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Abstract—Differential privacy is a de facto privacy framework
that has seen adoption in practice via a number of mature
software platforms. Implementation of differentially private (DP)
mechanisms has to be done carefully to ensure end-to-end
security guarantees. In this paper we study two implementation
flaws in the noise generation commonly used in DP systems. First
we examine the Gaussian mechanism’s susceptibility to a floating-
point representation attack. The premise of this first vulnerability
is similar to the one carried out by Mironov in 2011 against the
Laplace mechanism. Our experiments show the attack’s success
against DP algorithms, including deep learning models trained
using differentially-private stochastic gradient descent.

In the second part of the paper we study discrete counterparts
of the Laplace and Gaussian mechanisms that were previously
proposed to alleviate the shortcomings of floating-point repre-
sentation of real numbers. We show that such implementations
unfortunately suffer from another side channel: a novel timing
attack. An observer that can measure the time to draw (discrete)
Laplace or Gaussian noise can predict the noise magnitude,
which can then be used to recover sensitive attributes. This
attack invalidates differential privacy guarantees of systems
implementing such mechanisms.

We demonstrate that several commonly used, state-of-the-art
implementations of differential privacy are susceptible to these
attacks. We report success rates up to 92.56% for floating point
attacks on DP-SGD, and up to 99.65% for end-to-end timing
attacks on private sum protected with discrete Laplace. Finally,
we evaluate and suggest partial mitigations.

I. INTRODUCTION

Given the equation

z − y = 0.1234567890004 ,

can y be equal to 0, 2000 or 20000? Though one may
ask “what is z?”, it is possible to answer this question
without knowing z, if one knows that the arithmetic was
computed on a machine using the double-precision floating-
point format. While z = 2000.1234567890004 cannot be
represented, 2000.1234567890003 and 2000.1234567890006
can be. Similarly for z = 20000.1234567890004. In fact
without knowing z at all, we can say definitively that y must
equal 0 if it is known to be one of 0, 2000, or 20000.

Differential privacy (DP) is a de facto privacy framework
that has received significant interest from the research com-
munity and has been deployed by the U.S. Census Bureau,
Apple, Google, Microsoft, and many others. Research on DP
ranges from algorithms with different performance trade-offs,

‡Work done in part while at The University of Melbourne.

to new models in different settings, and also to practical
implementations [1], [2], [3], [4], [5]. Robust implementations
are crucial to provide end-to-end privacy that matches on-paper
differential privacy guarantees.

Implementations of DP algorithms often raise concerns not
considered in theoretical analysis (which focuses on idealized
settings). Mironov [6] was first to discuss the implications of
the fact that one cannot represent—and thus cannot sample
from—all real numbers on a finite-precision computer. Focus-
ing on the Laplace mechanism, Mironov’s attack proceeds by
observing that certain floating-point values cannot be gener-
ated by a DP computation and hence a release could reveal
the (private) noiseless value. On the other hand, Haeberlen et
al. [7] and Andrysco et al. [8] showed that DP algorithms may
suffer from timing side-channels since such algorithms can
take different time depending on sensitive values in a dataset.

In this paper we extend Mironov’s attack to other DP mech-
anisms and study its effects on real-world DP implementations.
We then describe another timing side-channel that can arise in
DP implementations due to the timing of the noise samplers.

a) Floating-Point Representation of the Gaussian Distri-
bution: The Gaussian mechanism (based on additive Gaussian
noise) is another well-studied DP mechanism. It achieves
what is often called approximate differential privacy, meaning
that the mechanism may fail completely to provide pure DP
with some small and controllable probability δ. However,
the mechanism has advantages over the Laplace mechanism,
including lighter tails than the Laplace distribution and su-
perior composition properties when answering many queries
with independent noise. Generalizations like Rényi differential
privacy [9] can perform tight composition analysis. Recently
truncated concentrated differential privacy [10] has emerged
as a promising generalization that bounds the residual pri-
vacy loss from approximate DP, allows efficiently-computable
optimal composition, and captures privacy amplification by
subsampling as present in [11]. Because of these advantages,
the Gaussian mechanism is often the tool of choice for
applications such as deep learning [11] that involve carefully
controlled privacy budgets over sequences of releases.

A question arises: are the same attacks as in [6] possible
against the Gaussian mechanism? Though several works [12],
[13] mention that it may be feasible, to the knowledge of the
authors no one has demonstrated this possibility nor shown
how to carry out this attack in practice. In this paper we study
these two questions and demonstrate an attack confirming that
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common implementations of Gaussian sampling are subject to
floating-point attacks.

Unfortunately directly using the attack from [6] is not
possible since Gaussian noise is drawn using very different
techniques to Laplace. The main challenge is due to some
Gaussian samplers being based on two random values and
not one. Such methods produce two independent Gaussian
samples, and most implementations cache one of them to be
used next time the mechanism is called. We develop an attack
that uses both of these values. Due to the two equations with
several unknowns that the attacker needs to solve, there can be
more than one pair of feasible values. As a result our attack
can yield false positives. Nevertheless, we show that the attack
is still feasible and has a significant success rate. Additionally,
we show that a Gaussian sampler based on a different method
that generates only one sample is also susceptible to a floating-
point attack, and the attack succeeds at a higher rate than for
samplers based on two values.

The most prominent recent use of the Gaussian mecha-
nism is in training machine learning (ML) algorithms us-
ing differentially-private stochastic gradient descent (DP-
SGD) [11]. We show that we can mount the attack in this
setting to determine if a batch contains a particular record
or not, violating DP guarantees of DP-SGD. Moreover, ML
model training naturally reveals sequential Gaussian samples
to an adversary, as it returns a noisy gradient for each
parameter of the model.

b) Timing Attacks Against Discrete Distribution Sam-
plers: In the second part of the paper we study the primary
method that has been proposed to defend against floating-
point attacks: discrete versions of the Laplace and Gaussian
mechanisms [12], [13]. These approaches employ sampling
algorithms that make no use of floating-point representations.
We observe that such mechanisms, though defending against
floating-point attacks, are susceptible to a timing side channel:
an adversary who observes the time it takes to draw a sample
can determine the generated noise’s magnitude. When used
within a DP mechanism, our attack reveals the noise contained
in the result, and thus reveals the noiseless (private) value.

Our timing attack is possible due to the underlying tech-
nique that these discrete samplers rely on: direct simulation
of geometric sampling, meaning values are sampled until
a coin toss results in a “head”. The number of such coin
tosses is tied to the magnitude of the noise returned; timing
the sampler reveals this number and thus leaks the noise
magnitude. Though timing has been identified as a potential
side-channel in DP [7], [8], to our knowledge we are the first to
show that noise distribution samplers and not the mechanisms
themselves give rise to secret-dependent runtimes.

Our contributions are:
• We show that the Gaussian mechanism of differential

privacy suffers from a side channel due to floating-point
representation. To this end, we devise attack methods to
show how to exploit this vulnerability since the known
floating-point attack against the Laplace mechanism can-
not be used directly.

• We use the above results to demonstrate empirically that
Gaussian samplers as implemented in NumPy, PyTorch
and Go are vulnerable to our attack. Focusing on the
Opacus DP library implementation [4] by Facebook, we
also show that DP-SGD is vulnerable to information
leakage under our attack. *

• We then observe that discrete methods developed to
protect against floating-point attacks for both the Laplace
and Gaussian mechanisms suffer from timing side chan-
nels. We show that two libraries are vulnerable to these
attacks: a DP library by Google [3] and the implementa-
tion accompanying another work on discrete distributions
in [12], [14].

• We discuss and evaluate mitigations against each attack.
Disclosure: We have informed maintainers of the DP

libraries mentioned above of the results of this paper. They
have acknowledged our report and notification of the disclo-
sure dates.

II. BACKGROUND

In this paper we develop attacks on differential privacy
based on floating-point representation and timing channels. In
this section, we give background on how floating-point values
are represented on modern computers, differential privacy, and
the Laplace and Gaussian mechanisms for DP.

A. Floating-Point Representation

Floating-point values represent real values using three num-
bers: a sign bit b, an exponent e, and a significand d1d2 . . . dd.
For example, 64-bit (double precision) floating-point numbers
allocate 1 bit for b, 11 bits for e, and 52 bits for the
significand. Such a floating-point number is defined to be
(−1)b × (1.d1d2 . . . dd)2 × 2e−1023.

Crucially, the number of real values representable using
floating-point values in the ranges [a1, b1] and [a2, b2], ai < bi,
are different even if b1 − a1 = b2 − a2. For example,
there are approximately 217 floating-point values in the range
[10, 10+2−32], and there are approximately 214 floating-point
values in [100, 100 + 2−32]. Thus, floating-point values are
more densely distributed around 0.

B. Differential Privacy

Consider a collection of datasets D and an arbitrary space
of output responses R. We say that two datasets D,D′

are neighboring if they differ on one record. A randomized
mechanism M : D → R is (ε, δ)-differentially private [15]
for ε > 0 and δ ∈ [0, 1) if given any two neighboring datasets
D,D′ ∈ D and any subset of outputs R ⊆ R it holds that
Pr[M(D) ∈ R] ≤ eε Pr[M(D′) ∈ R] + δ. That is, the
probability of observing the same output y from M(D) and
M(D′) is bounded. DP therefore guarantees that given an
output y, an attacker cannot determine which of D or D′ was
used for the input. If there is some output that is possible with
D but not D′, this inequality cannot hold for non-trivial δ, so

*Since notifying Facebook about the floating-point attack, Opacus library
now has proposed a mitigation in https://github.com/pytorch/opacus/pull/260
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the mechanism cannot be DP. This is the key fact our attacks
exploit.

In this paper, we consider DP mechanisms M that provide
protection by computing the intended function f on the data D
and randomizing its output. That is,M(D) = f(D)+s where
s← NoiseDist is noise drawn either from Laplace or Gaussian
distributions with appropriate parameters (as discussed below).
For example, f may compute the sum of the set of employee
incomes D, and we may wish to keep the exact values of the
incomes private. Our attacks are based on observations about
NoiseDist that can be used to learn the noise sampled from it.

C. Laplace Mechanism
The Laplace mechanism provides ε-DP by additive noise

drawn from the Laplace distribution Lap(λ) (i.e., NoiseDist is
Lap(λ)). In the scalar-valued case M(D) = f(D) + Lap(λ).
Here we use a scale parameter λ = ∆/ε where ∆ is f ’s
sensitivity, meaning any neighboring data sets D and D′

satisfy |f(D)− f(D′)| ≤ ∆.

D. Gaussian Mechanism
The Gaussian mechanism [16] provides (ε, δ)-DP to the

outputs of a target function f : D → R, where R = Rd. The
mechanism is popular due to its favorable noise tails compared
to alternative mechanisms, and its composition properties
when the mechanism is used to answer many queries on data,
as is common when training a machine learning model or
answering repeated queries on a database [17], [18].

Let ∆f be the L2-sensitivity of f , that is, the maximum
distance ‖f(D)− f(D′)‖2 between any neighboring datasets
D and D′. Then the Gaussian mechanism M(D) adds noise
NoiseDist to f(D). We write N (x, σ2∆2

f I) to mean the
multivariate Gaussian with mean given by the target x and
covariance given by the identity matrix scaled by σ2∆2

f .
We then have NoiseDist = N (0, σ2∆2

f I), and the output
distribution is N (f(D), σ2∆2

f I). The resulting mechanism is
(ε, δ)-DP if σ =

√
2 log(1.25/δ)/ε for arbitrary ε > 0 and

δ ∈ (0, 1).
In addition to applications computing a one-off release

of a function output, the Gaussian mechanism is commonly
used repeatedly in training machine learning models using
mini-batch stochastic gradient descent (SGD). This composite
mechanism is called DP-SGD [19], [20]. When used to replace
non-private mini-batch SGD, it produces a machine learn-
ing model with differential privacy guarantees on sensitive
training data. This mechanism has been applied in Bayesian
inference [21], to train deep learning models [11], [22], [23],
and also in logistic regression models [20]. At a high level, a
record-level DP-SGD mechanism aims to protect presence of
a record in a batch and, hence, in the dataset. DP-SGD has
been also used in the Federated Learning setting [22] where
each client computes a gradient on their local data batch, adds
noise and sends the result to a central server.

III. THREAT MODEL

We consider an adversary that obtains an output of an imple-
mentation of a differentially-private mechanism, for example

a DP-protected average income of people in a database of
personal records, or DP-protected gradients used to train a
machine learning model. DP aims to defend information about
presence (or absence) of a certain record by providing plau-
sible deniability. We show that the attacker can use artefacts
of implementations of noise samplers in DP mechanisms to
undermine their guarantees. In particular we consider two
attacks based on separate artefacts — one on floating-point
representation and one on timing.

We envision three scenarios where our attacks can be carried
out:

S: a member of the public observes statistics computed on
sensitive data and protected with DP noise (e.g., those
released by the US Census Bureau [24]);

DB: an analyst interactively queries a differentially private
database [25], [26], [7] which allows them to ask several
queries of datasets and which transparently adds noise
to preserve privacy of the dataset from the analyst;

FL: a central server who is coordinating federated learning
by collecting gradients from clients [22]. Here, a client
adds noise to a gradient computed on its data to protect
its data from the central server.

For all three scenarios above, our threat model builds on
the threat model of DP where (1) the attacker observes a
DP-protected output, (2) the attacker may know all the other
records in the dataset except for the one record it is trying to
guess, and (3) knows how the mechanism is implemented † ,
but does not know the randomness used by it.

We describe additional adversarial capabilities required for
each scenario and attack below.

a) Floating-Point Attack (Section IV-C): For one of our
two floating-point attacks, in addition to observing a single
DP output that the adversary wishes to attack, we assume the
adversary has access to an output of a consecutive execution
of a DP mechanism or its noise sampling. This is achievable
in practice in all scenarios above due to:

1) multiple queries: In scenario S multiple statistics are
released, in scenario DB a (malicious) analyst could
query a DP protected database several times.

2) d-dimensional query: in all three scenarios, an output
being protected can correspond to an output of a d-
dimensional function where independent noise is added
to each component such as a histogram [16] or a gradient
computed for multiple parameters of ML model [11].
Moreover, gradients are assumed to be revealed as part
of the privacy analysis in the central setting as well as
in the FL setting.

b) Timing Attack (Section VI): In contrast to the floating-
point attack above, here the threat model assumes that the
attacker observes a DP output and can measure the time it
takes for the DP mechanism to compute it. The attacker must
also be able to measure multiple runs of an algorithm in order
to obtain a baseline of running times. However during the

†Many DP implementations are open-source including [2], [3], [4], [5].
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attack itself, the attacker only needs to make one observation
to make a reasonable guess.

The attack can be deployed in the three scenarios above
if an attacker has black-box access to the machine running
DP code, similarly to the threat model of other timing side-
channels used against DP mechanisms that are not based on
noise samplers [8], [7] (see Section IX for more details).
For example, the attacker may share a machine based in the
cloud [1], [27], [28] or is a cloud provider itself. For the DB
scenario specifically, a malicious analyst querying the mecha-
nism hosted locally can readily measure the time it takes for
the query to return. For the FL scenario (and remotely hosted
databases in the DB scenario) the uncertainty in measuring
precise time due to network communication can be reduced
with recent attacks exploiting concurrent requests [29].

IV. FLOATING-POINT ATTACK ON NORMAL
DISTRIBUTION IMPLEMENTATIONS

We describe the floating-point attack that aims to determine
whether a given floating-point value could have been generated
by an instance of a Gaussian distribution or not. If not, this
eliminates the possibility that a DP mechanism could have
used this noise, hence undermining its privacy guarantees.
We begin with a description of a generic floating-point attack
against DP and then describe two common implementations
of Gaussian samplers—polar and Ziggurat—and how they can
be attacked.

A. Floating-Point Attack on DP

The DP threat model assumes that the adversary knows
neighboring datasets D, D′ and function f . Given an out-
put y of a DP mechanism, where either y = f(D) + s or
y = f(D′) + s′ and s, s′ ← NoiseDist, the attacker’s goal is
to determine if D or D′ was used in the computation of y.

Mironov [6] showed that due to an artefact in the implemen-
tation of NoiseDist for Laplace, some values of s are impossi-
ble. Hence given y, if the adversary knows that s is impossible
then it must be the case that D′ was used to compute y (and
similarly for s′). This directly breaks the guarantee of DP
which states that there is a non-zero probability for each of
the inputs producing the observed output. We will show that
mechanisms that use Gaussian noise for NoiseDist — whose
implementation is more complicated than Laplace — are also
susceptible to implementation artefacts.

In the rest of this section we develop a function
IsFeasibleNormal(s) which returns true if a given noise
value s could have been drawn from implementations of
Gaussian distributions and false otherwise. The attacker then
runs IsFeasibleNormal(s) and IsFeasibleNormal(s′). If only
one of them returns true, the attacker determines that the
corresponding dataset was used in the computation. Otherwise,
it makes a random guess.

B. Warmup: Feasible Random Floating Points

We describe how random double-precision floating-point
values (“doubles”) are sampled on modern computers using a

function RandomFP and show that given a double x, one can
determine if it was generated using RandomFP or not. This
will serve as a warm-up for our attack against the Gaussian
distribution over doubles.

Random real values in the range (0, 1) can be drawn by
choosing a random integer u from [1, R) and then dividing
it by the resolution R = 2p, where the value of p varies by
system. We abstract this process using a function RandomFP
that chooses an integer u at random from [1, R) and returns
u/R. Given a double x one can determine if it could have been
produced by RandomFP by checking if x ?

= ū/R for some
integer ū ∈ [1, R). If the equality holds then x could have
been produced from a random integer. Since rounding errors
are introduced during multiplication and division, we will later
also perform the above check for neighboring values of x.

C. Polar Method: Implementation and Attack

In this section we describe the polar method and the
floating-point attack against it.

1) Method: The Marsaglia polar method [30] is a com-
putational method that generates samples of the standard
normal distribution from uniformly distributed random values.
PolarMethod operates as follows:

P1 Choose independent uniform random values x′1 and x′2
from (0, 1) using RandomFP.

P2 Set x1 ← 2x′1 − 1 and x2 ← 2x′2 − 1. (Note that both
fall in the interval (−1, 1).)

P3 Set r ← x21 + x22.
P4 Repeat from Step P1 until r ≤ 1 and r 6= 0.
P5 Set s1 ← x1

√
−2 log r

r and s2 ← x2

√
−2 log r

r .
P6 Return s1.

The procedure generates two independent samples from a
normal distribution: s1 and s2. The second value, s2, is cached
and returned on the next invocation. If the cache is empty, the
sampling method is invoked again. The method can generate
samples from N (0, σ2) by returning σs1 and σs2 instead.

The polar method is used by both the GNU C++ Library
with std::normal_distribution and the Java class
java.util.Random (in the nextGaussian method). A
related technique called Box-Muller method described in the
Appendix A that relies on computing sin and cos is used
in PyTorch and was implemented in the older versions of
Diffprivlib [5].

2) Floating-Point Attack: The attacker’s goal is to devise a
function IsFeasibleNormal(s) that determines if value s could
have been generated by PolarMethod — a computational
method for drawing normal noise. Here, we assume that the
attacker knows sample s2 and is trying to guess if s ?

= s1. As
discussed in Section III, an attacker can learn s2 either through
multiple queries or multi-dimensional queries. We note that
the attack against the Laplace method by Mironov [6] cannot
be applied since PolarMethod (and the Box-Muller method)
(1) relies on different mathematical formulae and (2) uses two
random values and draw two samples from their target distribu-
tion. To this end, we devise an FP attack specifically for normal
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distribution implementations. We describe the attack for the
polar method below. The attack for the Box-Muller method
proceeds similarly, using trigonometric functions instead.

Before proceeding with the attack, we observe that r in
PolarMethod can be expressed using s1 and s2 by simple
arithmetic rearrangements based on steps P3 and P5.

r = x21 + x22 =

(
s1

√
r

−2 log r

)2

+

(
s2

√
r

−2 log r

)2

=
s21r

−2 log(r)
+

s22r

−2 log(r)

Rearranging this equation further, we obtain

−2 log r = s21 + s22

r = exp

(
−s

2
1 + s22

2

)
(1)

The intuition behind our attack is similar to that of “attack-
ing” RandomFP in Section IV-B: we find an expression that
must be an integer if PolarMethod was used. We observe that
r×R2 must be an integer: since x′1 and x′2 are produced using
RandomFP (step P1) there must be integers u1 and u2 such
that x′1 = u1/R and x′2 = u2/R. Rearranging and substituting
these x′1 and x′2 further in steps P2 and P3 we obtain

r = (2u1/R− 1)2 + (2u2/R− 1)2

Since u1, u2, R are integers, value r×R2 must be an integer.
IsFeasibleNormal(s) proceeds as follows. The attacker com-

putes value of r×R2 using Equation 1 with values s (instead
of s1) and s2 as follows:

exp

(
−s

2 + s22
2

)
×R2 (2)

It then checks if the value in Equation 2 is an integer. If it is,
then IsFeasibleNormal(s) returns true since s and s2 could be
produced using PolarMethod.

As floating-point arithmetic cannot be done with infinite
precision on finite machines, s and s2 might be inaccurate. To
this end, we perform a heuristic search in each direction of s
and s2 where we try several neighboring values of s and s2.
In our experiments, we choose to search 50 values in each
direction. This search heuristic is prone to errors and may
result in false positives and false negatives, due to (1) more
than one pair of values resulting in s1 and s2 and (2) our
search not being exhaustive in exploring values with a range
of 100 values. Nevertheless in the next section we show that
the attack is still successful for a variety of applications of
Gaussian noise in DP.

D. Ziggurat Method: Implementation and Attack

The Ziggurat method [31] is another method for generating
samples from the normal distribution. Compared to the Box-
Muller and polar methods, it generates one sample on each
invocation. It is a rejection sampling method that randomly
generates a point in a distribution slightly larger than the
Gaussian distribution. It then tests whether the generated point
is inside the Gaussian distribution.

1) Method: ZigguratMethod relies on three precomputed
tables w[n], f [n] and k[n] that are directly stored in the source
code. The Ziggurat implementation in Go uses n = 128 and
proceeds as follows.

Z1 Generate a random 32-bit integer j and let i be the index
provided by the rightmost 7 bits of j.

Z2 Set s← jw[i]. If j < k[i], return s.
Z3 If i = 0, run a fallback algorithm for generating a sample

from the tails of the distribution.
Z4 Use RandomFP to generate independent uniform ran-

dom value U from (0, 1). Return s if:

U (f [i− 1]− f [i]) < f(s)− f [i]

Z5 Repeat from step Z1.
We refer interested readers to [32] for how to sample from
the tail of a normal distribution and to [31] for how the
tables w[n], f [n], k[n] are generated. The method can generate
samples from N (0, σ2) by returning σs.

The Ziggurat method is used by the Go package
math/rand with NormFloat64 and new random sampling
methods of NumPy‡.

2) Attack: This time, the attacker aims to devise a function
IsFeasibleNormal(s) that determines if value s could have been
generated by ZigguratMethod. We describe our attack steps
below since attacks in Section IV-C and [6] are not applicable
due to pre-computed tables used in Ziggurat.

We observe that the returned value is jw[i] in steps Z2
and Z4, except when the value is sampled from the tail of
Gaussian distribution in step Z3 (which happens infrequently).
Furthermore, j is an integer and all values of w[n] are available
to the attacker, because all precomputed tables are stored
directly in the source code. Based on these observations, for
a noise s, our attack for ZigguratMethod proceeds as:

1) For each w[i], i ∈ [1, n] calculate w[i] = s/(σw[i]).
2) For each w[i], check if it is an integer.
3) If any w[i] is an integer, then we take s as a feasible

floating-point value, IsFeasibleNormal(s) returns true.
Note that the method does not attack values sampled from
the tail. However, we observed that it happens less than 0.1%
of the time when n = 128, hence, the attack works for the
majority of the cases.

V. EXPERIMENTS: FP ATTACK ON NORMAL
DISTRIBUTION

We perform four sets of experiments to evaluate leakage
of Gaussian samplers based on the attack described in the
previous section. First, we enumerate the number of possible
values in a range of floating points that can result in an
attack and observe that it is not negligible. We then show the
effectiveness of our attack on private count and DP-SGD, a
popular method designed for training machine learning (ML)
models under differential privacy [11].

‡https://numpy.org/doc/stable/reference/random/index.html

477



Gaussian Implementations: In our experiments, we use
four implementations of Gaussian distribution samplers.
• Gauss polar: our implementation of polar method as

described in Section IV-C1.
• Gauss numpy: NumPy implementation of polar Gaussian

sampling.
• Gauss pytorch: PyTorch implementation of Box-

Muller Gaussian sampling.
• Gauss go: Go implementation of Ziggurat Gaussian sam-

pling.
Our attacks on DP-SGD were tested using the privacy engine
implementation of the Opacus library [4]*.

A. Distribution of “Attackable” Values

In this section we aim to understand how many floating-
point values could not have been generated from a Gaus-
sian sampling implementation. That is, for how many val-
ues s, IsFeasibleNormal(s) would return false. We call such
values “attackable” since if an adversary were to observe them,
they would know that the value must have been produced in
a specific manner (e.g., by adding noise to f(D′) as opposed
to f(D)). We use the Gauss polar implementation to perform
this experiment in a controlled environment and assume that
the adversary is given y1 and y2 where y1 = f(D) + s1 and
y2 = f(D) + s2 or y1 = f(D′) + s′1 and y2 = f(D′) + s′2.
(Compared to the attack in Section IV the attacker is not
given s2 directly, however the attack can proceed similarly.)

For each pair of y1 = f(D) + s1 and y2 = f(D) + s2, if
the attack successfully concludes that they are in support of
f(D), and not f(D′), we count them as attackable values. We
set f(D) = 0, f(D′) = 1, σ = 114, R = 210. The blue line
of Figure 1 shows the distribution of the rate of attackable
values where we plot y1 and y2. In order to fit all measured
floating-points into the resolution of the graph, we aggregate
the results over small intervals of width 0.8.

Mironov generated a similar graph for the Laplace distribu-
tion in [6]. Compared to Gaussian, the Laplace distribution has
more attackable values since it uses only one random value,
hence the attack does not suffer from false negatives.

In order to understand our results further we also plot the
average number of times each y = f(D)+s is observed, using
the gray line of Figure 1. This explains some of the spikes
in the blue line: more frequently observed values indicate
more attackable values. Percentage of floating-points that are
attackable are higher closer to 0 (recall that the graph shows
an average over FP intervals). Overall, the graph suggests
that attackable values do exist and as we show in the rest
of this section provide an avenue for an attack against DP
mechanisms.

B. DP Gaussian Mechanism

1) Private count: In this section, we explore the effective-
ness of our attack against the Gaussian mechanism used to
protect a private count (i.e., corresponding to S or DB sce-
narios in Section III). We use the German Credit Dataset [33]
and the query: count the number of records with number of

Fig. 1: Distribution and number of values amenable to
a floating-point attack against a Gaussian implementation
Gauss polar using R = 210 and σ = 114. Here the horizontal
axis, f(D)+s, shows both values f(D)+s1 and f(D)+s2. For
presentation purposes, rate of attackable floating-point values
is averaged over 0.8-wide intervals. Blue line indicates the rate
of floating-point values that are in the support of f(D) = 0
and not in f(D′) = 1. Gray line measures average number of
times support for f(D) was observed.

credits greater than 16K (resulting in one record since the two
highest values among dataset’s 1000 records are 15945 and
18424).

Given the output of the Gaussian mechanism, y, the adver-
sary’s goal is to determine whether noiseless output came from
q = f(D) or q′ = f(D′) where f is the count query defined
above. The private count of values in a dataset is computed
as: y = q + s or y = q′ + s, where q and q′ are the outputs
of f on dataset D and D′, respectively, and s is a noise
sampled with Gauss numpy, Gauss pytorch, or Gauss go. For
Gauss numpy and Gauss pytorch, the adversary also knows
the second value sampled from the distribution (i.e., s2 in
Section IV-C). The neighboring datasets D and D′ that our
attack tries to distinguish differ on a single record whose
credits is 0 in D and 18424 in D′, so the count of records
satisfying the above query is q = 0 for D and q′ = 1 for D′.

We set the sensitivity ∆ = 1 since one record can change
the output of f only by 1. We vary ε in the range (0, 100]
with fixed δ = 10−5. For each tuple of ε, δ and ∆, we use the
analytic Gaussian Mechanism [34] to calculate the required
noise scale σ for the experiment. Here, small ε and δ model
a common set of parameters used in DP [35].

In Figure 2 we plot our success rate from 1 million trials
from the following attack. Recall that the attacker cannot al-
ways make a guess due to the limitations listed in Section V-A.
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Fig. 2: FP attack success rate on private count where the count
is protected with one of the three Gaussian samplers across
ε ∈ (0, 100] with fixed δ = 10−5 and function sensitivity
∆ = 1. Baseline (random) attack success is 50%.

To this end, if the attack can find support for either only q or
only q′, then the attack outputs the corresponding guess. If
the result is in support of both or neither of q and q′, then the
attacker is unsure and resorts to the baseline attack, choosing
q or q′ at random.

We observe that the attack is more successful for the
Gauss go method for values of ε less than 10. This is also the
range of values for ε used in the literature on DP [36]. We note
a slight cyclic behavior and observe that peaks occur when
the corresponding noise scale σ (w.r.t. ε) is a power of 2 (see
Figure 7 in the Appendix). We hypothesize that the success
rate at those points is higher since multiplication and division
by powers of 2 can be done via bit shifting that decreases the
impact of rounding. Hence, extraction of s is not affected by
rounding errors that would otherwise be introduced during the
multiplication of s by σ in the ZigguratMethod and step 1 of
the corresponding attack in Section IV-D.

Among two sampler methods, attack is more efficient
against Gauss pytorch than Gauss numpy. We also observe
that the attack becomes stronger as ε increases. This is
potentially due to the higher distribution of attackable values
as indicated in Figure 1. The attack is always more successful
than the baseline random attack.

In Appendix D we also investigate the rate at which the
attacker can make a guess (attack rate) and how many of
these guesses are correct (attack accuracy) across a range of ε
and sensitivity values. Gauss numpy and Gauss pytorch have
attack rates ranging between 1.7% and 92.8% with attack
accuracy of at least 89%. In comparison, the attack rates

and accuracy against Gauss go are at least 76% and 99%,
respectively.

C. DP-SGD in Federated Learning scenario

The Gaussian mechanism is used extensively in training
ML models via differentially-private stochastic gradient de-
scent [11], [23], [21]. In this section, we describe successful
attacks on the differentially-private training of ML models.
Here, we consider the Federated Learning scenario from
Section III where an attacker (central server) observes a DP-
protected gradient computed on a batch of client’s data and is
trying to determine if the batch includes a particular record or
not.

The main observations we make in this section are:
• An adversary can determine if a batch contains a record

with a different label from other records in the batch, i.e.,
a record that comes from the same distribution as training
dataset but different to those in the batch.

• The success rate of the attack increases as ε decreases
as there are fewer floating-point values to represent large
noise values.

1) Setup: We use Opacus library [4] for training machine
learning models with DP-SGD. Our experiments are based
on the Opacus example on MNIST data. This dataset [37]
contains 70K images, split in 60K and 10K sets for training
and testing, respectively. Each image is in 28× 28 gray-scale
representing a handwritten digit ranging from 0 to 9 where the
written digit is the label of the image. The ML task is: given
an unlabelled image, predict its label.

We use the same parameters for preprocessing and neural
network training as used in the library [38], [4], following [11].
These training parameters are: learning rate 0.1, epoch num-
ber 8, batch size S = 64, number of batches in each epoch 100,
and DP-SGD clipping norm L = 1. We vary ε to understand
how different parameters affect the attack success rate while
keeping a fixed δ = 10−5 (as in [38], [11]). Depending on the
ε, the noise is drawn from a normal distribution with µ = 0
and σ ∈ [1, 250]. As a result ε ranges from 0.1 to 0.68. Since
the model has d = 26, 010 parameters, each batch is used in d
gradient computations to update the corresponding parameters.
Hence, the attacker obtains d floating-point values protected
with DP-SGD. Details of DP-SGD computation are provided
in Appendix B.

We consider a setting where an adversary observes a
gradient computed on FL client’s batch of labelled MNIST
images. The batch could correspond either to records B or
a neighboring batch B′ produced by replacing a randomly
chosen record in batch B with a canary record (defined
below). The attacker’s goal is, given B, B′ and a noisy
gradient protected with Gaussian noise, to determine if the
gradient was computed on B or B′.

We use different types of batches and canary records to test
the effectiveness of our attack:
• SimLabelCanary: batch B is composed of shuffled train-

ing data. The canary record of its neighboring batch B′

is a record drawn from the test dataset.
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Fig. 3: FP attack success rate against DP-SGD on MNIST
model using the Opacus [4]. DiffLabelCanary: attacker is
distinguishing between a batch where all records have identical
labels in the range [1, 9] and a batch that has same records
as well as an image for label 0. SimLabelCanary: batches
where all records are from [0, 9] and differ in one random
record. Since the baseline attack is 50%, the plot shows that
FP attack is successful on DiffLabelCanary where the canary
record comes from the same distribution as MNIST data but
different from other records in the batch. Here, δ = 10−5.

• DiffLabelCanary: the batch is composed of records with
the same labels in [1, 9], and the canary record of its
neighboring batch is a record with label 0.

Though DiffLabelCanary is handcrafted, it represents an
example of a batch that should be protected by DP guarantees
since all records are drawn from the same distribution.

2) Attack Results: The attack on DP-SGD follows the
same procedure as the attack in Section V-B since it uses
Gauss pytorch. Note that the attack against DP-SGD naturally
reveals sequential (cached) samples from an implementation of
the normal distribution since the attacker observes application
of noise to gradients of all d parameters of the model, i.e.,
to d computations that all use independent noise draws.

The adversary calculates f(B) and f(B′) since we assume
the attacker knows the records in B and B′ and is trying to
determine the presence of the canary. Since there are 26,010
gradients in y, we evaluate the attack on each to see if it lies
in support of f(B) or f(B′). We extract s1 and s2, s′1 and s′2
from y − f(B) and y − f(B′) respectively for each. We then
search for their neighboring values, and check whether any of
them support gradients in y. We say y is in support of f(B)
if there are more gradients that support f(B) than f(B′) and
similarly for f(B′).

The experimental results are presented in Figure 3. For
DiffLabelCanary the attacker’s succes rates is always better

than a random guess for ε < 0.68. Similar to previous results
in this section, the attack success rate is much higher than
the theoretical (ε, δ)-DP bound on failure of δ = 10−5 would
suggest.

We observe that the adversary cannot distinguish f(B) and
f(B′) when SimLabelCanary is used, that is, when the canary
is similar to all the other records in the batch. The reason is that
the gradients for B′ and B are close to each other and hence,
even when the noise is added the two stay relatively close to
each other, hence, the range of “attackable” floating-point they
land on is similar. On the other hand, for DiffLabelCanary the
canary record has a very different distribution from records in
B, thus the gradients are further apart which shifts them into
ranges of varying number of floating points. It is important to
note that the difference between the gradients (i.e., sensitivity)
is protected by the DP mechanism based on a theoretical
normal distribution using real values. However, this difference
is large enough that once the noise is added, the noisy values
are also shifted to ranges of floating points where one has
more attackable values than the other. We observe a relative
increase in gradient norm of 1.34 when using DiffLabelCanary
compared to SimLabelCanary.

We also observe that the success rate increases when σ
increases, and correspondingly ε decreases. This is counter-
intuitive as the magnitude of noise increases as ε decreases.
The same observation was made by Mironov for the Laplace
distribution. The reason again relates to the floating-point
range in which noisy gradients land. We also note that
compared to attacks in V-B, the attacker has more chances
to observe values in support of one dataset than the other,
since it has d gradients to attack as opposed to one result.

VI. DISCRETE AND APPROXIMATE DISTRIBUTION
SAMPLING

Discrete distributions aim to avoid privacy leakage from
floating-point representation, while retaining the privacy and
utility properties of their continuous counterparts. In this
section we show that naı̈ve implementation of such discrete
distributions suffers from a timing side channel attack: by
measuring the time the sampling algorithm takes to draw noise
from such a distribution, the adversary is able to determine the
magnitude of this noise and, hence, invalidate the guarantees
of differential privacy.

a) Discrete Laplace and Gaussian: Canonne et al. [12]
study the discrete Gaussian mechanism and its properties.
They demonstrate that it provides the same level of privacy
and utility as the continuous Gaussian. Their sampler for
Laplace and Gaussian uses the geometric distribution where
the corresponding samples preserve the magnitude of the
noise drawn from the geometric distribution. Unfortunately,
the running time of this geometric distribution sampler, if not
implemented carefully, reveals the magnitude of its noise.

Canonne et al. [12] describe sampling from geometric distri-
butions (Algorithm 2 in their paper) using Bernoulli samples.
Recall that the geometric distribution measures the probability
of taking n Bernoulli trials to obtain a first success. Their
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pseudo-code to simulate this process proceeds as follows.
It samples the Bernoulli distribution until the first success
while incrementing a counter of failures. Once the success is
observed, the counter is returned as a sample n of a geometric
distribution. Hence, the number of times Bernoulli sampler is
invoked linearly correlates with the magnitude of the sample n.
This is the source of the timing side-channel where the time
is correlated with a secretly drawn value.

The Laplace distribution [12] is based on a linear transfor-
mation of the sample drawn from the geometric distribution,
preserving its magnitude. In turn, the discrete Gaussian mech-
anism with standard deviation of σ in [12] uses the Laplace
mechanism with parameter bσc+ 1. Laplace noise is returned
as-is via rejection sampling with a carefully chosen probability
that produces the exact discrete distribution. However, since
Laplace noise is returned as-is, the Gaussian sample has
the same magnitude as Laplace and hence as the geometric
distribution.

In summary, the time it takes to run discrete Laplace or
discrete Gaussian sampling is correlated with the magnitude
of the sample they return, and hence the noise they add to
their respective DP mechanisms. Though the authors state that
their algorithms may suffer from timing attacks, they attribute
them to rejection sampling noting that this “reveals nothing
about the accepted candidate”. However, as we argue above
and experimentally show in the next section, the subroutine
used to draw from the geometric distribution is the one that
creates the timing side channel.

b) Approximate Laplace: In parallel to the work by
Canonne et al., the Differential Privacy Team at Google [13]
proposed an algorithm for approximate Laplace in their report
of the library implementation for differential privacy [3]. Their
sampler makes a draw from the geometric distribution and
then scales it using a resolution parameter based on ε. The
paper does not specify how the geometric distribution is
implemented. Upon examination of the code in the library [3],
we observed that geometric sampling is not based on drawing
Bernoulli samples as in [12]. However, its runtime still linearly
depends on the value being sampled and hence also suffers
from a timing side-channel. Specifically, the implementation
of [13], performs a binary search, where the distribution
support region is split proportional to probability mass and
is guided by a sequence of uniform random values. Since the
search is longer for events with smaller probability, the time to
“find” larger values in the case of drawing geometric random
variables takes longer. As a result this also creates a timing
side channel that reveals the magnitude of the drawn noise,
even though conceptually the technique for drawing from the
geometric distribution is different from [12].

VII. EXPERIMENTS: TIMING ATTACKS ON DISCRETE
DISTRIBUTIONS

We evaluate the discrete Laplace and Gaussian using the im-
plementation in [14] that accompanied the work by Canonne et
al. [12] and the Laplace implementation from Google [13],
referred to as implementations I and II respectively (see

disclosure in Section I). We conduct two sets of experiments
to show that 1) both implementations are amenable to timing
attacks; 2) a DP algorithm that uses these implementations, as
a consequence, is also amenable to a timing attack.

A. Experimental Setup

We run the discrete samplers on a single core of an Intel
Xeon Platinum 8180M, which runs a 64-bit Ubuntu Linux
16.04.1 with kernel version 4.15.0-142. There are no other
running processes on this core, so the interference on timing
measurement is minimized. We measure the overall time of the
sampling algorithm on invocation and exit with nano second
precision using time.process_time_ns() for Imple-
mentation I written in Python and System.nanoTime()
for Implementation II written in Java.

B. Timing of Discrete Samplers

We first measure the time it takes to generate the noise from
each implementation and average it over more than 1 million
trials for each sampled value in a truncated region. Since both
Gaussian and Laplace are symmetrical distributions, the time it
takes to generate positive and negative noise is also symmetric.
In the implementation, the sign is determined independently
from the (positive) geometric noise magnitude.

In Figure 4 we plot the average time it takes to draw absolute
values of the noise. We used σ = 19 for Gaussian I, λ = 8 for
Laplace I, and λ = 8

ln 3 for Laplace II. We observe that the
absolute magnitude of noise has a positive linear relationship
with time to generate noise from all implementations.

Based on the above relationship between noise magnitude
and generation time, we implement our attack as follows. The
attacker computes average time ti to generate absolute values
of integer noise i ∈ [0, 9]. It then measures the time tj it takes
to generate an unknown noise j sample and chooses i that has
the closest time to tj as its guess:

jguess = arg mini∈[0,9](|tj − ti|) (3)

We ran 100,000 trials for each sampler to evaluate the
accuracy of our timing attack. We evaluate accuracy in two
standards: exact match and approximate match within ±1 from
the correct value:
• exact match: |j| = jguess
• approximate match: −1 ≤ jguess − |j| ≤ 1

The attacker can use exact match as follows. Recall that the
attacker, given a DP output y and jguess where y = f(D) +
j is trying to guess the unprotected value of f(D). Let the
co-domain of f have integer support [−X,X], known to the
adversary as it knows f and domain of f , D. For exact match
though our attack cannot guess whether the noise is positive
or negative, this still harms differential privacy. Specifically,
it reduces the original guess of the attack on the noise value
from 1/(2X + 1) to 1/2.

For the approximate guess, the attacker knows that j could
have been one of six values:

±(jguess − 1),±jguess,±(jguess + 1)
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(a) (b)

Fig. 4: Average time in µs (with the distribution’s 0.25 and 0.75 quantiles) to generate absolute noise using two implementations
of discrete distributions: (a) Discrete Laplace and Gaussian from Implementation I [14] (avg. over 10 million trials). (b) Discrete
Laplace from Implementation II [3] (avg. over 20 million trials). The plots show a linear relationship between the absolute
noise value and time it takes to generate it. Gaussian I uses σ = 19, Laplace I uses λ = 8 and Laplace II uses λ = 8

ln 3 .

Implementation Parameters Match Accuracy

Gaussian I [14]
σ = 2

exact 24.4%
approximate 56.2%

σ = 4
exact 13.6%

approximate 39.9%

Laplace I [14]
λ = 1

exact 42.1%
approximate 84.2%

λ = 3
exact 24.7%

approximate 61.5%

Laplace II [3]

λ = 1
ln 3

exact 42.0%
approximate 89.0%

λ = 3
ln 3

exact 17.0%
approximate 44.0%

λ = 1
ln 2

exact 32.0%
approximate 71.0%

TABLE I: Success rates of timing side channel attacks against
implementations of discrete distributions. The baseline accu-
racy based on a random guess for exact and approximate match
is 10% and 33%, respectively. We observe that the attacks are
always well above the baseline attack accuracy.

This allows it to determine that f(D) must be either y ±
(jguess − 1), y ± jguess or y ± (jguess + 1). Hence, its guess
is reduced from 1/(2X + 1) to 1/6. As an example, suppose
the attacker is trying to distinguish between f(D) = 30 and
f(D′) = 60. If it observes, y = 20 and jguess = 9. It knows
that f must have been computed on D and not D′.

The results are summarized in Table I where we measure
the accuracy for samples in the range [−9, 9] for several
parameters where ε ranges between 0.5 and 2 and δ = 10−5.
Since we evaluate the absolute values of the sample, the
baseline accuracy based on a random guess for exact and
approximate match is 10% and 33%, respectively. We observe
that the attacks are always well above the baseline accuracy.
This indicates that if an adversary can observe how long
the sampling algorithm takes to generate noise used in a DP
mechanism, then it can guess the relative magnitude of this
noise for samplers based on geometric noise generation.

For Implementation I, the discrete Laplace mechanism is
more vulnerable to timing attacks than the discrete Gaussian.
This is likely due to rejection sampling that Gaussian im-
plementation adds to the process. Rejection sampling adds
stochasticity to which Laplace sample, among several that
are drawn, is returned. For example, the attacker cannot
distinguish between the following two executions:

1) In the first execution, a large Laplace noise value is
generated but then rejected, while a small Laplace noise
value generated next is returned as a result.

2) In the second execution, the opposite happens where a
small Laplace value is rejected first and then a larger
Laplace value is generated and returned as a result.

Execution times will be similar for both cases. Indeed, the
authors of [13] also proposes a discrete Gaussian based on
Binomial sampling and rejection sampling and their imple-
mentation [3] is not amenable to our attack.
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The success rate of our attack decreases with increasing σ
and λ. We note that with higher parameters, larger noise values
are more likely, while the attack is more successful for smaller
values, hence, overall accuracy decreases. For example, with
λ = 3 for Laplace I, the accuracy for i ∈ [0, 4] is 27.1%, and
accuracy for i ∈ [5, 9] is 12.5%.

For Laplace II we observe a similar trend as for Laplace I
even though the geometric distribution is sampled using a
different procedure described in the previous section.

C. Timing Attack on Private Sum

Based on the results of the previous section, we con-
duct a timing attack on real data using the German Credit
Dataset [33] used in Section V-B1. We model the setting
where the private sum of the credit attribute of the dataset
is computed (e.g., an analyst queries a DP-protected database
as in the DB setting in Section III). The attacker is trying
to guess the non-private sum using query’s response and the
time it takes for the query to return. We put a limit that each
individual can have at most 5000 credits (which determines
the sensitivity of the query). We use private sum computation
which mirrors private count in Section V-B1 except f is a
sum and s is sampled from Laplace II [3]. The neighboring
datasets D and D′ that our attack tries to distinguish differ
on a single record whose credit is 5000 in D and 0 in D′.
We note that the query is different from that in Section V-B1
since the timing attack is not as effective for queries with small
sensitivity, while the FP attack is effective against queries that
return values close to 0.

To conduct the attack, we first collect timing data of private
sum for different noise magnitudes. Similar to experiments
in the previous subsection, we observe a linear relationship
between noise magnitude and time cost albeit now this time
includes computing the sum and sampling (Figure 8 in Ap-
pendix).

Our attack proceeds by measuring the time t of a DP
algorithm to complete. The attacker then uses t and the
output y it receives to determine if it was D or D′ used
in the computation. Note that the noise magnitude should be
s = |y −

∑
D x| for D and s′ = |y −

∑
D′ x| for D′.

The attacker makes a guess on the magnitude of the noise
using the timing data it has collected above and Equation 3.
Let sg be its guess. It then compares sg with s and s′ and
chooses the closest one as its guess. That is, it chooses D if
|s− sg| < |s′ − sg| and D′ otherwise.

We plot the attack results in Figure 5 for ε in the range
[1, 10]. We observe that attack success rate increases with
higher ε, with success rate of 69.15% for ε = 1. Our intuition
for the above trend is due to the range of noise in which the
attacker needs to make its guess. That is, for smaller noise
scale (i.e., high ε), the output noise range is small as well and
hence attacker has less number of noises to assign observed
time to. For example, with ∆ = 5000, noise magnitudes are
mainly distributed in [0, 15000] when ε = 1, while noise
magnitudes are mainly distributed in [0, 2500] when ε = 10.

Fig. 5: Attack on private sum of the credit attribute of the
German Credit Dataset [33], with Laplace II [3]. The attack
success rate under different privacy budget ε ∈ [1, 10] and
sensitivity ∆ = 5000 (measured over 1 million trials for
each ε). Success means the private sum created from D is
successfully concluded to be in support of D and not D′.

The timing attack has two limitations. First, it assumes
that the time (and its variance) to compute f is not much
larger than that of sampling, as otherwise the microseconds
difference may not be observable. Second, the attack works
for one-dimensional functions f as the attacker can measure
the time of a single noise sample. Hence, the attack will not
be as successful if the attacker were to observe the time it
takes to draw multiple samples, as is the case for DP-SGD.

VIII. MITIGATION STRATEGIES

We discuss mitigation strategies for both of our attacks.

A. Defenses Against Floating-Point Attacks

Mironov [6] proposed the snapping mechanism to alleviate
the FP attack by carefully truncating and rounding an output of
a DP mechanism that was implemented using floating points.
However, the privacy and utility of the overall mechanism
decreases [13], [12].

Our attack against the Box-Muller and polar methods as-
sumes that the attacker observes two of their samples (recall
that the Ziggurat method generates only one sample). That
is, the attacker gets access to the second (cached) value (e.g.,
when a query returns an answer to a d-dimensional query such
as a histogram or ML model parameters). Without the second
value in Equation (2) the attacker has to resort to checking all
possible values in a brute-force manner. A potential mitigation
is therefore to generate new samples on each call and disregard
the second value.

We also observe that the implementation of DP-SGD adds
noise to the batch directly. Instead it could potentially add
several samples of noise and then average the result, since
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Fig. 6: Accuracy of the ML model on MNIST dataset, trained
with DP-SGD with continuous and discrete Gaussian samplers
with discretization parameters γ ∈ {10−1, 10−2, 10−3} for ε ∈
(0.1, 10].

an average of Gaussian noise is still Gaussian. This would
make it harder for an adversary to extract sample-level values
needed for the FP attack as described in Section IV. However,
this heuristic may still be susceptible to attacks as it also uses
floating-point representation.

Discrete distributions [12], [13], [39] have been proposed
as a mitigation against floating-point attacks since they avoid
floating points or bound their effect on privacy in (ε, δ) pa-
rameters. However, as we showed in the previous section, they
may suffer from other side-channel attacks and thus should
also be carefully implemented. Nevertheless in this section
we evaluate them as a mitigation for attacks in Section V-C
and measure their effect on accuracy of DP-SGD.

We implement DP-SGD with discrete Gaussian by discretiz-
ing the gradient g ∈ Rd as described in [40] who use discrete
Gaussian for training models in a Federated Learning setting.
Appendix C provides further details.

We use the same model and MNIST dataset as in Sec-
tion V-C to evaluate the performance of models trained
with discrete Gaussian for a discretization parameter γ ∈
{10−1, 10−2, 10−3} and privacy budget ε ∈ (0.1, 10]. We use
the implementation of discrete Gaussian I [14].

We compare accuracy of the models with discrete and
continuous implementations in Figure 6. We observe that the
performance of models trained with discrete Gaussian matches
the performance of models trained with continuous Gaussian,
given small enough γ, such as 10−3. Smaller γ allows the
discretization to be done on a finer grid γZ, thus gradient
calculation is not affected by rounding.

B. Defenses Against Timing Attacks

The most effective mitigation against timing attacks is
to ensure constant time execution. Application-independent

approaches to do so include compiler-based code transforma-
tions [41], [42] while other generic defense strategies are based
on padding either by padding execution time to a constant time
or adding a random delay [43].

In our setting, one could choose a sufficiently large time
threshold and run noise generation mechanism until then,
independent of the noise being drawn and the time that takes
to produce it. If an attacker is stronger than that considered
in this paper and can perform microarchitectural observations,
then execution of any padded code has to be made secret-
independent. For example, if the attacker can measure the time
of memory accesses, the counter of the number of trials needs
to be accessed regardless of whether heads or tails was drawn
in a Bernoulli trial. The downside of padding is efficiency as
all execution would take maximum time. The failure to draw
noise within the threshold time can then be accounted for in δ,
the failure probability of DP [12]. An alternative is to use a
truncated version of the geometric distribution [7] in order to
avoid values that are impossible to sample on a finite computer.

We evaluate padding as a mitigation against our attack
on private sum in Section VII-C. Padding can be imple-
mented via two approaches. First, after a successful trial is
encountered, we record its trial number and continue drawing
“blank” Bernoulli samples, till the maximum noise threshold
is reached. In the second approach, once a successful trial is
encountered, a time delay can be added to reach some max-
imum time threshold. We choose the maximum threshold to
be 41µ since we observed that 99.5% of noise magnitudes are
distributed in [0, 2677], with average and maximum execution
time of 37.1µ and 40.3µ, respectively, when ε = 10 and
∆ = 5000. We note that these estimates are not dependent
on the data but only on the sampler and the parameters of
the noise. Padding until a time threshold increases the total
execution by 10.5%. For medium number of queries this is an
acceptable overhead given the small magnitude of the overall
time (in µs). Note that these estimates will be different for
other implementations.

As another mitigation strategy we propose a technique based
on batching and caching. The method generates k random
values offline and saves them. It returns one value for each
call to the distribution function. It proceeds this way until
all cached values are used and then restarts the process by
generating the next k samples. Samples could be generated
online and shuffled to disconnect noise from their timing, as
suggested in [44]. However, the attacker may still measure the
range of possibles times.

In summary, discrete distribution sampling implemented
in constant time or where the timing of sampling is not
observable (i.e., generated offline) appears to be the best
approach for defending against attacks discussed in this paper.

IX. RELATED WORK

The implementation of differential privacy via Laplace
mechanism has been demonstrated to be flawed, due to finite-
precision representations of floating-point values [6]. In this
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paper, we demonstrate that implementations of the Gaussian
mechanism suffer from the same attack, with adjustments
to the attack process. In [45] the authors demonstrate an
attack against DP mechanisms that use finite-precision rep-
resentations, and propose a mitigation strategy. Recently Il-
vento [46] has explored practical considerations and pitfalls
of implementing the exponential mechanism using floating-
point arithmetic. They show that such implementations are also
susceptible to attacks and propose a solution using a base-2
version of the exponential mechanism.

Timing attacks against DP mechanisms have been explored
in [7] and [8]. However, they differ from the attacks described
in this paper as they do not exploit the timing discrepancies
introduced by distribution sampling. In [7], the authors observe
that the mechanism implementation may suffer from timing
attacks (e.g., because it performs conditional execution based
on a secret). As a mitigation authors propose constant time
execution for the mechanism, without consideration of noise
generation. On the other hand, Andrysco et al. [8] exploit
the difference in timing of floating-point arithmetic operations
(e.g., multiplication by zero takes observably less time than
multiplication by a non-zero value). They also show that DP
mechanisms (including [7]) are susceptible to information
leakage by using floating-point instructions whose running
time depends on their operands.

Balcer and Vadhan [39] outline shortcomings of imple-
menting differentially-private mechanisms on finite-precision
computers, including a discussion of floating-point represen-
tations and sampling from distributions with infinite support.
The authors propose a polynomial-time discrete method for
answering approximate histograms. Their method is based on
a bounded (or truncated) geometric distribution. Though a full
implementation is not provided, the authors suggest that the
distribution can be sampled via inverse transform sampling
using binary search over the support range using cumulative
distribution function F to guide the search. That is, given a
uniform random value p sampled uniformly from (0, 1], find
smallest value x from the support of the geometric distribution
such that F (x) ≥ p. If performed naı̈vely, such an approach
could reveal the magnitude of the noise of the geometric
distribution since the search will take longer for “less likely”
values (i.e., larger p) and would therefore suffer from the same
timing channel as described in Section VI.

In independent and parallel work [47], the authors describe a
theoretical attack against the Box-Muller method of sampling
from the Gaussian distribution in a similar manner to our
FP attack. However, they do not provide experiments vali-
dating the attack’s efficacy against existing implementations.
The authors propose a mitigation strategy similar to the one
mentioned in Section VIII based on computing a Gaussian
sample from multiple samples, and analyze its robustness.
Their work does not consider timing attacks.

Stepping away from differential privacy, Gaussian samplers
have been also widely used in schemes for digital signatures,
public key encryption, and key exchange based on lattice based
cryptography [48], [49], [50]. Such cryptographic primitives

often rely on a multi-dimensional discrete Gaussian which is
approximated by a distribution that is statistically close to the
desired distribution. Several sampling mechanisms have been
shown to suffer from cache-based side-channel attacks [51]
(i.e., based on memory accesses of the underlying algorithm)
and power analysis [44]. Defenses based on constant-time exe-
cution [52], [53], [54] and shuffling [44] have been proposed to
protect against some of these attacks including timing. Though
some techniques proposed for hardening the code in this space
can be used for protecting samplers for DP (Section VIII),
direct use of such samplers for DP is not straightforward.
This follows from the observation that discrete variants in
this area are (only) statistically close to the desired discrete
distribution. As a result, composition-based analysis developed
for analyzing cumulative loss of multiple mechanisms based
on Gaussian noise [17], [35] cannot be used directly.

X. CONCLUSION

In this paper we highlight two implementation flaws of
differentially private (DP) algorithms. We first show that the
widely used Gaussian mechanism suffers from a floating-point
(FP) attack against implementations of normal distribution
sampling, similar to vulnerabilities of the Laplace mecha-
nisms as demonstrated in 2011 by Mironov. We empirically
demonstrate that implementations in NumPy, PyTorch and
Go, including those used in implementation of open-source
DP libraries are susceptible to the attack, hence violating their
privacy guarantees. Though some researchers have speculated
that the Gaussian mechanism may be susceptible to FP attacks,
this is the first work to provide a comprehensive evaluation
showing that it is feasible in practice.

In the second part of the paper we show that imple-
mentations of discrete Laplace and Gaussian mechanisms —
proposed as a remedy to the FP attack against their continuous
counterparts — are themselves vulnerable to another side-
channel due to timing. That is, we show that implementations
of such discrete variants, including a DP library by Google,
exhibit the time that is correlated with the magnitude of the
secret random noise. Our work re-iterates the importance of
careful implementation of DP mechanisms in order to maintain
their theoretical guarantees in practice.
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APPENDIX

Fig. 8: Execution time of private sum over the credit attribute
of the German Credit Dataset [33], with Laplace II [3], over
a range of noise magnitudes, with ε = 10 and sensitivity ∆ =
5000 (avg. over 50 million trials).

A. Box-Muller Method

The Box-Muller method [55] is a computational method that
generates samples of the standard normal distribution from
uniformly distributed random values. It operates as follows:

1) Choose independent uniform random values x1 and x2
from (0, 1) using RandomFP.

2) Set r2 ← −2 lnx1 and Θ← 2πx2.
3) Return s1 ← r cos(Θ).

This procedure can be used to generate two independent
normal samples: s1, as above, and s2 ← r sin(Θ).

B. DP Gradient Computation

We now recall how f and ∆f are determined for the DP-
SGD mechanism.

f(B) =
1

S

S∑
i=1

g(bi) (4)

where B = [b1, b2, . . . , bS ] and bi is a record in B, g calculates
per-record gradient with per-record clipping with respect to
clipping norm L. Note that since the model has d = 26, 010
parameters and each batch is used to update them all, f(B) ∈
Rd contains a gradient for each parameter of the model.

a) Sensitivity Analysis: The sensitivity of DP-SGD is the
maximum L2 distance between any pair of f(B) and f(B′).
Clipping norm L dictates the largest L2 norm of any record
gradient. Thus, for any f(B) and f(B′), we can have:

‖f(B′)− f(B)‖2 ≤
1

S
‖g(bc)− g(br)‖2

≤ 1

S
(‖g(bc)‖2 + ‖g(br)‖2) ≤ 2L

S
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TABLE II: The range of attack rate and accuracy across ε ∈ [1, 20]. Attack rate refers to the rate at which the attacker can
make a gues. Attack accuracy measures how many of these guesses are correct. The two implementations of polar method and
Box-Muller, Gauss numpy and Gauss pytorch, respectively, have different attack rates, though the accuracy of those guesses
is always above 89%. The attack rate and accuracy for Gauss go always stay above 76% and 99.9%, respectively.

Sensitivity Gauss numpy Gauss pytorch Gauss go
attack rate attack accuracy attack rate attack accuracy attack rate attack accuracy

1 [1.7%, 78.2%] [92.4%, 99.9%] [4.3%, 92.8%] [97.7%, 99.9%] [76.4%, 89.6%] [99.9%, 100%)
10 [1.9%, 76.5%] [89.6%, 99.9%] [10.9%, 91.9%] [99.5%, 99.9%] [76.3%, 88.8%] [99.9%, 100%)

where bc refers to the canary record and br refers to the record
replaced by bc. Since L = 1 and S = 64, the sensitivity of f
is 1/32.

DP-SGD then proceeds by computing

y = f(B) +
1

S
Z

where Z = [Z1, . . . , Zd]
i.i.d.∼ N (0, σ2L2), y ∈ Rd, and

Gauss pytorch is used to draw noise from N . Note that even
if some record is radically different from others in the batch
(e.g., like the canary used in DiffLabelCanary) its gradient is
clipped at L.

C. DP-SGD Discretization

In Section VIII-A, we implement DP-SGD with discrete
Gaussian by discretizing the gradient g ∈ Rd as described
in [40] who use discrete Gaussian for training models in
Federated Learning setting. The method proceeds as follows.

1) Clip g w.r.t. clipping norm L, g′ = g×min{1, L/ ‖g‖2}.
2) Scale g′ with discretization parameter 1/γ, so the dis-

cretization can be done on a finer grid γZd. Then
randomly round each coordinate to the nearest integer,
z = Roundγ(g′) so that z ∈ Zd.

3) Let G ∈ Zd consist of d independent samples from the
discrete Gaussian NZ(0, σ2/γ2).

4) Add discrete noise to z and undo discretization, z′ =
(z +G)× γ.

where Roundγ is the conditional randomized rounding func-
tion with discretization parameter γ. We refer the reader
to [40] for details about Roundγ .

D. Ablation study

Here we investigate the rate at which the attacker can make
a guess (attack rate) and how many of these guesses are correct
(attack accuracy). To this end, we simulate settings where
q = 0 and q′ = c and test two values of c: 1 and 10, meaning
the sensitivity ∆ of the underlying function is 1 and 10,
respectively. We take a range of values of ε from 1 to 20 while
keeping a fixed δ = 10−5. Table II shows that implementations
Gauss numpy and Gauss pytorch have different attack rates;
however, their attack accuracy is always at least 89%. For
Gauss go, we observe that the attack rate is not influenced
significantly by ε (at least 76%), and the attack accuracy is
always above 99.99%.
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