g., to retrieve it via a GET or have it be the subject of
another oracle query such as EVAL, they use the handle of
that key. We construct handles in such a way that each handle
injectively maps to a key. When a key is initially randomly
generated via the REG oracle, its handle reg〈·〉 is composed
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EVAL EXP

KEYin.(CGET,HON)
(KEYin)1

KEYout.REG (KEYout)b0

(LOGin)1

(LOGout)b1

KEYout.SET

KEYout.(GET,HON)

KEYin.(SET,REG)

A
KEYin.(GET,HON)

(a) Game GEXPb0,b1xpd .

EVAL1..n (KDF1..n)b

KEYR1..Rn.(CGET,HON) (KEYR2..Rn)0

(KEYout1..n)0

(LOGR2..Rn)1

(LOGout1..n)1

KEYout1..n.SET

KEYout1..n.(GET,HON)

KEYR1..Rn.(SET,REG)

KEYL.(C/GET,HON),KEYR1..Rn.(GET,HON)

KEYL.CGET
(KEYL)1 (LOGL)1

KEYL.SET

A

(LOGR1)1(KEYR1)1

(b) Game GKDFLbkdf where KDFi for i ∈ {1, . . . , n} interacts
only with KEYRi and KEYouti.

EVALi (KDFi)1

KEYR.(CGET,HON)
(KEYR)1

(KEYout)b

(LOGR)1

(LOGout)1

KEYout.SET

KEYout.(GET,HON)

KEYR.(SET,REG)

KEYL.(CGET,HON),KEYR.(GET,HON)

KEYL.CGET
(KEYL)1 (LOGL)1

KEYL.SET

A

(c) Game GKDFRbkdf .

EXP

Package Parameters

xpd : a PRF

lbl : labels
in : input index
out : output indices

Package State

no state

EVAL(h, ctx , hon)

k ← KEYin.GET(h)

hon ′ vec← KEYin.HON(h) ∧ hon

k ′ vec← xpd(k, (lbl , ctx ))

h ′ vec← (h, (lbl , ctx ))

h ′ vec← KEYout .SET(h ′, hon ′, k ′)

ret h ′

KDFbi

Package Parameters

kdf : a KDF L : left index

lbl : labels R : right index
b : idealization bit out : output indices
i : package index λ : output key length

Package State

no state

EVAL(hL, hR, ctx , hon)

honL ← KEYL.HON(hL)

honR ← KEYR.HON(hR)

if b ∧ honL:

k ′ vec $← {0, 1}λ

else :

if b: kL ← KEYL.CGET(hL)

else : kL ← KEYL.GET(hL)

kR ← KEYR.GET(hR)

ctx
′ vec← (ctx , i)

k ′ vec← kdf(kL, kR, (lbl , ctx
′
))

hon ′ vec← (honL ∨ honR) ∧ hon

h ′ vec← (hL, hR, (lbl , ctx
′
))

h ′ vec← KEYout .SET(h ′, hon ′, k ′)

ret h ′

(d) Code of packages EXP and KDFi.

Figure 6: Games GEXPb0b1xpd , GKDFLbkdf and GKDFRbkdf .

of the index of the package KEY and a counter, implemented
as |K| where K is the table of keys already stored in the KEY
package, making it globally unique. We denote by reg the
corresponding and injective handle constructor, see Figure 4.

If a key is derived from one or more other keys, the handle
of the output key is constructed from the handles of the input
key(s), as well as any other inputs to the key derivation. See,
e.g., the description of the EVAL oracles in Figure 6d. This
guarantees that the handle-to-key mapping is computationally
injective, i.e., will not have collisions unless we found a
collision in the key derivation function used to derive the key.

Finally, let us elaborate on the role of the KEY package in
HPKE. Here, KEY models a message that shall remain secret.
If the HPKE is idealized, the message is instead replaced with
an all-zero string before encryption (Figure 7). Note that pairs
of secret keys and public keys are stored in the PKEY package,
see Figure 5 and Figure 7.

Logging. We now turn to how we model collision resistance
and key uniqueness. We call two handles h and h′ such that
they correspond to the same key in the K table in KEY a key
collision. For honest, uniformly random keys, such collisions
are unlikely, but for keys registered by the adversary or known
to the adversary, such collisions can trivially occur. We thus
1) disallow the adversary from registering the same dishonest
key value k twice under two different handles (since identical
input keys would lead to identical output keys), 2) remove
collisions between registered and set dishonest keys (once)
and 3) prove that then derived keys do not have collisions.

We model both properties using a LOG package which keeps
track of the keys and handles used so far and sends a special
abort message when a collision occurs.

This modular style of code-writing has recently been de-
veloped by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and
Kohlweiss (BDFKK [14]) and been coined state-separating
proofs (SSP) since the state separation of the games enables
proofs which rely on code-separation and state-separation. We
now state all our assumptions formally using the composed
games style and return to proofs in Section A.

Expand. We consider Krawczyk’s XPD function as a function
xpd : ({0, 1}λ × {0, 1}∗) 7→ {0, 1}λ′

, where λ′ = λ′(λ) is
hardcoded (rather than provided as an explicit input). The
second input is a pair (lbl , ctx ), where in some cases, ctx
might be empty. We parametrize our security game for XPD
with a list of labels lbl and measure the security of the
XPD function by the advantage which adversaries A have
in distinguishing the real game GEXP0,0xpd and the ideal game
GEXP1,1xpd, defined in Figure 6a. For an adversary A, we define
the advantage function AdvxpdEXP(A) :=∣∣∣Pr[1← A ◦ GEXP0,0xpd

]
− Pr

[
1← A ◦ GEXP1,1xpd

]∣∣∣ .
In asymptotic terminology, if the advantage AdvxpdEXP(A) is
negligible for all PPT adversaries, then xpd is a secure pseu-
dorandom function. AdvxpdEXP(A) incorporates both, pseudoran-
domness and collision-resistance into a single assumption,
since the bit in the LOG also changes from 0 to 1. While
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KEY0..n.(SET,REG)
KEY0..n.(GET,HON) (KEY1..n)0 (LOG_KEY1..n)0

ENC,DEC

(KEY0)1

PKEY0..m.(SET,REG)
PKEY0..m.(CGET,HON) (PKEY0..m)1

PKEY0..m.HON

(LOG_KEY0)1

PKEY0..m.GETPKE0..m.(ENC,DEC)
PKE0..m

A

KEY0..n.(C/GET,HON)HPKEb

PKE0..m.(ENC,DEC)

(a) Game GHPKEbpke.
PKE

Package Parameters

pke : pub. key enc. sch.

pkey : PKEY indices

Package State

H[c 7→ b] : hon. ciph.

ENC(hkp,m)

pk ← getpk(hkp)

c←$ pke.enc(pk ,m)

H[c]← 1

ret c

DEC(hkp, c)

j ← parse(hkp, pkey)

if H[c] = 1:

ret ⊥
sk ← PKEYj .GET(hkp)
m← pke.dec(sk , c)
ret m

HPKE

Package Parameters

b : idealisation bit pkey : PKEY indices

pke : PKE indices key : KEY indices
λ : encrypted key length

Package State

Q[c 7→ h] : handle table

ENC(hkp, hk)

j ← parse(hkp, pkey)

i← parse(hk, key)

assert PKEYj .HON(hkp)

∨ ¬KEYi.HON(hk)

if b ∧ PKEYj .HON(hpk):

m← 0λ

else if b:

m← KEYi.CGET(hk)
else :

m← KEYi.GET(hk)
c←$ PKEj .ENC(hkp,m)

Q[c]← hk

ret c

DEC(hkp, c)

j ← parse(hkp, pkey)

if Q[c] 6=⊥:
ret Q[c]

m← PKEj .DEC(hkp, c)
ret m

(b) Packages PKE and HPKE (Hybrid Public Key Encryption). getpk
gets the public key from a handle and parse tries to map a handle
to the index of the KEY or PKEY package it is stored in. If it fails, it
triggers an assert .

Figure 7: Game GHPKEbpke.

this is convenient in proofs, in some cases, we need pseudo-
randomness only, since collision resistance has already been
taken care of. For an adversary A, we write AdvxpdPREXP(A) :=∣∣∣Pr[1← A ◦ GEXP1,1xpd

]
− Pr

[
1← A ◦ GEXP0,1xpd

]∣∣∣ .
KDF. We model Krawczyk’s HKDF as a function kdf :
({0, 1}λ×{0, 1}λ×{0, 1}∗) 7→ {0, 1}λ′

for some hard-coded
λ′ = λ′(λ) such that a triple (kL, kR, (lbl , ctx )) is mapped to
a string of length λ′. We assume that kdf is a dual KDF. I.e.,
if either of the inputs is random and secret from the adversary,
then kdf produces a pseudorandom output. Idealization based
on the left input is modeled by a bit in the code of KDF. For
an adversary A, we define the advantage AdvkdfKDFL(A) :=∣∣Pr[1← A ◦ GKDFL0

kdf

]
− Pr

[
1← A ◦ GKDFL1

kdf

]∣∣ ,
where GKDFLbkdf is defined in Figure 6b. The right inputs need
to be unique (the LOG bit is 1) since the KDF is deterministic
and thus, identical inputs yield identical outputs in the real
world, while different handles obtain independent, random
keys in the ideal world. Note that the idealization bits in

the right input KEY packages are customized to the use of
the assumption in our proof—the assumption would equally
make sense with more/less bits being 0. Jumping ahead, we
note that in our proof, we idealize based on the left input
globally across all epochs, since the left input models the
commit secret. While idealization based on the left input is
modeled by a bit in the KDF package, idealization based on
the right input is modeled by a bit in the lower KEY package.
For an adversary A, the advantage is AdvkdfKDFR(A) :=∣∣Pr[1← A ◦ GKDFR0

kdf

]
− Pr

[
1← A ◦ GKDFR1

kdf

]∣∣ ,
where GKDFRbkdf is defined in Figure 6c.

Public-Key Encryption. Lastly, we assume the existence
of a public-key encryption (PKE) scheme pke, which con-
sists of three algorithms pke.kgen, pke.enc and pke.dec with
standard correctness and confidentiality properties, namely
indistinguishability under chosen ciphertext attacks (IND-
CCA2). IND-CCA2 captures that encryptions of (adversarially
chosen) messages m are computationally indistinguishable
from encryptions of 0|m|, even when the adversary can use
a decryption oracle (except on the challenge ciphertexts). We
use the PKE scheme exclusively to model Hybrid Public Key
Encryption (HPKE), i.e. we only encrypt symmetric keys with
the PKE scheme. The length of the symmetric keys is λ. For
an adversary A, we define the advantage as AdvpkeHPKE(A) :=∣∣Pr[1← A ◦ GHPKE0

pke

]
− Pr

[
1← A ◦ GHPKE1

pke

]∣∣ ,
where the game GHPKEbpke is defined in Figure 7 and n and m
refers to an upper bound on the number of secret-key public-
key pairs, and symmetric-keys to be encrypted, respectively.
Recall from Section III, that we rely on a derive key pair
function (DKP), which maps random coins to the output of
pke.kgen. As a DKP may fail [6] we define the advantage
of distinguishing pke.kgen from the output of a DKP as
AdvpkeDKP(A), i.e. the probability that DKP fails when using
a uniformly random string as input.

Collision-Resistance. We formulated assumptions for pseudo-
randomness of xpd and kdf, and we also formulated a joint
assumption for pseudorandomness and collision-resistance of
xpd. In addition, some proof steps also rely only on collision-
resistance of xpd and kdf, respectively. We encode collision-
resistance by assuming that xpd and kdf pass on the unique-
ness of their input keys to their output keys, i.e., if the bits
in the LOG packages of their input KEY packages are 1, then
the bits in the LOG packages of their output KEY packages
can be flipped from 0 to 1. For an adversary A, we denote
the advantage of finding a collision either for xpd or kdf by
Advxpd,kdfCR (A). Note that, in general, xpd and kdf functions
cannot be assumed to be collision-resistant, but in MLS, xpd
is based on HMAC, and kdf is implemented as HKDF, which
is also based on HMAC, and HMAC is known to be collision-
resistant whenever the underlying hash-function is.

VI. SECURITY MODELS

We now introduce our security model for the MLS CGKD.
We first define the model of the MLS CGKD as a composition
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Figure 8: Composed (left) and individual (right) wCGKD and key schedule games.
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Figure 9: wCGKD subgames.

of the models of the wCGKD and the key schedule and then
introduce each of these sub-models in turn.

CGKD. A crucial component in the modeling are different
keys, inputs and outputs as described in Figure 1. Based on
the rationale outlined in Section V, storing keys in separate
packages is useful for composition, and so, our model stores
each type of key in a separate KEY package, i.e., there are
two main packages wCGKD and KS, each reading and writing
keys from/into the different KEY and PKEY packages, see
Figure 8a for the composed game GCGKD and Figure 8c
for GKS. Figure 8b and 8c respectively show the security
definition of wCGKD and the key schedule on their own.
Note that each KEY package has a different subscript and so
have their oracles to ensure that queries are unique across the
entire graph. We now map the inputs and outputs described in
Figure 1 to the KEY packages.

The values (pk , sk ) of the KEMs associated with different
nodes in the tree are stored in PKEY_NKP packages, the
path secrets are stored in the KEY_PS packages with other
path secrets (including the kupd value which update samples).

Finally, values for the sext variable are stored in KEY_PSK
packages, values for the sint variable are stored in KEY_IS
packages, values for the kwel variable are stored in KEY_WS
packages, and values of each of the k variables in k lbl are
stored in KEY_GR.

Our base keys are modeled as uniformly random, unique
keys (for honest keys) or adversarially chosen (but still unique)
keys, e.g., the KEY_PSK starts with an idealization bit b = 1,
reflecting that keys are sampled uniformly at random and that
the adversary cannot register the same dishonest key twice.
We can then rely on the assumptions stated in Section V to
prove that a game where the idealization bits of the other
KEY packages are all 0 is computationally indistinguishable
from a game where the idealization bits of the other KEY
packages are all 1. This establishes that the MLS CGKD
provides pseudorandom and unique keys.

Definition VI.1 (CGKD advantage). For an expand function
xpd, a KDF kdf, a PKE pke, for all polynomials d and
t and all adversaries A which generate trees of depth at
most d and run groups for at most t epochs, we denote by
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Advxpd,kdf,pkeCGKD (A) the advantage∣∣∣Pr[1← A ◦ GCGKD0,d,t
xpd,kdf,pke

]
− Pr

[
1← A ◦ GCGKD1,d,t

xpd,kdf,pke

]∣∣∣ .
Our security model is protocol-specific, i.e., it hardcodes

the MLS protocol specification and associated freshness con-
dition(s). An analogous model can be built for other variants
of the MLS CGKD. When using a different protocol specifi-
cation, the same freshness condition might not hold anymore.
E.g., an MLS protocol variant which does not include the init
key of the previous epoch in the derivation of the joiner secret
would turn out to be insecure in the model.

wCGKD In Figure 8b, the wCGKD package represents the
composition of packages shown in the center of Figure 9a
(LAYER0..d and EXP). Note that the KEY, PKEY, and PKE
packages correspond to those in Figure 8b. The LAYER
packages represent an at most d-layer tree structure where
each layer is encoded as a separate composition of packages.
Note that for each layer, the KEY_PS package, storing path
secrets, has a REG query that allows nodes on that layer to
function as a leaf node by generating a random (secret) value
from scratch.

We define each LAYER package as composition of pack-
ages, see Figure 9b. Again, the KEY, PKEY NKP, and PKE
packages correspond to those in Figure 8b. Figure 9b encodes
both the dn function (Figure 1) through the EXP and DKP
packages, and the encryption of path secrets to other members
through the HPKE, PKE, PKEY, and KEY_PS packages. The
GET access of HPKE to all layers above it encodes that path
secrets at various positions in the tree might be encrypted by
HPKE.

This model gives significantly more power to the adversary
than the MLS TreeKEM interface would (making our security
statements only stronger). The model allows the adversary to
set up derivations and encryptions that encode arbitrary tree
structures. The model merely enforces the concept of layers.

Definition VI.2 (wCGKD advantage). For an expand function
xpd, a PKE pke, for all polynomials d and all adversaries
A which generate trees of depth at most d, we denote by
Advxpd,pkewCGKD(A) the advantage∣∣∣Pr[1← A ◦ GWCGKD0,d

xpd,pke

]
− Pr

[
1← A ◦ GWCGKD1,d

xpd,pke

]∣∣∣.
Key Schedule model. We define the KS package in Figure 8c
as the composition of packages in the center of Figure 10a
(EPOCH0..t). The KEY, PKEY, and PKE packages correspond
to those in Figure 8c. The EPOCH packages represent a t-epoch
group where each epoch is encoded as a separate composition
of packages. Each EPOCH package is the composition of pack-
ages shown in the center of Figure 16. Recall that the KEY,
PKEY, and PKE packages correspond to those in Figure 8c.

Figure 16 encodes the key schedule ks (Figure 1). The
KDF and EXP packages correspond to kdf and xpd calls,
and the DKP package corresponds to the dkp call. The HPKE
packages encode the encryption of the joiner secret to new
members (top), and the encryption of init secrets by external
committers (bottom). The REG query allows the adversary to
create external init secrets. The values of external key pairs,
(pk ext, sk ext), are stored in the PKEY_EX package.
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specified in Figure 10b. (E,D) abbreviates (ENC,DEC).
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Figure 10: Game GGKSb0,b1,d,txpd,kdf,pke. We write GGKSb,d,txpd,kdf,pke if
b = b0 = b1.

Definition VI.3 (KS advantage). For an expand function xpd,
a key derivation function kdf, a PKE pke, for all polynomials
d, t and all adversaries A which generate trees of depth at
most d and run groups for at most t epochs, Advxpd,kdf,pkeKS (A)
denotes∣∣∣Pr[1← A ◦ GKS0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GKS1,d,txpd,kdf,pke

]∣∣∣ .
VII. THEOREMS

This section relates the security of the MLS CGKD to the
security of the underlying primitives XPD, KDF, and HPKE.
We first make separate security claims for the wCGKD and the
key schedule and then bound the security of their composition.

Theorem 1. (wCGKD Security) For all polynomials d and
all adversaries A which generate trees of depth at most d,

Advxpd,pkewCGKD(A) ≤ AdvxpdEXP(A ◦Rexp)+

d−1∑
i=0

(AdvxpdEXP(A ◦Ri ◦ Rexp,i)

+AdvpkeDKP(A ◦Ri ◦ Rdkp,i)+AdvpkeHPKE(A ◦Ri ◦ Rhpke,i))2546
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where GWCGKDb,dxpd,pke is provided in Figure 8b.

Theorem 2. (Key Schedule Security) For all polynomials d
and t and all adversaries A which generate trees of depth at
most d and run groups for at most t epochs, it holds that

Advxpd,kdf,pkeKS (A) ≤ Advxpd,kdfCR (A ◦Rcr)
+ AdvkdfKDFL(A ◦Rint) + AdvkdfKDFL(A ◦Rjoi)

+

t−1∑
i=0

(AdvkdfKDFR(A ◦Rhyb,i ◦ Rks
1,i) + AdvpkeHPKE(A ◦Rhyb,i ◦ Rks

2,i)

+ AdvkdfKDFR(A ◦Rhyb,i ◦ Rks
3,i) + AdvxpdPREXP(A ◦Rhyb,i ◦ Rks

4,i)

+ AdvpkeDKP(A ◦Rhyb,i ◦ Rks
5,i), + AdvpkeHPKE(A ◦Rhyb,i ◦ Rks

6,i)),

where GKSb,d,txpd,kdf,pke is defined in Figure 8c.

Theorem 3. (CGKD) For all polynomials d and t and all
adversaries A which generate trees of depth at most d and run
groups for at most t epochs, it holds that Advxpd,kdf,pkeCGKD (A)

≤ Advxpd,pkewCGKD(A ◦ RwCGKD) + Advxpd,kdf,pkeKS (A ◦ RKS),

where GCGKDb,d,txpd,kdf,pke is given in Figure 8a.

We prove Theorem 1 in Appendix A, provide the proof of
Theorem 3 in Appendix B and the proof of Theorem 2 in
Appendix C, D and E.

VIII. PROOF METHODOLOGY

Our proofs rely on central concepts of the state-separating
proofs methodology: (1) Code composition & code re-use, (2)
Precise reductions and (3) Indices.

Code Composition and code re-use We use packages similar
to module systems in programming languages where a bigger
program can be built out of smaller modules/packages. I.e., we
only define the code of each base package once and then define
all games and reductions by (call-)graphs whose nodes consist
of copies of the base packages, cf. Section V and Section VI,
where we defined our security models.

Code re-use for explicit reductions. Since we define the
composition of packages visually via a graph we can check
that a reduction works via graph pattern-matching. For ex-
ample, Figure 12a reduces the difference between two games
to EXP security. The gray area is the reduction Rexp,i and
the non-gray area is game GEXPb0,b0xpd which was defined in
Figure 6a (with b1 = b0). Denoting the two games defined
by Figure 12a (one for b0 = 0 and one for b0 = 1) as G0

and G1, if an adversary A can distinguish between G0 and G1,
then the adversary A◦Rexp,i can distinguish between GEXP0,0xpd

and GEXP1,1xpd. I.e., the reduction Rexp,i is a part of code of
the games G0 and G1 which we move into the adversary. This
way of reasoning gives (a) precise definitions of reductions
and (b) straightforward arguments that the simulation of the
reduction is perfect. This not only makes proofs easier to
verify, it also speeds up our own work since we write less
reductions and changes in the code of a package immediately
propagate through the entire proof and article. Publishing the
code of this article should allow others to make small changes
to the code without affecting the validity of the proof.

Package in out lbl Fig.
EXP−1 PSi (CS) (“path”) 9a
EXP_0i PSi (NSi,PSi−1) (“node”, “path”) 9b
EXP_1i ESi (EX′i,ISi,GRi) (“external”, “init”, ...) 16
Package (L,R) out lbl Fig.
KDF_0i (CS,ISi−1) (JSi) (“joiner”) 16
KDF_1i (PSK,JSi) (ESi,WSi) (“epoch”, “welcome”) 16
Package keys pkeys pkes Fig.
HPKEi (PSi−1, ..,PS0) (NKPi) (PKE_0i) 9b
HPKE_0i (JSi) (NKP0, ..,NKPd) (PKE_00, ..,PKE_0d) 16
HPKE_1i (ISi) (EXi) (PKE_1i) 16

Figure 11: Values of package parameters.

Package Indices. Composing different packages requires us to
specify their interfaces and match them. In particular, we often
compose multiple packages of the same kind in parallel, e.g.,
the GKDFRbkdf game in Figure 21 composes (KEY ISi−1)1,
(KEY JSi)b0 and (KEY CS)1 packages in parallel which are
all a variant of the KEYb package. This is analogous to
classes and objects in object-oriented programming languages.
A package definition is akin to a class, describing a number
of method (oracles) and member variables (package state).
Following that analogy, a package (or package instance), such
as (KEY ISi−1)1 is an object of that class, with the index
(in subscript) distinguishing it from other objects/package
instances, and with the superscript denoting member variable
values (for brevity values clear from the context are omitted).
Additionally, a package name suffix may be used to distinguish
instances as well. If a package does not have a subscript this
means there is only one instance of the package. If a package
has a range (or vector) of indices, e.g. (0..x), this means there
are x+1 parallel instances of the package. See Figure 11 for
the parameters of the different packages in this article.

Bit Indices. The proofs of lemmas and theorems consist
of game hops each of which flips a bit which we indicate
by highlighting the bit (and related queries) in green in the
diagrams accompanying a proof. The index of the highlighted
bit corresponds to the index of the game hop. That is, we state
all our theorems and lemmas in terms of flipping a single bit.

Scoping. Adversary and bit variables are local to a definition,
theorem or diagram and unrelated to the use of a variable
with the same name in other theorems and diagrams. I.e., in
theorems and proofs, we split a single bit b into several bits
and construct multiple adversaries by composing an adversary
with a reduction into A ◦ R. Note that reduction names are
globally unique in this article.
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APPENDIX

A. Proof of Theorem 1 (wCGKD security)

The proof of Theorem 1 consists of Lemma 1 and a
hybrid argument. We start with the former which shows that
a wCGKD layer with an ideal path secret can be completely
idealized such that the path secret of its parent is ideal as well
as the encryptions it performs.

Lemma 1. (Layer Security) Let B be an adversary and
GLAYERb,ixpd,pke the indistinguishability game defined by Fig-
ure 9b. Then it holds that

Advxpd,pke,iLAYER (B) ≤ AdvxpdEXP(B ◦ Rexp,i) + AdvpkeDKP(B ◦ Rdkp,i)

+ AdvpkeHPKE(B ◦ Rhpke,i),

where Rexp,i is defined as the grey area in Figure 12a where
Rdkp,i as the grey area in Figure 12b, and Rhpke,i as the grey
area in Figure 12c.

The proof of Lemma 1 consists of three steps, each of which
modifies one or two bits in the overall game. We denote

GLAYERb,ixpd,pke := GLAYERb,b,b,ixpd,pke,

i.e., GLAYERb0,b1,b2,ixpd,pke with b = b0 = b1 = b2.
In the first proof step, we apply the expand assumption for

lbl = {path,node} to idealize the node secret of layer i and
the path secret of layer p(i). We obtain the following bound:
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Figure 12: Proof of Lemma 1.

∣∣∣Pr[1← B ◦ GLAYER0,0,0,i
xpd,pke

]
− Pr

[
1← B ◦ GLAYER1,0,0,i

xpd,pke

]∣∣∣
≤ AdvxpdEXP(B ◦ Rexp,i),

where Rexp,i is defined as the grey area in Figure 12a.
In the second step of this proof we apply the DKP assump-

tion to idealize the PKEY package of layer i, and we obtain
that∣∣∣Pr[1← B ◦ GLAYER1,0,0,i

xpd,pke

]
− Pr

[
1← B ◦ GLAYER1,1,0,i

xpd,pke

]∣∣∣
≤ AdvpkeDKP(B ◦ Rdkp,i). See Figure 12b for Rdkp,i.

In the third and last step of this proof we apply the HPKE
assumption for n = i − 1 and m = 1 to idealize the HPKE
package of layer i. This gives us the following bound w.r.t.
GLAYERb,ixpd,pke∣∣∣Pr[1← B ◦ GLAYER1,1,0,i

xpd,pke

]
− Pr

[
1← B ◦ GLAYER1,1,1,i

xpd,pke

]∣∣∣
≤ AdvpkeHPKE(B ◦ Rhpke,i),

whereRhpke,i is defined as the grey area in Figure 12c. Hence,
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(b) Step to idealize the root layer and the commit secret.

Figure 13: Proof of Theorem 1.

Advxpd,pke,iLAYER (B) ≤ AdvxpdEXP(B ◦ Rexp,i)+ ≤ AdvpkeDKP(B ◦ Rdkp,i)

+ AdvpkeHPKE(B ◦ Rhpke,i),

which concludes the proof of Lemma 1.
Hybrid argument. We apply a hybrid over Lemma 1 to the
game GWCGKD defined by Figure 9a, which, as explained in
Section VI, is equivalent to Figure 8b.

For convenience we add several bits into the superscript
of GWCGKD to model security of the different layers, i.e., if
b = b0 = ... = bd, then

GWCGKDb0,...,bd,dxpd,pke = GWCGKDb,dxpd,pke.

Recall that the KEY_PSd package represents base secrets at
the lowest possible leaf layer. Thus, the package is idealized so
that its values are either corrupt and chosen by the adversary
or honest, randomly generated and never shared.

Due to Lemma 1, we can idealize any layer with an ideal
path secret, resulting in an ideal path secret for the parent
layer. Hence, we use a hybrid argument upwards through the
tree, see Figure 13a. Hence, for all PPT adversaries A,∣∣∣Pr[1← A ◦ GWCGKD1,0,...,0,d

xpd,pke

]
− Pr

[
1← A ◦ GWCGKD1,...,1,0,d

xpd,pke

]∣∣∣
≤ Advxpd,pke,iLAYER (A ◦Ri),
where Ri is defined as the grey area in Figure 13a. We apply
this hybrid argument until KEY_PS0 is ideal. At this point
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Figure 14: Theorem 3.

the entire wCGKD tree is ideal, except for the commit secret
derived at the root. Therefore, as visualized in Figure 13b, we
apply the expand assumption and obtain∣∣∣Pr[1← A ◦ GWCGKD1,...,1,0,d

xpd,pke

]
− Pr

[
1← A ◦ GWCGKD1,...,1,1,d

xpd,pke

]∣∣∣
≤ AdvxpdEXP(A ◦Rexp),

where Rexp is defined as the grey area in Figure 13b. Using
B = A ◦Ri, we derive the desired bound for Theorem 1:

Advxpd,pkewCGKD(A) ≤ AdvxpdEXP(A ◦Rexp) +
d−1∑
i=0

Advxpd,pke,iLAYER (A ◦Ri)

= AdvxpdEXP(A ◦Rexp) +

d−1∑
i=0

(AdvxpdEXP(A ◦Ri ◦ Rexp,i)

+AdvpkeDKP(A ◦Ri ◦ Rdkp,i) + AdvpkeHPKE(A ◦Ri ◦ Rhpke,i)).

B. Proof of Theorem 3 (CGKD security)

We prove Theorem 3 using Theorem 1 and Theorem 2.
Recall (see Figure 8a) that, if b = b0 = b1, then

GCGKDb0,b1,d,txpd,kdf,pke = GCGKDb,d,txpd,kdf,pke.

In the first step of this proof we modify b0 from 0 to 1 and
reduce to GWCGKD. For all PPT adversaries A, we obtain∣∣∣Pr[1← A ◦ GCGKD0,0,d,t

xpd,kdf,pke

]
− Pr

[
1← A ◦ GCGKD1,0,d,t

xpd,kdf,pke

]∣∣∣
≤ Advxpd,pkewCGKD(A ◦RwCGKD),

where RwCGKD is defined as the grey area in Figure 14a. Next,
we modify b1 from 0 to 1 and reduce to GKS. We obtain
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Figure 15: Proof of Theorem 2. Hybrid step which reduces
to a single epoch. Reduction Rhyb,i is marked in grey. (E,D)
abbreviates (ENC,DEC).

∣∣∣Pr[1← A ◦ GCGKD1,0,d,t
xpd,kdf,pke

]
− Pr

[
1← A ◦ GCGKD1,1,d,t

xpd,kdf,pke

]∣∣∣
≤ Advxpd,kdf,pkeKS (A ◦RKS),

where RKS is defined as the grey area in Figure 14b. Hence,
we obtain the desired bound for Theorem 3:

Advxpd,kdf,pkeCGKD (A)
≤ Advxpd,pkewCGKD(A ◦RwCGKD) + Advxpd,kdf,pkeKS (A ◦RKS).

C. Proof of Theorem 2 (KS security)
This appendix proves Theorem 2. We first idealize collision-

resistance for all primitives (unique inputs translate into unique
outputs), then idealize the two KDFs of the key schedule based
on the commit secret and the external secret globally for all
epochs (since the commit secret and the external secret do not
have an epoch) and then finally apply a hybrid argument over
the epochs which is captured by Lemma 3.
KEY_IS0 represents the initial init secret and is ideal from

the start, i.e., it samples honest values independently at random
and allows the adversary to set corrupt values. Similarly, the
pre-shared keys (KEY_PSK) are ideal from the start as they are
exchanged out-of-bound. Lastly, note that the public-private
key-pairs (PKEY NKP) and commit secrets (KEY_CS) are
ideal form the start, which follows from Theorem 1.

Figure 10a depicts GGKSb0,b1,d,txpd,kdf,pke for trees up to depth d
and groups that run for up to t epochs. For b = b0 = b1, we
define GKSb,d,txpd,kdf,pke := GGKSb0,b1,d,txpd,kdf,pke. Here, b0 corresponds
to global proof steps (collision-resistance and KDFs), and b1
corresponds to epoch-wise proof steps. Note that the second
G in GGKS stands for global.

We now state Lemma 2 and Lemma 3, then show that they
imply Theorem 2 and then prove Lemma 2 and Lemma 3.
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Figure 16: Game GEPOCHb0,b1,b2,b3,b4,b5,d,t,ixpd,kdf,pke . We write
GEPOCHb,d,t,ixpd,kdf,pke if b = b0 = b1 = b2 = b3 = b4 = b5.
Note that KEY IS−1 should technically have a REG query,
but for an ideal KEY package, REG can be emulated via SET,
since SET allows arbitrary handles.

Lemma 2. For all polynomials d and t and all adversaries
A which generate trees of depth at most d and run groups for
at most t epochs, it holds that Advxpd,kdf,pke,(0,0),(1,0)GGKS (A) :=∣∣∣Pr[1← A ◦ GGKS0,0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GGKS1,0,d,txpd,kdf,pke

]∣∣∣
≤ Advxpd,kdfCR (A ◦Rcr) + AdvkdfKDFL(A ◦Rcs)

+ AdvkdfKDFL(A ◦Rpsk)

Recall that GGKSb0,b1,d,txpd,kdf,pke is defined in Figure 10a. Analo-
gously, we also use the notation Adv

xpd,kdf,pke,(1,0),(1,1)
GGKS (A) :=∣∣∣Pr[1← A ◦ GGKS1,0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GGKS1,1,d,txpd,kdf,pke

]∣∣∣ .
Lemma 3. (Epoch Security) Let B be an adversary and
GEPOCHb,d,t,ixpd,kdf,pke the indistinguishability game defined by
Figure 16. Then ∀d, t, i ∈ N : 0 ≤ i ≤ t, Advxpd,kdf,pke,iEPOCH (B) :=∣∣∣Pr[1← B ◦ GEPOCH0,d,t,i

xpd,kdf,pke

]
− Pr

[
1← B ◦ GEPOCH1,d,t,i

xpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFR(B ◦ Rks

1,i) + AdvpkeHPKE(B ◦ R
ks
2,i) + AdvkdfKDFR(B ◦ Rks

3,i)

+ AdvxpdPREXP(B ◦ R
ks
4,i) + AdvpkeDKP(B ◦ R

ks
5,i) + AdvpkeHPKE(B ◦ R

ks
6,i),

where Rks
1,i is defined as the grey area in Figure 20, Rks

2,i as
the grey area in Figure 21, Rks

3,i as the grey area in Figure 22,
Rks

4,i as the grey area in Figure 23, and Rks
5,i as the grey area

in Figure 24. See extended version [12] for Rks
6,i.

Proof of Theorem 2. We first apply Lemma 2 and then apply a
hybrid argument over the t epochs using that for 0 ≤ i ≤ t−1,
the following games are equal:

GGKS1,0,d,txpd,kdf,pke = Rhyb,0 ◦ GEPOCH0,d,t,i
xpd,kdf,pke (1)

Rhyb,i ◦ GEPOCH1,d,t,i
xpd,kdf,pke = Rhyb,i+1 ◦ GEPOCH0,d,t,i

xpd,kdf,pke

Rhyb,t ◦ GEPOCH1,d,t,i
xpd,kdf,pke = GGKS1,1,d,txpd,kdf,pke,
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Figure 17: GPGKSb0,b1,b2,d,txpd,kdf,pke where T = (0..t).
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Figure 18: Reducing to KDFL security based on ideal CS.
Reduction Rcs is marked in grey, where T = (0..t).

where Rhyb,i is defined in Figure 15. We obtain Theorem 2 as
follows:

Advxpd,kdf,pkeKS (A)
≤ Adv

xpd,kdf,pke,(0,0),(1,0)
GKS (A) + Adv

xpd,kdf,pke,(1,1),(1,1)
GKS (A)

Equation (1)
≤ Adv

xpd,kdf,pke,(0,0),(1,0)
GKS (A) +

t−1∑
i=0

Advxpd,kdf,pke,iEPOCH (A ◦Rhyb,i).

Plugging in the bounds from Lemma 2 and Lemma 3 with
B = A ◦ Rhyb,i yields Theorem 2. We now turn to the proof
of Lemma 2.
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Figure 19: Reducing to KDFL security based on ideal PSK.
Reduction Rpsk is marked in grey, where T = (0..t).

D. Proof of Lemma 2

In order to prove Lemma 2, we introduce game
GPGKSb0,b1,b2,d,txpd,kdf,pke , depicted in Figure 17, where the P in
GPGKS stands for proof. The following equalities hold:

GPGKS0,0,0,d,txpd,kdf,pke = GGKS0,0,d,txpd,kdf,pke

GPGKS1,1,1,d,txpd,kdf,pke = GGKS1,0,d,txpd,kdf,pke

For collision-resistance, we can construct a reduction Rcr such
that the distinguishing advantage between GPGKS0,0,0,d,txpd,kdf,pke and
GPGKS1,0,0,d,txpd,kdf,pke can be turned into a collision against one
of the underlying primitives. This is possible because (a) the
initial commit secret, PSK, and level 0 init secrets are unique
and (b) we have domain separation between the different
epochs due to the inclusion of the group context in the KDFs.
Thus, we can argue inductively that∣∣∣Pr[1← A ◦ GPGKS0,0,0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GPGKS1,0,0,d,txpd,kdf,pke

]∣∣∣
≤ Advxpd,kdfCR (A ◦Rcr).

After idealizing collision-resistance, we can now reduce to
the KDFL security of the commit secret, since the respective
second inputs are unique. We thus obtain that∣∣∣Pr[1← A ◦ GPGKS1,0,0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GPGKS1,1,0,d,txpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFL(A ◦Rcs),

where Rcs is defined in Figure 18. Analogously,∣∣∣Pr[1← A ◦ GPGKS1,1,0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GPGKS1,1,1,d,txpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFL(A ◦Rpsk),

where Rpsk is defined in Figure 19. The three steps yield∣∣∣Pr[1← A ◦ GGKS0,0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GGKS1,0,d,txpd,kdf,pke

]∣∣∣
≤ Advxpd,kdfCR (A ◦Rcr) + AdvkdfKDFL(A ◦Rcs)

+ AdvkdfKDFL(A ◦Rpsk),
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Figure 20: Step 1 of idealizing epoch i. We mark Rks
1,i in grey.
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Figure 21: Step 2 of idealizing epoch i. We mark Rks
2,i in grey.

which concludes the proof of Lemma 2.

E. Key Schedule Epoch

We now prove Lemma 3 which captures the security of a
single epoch of the key schedule, a core argument in the proof
of Theorem 2. We show that when an MLS epoch relies on an
ideal internal secret sint derived in a previous epoch or an ideal
PSK sext or an ideal commit secret kcs , then the current epoch
provides security guarantees, too, for the new s′int derived in
the current epoch, all group secrets for the current epoch and
for the current external public-key encryption keys.

The proof of Lemma 3 consists of six steps, each of which
flips one or more bits in the overall game. See Figure 16

2552



19

ISi-1.SET
ISi-1.CGET

(KEY_ISi-1)1

KDF_0i.EVAL (KDF_0i)1

CS.SET

(KEY_JSi)1

PSK.(CGET,HON),JSi.(GET,HON)(KDF_1i)1

PSK.SET

KDF_1i.EVAL

(KEY_ESi)b2

ESi.(GET,HON)EXP_1i

GRi.GET
(KEY_GRi)0

ISi.(GET,HON)
(KEY_ISi)0

CS.(CGET,HON)

NKP0..d.HON
JSi.(CGET,HON)

PKE_00..d.(ENC,DEC)

(HPKE_0i)1

NKP0..d.(SET,REG)

KEY_PSK1

KEY_CS1

NKP0..d.(CGET,HON)
(PKEY_NKP0..d)1

LOG_CS1

LOG_PSK1

PKE_00..d.(ENC,DEC) NKP0..d.GETPKE_00..d

(LOG_ISi-1)1

(LOG_JSi)1

(LOG_ESi)1

(LOG_GRi)1

(LOG_ISi)1

CS.(CGET,HON),ISi-1.(GET,HON)

(GR,IS,EX')i.SET

HPKE_0i.(ENC,DEC)

PSK.(CGET,HON)

(PKEY_EXi)0

(KEY_EX'i)0 (LOG_EX'i)1

EX'i.(GET,HON)
EXi.SET

DKP_1i.EVAL DKP_1i

EXi.HON
ISi.(GET,HON)

(HPKE_1i)0HPKE_1i.(ENC,DEC)

(ENC,DEC)i PKE_1i

EXP_1i.EVAL

EXi.GET

ISi.REG

JSi.SET

WSi.GET
(KEY_WSi)b2 (LOG_WSi)1

(ES,WS)i.SETA

Figure 22: Step 3 of idealizing epoch i. We mark Rks
3,i in grey.

for the definition of GEPOCHb0,b1,b2,b3,b4b5,d,t,ixpd,kdf,pke and note that
GEPOCHb,d,t,ixpd,kdf,pke = GEPOCHb0,b1,b2,b3,b4,b5,d,t,ixpd,kdf,pke if b = b0 =
b1 = b2 = b3 = b4 = b5.

In the first step of this proof we use the KDFR assumption
to idealize the KEY_JS package of epoch i. We obtain∣∣∣Pr[1← A ◦ GEPOCH0,0,0,0,0,0,d,t,i

xpd,kdf,pke

]
−Pr

[
1← A ◦ GEPOCH1,0,0,0,0,0,d,t,i

xpd,kdf,pke

] ∣∣∣ ≤ AdvkdfKDFR(A ◦Rks
1,i).

Now, in the second game hop, we use the HPKE assumption
for n = 1 and m = d to idealize the first HPKE package of
epoch i and to remove access to the joiner secret. We obtain∣∣∣Pr[1← A ◦ GEPOCH1,0,0,0,0,0,d,t,i

xpd,kdf,pke

]
−Pr

[
1← A ◦ GEPOCH1,1,0,0,0,0,d,t,i

xpd,kdf,pke

] ∣∣∣ ≤ AdvpkeHPKE(A ◦R
ks
2,i).

In the third step of this proof we use the KDFR assumption
to idealize the KEY_ES package of epoch i. This is possible
since there is no GET query on the joiner secret anymore. We
obtain the bound∣∣∣Pr[1← A ◦ GEPOCH1,1,0,0,0,0,d,t,i

xpd,kdf,pke

]
−Pr

[
1← A ◦ GEPOCH1,1,1,0,0,0,d,t,i

xpd,kdf,pke

] ∣∣∣ ≤ AdvkdfKDFR(A ◦Rks
3,i).

In the fourth step of this proof we use the XPD assumption
with n = 2 + |GR| to idealize all current group secrets in
KEY_GR, the init secret in KEY_IN and the seed in KEY_EX
(later used for computing the external public-key). We obtain∣∣∣Pr[1← A ◦ GEPOCH1,1,1,0,0,0,d,t,i

xpd,kdf,pke

]
−Pr

[
1← A ◦ GEPOCH1,1,1,1,0,0,d,t,i

xpd,kdf,pke

] ∣∣∣ ≤ AdvxpdPREXP(A ◦R
ks
4,i).

In the fifth step of this proof, we lose the DKP advantage
to idealize the PKEY_EX package of epoch i, and we obtain∣∣∣Pr[1← A ◦ GEPOCH1,1,1,1,0,0,d,t,i

xpd,kdf,pke

]
−Pr

[
1← A ◦ GEPOCH1,1,1,1,1,0,d,t,i

xpd,kdf,pke

] ∣∣∣ ≤ AdvpkeDKP(A ◦R
ks
5,i).
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Figure 23: Step 4 of idealizing epoch i. We mark Rks
4,i in grey.
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Figure 24: Step 5 of idealizing epoch i. We mark Rks
5,i in grey.

In the sixth and final step of the epoch proof we use the
HPKE assumption for n = 1 and m = 1 to idealize the second
HPKE package of epoch i. We obtain∣∣∣Pr[1← A ◦ GEPOCH1,1,1,1,1,0,d,t,i

xpd,kdf,pke

]
−Pr

[
1← A ◦ GEPOCH1,1,1,1,1,1,d,t,i

xpd,kdf,pke

] ∣∣∣ ≤ AdvpkeHPKE(A ◦R
ks
6,i).

Hence,

Advxpd,kdf,pke,iEPOCH (A) ≤ AdvkdfKDFR(A ◦Rks
1,i) + AdvpkeHPKE(A ◦R

ks
2,i)

+ AdvkdfKDFR(A ◦Rks
3,i) + AdvxpdPREXP(A ◦R

ks
4,i)

+ AdvpkeDKP(A ◦R
ks
5,i) + AdvpkeHPKE(A ◦R

ks
6,i),

and Lemma 3 holds.
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