
HAMRAZ: Resilient Partitioning and Replication
Xiao Li Farzin Houshmand

University of California, Riverside
Mohsen Lesani

Abstract—Inter-organizational systems where subsystems with
partial trust need to cooperate are common in healthcare, finance
and military. In the face of malicious Byzantine attacks, the
ultimate goal is to assure end-to-end policies for the three aspects
of trustworthiness: confidentiality, integrity and availability. In
contrast to confidentiality and integrity, provision and validation
of availability has been often sidestepped. This paper guarantees
end-to-end policies simultaneously for all the three aspects of
trustworthiness. It presents a security-typed object-based lan-
guage, a partitioning transformation, an operational semantics,
and an information flow type inference system for partitioned and
replicated classes. The type system provably guarantees that well-
typed methods enjoy noninterference for the three properties, and
that their types quantify their resilience to Byzantine attacks.
Given a class and the specification of its end-to-end policies, the
HAMRAZ tool applies type inference to automatically place and
replicate the fields and methods of the class on Byzantine quorum
systems, and synthesize trustworthy-by-construction distributed
systems. The experiments show the resiliency of the resulting
systems; they can gracefully tolerate attacks that are as strong
as the specified policies.

I. INTRODUCTION

Building trustworthy systems has been the holy grail of
computing. The three desired properties, confidentiality, in-
tegrity, and availability, also known as the CIA triad, guarantee
that sensitive data does not leak, computed results are correct,
and the system remains accessible in the face of failures and
attacks. Assurance of these properties is particularly needed
when multiple principals with partial mutual trust cooperate.
Inter-organizational systems are common: business-to-business
procurement systems, medical information systems that inte-
grate care-provider institutions, and joint military information
systems. The distrust between the components of these systems
leads to distribution of data and computation across adminis-
trative boundaries. However, building distributed systems that
are resilient to both benign (crash) and malign (Byzantine)
failures is notoriously complicated.

Given an integrated system, the ultimate question is whether
it complies with system-wide trustworthiness policies. Fur-
thermore, given the end-to-end trustworthiness policies, how
can trustworthy-by-construction systems be automatically con-
structed? Information flow control [21], [47], [51], [55] can
enforce end-to-end policies. To preserve confidentiality, it
restricts the flow of information from the secret to the public
domain. Further, to preserve integrity, a common technique is
to compare multiple copies of data or computation against each
other, and information flow analysis can check that enough
copies are compared [58], [59]. However, this method can
reduce availability as all the copies need to be available.

Of the three major aspects of trustworthiness, availability
has been often dissociated from the others, and unfortunately,
sidestepped. Confidentiality and integrity are safety properties
but availability is a liveness property. In contrast to safety
properties, simply monitoring the system and denying the vio-
lating actions cannot provide liveness. A few pioneering works
consider information flow control for availability. However,
they assume availability of the computation platform [60] or
require the user to explicitly program the quorums [61].

Providing availability in the face of Byzantine failures [32]
requires sophisticated Byzantine quorum replication protocols
[12], [38]. A quorum system is a set of quorums such that each
is an adequate set of hosts to perform operations. Quorum
systems stay available even if only one of their quorums is
not compromised. However, Byzantine replication has been
largely regarded as a separate discipline. Further, existing
protocols often provide guarantees only for a monolithic
system based on assumptions on the Byzantine fraction of
the processes. How can Byzantine replication be applied to
general computation on integrated systems? Since hosts and
polices of an integrated system are often heterogeneous, the
deployed quorum systems should vary as the information flows
from one computation and storage to another.

This paper enforces end-to-end policies simultaneously for
the three aspects of trustworthiness, especially the resiliency of
availability, in the face of Byzantine attacks. Further, given the
end-to-end policies, it automatically synthesizes trustworthy-
by-construction distributed systems that guarantee the speci-
fied policies. To this end, it presents a security-typed object-
based language, a partitioning transformation, an operational
semantics, and an information flow type inference system for
partitioned and replicated classes.

We present a security-typed object-based language to de-
scribe classes that can encapsulate multiple field objects to
implement their methods. The field objects abstract subsystems
and the methods capture their interaction. The language allows
the user to specify trustworthiness policies as type annota-
tions. A security type consists of three components for the
three trustworthiness properties. The space of types for each
property is elegantly modeled as a lattice. The confidentiality
type of a value is the set of hosts that are trusted to observe
or store that value. We represent a failure or attack scenario
as a set of principals, i.e., the Byzantine principals. Our novel
representation of the integrity (and similarly availability) type
of a value is a set of attack scenarios that the integrity (and
availability) of the value is resilient to.

The language permits a class to be described as a centralized

12267

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Xiao Li. Under license to IEEE.
DOI 10.1109/SP46214.2022.00017

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

61

definition with no distribution details. We present a high-level
sequential operational semantics that model central execu-
tions. However, confidentiality types restrict the placement of
objects and methods. In particular, a single principal may not
be able to host the whole body of a method. Therefore, a
method may need to be partitioned and hosted by multiple
principals. We present a CPS (continuation-passing style)
transformation to partition methods. Further, integrity and
availability types require replication of fields and methods
on Byzantine quorum systems. We present a distributed op-
erational semantics that model the executions of partitioned
and replicated classes. The semantics is parameterized for the
placement and replication of the fields and methods.

We present a type inference system to enforce policies for
the three trustworthiness properties: confidentiality, integrity
and availability. It performs dependency analysis and rejects
classes that violate the type specifications. In particular, if a
method depends on results from another method, then the for-
mer can be at most as available as the latter. The type system
provably guarantees that well-typed methods have noninterfer-
ence for the three properties. For example, an expression does
not access objects of higher confidentiality, lower integrity, or
lower availability than its type. Further, well-typed methods
do not go wrong: they are resilient against Byzantine attacks
that are as strong as their types. In particular, if the Byzantine
attack is no stronger than the integrity and availability type of a
method, then any distributed execution of the method matches
its sequential execution.

Given the placement and replication of field objects and
methods, the type system can check their adequacy for the
type specifications. More importantly, given the type specifi-
cations, the type inference system can derive constraints for
the placement and replication. Transforming and solving these
constraints yields the Byzantine quorum systems that host the
fields and and methods of the class. This leads to trustworthy-
by-construction distributed systems: the user describes the
class with type annotations specifying the trustworthiness
policies, and our tool, HAMRAZ, automatically synthesizes a
distributed system that assures the policies. HAMRAZ can au-
tomatically construct hosting Byzantine quorum systems, and
adjust them to the resiliency strength of type specifications.
Experimental results on a cluster of nodes show that HAMRAZ
generates resilient systems; the resulting systems can grace-
fully tolerate attacks that are as strong as the specifications.

We will start with an overview in § II. We see the program-
ming model, the lattices of the security types, and quorum
systems in § III. Then, we present the partitioning transfor-
mations in § IV. Next, we see the operational semantics, the
type inference system, and the security guarantee theorems in
§ V, § VI, and § VII. Then, we consider constraint solving
for type inference in § VIII. We describe the implementation
and report experimental results in § IX. Finally, we discuss
the related works in § X before we conclude in § XI.

II. OVERVIEW

In this section, we see a glimpse of security types, parti-
tioning, and the inference of placement and replication.

One-time Transfer. We illustrate these concepts by a
simple use-case: one-time transfer: Alice manages the set of
servers (or principals) A = {pA1, pA2, .., pA7} and a register
object r1. Similarly, Bob manages the set of principals B =
{pB1, pB2, .., pB4} and a register object r2. The problem is
to program a transfer method that lets a client principal p0

(not Alice or Bob principals) choose to see one of the two
registers, and reveals the value of that register to p0 only once.
The system should keep Alice’s register confidential from Bob
and vice versa. Further, there are resiliency specifications for
the integrity and availability of the system. The system should
maintain the integrity of the transfer method to return the
correct value even if two of Alice’s principals and one of
Bob’s principals are Byzantine. It should also stay available
even if one of Alice’s principals and one of Bob’s principals
are Byzantine. Byzantine principals are compromised by the
adversary and may behave arbitrarily. (A variant where Alice
and Bob are not authorized to view the client’s choice is called
oblivious transfer and is a use-case in our experiments.)

Centralized Definition. The one-time transfer class
OneTimeTrans is shown in Fig. 1.(a). It is a high-level
centralized definition with no extra details for distribution. The
class has three field objects: Alice’s register r1, Bob’s register
r2, and the register r that stores whether the client has already
read a value. The transfer method takes the client’s choice as
a boolean parameter x. It first checks the value of the register
r. If it is true, the client has already read a value, and transfer
simply returns 0. Otherwise, it sets r to true, and depending
on the parity of x, it reads and returns either the value of the
register r1 or r2.

Security Types. The user can also annotate her program
with security types. A type is the triple 〈c, i, a〉 of confiden-
tiality c, integrity i and availability a types. (In order to focus
the type system on trustworthiness, types do not capture the
classical representation types such as Int.) The confidentiality
type c of a value is the set of principals that are trusted to
access the value. An integrity (and similarly availability) type
represents resiliency against certain attacks. A resiliency value
{b} characterizes all the attack scenarios of the system: for
every execution of the system, there is a set b that contains
all the Byzantine principals in that execution. The integrity
type i of a value is defined as a resiliency {b} such that
the value is correct even in the face of each Byzantine set
b. Similarly, the availability type a of a value is a resiliency
{b} such that the value is accessible even in the face of each
b. For two resiliency values B and B′, let their join B ×∪ B′
be {b ∪ b′ | 〈b, b′〉 ∈ B × B′}. Types form a lattice with the
weakest and strongest types ⊥ and >. In particular, a resiliency
value B is stronger than (or can flow to) another B′, written
as B v B′, if for any attack in B′, there is a stronger attack
in B. Let Pn(S) represent the set of subsets of the set S
of cardinality n. For example, P2(A) represents the attack

22268

Class OneTimeTrans {
r1 . Reg 〈Int〉
r2 . Reg 〈Int〉
r . Reg 〈Bool〉
transfer(x) {

if ¬r.read() then
r.write(true);
if x then

r1.read()
else

r2.read()
else 0 } }

Γ = {r1 7→ 〈A ∪ {p0}, , 〉,
r2 7→ 〈B ∪ {p0}, , 〉,
transfer 7→ τ0, τ0 → τ
where τ = 〈
c := {p0},
i := P2(A)×∪ P1(B),
a := P1(A)×∪ P1(B)〉}

Class OneTimeTrans {
r1 . Reg 〈Int〉
r2 . Reg 〈Int〉
r . Reg 〈Bool〉
transfer(x) {

m4(x) }
m4 (x) {

x′ := r.read();
if ¬x′ then

m3(x)
else

res(0) }
m3 (x) {

r.write(true);
if x then

m1(⊥)
else

m2(⊥) }
m1 () {

x′ := r1.read();
res(x′) }

m2 () {
x′ := r2.read();
res(x′) }

res(x) {
x } }

τ1
τ2
τ3
τ0, τ0 → τ
τ
τ0, τ0 → τ
τ3
τ3
τ

τ
τ3, τ3 → τ
τ3
τ3
τ

τ
τ3, τ3 → τ
τ4
τ
τ3, τ3 → τ
τ5
τ
τ, τ → τ

M := [m 7→ 〈H,Qc〉]
M = {transfer 7→ 〈p0, {{p0}}〉,

m4 7→ 〈B2..4, {{p0}}〉,
m3 7→ 〈B2..4, P2(B)〉,
m2 7→ 〈B2..4, P2(B)〉,
m1 7→ 〈A2..5, P2(B)〉,
res 7→ 〈{p0}, P3(A) ∪ P2(B)〉}

O := [o 7→ 〈H,Qs, Qc〉]
O = {r1 7→ 〈A, P5(A), P3(A)〉,

r2 7→ 〈B, P3(B), P2(B)〉,
r 7→ 〈B, P3(B), P2(B)〉}

(d)

(a) (b) (c) (e)
τ0 = 〈⊥, {A ∪B}, {A ∪B}〉 τ1 = 〈c := A ∪ {p0}, i := P2(A)×∪ {B}, a := P1(A)×∪ {B}〉,

τ2 = 〈c := B ∪ {p0}, i := P1(B)×∪ {A}, a := P1(B)×∪ {A}〉,
τ3 = 〈c := A ∪B ∪ {p0}, i := {A} ×∪ P1(B), a := {A} ×∪ P1(B)〉
τ4 = 〈c := A ∪ {p0}, i := P2(A)×∪ P1(B), a := P1(A)×∪ P1(B)〉
τ5 = 〈c := B ∪ {p0}, i := {A} ×∪ P1(B), a := {A} ×∪ P1(B)〉

Fig. 1: One-Time Transfer. (a) User specification, (b) Partitioned class, (c) Typing, (d) Placement, (e) Execution. A =
{pA1, .., pA7}, B = {pB1, .., pB4}. The set Pn(S) is the set of subsets of S of cardinality n. The set Si..j denotes {pSi, .., pSj}.

scenario where two principals of the set A can be Byzantine.
Trustworthiness Policies. The user specifies the trust-

worthiness policies as type annotations. The type environment
Γ in Fig. 1.(a) represents the user type annotations for the
OneTimeTrans class. The register r1 should be confidential
and accessible to only the set of principals A and the client
p0. Similarly, r2 should be confidential for B and p0. (The
unspecified integrity and availability types are left for type
inference as .) The type of the transfer method is a function
type τx, τ → τ ′ from the context type τx and the parameter
type τ to the return type τ ′. (As we will see later in § VI,
the context type represents the trustworthiness of the calling
context. Here, it is simply the type τ0 as any context. Similarly,
the parameter x is not confidential, has complete integrity
and availability at the client p0; thus, its type is simply
τ0.) The return type τ of transfer is more interesting. The
confidentiality type c is {p0}; only the client p0 should be able
to call the method. The integrity type i is P2(A)×∪P1(B); it
requires the integrity of the return value to be resilient to two
A and one B Byzantine principals. Similarly, the availability
type a is P1(A) ×∪ P1(B); it requires the availability to be

resilient to one A and one B Byzantine principals. The goal
is to automatically partition and replicate the field objects and
methods so that the above specifications are satisfied.

Partitioning. The method transfer calls methods on both
registers r1 and r2. However, there is no principal in the
sets A and B that is authorized to see the values of both
registers. Therefore, in § IV, we adapt the CPS transformation
to partition the methods of a class to smaller methods such
that each makes at most one call to an object. The result of
partitioning the transfer method of Fig. 1.(a) is presented
in Fig. 1.(b). The transfer method is partitioned into six
methods. The earlier methods call later ones as tail-calls. The
initial method transfer and the response method res are both
hosted at the client p0 to invoke the call and to later receive
the return value respectively. (For uniformity, methods with
no parameters take a dummy parameter .) It is critical that
the two calls on the two registers r1 and r2 are partitioned
into the two separate methods m1 and m2; the type inference
places them on separate sets of A and B hosts.

Replication. To satisfy the resiliency specifications,
the field objects and the methods of the class should be

32269

sufficiently replicated. We apply Byzantine quorum systems
for replication. A quorum system Q is a set of quorums; a
quorum q is a set of principals that is adequate to properly
perform operations. We use two types of quorum systems:
communication quorum systems and storage quorum systems.
We use the former to communicate and validate method call
requests, and the latter to replicate field objects. The placement
M(m) of each method m is a pair 〈H,Qc〉: the method m
is replicated on the set of hosts H that each execute a call
on m if they receive the same call from the communication
quorum system Qc. The placement O(o) of each field object
o is a triple 〈H,Qs, Qc〉: the object o is replicated on the
set of hosts H with the the storage quorum system Qs that
executes a method call on o if it receives the same call from
the communication quorum system Qc.

Consider a quorum system Q = {q} and a set of Byzantine
principals b. As we will see in § III, for the availability of Q,
at least one q should not intersect with b. For the integrity of Q
as a storage system, the intersection of every pair of quorums
q1 and q2 should not be contained in b, and for the integrity of
Q as a communication system, no q should be contained in b.
The placements O and M for the OneTimeTrans class are
shown in Fig. 1.(d). (We will see below how these placements
can be inferred from the specified policies.) The notation Si..j

denotes the set {pSi, .., pSj}. As an example, assume that
we expect resiliency to two Byzantine principals in A. The
storage quorum system Qs for the register r1 is P5(A), subsets
of A of size 5. The set A has 7 principals. Thus, there is
always a quorum (a subset of A with size 7− 2 = 5) of non-
Byzantine principals. Therefore, Qs preserves its availability.
Further, any pair of quorums intersect in at least 2×5−7 = 3
principals. Therefore, there is at least 3−2 = 1 non-Byzantine
principal in the intersection, and Qs preserves its integrity. The
communication quorum system Qc for r1 is P3(A), subsets
of A of size 3. Therefore, there is at least 3 − 2 = 1 non-
Byzantine principal in every quorum. Thus, every call request
received from a quorum is valid, and Qc preserves its integrity.

We now consider a distributed execution with the given
placements, and then consider placement inference.

Replication Semantics. An example execution fragment
from the method call m3(true) to m1 and finally res is shown
in Fig. 1.(e). The two principals pA5 and pB2 are Byzantine.
The method m3 is hosted on B2..4. The non-Byzantine hosting
principals of m3 (i.e., pB3 and pB4) execute r.write(true)
and the then branch of the subsequent if expression to call
m1. They send request messages to call m1 to the hosting
principals of m1 that are A2..5. A call to m1 is executed only
when the request is received from a quorum in P2(B) (that
is two B principals). Since there are enough non-Byzantine
hosts for m3, enough requests are received at hosts of m1,
and its non-Byzantine hosts (i.e., pA2, pA3 and pA4) execute
m1. The method m1 reads the register r1 and calls the method
res with the read value. A call to res is executed only when
the request is received from a quorum in P3(A) ∪ P2(B). In
this case, three A principals make a quorum, and res is finally
executed at the client p0 with the value of the first register. We

note that the quorums P2(B) in the communication quorum
system of res are used when the method m2 calls res .

Type and Placement Inference. The user-specified type
for the return value of transfer is τ . Therefore, the return type
and the parameter of the response method res are expected to
be of type τ . Given the type specification of the method res ,
and the user type annotations in Γ, the type inference system
can infer the types of the other methods. Further, it can infer
the placement for the field objects and the methods. We will
see the type inference system in § VI. The inferred type of
each method and expression in Fig. 1.(b) is written in front of
it in Fig. 1.(c). The inferred placements O and M are shown
in Fig. 1.(d). We look at a few steps that infer the storage
quorum system of the object r1, the communication quorum
system of the method res , and the hosts of the method m1.

Storage Quorum Inference. The type of the parameter x
of the method res is τ , The integrity and availability compo-
nents of τ are i = P2(A)×∪P1(B), and a = P1(A)×∪P1(B).
The method m1 calls res with the argument x′. The integrity
ix′ of the argument x′ should be stronger than the integrity
i of the parameter x, i.e., ix′ v i. The variable x′ in m1

binds the return value of a call to the object r1. Therefore,
the integrity ir1 of r1 should be stronger than the integrity
ix′ of x′, i.e., ir1 v ix′ . The integrity of r1 is determined
by the quorum system Qs that stores it. By the transitivity
of the above relations, the integrity iQs

of Qs should be
stronger than the integrity i above, i.e., iQs

v i. A similar
argument for the availability aQs

of Qs yields aQs
v a.

Further, according to the confidentiality of r1, Qs should
be stored on only the A principals. Therefore, the integrity
of Qs should be resilient to 2 Byzantine principals, and the
availability of Qs should be resilient to 1 Byzantine principal.
What is the size s of the subset of A that hosts Qs? Further,
what is the quorum size n for Qs? The quorum system Qs will
be Pn(A1..s). For integrity, the quorums should have a non-
Byzantine intersection. Thus, we should have 2×n−s > 2. For
availability, there should be a non-Byzantine quorum. Thus,
we should have s− 1 ≥ n. A solution to these constraints is
s = 7 and n = 5. As Fig. 1.(d) shows, the storage quorum
system Qs for r1 is P5(A) (as A1..7 is obviously equal to A).

Communication Quorum Inference. The integrity type
of the parameter x of res is i = P2(A) ×∪ P1(B). The
quorum system Qc that receives calls to res should have
stronger integrity than the parameter. Thus, its integrity should
be resilient to 2 A and 1 B Byzantine principals. Therefore,
the quorums in Qc should have at least 2 + 1 = 3 principals
from A, or 1 + 1 = 2 principals from B. Therefore, as the
placement M in Fig. 1.(d) shows, Qc is P3(A) ∪ P2(B).

Host Inference. Now, let us consider the hosting principals
of m1. Since m1 calls a method on r1, and r1 is confidential
for A, the method m1 can be hosted on only A principals. The
method m1 calls res . As we just saw, the quorum system Qc

of res receives a call from A subsets of size 3. The type of the
parameter x of res is τ , and the availability component of τ
is a = P1(A)×∪P1(B). The parameter should be available if
one principal in A is Byzantine. To satisfy the availability of

42270

C := 〈o, d〉 Class
o Field Object
d := m(x) := e Method Definition
e := v | ⊥ | x | e⊕ e | x := e; e Expression

| if e then e else e | m(e) | o.m(e)
p, h : P Principal or Host

q, b,H : P(P) Quorum, Byzantine set, Hosts
Q,B : P(P(P)) Quorum System, Resiliency
M := [m 7→ 〈H,Qc〉] Method Placement
O := [o 7→ 〈H,Qs, Qc〉] Object Placement
τ := 〈c, i, a〉 Type
c := H Confidentiality
i := B Integrity
a := B Availability

Fig. 2: Syntax. P(S) = 2S is the power set of S.

c1 ∩ c2

c1 c2

c1 ∪ c2

c′

c

c v c′

i1 ×∩ i2

i1 i2

i1 ×∪ i2

i′

i

i v i′

a1 ×∩ a2

a1 a2

a1 ×∪ a2

a′

a

a v a′

(a) (b) (c)

Fig. 3: Lattices for (a) Confidentiality (b) Integrity and (c)
Availability. Arrows show the correct flow direction: more
confidentiality, less integrity, and less availability.

the parameter of res , the method m1 should send the argument
from at least 3+1 = 4 principals in A. Therefore, the hosting
principals of m1 are a subset of A of size 4. The placement
shown in Fig. 1.(d) chose the set A2..5.

III. CLASSES AND SECURITY TYPES

Class Definition. As shown in Fig. 2, a class C = 〈o, d〉
is described as a set of field objects o and method definitions
d. A method definition m(x) := e defines a method m with
parameter x and the body e. An expression e is either an
integer value v or none value ⊥, a variable x, an operation ⊕
on expressions, a sequence expression x := e; e′ that evaluates
e and binds its value to x for e′, a conditional expression if, a
this-method call m(e) (a method call on the current object this
of the enclosing class), or an object-method call o.m(e). The
sequence expression e; e′ is a syntactic sugar for a sequence
whose bound variable is not free in e′. The language achieves
Turing-completeness through recursive this-method calls.

Principal Sets. A principal (process or host) denoted as p
(or h) from the universe of principals P can host both objects
and methods. The identity of principals can be authenticated.
A quorum q, Byzantine set b, or hosts H is a set of principals.
A quorum system Q, or resiliency value B is a set of subsets
of principals (such that none of the subsets is contained in
another). A quorum system {q} is a set of quorums q such
that each is adequate to perform operations. A resiliency value
{b} characterizes all the attack scenarios of the system: for
every execution, at least one of the b sets contains all the
Byzantine principals in that execution. Byzantine principals
are controlled by the adversary; they may not follow the user-

defined programs and system protocols. (In the literature, a set
{b} is called a failure-prone system [38] as well.)

We define the basic operators v, ×∪ and ×∩ on quorum
systems and resiliency values. A resiliency value B is stronger
than (or can flow to) another B′, written as B v B′ iff for
every set b′ in B′, there is a set b in B such that b′ ⊆ b. We
say that a Byzantine attack b is subsumed by a resiliency value
B iff B v {b}. Finally, B×∪B′ = {b∪ b′ | 〈b, b′〉 ∈ B×B′}
and similarly, B ×∩ B′ = {b ∩ b′ | 〈b, b′〉 ∈ B ×B′}.

Method and Object Placement. A method placement
M is a mapping from each method m to a pair 〈H,Qc〉
where H is the set of principals that host m, and Qc is the
communication quorum system for requests to call m. A host
h in H executes a call to m only if it receives the call with the
same argument from a quorum q in Qc. An object placementO
is a mapping from each object o to a triple 〈H,Qs, Qc〉 where
H is the set of principals that hosts o, Qs is the storage quorum
system that serves calls to o, and Qc is the communication
quorum system to request calls on o. A method call on o is
executed by a quorum in Qs only if they receive the same
call from a quorum in Qc. (We will see more details of the
operational semantics in § V.)

Security Types. A type τ is a tuple 〈c, i, a〉 where c is the
confidentiality, i is the integrity, and a is the availability type.

Confidentiality. The confidentiality type c of a value is
the set of principals that are trusted to access the value. A
confidentiality type c is less than (or can flow to) another c′,
written as c v c′, iff c′ ⊆ c. As Fig. 3.(a) shows, information
can flow from low confidentiality c to high confidentiality c′.
Assume that the confidentiality type of x is cx = {p1, p2} and
the confidentiality type of x′ is cx′ = {p1}. cx v cx′ . The
flow from x to x′ leaks no information, but the flow from x′

to x can leak a secret in x′ to p2. Confidentiality types form
a lattice where join t is ∩, meet u is ∪, ⊥ is P and > in ∅.

Integrity. The integrity type i of a value is defined as a
resiliency {b} such that the value is correct even in the face
of each Byzantine attack b. We say that an integrity type i is
stronger than (or can flow to) another i′ if i v i′. (We saw the
definition of v on resiliency values above.) Intuitively, larger
Byzantine sets b represent more integrity. As Fig. 3.(b) shows,
information can flow from high integrity i to low integrity i′.
Assume that the integrity type of x is ix = {{p1}, {p2}} and
the integrity type of x′ is ix′ = {{p1, p2, p3}}. The variable
x preserves its integrity even if p1 or p2 are Byzantine. The
variable x′ preserves its integrity even if p1, p2 and p3 are
Byzantine. Thus, ix′ v ix. The flow from x′ to x preserves
the integrity of x. However, the flow from x to x′ can violate
the integrity of x′ if both p1 and p2 are Byzantine, or p3 is
Byzantine. Integrity types form a lattice where join t is ×∩,
meet u is ×∪, ⊥ is {P} and > in {∅}.

Availability. Similar to integrity, the availability type a of
a value is defined as a resiliency {b} such that the value is
accessible even in the face of each Byzantine attack b. We
say that an availability type a is stronger than (or can flow
to) another a′ if a v a′. As Fig. 3.(c) shows, information can
flow from high availability a to low availability a′. Similar to

52271

integrity, if we have ax′ v ax, the flow from x′ to x preserves
the availability of x but not vice versa. Availability types form
a lattice where join t is ×∩, meet u is ×∪, ⊥ is {P} and >
in {∅}. We note that no resiliency is represented as {∅}. An
integrity or availability type is expected to be non-empty.

We represent and analyze integrity and availability types
separately. However, an available value is often usable only if
it has integrity. To assure availability of a correct value, the
Byzantine set should be subsumed by both the integrity and
availability types. Therefore, as Fig. 1.(a) shows, the integrity
type is often stronger than the availability type.

Type. A type τ = 〈c, i, a〉 is a subtype of another type
τ ′ = 〈c′, i′, a′〉, written as τ v τ ′, iff c v c′, i v i′ and
a v a′. We note that with the lattice (and flow) direction
defined for integrity and availability above, all the three type
components are co-variant. Intuitively, the super-type has more
confidentiality, less integrity and less availability. A type can
be implicitly up-cast to a super-type. If τx v τx′ then it is safe
for the data from x to flow into x′. Types form a lattice with
the expected point-wise definitions for t, u, ⊥ and > on the
lattices of their three components.

Resiliency of Quorum Systems. First, we consider the
integrity of communication and storage in turn. Then, we
consider the availability of quorum systems.

Integrity of Communication Quorum Systems. Commu-
nication quorum systems are used to deliver a message to a
target principal. Sender principals echo the message, and the
target principal delivers it only if it receives the same message
from a quorum. Thanks to the redundancy in the messages, the
delivered message has integrity even if only one of the senders
is a non-Byzantine principal. The integrity of a communication
quorum system Q = {q}, written as CIntegrity(Q), is the
resiliency B = {b} where the Byzantine sets b are the maximal
subsets of the set of principals P such that for each b, there
is no quorum q that is a subset of b.

Integrity of Storage Quorum Systems. Storage quorum
systems are used to store and retrieve objects. To store a value
for the object, at least a quorum should store it, and to retrieve
its value, at least a quorum should retrieve the same value. In
order to retrieve the latest stored value, it is crucial that the two
quorums have a non-Byzantine principal in their intersection.
The integrity of a storage quorum system Q = {q}, written as
SIntegrity(Q), is the resiliency B = {b} where the Byzantine
sets b are the maximal subsets of the set of principals P such
that for each b, the intersection of every pair of quorums q1

and q2 is not a subset of b.
Availability of Quorum Systems. Given a set of hosts H for

a quorum system Q = {q} and a set of Byzantine principals
b, consider a quorum q that is tasked with the execution of an
operation. The quorum q can perform the operation if all of
its members are in H and none of them are in b. Therefore,
Q is available if at least one of its quorums q is a subset of
H and doesn’t intersect b. The availability of a set of hosts H
for a quorum system Q = {q}, written as Availability(Q,H),
is the resiliency B = {b} where the Byzantine sets b are the
maximal subsets of the set of principals P such that for each

b, there is at least one quorum q that is a subset of H and
doesn’t intersect b.

We note that as a quorum system is a set of quorums, the
classical labels that represent one set of principals are not
enough to capture its integrity and availability.

IV. PARTITIONING

A method of a class can execute multiple calls on its field
objects. A principal that hosts a method should be more con-
fidential than all the objects that it accesses. Such a principal
might not exist. For example, in our running example, the one-
time transfer class OneTimeTrans in Fig. 1.(a), the method
transfer calls methods on both objects r1 and r2. However,
there is no principal (except the client) that is confidential
enough to access both objects. Further, placing more methods
on more confidential principals can cause imbalance for the
computation load across principals. Therefore, as the first step
for resilient replication, we partition the methods of the class
into smaller methods such that each method makes at most
one object-method call. When methods make at most one
object-method call, they provide maximum flexibility for their
placement and replication during the type inference.

We perform partitioning in two steps: we first factor the
object-method calls by an adaptation of the CPS transforma-
tion, and then split the methods.

Factoring Object-method Calls. We first transform ex-
pressions e (that we saw in Fig. 2) to factored expressions c as
defined in Fig. 4.(a). In a factored expression c, object-method
calls are lifted as explicit call expressions callx := o.m(f)
where the expressions f are free of object-method calls. As
an example, Fig. 4.(b) shows the factored representation of
the body of the transfer method that we saw in Fig. 1.(a).
The object-method call r.read() is lifted to the beginning
of the body. Similarly, r1.read() and r2.read() are lifted to
the beginning of their enclosing branches of the if statement.
Factoring is performed in two steps: First, we perform a
CPS transformation to make object-method calls and their
evaluation order explicit. Object-method calls are translated
to explicit call expressions, and their call-by-value order of
evaluation is made explicit as nested call expressions. Second,
once the call expressions are captured, we apply β-reduction
to remove redundant lambda abstractions.

CPS Transformation. The CPS transformation is presented
in Fig. 4.(c). The rules for values v and ⊥, variables x, and
operations ⊕ are straightforward. The rule for the if expression
applies the transformation to the condition and the branches
in order. The rule for the sequence expressions x := e1; e2

first evaluates the first expression e1, and then passes its
result as x to the second expression e2 and evaluates it.
The rule for this-method calls m(e) evaluates the argument e
before calling the method m. Similarly, the rule for object-
method calls o.m(e) evaluates the argument e first. More
importantly, it converts o.m(e) to an explicit call expression
call x2 := o.m(x1) in k x2 instead of directly passing it to
the continuation k as k o.m(x1). The explicit call expressions
preserve object-method calls and their order after β-reductions.

62272

f := v | ⊥ Integer Literal
| x Variable
| f ⊕ f Operation
| if f then f else f Conditional
| m(f) This call

c := callx := o.m(f) in c Method Call
| if f then c else c Conditional
| f Expression

call x1 := r.read() in
if ¬x1 then

call := r.write(true) in
if x then

call x2 := r1.read() in
res(x2)

else
call x3 := r2.read() in
res(x3)

else res(0)

JvK k = k v
J⊥K k = k⊥
JxK k = k x

Je1 ⊕ e2K k = Je1K (λx1. Je2K (λx2. k (x1 ⊕ x2)))
Jif e0
then e1 = Je0K (λx. if x then Je1K k
else e2K k else Je2K k)

Jx := e1; e2K k = Je1K (λx. Je2K(λx2. k x2))
Jm(e)K k = JeK (λx. k m(x))

Jo.m(e)K k = JeK (λx1. call x2 := o.m(x1) in k x2)
(a) (b) (c)

Fig. 4: Factoring. (a) Factored expressions. (b) Example factored expression Jtransfer(x)K res . (c) CPS transformation.

CALL
JcK . 〈f ′, X ′, D′〉 freshm′ X ′′ = FV(f) ∪X ′ \ x

Jcall x := o.m(f) in cK .
〈m′(X ′′), X ′′, D′ ∪ {m′(X ′′) := (x := o.m(f); f ′)}〉

IF
Jc1K . 〈f1, X1, D1〉 Jc2K . 〈f2, X2, D2〉

Jif f then c1 else c2K .
〈if f then f1 else f2, FV(f)∪X1∪X2, D1∪D2〉

FEXP
JfK . 〈f, FV(f), ∅〉

METHOD
JeK . 〈e′, , D〉

Jm(x) := eK . D ∪ {m(x) := e′}

CLASS
J〈o, d〉K . 〈o,∪JdK〉

Fig. 5: Splitting Transformation

Reduction. The CPS transformation introduces administra-
tive lambda abstractions to pass continuations and make the
evaluation order explicit. After the transformation, we apply
β-reduction to remove the administrative lambda abstractions
and restore a concise representation.

β-REDUCTION (λx. e) e′ → e[e′/x]
We note that the β-reduction cannot rewrite call expressions.
Consider the expression call x2 := o.m(x1) in k x2. The β-
reduction cannot replace x2 with o.m(x1). Therefore, even if
x2 is not used in k, the object-method call o.m(x1) is not
removed. Further, the evaluation order of calls is preserved.

Splitting This-methods. Given a class such that the body
of the this-methods are factored expressions c, this step splits
each this-method into multiple this-methods such that each
one calls at most one object-method call.

Fig. 5 presents the splitting transformation. The judgments
that translate a factored expression c are of the form JcK .
〈f,X,D〉 where f is the resulting expression, X is the set of
free variables of f , and D is the set of generated this-method
definitions that f transitively calls. The rule CALL translates a
call expression call x := o.m(f) in c. It first translates c to f ′

with free variables X ′ and this-methods D′. It then generates
a new this-method m′ with the sequence x := o.m(f); f ′ as
the body. We note that the generated this-method includes only
one object-method call. The free variable X ′′ in the body are
the free variables of f and the free variables of f ′ (i.e., X ′)
except x that is bound by the call. The free variables X ′′

should be passed as parameters to m′. Thus, the call expression

is translated to the this-method call m′(X ′′). If the translated
call expression is part of a larger expression, the resulting this-
method call m′(X ′′) can inductively become a leaf expression
of the body of the this-method that is generated for the larger
expression. Thus, calls to the generated this-methods appear
only as tail-calls. The rule IF inductively splits the branches
of the if expression and results in an if statement that is free
of object-method calls. The rule FEXP simply translates an f
expression to the tuple of itself, its free variables FV(f) and
no new this-methods. The rule METHOD splits a this-method,
and the rule CLASS splits each this-method of a class.

As an example, applying the splitting transformation to the
factored expression in Fig. 4.(b) results in the split methods
in Fig. 1.(b). Starting from the leaf expressions, the two
branches of the inner if expression are split to the two methods
m1 and m2. This split is crucial to the enforcement of the
confidentiality policies. The objects r1 and r2 can be accessed
by only the principals A and B respectively. After the split,
the methods m1 and m2 can be separately placed on A and B
principals. Next, the then branch of the outer if expression is
split to the method m3. We note that there is only one object-
method call at the beginning of each generated method. Next,
the outer if expression is split to the method m4 where the
object-method call r.read() is at the top. Finally, the body of
the top-level this-method transfer is translated to a call to m4.

We note that partitioning allows maximum flexibility for
placement inference; however, if a caller and a callee are
placed on the same hosts, the call can be inlined. We also
note that partitioning results in non-blocking methods where
a call to the method immediately returns, and the return value
is later passed by a callback method (e.g. res). If needed, a
non-blocking method can be made blocking by simply waiting
for the callback using standard synchronization mechanisms.

V. OPERATIONAL SEMANTICS

In the previous section, we saw how the methods of a
class are partitioned. In this section, we present the opera-
tional semantics of these classes. We first present a baseline
sequential semantics and then present a distributed semantics
that replicates both objects and methods, and marshals call
requests between quorums of hosts.

Sequential Semantics. The state of the operational seman-
tics is defined in Fig. 6. For the sequential semantics, the state

72273

is the pair 〈e, S〉 where e is an expression, and S is a mapping
from objects o to their encapsulated states s. A reduction
context R captures the next expression to be reduced. The
sequential operational semantics is presented in Fig. 7. The
transitions are straightforward. We saw in the previous section
that after partitioning, this-method calls appear only as tail-
calls. Thus, in the rule STHISCALL, this-method calls do not
need a contextR. For brevity, we use in the place of symbols
that are unused and stay the same in the transition. (In order to
factor the reduction context, an extra rule could be added. For
the next semantics, yet another rule would be needed to factor
the context for multiple principals. The current representation
with explicit contexts seems to be more concise.)

Distributed Semantics. The distributed state is the triple
〈P,S,N〉. As defined in Fig. 6, the principal states P is a map
from principals to their states. The state of a principal is the
expression e that it is executing, the identifier id of the call
that is being executed, and the number of calls n that have
been executed by this call. Consider the call tree rooted at the
initial method call. The unique identifier of a call is the list of
the branch numbers in the path from the initial method call to
that call. The object state S is a map from objects o to pairs
〈s, r〉 where s is the state of o, and r is the recorded calls,
a map from call identifiers to their return values. Consider
a this-method m() that calls an object-method o.m′(). Since
m() is replicated on multiple principals, multiple requests to
execute o.m′() with the same identifier can be issued. To avoid
duplicate execution of object-method calls, the storage quorum
system of an object o not only keeps its state s but also a record
r of the previously executed calls and their return values. The
network N keeps pending request messages to execute this-
method calls. It is a mapping from tuples 〈p, id,m, v〉 to a
set of principals q (or ⊥), where p is the receiver principal,
id is the identifier of the call, m is the method requested
to be called, v is the argument, and q is the set of sender
principals that requested the call. The value of the mapping
is ⊥ when the requested call is already processed and should
not be reprocessed. A transition label and a sequence of labels
are denoted as l and L respectively.

Fig. 8 defines the distributed operational semantics that
models the runtime system. It is parametric in terms of a class
C = 〈o, d〉, the method and object placements M and O,
and the set of Byzantine hosts B. We say that the resiliency
of a system is {b} if it is resilient in all executions of all
instantiations of the operational semantics with a B where
{b} v {B}, that is a B that is a subset of a b. Thus, in the
theorems of § VII, B is universally quantified.

The rules OP, SEQ, IFTHEN and IFELSE make local tran-
sitions and are similar to their sequential counterparts.

This-method calls. The rule THISCALL reduces a this-
method call m(v) on a principal p. Let the identifier of the
method call that is currently being executed be id, and the
number of calls that it has executed be n. Thus, the identifier
of the new method call is id :: n. Let the placement of m
be the set of principals {p′}. A request message from the
sender p to execute the method m with identifier id :: n and

〈e, S〉 Sequential State
R := R⊕ e | v ⊕R | x := R; e Red. Context

| if R then e else e | m(R) | o.m(R) | []
s Object State
S := [o 7→ s] Seq. Object States

〈P, S,N〉 Distributed State
P := [p 7→ 〈e, id, n〉] Principal States
id : list nat Method call identifier
S := [o 7→ 〈s, r〉] Dist. Object States
r := [id 7→ v] Method calls record
N := [〈p, id,m, v〉 7→ q | ⊥] Network
l := p | p | 〈p, id,m, v〉 Label
| 〈p, p,m, id, v〉 | 〈p, v〉

L := l∗ Labels

Fig. 6: Runtime State

SOP
v1 ⊕ v2 = v3

〈R[v1 ⊕ v2], 〉 → 〈R[v3], 〉

SSEQ
〈R[x := v; e], 〉 → 〈R[e[v/x]], 〉

SIFTHEN
〈R[if 1 then e1 else e2], 〉 →

〈R[e1], 〉

SIFELSE
〈R[if 0 then e1 else e2], 〉 →

〈R[e2], 〉

STHISCALL
(m(x) := e) ∈ d

〈m(v), 〉 → 〈e[v/x], 〉

SOBJCALL
S(o) = s m(s, v) = 〈s′, v′〉

〈R[o.m(v)], S〉 → 〈R[v′], S[o 7→ s′]〉

Fig. 7: Sequential Operational Semantics

argument v is sent to every receiver p′. For each receiver p′,
the principal p is added to the set of senders q. As we saw
in § IV, after partitioning, this-method calls appear only as
tail-calls. Thus, they transfer control to the hosts of the callee,
and the new expression of the hosting principal p of the caller
becomes the none value ⊥ which denotes that p can execute
another this-method call. We saw an example of this-method
calls in Fig. 1.(e). The non-Byzantine hosting principals of m3

(i.e., pB3 and pB4) issue a call to m1. They send call request
messages to the hosting principals of m1 (i.e., A2..5).

The rule THISCALLEXEC executes a this-method call if
request messages from a quorum are received. The receiving
principal p is not processing any calls as its current expression
is none ⊥. Let the communication quorum system for the
method m be {q}. If the set of requesting principals q′ to
call m(v) (with the same identifier) is a superset of a quorum
q, the current expression of p becomes the body e of m after
the parameter x is substituted with the argument v. Finally,
the processed request message is mapped to ⊥ to prevent
duplicate executions. We saw an example in Fig. 1.(e). The
communication quorum system for m1 is P2(B); a quorum
should have at least two B principals. The non-Byzantine
hosts of m1 (i.e., pA2, pA3 and pA4) executed m1, since each
received the request from a quorum.

The rule THISCALLBYZ models the behavior of Byzantine
principals that can arbitrarily change their state, and send
arbitrary call requests to arbitrary principals. However, thanks
to authentication upon receiving messages, they cannot send a

82274

OP
v1 ⊕ v2 = v3

〈P[p 7→ 〈R[v1 ⊕ v2], , 〉], , 〉 p

〈P[p 7→ 〈R[v3], , 〉], , 〉

SEQ

〈P[p 7→ 〈R[x := v; e], , 〉], , 〉 p

〈P[p 7→ 〈R[e[v/x]], , 〉], , 〉

IFTHEN

〈P[p 7→ 〈R[if 1 then e1 else e2], , 〉], , 〉 p

〈P[p 7→ 〈R[e1], , 〉], , 〉

IFELSE

〈P[p 7→ 〈R[if 0 then e1 else e2], , 〉], , 〉 p

〈P[p 7→ 〈R[e2], , 〉], , 〉

THISCALL
M(m) = 〈{p′}, 〉 N(p′, id :: n,m, v) = q N′ = N[(p′, id :: n,m, v) 7→ q ∪ {p}]

〈P[p 7→ 〈m(v), id, n〉], ,N〉 p
 〈P[p 7→ 〈⊥, id, n+ 1〉], ,N′〉

THISCALLEXEC
M(m) = 〈 , {q}〉 N(p, id,m, v) = q′ q ⊆ q′

(m(x) := e) ∈ d N′ = N[(p, id,m, v) 7→ ⊥]

〈P[p 7→ 〈⊥, , 〉], ,N〉 〈p,id,m,v〉
 〈P[p 7→ 〈e[v/x], id, 0〉], ,N′〉

THISCALLBYZ
p ∈ B N(p′, id′,m, v) = q′ N′ = N[(p′, id′,m, v) 7→ q′ ∪ {p}]

〈P[p 7→ 〈e, id, n〉], ,N〉 〈p,p
′,id′,m,v〉
 〈P[p 7→ 〈e′, id′, n′〉], ,N′〉

OBJCALL
O(o) = 〈H,Qs, Qc〉 Qc = {q} q ⊆ {p} SIntegrity(Qs) v {B} Availability(Qs, H) v {B}

S(o) = 〈s, r〉 id :: n 6∈ dom(r) m(s, v) = 〈s′, v′〉 S′ = S[o 7→ 〈s′, r[id :: n 7→ v′]〉]

〈P[p 7→ 〈R[o.m(v)], id, n〉], S, 〉 p
 〈P[p 7→ 〈R[v′], id, n+ 1〉], S′, 〉

OBJRECALL
O(o) = 〈H,Qs, 〉 SIntegrity(Qs) v {B}

Availability(Qs, H) v {B} S(o) = 〈s, r〉 r(id :: n) = v′

〈P[p 7→ 〈R[o.m(v)], id, n〉], S, 〉 p
 〈P[p 7→ 〈R[v′], id, n+ 1〉], S, 〉

OBJCALLBYZ
O(o) = 〈 , Qs, 〉 SIntegrity(Qs) 6v {B}

〈P[p 7→ 〈R[o.m(v)], , 〉], , 〉 p
 〈P[p 7→ 〈R[v′], , 〉], , 〉

Fig. 8: Distributed Operational Semantics. It is parametric in terms of the class C = 〈o, d〉, the method and object placements
M and O, and the Byzantine principals B. In the THISCALL rule, the union operator ∪ is extended for ⊥ values: ⊥∪ s = ⊥.

message on behalf of another principal. (A step by a Byzantine
principal to impersonate another Byzantine principal can be
simulated as two consecutive steps by the two principals.)

Object-method calls. The rule OBJCALL executes an
object-method call o.m(v). Let the storage quorum system
of o be Qs, and the communication quorum system of o be
Qc = {q}. If (1) a set of principals {p} that are a superset
of a communication quorum q call the object-method, (2) the
set of Byzantine principals B cannot compromise the integrity
and availability of the storage system Qs, and (3) the method
call is not already executed, i.e., it is not in the recorded calls
r, then the method call is executed on the current state s of
o. The resulting state s′ is stored, and the return value v′

is recorded in r for the identifier of the call. The method
call is evaluated to the value v in each of the principals in
{p}. Object-method calls block for the return value, and are
unblocked once a quorum of principals make the same call,
and the call is executed. The rule OBJRECALL reduces an
object-method call that is already executed (when the storage
system is not compromised). It retrieves the return value from
the recorded calls r. The rule OBJCALLBYZ models the
execution of an object-method call when the set of Byzantine
principals is large enough to compromise the integrity of the
storage system. In this case, the call returns an arbitrary value.

VI. INFORMATION FLOW TYPE SYSTEM

In this section, we present the information flow type infer-
ence system and its guarantees. Instances of a well-typed class
preserve their type specifications for confidentiality, integrity
and availability at run time.

We present the type inference system in Fig. 9. Given a
class C, it yields constraints C on types and placements. The
judgments are of the form Γ,O,M ` C, C that states that
the class C is well-typed under the type environment Γ, and
the placements O and M for the field objects and methods
of C, if the constraints C are satisfied. (The judgments of
the corresponding type checking system is Γ,O,M ` C.
Instead of yielding constraints, it would simply check the same
conditions.) The typing judgments for an object field o and a
method definition d are Γ,O,M ` o, C and Γ,O,M ` d, C
respectively. The typing judgments for an expression e is
Γ,O,M,H, τx ` e, C whereH is the set of hosts that replicate
the execution of e, and τx is the type of the context under
which e is executed. The context type τx = 〈cx, ix, ax〉 captures
the implicit information flow. The context confidentiality type
cx represents the information that can be learned from the fact
that the execution has reached the current expression e. Sim-
ilarly, the context integrity type ix represents the integrity of
the information that determines the control flow to the current
expression e. The conditions of the if expressions that enclose
e determine its context confidentiality and integrity types. The
context availability type ax represents the availability of the
information that the control flow requires to reach the current
expression e. The conditions of the if expressions that enclose
e, and the sequence expressions that precede e determine its
context availability type.

The type environment Γ is a mapping from variables x and
objects o to types τ , from this-methods m to function types
τx, τ → τ ′, and from object-methods o.m to function types
τ → τ ′, where τx is the context type, τ is the parameter type,
and τ ′ is the return type. The interfaces that objects expose

92275

VALT
Γ,O,M,H, τx ` v : ⊥, ∅

VART
Γ,O,M,H, τx ` x : Γ(x), ∅

OPT
Γ,O,M,H, τx ` ei : τi, Ci for i ∈ {1, 2}

fresh τ C = C1 ∪ C2 ∪ {τ1 t τ2 v τ}
Γ,O,M,H, τx ` e1 ⊕ e2 : τ, C

SEQT
Γ,O,M,H, τx ` e1 : τ1, C1 τx = 〈cx, ix, ax〉 τ1 = 〈 , , a1〉

Γ[x 7→ τ1],O,M,H, 〈cx, ix, ax t a1〉 ` e2 : τ2, C2
fresh τ C = C1 ∪ C2 ∪ {τ1 t τ2 v τ}

Γ,O,M,H, τx ` x := e1; e2 : τ, C

IFT
Γ,O,M,H, τx ` e0 : τ0, C0

Γ,O,M,H, τx t τ0 ` ei : τi, Ci for i ∈ {1, 2}
fresh τ C = C0 ∪ C1 ∪ C2 ∪ {τ0 t τ1 t τ2 v τ}

Γ,O,M,H, τx ` if e0 then e1 else e2 : τ, C

THISCALLT
Γ,O,M,H, τx ` e : τ, C Γ(m) = τ ′x , τ1 → τ2 τ1 = 〈 , , a1〉

M(m) = 〈 , Q〉 C′ = C ∪ {τx v τ ′x ,
τ t τx v τ1, Availability(Q,H) v a1}

Γ,O,M,H, τx ` m(e) : τ2, C′

OBJCALLT
Γ,O,M,H, τx ` e : τ, C Γ(o.m) = τ1 → τ2 τ1 = 〈 , , a1〉
τ2 = 〈c2, , 〉 O(o) = 〈 , , Q〉 C′ = C ∪ {c2 v H,

τ t τx v τ1, Availability(Q,H) v a1}
Γ,O,M,H, τx ` o.m(e) : τ2, C′

METHODT
M(m) = 〈H,Qc〉 Γ(m) = τx, τ1 → τ2 τx = 〈cx, , 〉

τ1 = 〈c1, i1, 〉 Γ[x 7→ τ1],O,M, H, τx ` e : τ, C
C′ = C ∪ {τ v τ2, τ1 v τ2, c1 t cx v H, CIntegrity(Qc) v i1}

Γ,O,M ` m(x) := e, C′

FIELDT
O(o) = 〈H,Qs, Qc〉 Γ(o) = 〈c, i, a〉 M(o) = m

Γ(o.m) = 〈cm, im, am〉 → 〈c′m, i′m, a′m〉
Cm = {〈c, i, a〉 v 〈cm, im, am〉 v 〈c′m, i′m, a′m〉}
C = ∪Cm ∪ {tc′m v H SIntegrity(Qs) v ui′m,

Availability(Qs, H) v ua′m, CIntegrity(Qc) v uim}
Γ,O,M ` o, C

CLASST
Γ,O,M ` o, C Γ,O,M ` m, C′

Γ,O,M ` 〈o,m〉, ∪C ∪ ∪C′

Fig. 9: Information Flow Type Inference System

can be called from any context. Thus, the type of their context
parameter is > and is elided in an object interface.

Values, Variables, Operations, and Sequences. The rule
VALT simply type-checks a value v as ⊥, and the rule VART
type-checks a variable x according to the environment Γ. The
rule OPT type-checks an operation e1 ⊕ e2 as (a super-type
of) the join of the types of the operands. Similarly, The rule
SEQT type-checks a sequence x := e1; e2 as the join of the
types of the two operands. However, to type-check e2, the type

environment maps x to the type of e1, and the availability of
the context is reduced by the availability of e1. The intuition
is that e2 cannot be evaluated if e1 is unavailable.

Conditionals. The rule IFT type-checks a conditional
expression as the join of the types of the condition and the
branch expressions. To type-check the branch expressions, the
given context type τx is joined with the type τ0 of the condition
expression e0. The intuition is that e0 implicitly flows to the
branches. The fact that a branch is executed can leak the value
of e0. Therefore, the context confidentiality is increased by the
confidentiality of τ0. Further, the choice of the right branch
is dependent on the integrity of e0. Therefore, the context
integrity is reduced by the integrity of τ0. Further, the branches
cannot be evaluated if e0 is unavailable. Therefore, the context
availability is reduced by the availability of τ0.

Method Calls. The rule THISCALLT type-checks a this-
method call m(e). It first type-checks the argument e as τ , and
then retrieves the type τ ′x, τ1 → τ2 of m from the environment
Γ, where τ ′x is the context parameter type, τ1 = 〈 , , a1〉 is
the parameter type, and τ2 is the return type of the method. It
then checks that the current context type τx is a subtype of the
context parameter type τ ′x. It also checks that the argument type
τ is a subtype of the parameter type τ1. In addition, it checks
that the current context type τx is a subtype of the parameter
type τ1. The intuition is that the argument can implicitly flow
confidential information from the context (e.g. the enclosing
conditionals) to the callee, and the integrity and availability
of the context can affect the integrity and availability of the
argument. Finally, the rule checks that the current hosts H
that send the argument for the call to m meet the availability
specification a1 of the parameter. More precisely, let Q be the
communication quorum system that an argument for a call to
m is accepted from. If Q is restricted to H, then it should be
more available than a1.

The rule OBJCALLT type-checks an object-method call
o.m(e). It is similar in structure to THISCALLT with two
differences. First, it does not include the constraint on context
types since the context parameter type of an object-method
is implicitly >. Second, the hosts H should be confidential
enough to observe the return value.

Methods. The rule METHODT type-checks a method
definition m(x) := e. It first retrieves the type τx, τ1 → τ2 of
m from the given environment Γ. It then type-checks the body
e under the context type τx, and the environment Γ extended
with x typed as τ1. The resulting type τ of e has to be a
subtype of the return type τ2. Further, the parameter type τ1
has to be a subtype of the return type τ2. This makes a this-
method call have a stronger type than its argument. Further,
the hosting principals H should be more confidential than c1
and cx because the hosts can learn confidential information
in the argument and about the context from the fact that the
call is made. Finally, the communication quorum system that
accepts the arguments for m should provide more integrity
than the integrity i1 that the parameter expects.

Field Objects. The rule FIELDT checks the following
conditions for an object o. (1) Let 〈c, i, a〉 be the type of o in

102276

the environment Γ. The rule checks that c is a lower bound
for the confidentiality, and i and a are higher bounds for the
integrity and availability of the parameters and return values
of the methods m of o. (These bounds are used to state the
non-interference properties in the next section.) (2) Let H be
the hosts for the the storage quorum system Qs of o. (2.1)
The rule checks that the hosting principals H are confidential
enough to host the methods of o. More precisely, it checks
that the join (i.e., intersection) of the confidentiality of the
return values c′m can flow to (i.e., is a superset of) H . (2.2)
Further, in order to host o, Qs should provide more integrity
and availability than the integrity i′m and availability a′m that
the return value of each method m is expected to have. (3) Let
Qc be the communication quorum system that the arguments
of method calls on o are accepted from. Qc should provide
more integrity than the integrity im that the parameter of each
method m expects.

Class. The rule CLASST type-checks a class 〈o,m〉 by
type-checking each object o and method m.

VII. SECURITY AND RESILIENCY GUARANTEES

The type system guarantees non-interference for confiden-
tiality, integrity and availability of methods of well-typed
classes. Further, their integrity and availability types charac-
terize their resilience to Byzantine attacks. In this section, we
will see that if a method is typed, it enjoys non-interference
from objects of super-types, and resilience to Byzantine attacks
of sub-types. After basic definitions, we first look at the non-
interference theorems and then the resilience theorems. The
proofs are available in the appendix § XIV.

The partitioning process splits methods to a sequence of
methods. In the initial state, the client invokes the first method
in that sequence that we call the initial method.

Definition 1 (Initial method): The initial (or client) method
m0 is a method that is hosted on a non-Byzantine (client)
principal p0 and can be directly invoked by p0. More pre-
cisely, if B denotes the set of Byzantine principals, and M
denotes the method placement, then p0 6∈ B and M(m0) =
〈{p0}, {{p0}}〉.

Definition 2 (Initial distributed state): In the initial dis-
tributed state, p0 calls m0 with the initial argument v0, the
objects have their initial states, and the set of messages in the
system is empty. More precisely, the initial distributed state is
〈P0,S0, ∅〉 where P0 = [p 7→ 〈⊥, 0, 0〉][p0 7→ 〈m0(v0), 0, 0〉],
S0 = [o 7→ 〈S0(o), ∅〉], where S0(o) is the initial state of o.

To state properties over only a subset of objects in the maps
O and S, we project them over the three type kinds.

Definition 3 (Projection over types): Given a typing environ-
ment Γ, and a map M on the objects domain, the projection
of M over a confidentiality c restricts the domain of M to
objects with confidentiality less than c in Γ. More precisely,
M |Γ c = M | {o | let 〈c′, , 〉 := Γ(o) in c′ v c}. Similarly,
the projection of M over an integrity i restricts the domain of
m to objects with integrity more than i. The projection over an
availability a is similarly to objects of more availability than a.

More, precisely, M |Γ i = M | {o | let 〈 , i′, 〉 := Γ(o) in i′ v
i} and M |Γ a = M | {o | let 〈 , , a′〉 := Γ(o) in a′ v a}.

We lift the integrity of storage quorum systems, SIntegrity ,
to object placements O, as the join of SIntegrity of the
storage systems of all the objects in O. More precisely,
SIntegrity([o 7→ 〈 , Q, 〉]) = tSIntegrity(Q)

Non-Interference. The type that the type system associates
with a method m captures the trustworthiness of the objects
that it accesses. If the return type of m is τ , then m accesses
only objects that are typed as sub-types of τ , and enjoys
non-interference from objects that are typed as super-types
of τ . In fact, there is non-interference even if the super-type
relation holds only for one of the three type components. If
the type system associates a confidentiality type with (the
return value of) m, then calls to m don’t access objects of
higher confidentiality. Similarly, if the type system associates
an integrity or availability type with m, then calls to m don’t
access objects of lower integrity or availability. Changing the
state of these objects doesn’t interfere with the return value.

Confidentiality. Assume that the client method is type-
checked with the confidentiality type c. Let Oc be the objects
that are less (or as) confidential than c. The following non-
interference theorem states that if two state maps S1 and S2

have the same states for the objects Oc, and the integrity of
Oc is not compromised by the Byzantine principals B, then
any two executions with S1 and S2 that return a value to the
client, return the same value. The integrity of the objects is
required since a compromised object that loses integrity can
behave non-deterministically.

Theorem 1 (Non-interference): For all Γ, O, M, C, B, c,
i, a, S1, S2, P′1, P′2, L, v and v′, if

Γ,O,M ` C, and Γ(m0) = , → 〈c, i, a〉, and either

• S1 |Γ c = S2 |Γ c, and SIntegrity(O |Γ c) v {B}, or
• S1 |Γ i = S2 |Γ i, and SIntegrity(O |Γ i) v {B}, or
• S1 |Γ a = S2 |Γ a, and SIntegrity(O |Γ a) v {B}, or

〈P0,S1, ∅〉
L

∗
〈P′1, , 〉, and 〈P0,S2, ∅〉

L

∗
〈P′2, , 〉,

P′1(p0) = 〈v, , 〉, and P′2(p0) = 〈v′, , 〉,
then v = v′.

The proof is by induction on the steps. For confidentiality,
every step preserves the invariant that both the expressions in
non-Byzantine principals, and the requested this-method calls
in messages are less confidential than c. Thus, only objects
that are less confidential than c are accessed. Further, these
objects are assumed to have the same state in S1 and S2, and
preserve integrity. Therefore, object-method calls behave de-
terministically and return the same value in the two executions,
which in turn preserves the equality of the expression of every
non-Byzantine principal in the two executions.

Integrity. Assume that the client method is type-checked
with the integrity type i. Let Oi be the objects with integrity
more than i. The above non-interference theorem states that
if two state maps S1 and S2 have the same states for the
objects Oi, and the integrity of Oi is not compromised by the
Byzantine principals B, then any two executions with S1 and
S2 that return a value to the client, return the same value.

112277

Availability. Similarly, the above theorem states non-
interference for availability. If a method is type-checked with
the availability type a, then different states for objects that are
less available than a cannot interfere with the return value.

Resilience. Well-typed classes are resilient to Byzantine
principals. In particular, the integrity and availability types
that the type system associates with a method characterize
the resilience of its integrity and availability to Byzantine
principals. The integrity of the method is resilient to any
Byzantine attack that is subsumed by the integrity type of (the
return value of) the method. Similarly, the availability of the
method is resilient to any Byzantine attack that is subsumed
by its integrity and availability types.

Integrity Resiliency. If the Byzantine principals are sub-
sumed by the integrity type, then the results of distributed
executions is the same value as the sequential execution.
More precisely, if the sequential semantics evaluates the client
method call to the value v, and the set of Byzantine principals
B is subsumed by the integrity type i of (the return value of)
the method, then any distributed execution of the method call
that results in a value, results in v as well. For example, in
Fig. 1.(a) and (b), the integrity of the return type τ of transfer
is P2(A) ×∪ P1(B). Therefore, the result of a distributed
execution of transfer is the same as its sequential execution
even if two A and one B principals are Byzantine.

Theorem 2 (Integrity Resilience): For all v, Γ, O, M, C, i,
B, P, and v′, if
〈m0(v0), S0〉 →∗ 〈v, 〉,
Γ,O,M ` C, Γ(m0) = , → 〈 , i, 〉, and i v {B},
〈P0,S0, ∅〉 ∗ 〈P, , 〉, and P(p0) = 〈v′, , 〉, v′ 6= ⊥,

then v′ = v.
The proof is by induction on macro-steps where a step

is taken by all replicating principals before the next step is
taken. For every execution, there is a corresponding macro-
step execution. A macro-step preserves the invariant that the
expression of every non-Byzantine principal has more integrity
than i, and there is a sequential execution from the initial call
to that expression. In the case for execution of a this-method
call, we show that the request is received from at least one non-
Byzantine principal and use the invariant for that principal.

Availability Resiliency. If the Byzantine principals are sub-
sumed by the integrity and availability types, then a distributed
execution can make progress and results in the same value
as the sequential execution. More precisely, if the sequential
semantics evaluates the client method call to the value v, and
the set of Byzantine principals B is subsumed by the integrity
i and availability a types of (the return value of) the method,
then a distributed execution results in v as well. For example,
in Fig. 1.(a) and (b), the integrity and availability of the return
type τ of transfer are P2(A)×∪P1(B), and P1(A)×∪P1(B)
respectively. Therefore, a distributed execution of transfer
results in the same value as its sequential execution, even if
one A and one B principals are Byzantine.

Theorem 3 (Availability Resilience): For all v, Γ, O,M, C,
i, a, B, and P, if
〈m0(v0), S0〉 →∗ 〈v, 〉,

Γ,O,M ` C, Γ(m0) = , → 〈 , i, a〉, and ita v {B},
then there exists P such that
〈P0,S0, ∅〉 ∗ 〈P, , 〉, and P(p0) = 〈v, , 〉.
The set of Byzantine principals should be subsumed by

not only the availability type a but also the integrity type i
so that the storage quorum systems of the objects keep their
quorum intersection and return sound values. Compromised
return values can drift the execution to paths that do not match
the sequential execution, and can even lead to non-termination.

We note that while Theorem 1 states the safety property that
a typed method does not access objects that are less available
than its type, Theorem 3 states the liveness property that it
makes progress despite Byzantine principals that are not as
strong as its integrity and availability types.

VIII. CONSTRAINT SOLVING

We translate the constraints C to the theory of linear
arithmetic. Let the number of principal classes (trust domains)
be n and let Pj denote the set of principals of class j. For
example, in Fig. 1, n is 3, and the principal classes P0, P1

and P2 are A, B and C = {p0}. We represent a confidentiality
value c as a tuple 〈c0, c1, .., cn−1〉 where each cj represents
an integer variable with the value 1 or 0. The principal class j
is trusted or untrusted if the value of cj is 1 or 0 respectively.

We represent a set of hosting principals H as subsets of
given sizes of the principal classes. The hosting principals H
are represented as a tuple where Hj represents the number
of hosting principal from the class j. Similarly, we represent
a quorum system Q or a resiliency value B as subsets of
certain sizes of the principal classes. For example, in Fig. 1.(a),
the availability of τ is P2(A) ×∪ P1(B) that is all the
subsets with 2 principals from A and 1 principals from B.
This can be succinctly represented as the tuple 〈2, 1, 0〉. In
general, we represent the set of subsets s = Ps0(P0) ×∪
Ps1(P1) ×∪ .. ×∪ Psn−1

(Pn−1) as 〈s0, s1, .., sn−1〉. We let
a quorum system Q (or resiliency value B) be the union of
n such sets: Q = ∪i∈{0,1,..,n−1}〈Qij0 , Qij1 , .., Qijn−1

〉. The
indices i range over n tuples. In the tuple with index i, the
number of principals from class j is Qij . Having n such
tuples keeps the space of quorums tractable, and is expressive
enough to capture common quorum systems. For example, the
quorum system P4(P0) ∪ P5(P1) ∪ P2(P2) is represented as
〈4, 0, 0〉 ∪ 〈0, 5, 0〉 ∪ 〈0, 0, 2〉 that is all the subsets of size 4
from P0, of size 5 from P1, and of size 2 from P2. Thus, each
quorum system Q or resiliency value B can be represented by
n2 variables.

We now define the translation of two constraints. (The trans-
lation of all the constraints is available in the appendix.) Each
constraint is translated to a constraint of size at most O(n4).

CIntegrity(Q) v B .
∧
i

∧
i′

∨
j

Qij > Bi′j

Availability(Q,H) v B .
∧
i′

∨
i

∧
j

Qij > 0→ Qij ≤ Hj −Bi′j

In the first rule, the assertion states that none of the quorums
of Q is contained in a Byzantine set of B. More precisely, for

122278

Table I: Partitioning and Type Inference.

PT (s) CN GT (ms) ST (s) TT (s)
One-time Transfer 0.03 181 10.6 6.08 6.12
Ticket System 1.18 525 12.60 214.46 215.65
Oblivious Transfer 0.04 203 14.6 9.96 10.01
Auction 36.43 681 10.60 22.53 58.98
Friend Map 0.03 302 13.2 359.94 359.98
Salary Sharing 26.74 611 14.2 160.38 187.13

PT: Partitioning time, CN: Constraints number, GT: Constraint
generation time, ST: Constraint solving time, TT: Total time

each tuple i in Q, and tuple i′ in B, for at least one of the
indices (principal classes) j, Qij is more than Bi′j . In the
second rule, the assertion states that for every Byzantine set
b in B, there is at least one quorum q in Q that falls inside
the hosts H and doesn’t intersect b. More precisely, for each
tuple i′ in B, there is a tuple i in Q such that for all indices j,
if Qij is non-zero, it is less than or equal to Hj minus Bi′j .

We minimize the number principals in the host sets and
quorum systems to reduce the load. Let M = [m 7→ 〈H,Q〉]
and O = [o 7→ 〈H ′, Q′, Q′′〉]. The optimization constraint
is min

∑
j Hj +H ′j +

∑
i

∑
j Qij +Q′ij +Q′′ij that minimizes

the size of hosts and quorums. For example, in our running
example, the one-time transfer, for the given specification in
Fig. 1.(a), type inference can find the correct placement that
we saw in Fig. 1.(d). If we add the minimization constraint,
the more efficient placement 〈A1..5, P4(A1..5), P3(A)〉 for
r1 can be found; it has 5 hosts and quorums of size 4.

IX. IMPLEMENTATION AND EXPERIMENTS

We developed a tool called HAMRAZ and experimented
with multiple resiliency specifications for six use-cases on a
cluster of nodes. The experiments show that HAMRAZ can
successfully infer the placements and replications for the given
resiliency specifications. Further, it generates systems that
can gracefully tolerate injected faults that are as strong as
the resiliency specifications, and it can adjust the level of
replication according to the resiliency specifications. We make
HAMRAZ publicly available as open-source software.

Implementation. HAMRAZ is implemented in Java in two
parts: the synthesizer and the runtime. The synthesizer closely
follows the partitioning and type inference system of § IV and
§ VI, and the runtime closely follows the distributed opera-
tional semantics of § V. We used the Z3 SMT solver (v. 4.8.10)
[20] for constraint solving and optimization. We implemented
communication quorum systems using SSL StartTLS from the
Netty library [1], and storage quorum systems for field objects
using the BFT-SMaRt library [8].

Platform. The experiments are done on a high-performance
cluster with Intel Broadwell CPUs with 4 cores, 2GB of RAM
and CentOS-7 Linux x86 64 3.10.0. JDK is OpenJDK RE
18.9. The runtime is executed for each principal on a separate
node of the cluster. The nodes are connected with 56 Gb/s
InfiniBand. Each reported number is the arithmetic mean of 5
repetitions. Each repetition is the average of the response time
for 150 method calls.

Use-cases. We experiment with six use-cases: one-time
transfer that we saw in § II, oblivious transfer [58], tick-

eting system, auction system, friend map [35] and privacy-
preserving salary averaging [37].

Consider the sets of principals A to Z. In our plots, we con-
cisely represent a resiliency specification Pi(A)×∪..×∪Pk(Z)
as 〈i, .., k〉@n where n is the total number of principals that
is (3× i+1)+ ..+(3×k+1) plus 1 for the client. We use the
same resiliency specification for both integrity and availability.

Partitioning and Type Inference. HAMRAZ successfully
partitioned and inferred the placement and replication for
each field object and method of the above use-cases. Table I
shows the detailed execution times. The process takes less
than 6 minutes. We see that the process is often dominated
by constraint solving. However, when the use-case has a large
number of object-method calls (e.g. the Auction use-case), the
CPS transformation takes longer and the partitioning time is
a larger faction.

Increasing Faults. In this experiment, we validate the
hypothesis that HAMRAZ generates replicated systems that are
as resilient as the specifications require. In this experiment
(the first row of Fig. 10), the specification is fixed and is
written in the plot of each use-case. We consider the effect
of increasing the number of injected faults on the response
time. Injected faults are randomly selected from three types:
crash fault, corrupted payload, and delayed response. In these
plots, we increase the number of faults for the principals (a)
A, (b) A and B at the same time, (c) A, (d) A, and (e) C,
from 0 to their specified resiliency. In plots (a)-(d), the failing
principals host objects but in plot (e), the failing principals
host only methods. Each plot shows three lines for three fault
injection scenarios: solid: failing only leaders, dotted: failing
only followers, and dashed: failing randomly.

In all the failure scenarios across the use-cases, the re-
sulting systems can gracefully tolerate the injected faults.
Random failures increase the response time between 3 and
42 percent. Further, we observe that tolerating failing leaders
is considerably slower than failing followers due to leader
reconfiguration. We observe in plots (a)-(d) that increasing the
faults increases the response time. On the other hand, in plot
(e), the increase in response time is negligible (overlapping
lines). This is due to the fact that in contrast to principals that
host objects (plots (a)-(d)), tolerating failure of principals that
host methods (plot (e)) does not require reconfiguration.

Increasing Resiliency. In the following two experiments,
we validate the hypothesis that HAMRAZ can adjust replication
according to the strength of the specification. In the second
row of Fig. 10, we consider the effect of increasing resiliency
on the response time in normal (solid line) and faulty execu-
tions (dashed line) with maximum number of faults. Higher
resiliency requires more replicas and more communication
between them that affects the overall response time. If a fixed
number of replicas was used, the response time would be flat.

Increasing the Load. In the auction use-case, if the initial
offer o is less than 350, then A immediately wins with the
offer o− 1. Otherwise, the two agents beat each other’s offers
o− 350 times until A offers 349 and wins. Fig. 11 shows the
response time for increased initial offers. Larger initial offers

132279

0 1 2 3 4 5 6

100

150

200

250

(a) 〈6 : 1〉@24

R
es
p
on

se
ti
m
e
(m

s)
One-time Transfer

0 2 4 6 8 10
100

150

200

250

300

350
(b) 〈5 : 5 : 0〉@34

Ticketing System

0 1 2 3 4 5

150

200

250

300

(c) 〈5 : 1 : 1〉@25

Salary Averaging

0 1 2 3 4 5

150

200

250

300

(d) 〈5 : 2 : 2 : 2〉@42

Friend Map

0 1 2 3 4 5 6

50

60

70

80
(e) 〈1 : 1 : 6〉@28

leader failure
random failure
follower failure

Oblivious Transfer

〈1
: 1
〉@

9

〈2
: 1
〉@

12

〈3
: 1
〉@

15

〈4
: 1
〉@

18

〈5
: 1
〉@

21

〈6
: 1
〉@

24

50

60

70

80

90

100

(f)

R
es
p
on

se
ti
m
e
(m

s)

〈1
: 1
: 0
〉@

10

〈2
: 2
: 0
〉@

16

〈3
: 3
: 0
〉@

22

〈4
: 4
: 0
〉@

28

〈5
: 5
: 0
〉@

34
60

80

100

120

140

160
(g)

〈1
: 1
: 1
〉@

13

〈2
: 1
: 1
〉@

16

〈3
: 1
: 1
〉@

19

〈4
: 1
: 1
〉@

22

〈5
: 1
: 1
〉@

25

100

120

140

160

180

200

220

(h)

〈0
: 2
: 2
: 2
〉@

22

〈1
: 2
: 2
: 2
〉@

26

〈2
: 2
: 2
: 2
〉@

30

〈3
: 2
: 2
: 2
〉@

34

〈4
: 2
: 2
: 2
〉@

38

〈5
: 2
: 2
: 2
〉@

42

100

120

140

160

180

200

(i)

〈1
: 1
: 1
〉@

13

〈1
: 1
: 2
〉@

16

〈1
: 1
: 3
〉@

19

〈1
: 1
: 4
〉@

22

〈1
: 1
: 5
〉@

25

〈1
: 1
: 6
〉@

28
20

40

60

80

100 (j)

normal
faulty

Fig. 10: Top row: Response time for increased faults. Bottom row: Response time for increased resiliency. Pi(A)×∪ ..×∪Pk(Z)
is denoted as 〈i, .., k〉@n where n is the total number of principals.

lead to more object-calls and increased load. We experimented
with three specifications where the resiliency for A and B is
doubled from one to the next. We observe that as the load
increases, the response time of more resilient systems grows
slightly faster. More resilient system require more principals
and more coordination.

X. RELATED WORKS

Information flow control [5], [7], [11], [21], [29], [40], [46],
[47], [51], [55] has been widely used to enforce confidentiality
and integrity policies. It has been applied to concurrent [52]
and distributed [50] programs on trusted hosts. Further, Fabric
[35] supports programming distributed systems on heteroge-
neously trusted hosts, and enforces confidentiality and integrity
types, but doesn’t provide Byzantine replication and doesn’t
enforce availability policies. Several previous works [9], [14]–
[16], [41], [42], [54] automatically partition applications to
multiple tiers, often to the web server and client tiers, and en-
force confidentiality and integrity, but not availability. Jif/split
[58], [59] partitions programs and replicates code partitions
and data. It can replicate commitments instead of cleartexts to
increase integrity without reducing confidentiality. Further, its
secure communication assumptions between partitions were
later lifted by a cryptographic back-end [23]. PtrSplit [36]
splits programs with C++ pointers. However, these projects
do not provide availability; in fact, Jif/split may reduce avail-
ability as all replicas need to be available. Another work
[6] synthesizes cryptographic implementations for distributed
applications; however, it does not consider availability polices.

Later, information flow type systems were applied to en-
force availability policies [60] but assumed availability of
the computation platform and did not consider Byzantine-
resilient replication and their type lattices. Similarly, RMS
[34] adjusts the placement and replication of objects based on
availability and performance specifications; however, it does
not tolerate Byzantine failures. Qimp [61] provides a language
construct for clients to run an expression on references at a
use-specified quorum, and type-checks availability guarantees.
(In addition, when it is provable that integrity is compromised,

340 350 360 380 400
0

0.2
0.4
0.6
0.8

1

Initial Offer

R
es

p
on

se
ti

m
e

(s
) Auction

〈8 : 4 : 0〉@40
〈4 : 2 : 0〉@22
〈2 : 1 : 0〉@13

Fig. 11: Response time for
increased load

it can use a default value to
provide low integrity but high
availability.) In contrast, this
paper allows the user to de-
scribe a class composed of field
objects and methods, with con-
fidentiality, integrity and partic-
ularly availability type policies,
and without distribution details.
It then automatically partitions
the class and infers adequate Byzantine quorum systems for
methods and field objects to enforce the three polices.

State-machine replication is a well-known technique often
used to tolerate crash failures [10], [31], [43], [44]. Byzantine
failures were coined in the Byzantine Generals agreement
problem [32] together with a few early protocols for Byzantine
replication. Later, the more practical PBFT protocol [12], and
an abundant number of optimized variants such as Q/U [2],
HQ [19], Zyzzyva [30], Stewart [3], ABSTRACT [4], MinBFT
[53], CheapBFT [27], ZZ [56], UpRight [17], BFT2F [33],
Aardvark [18] and HoneyBadgerBFT [39] appeared. Further,
researchers verified the replication protocols [13], [22], [24]–
[26], [28], [45], [48], [49], [57]. However, these projects
only consider a monolithic replicated system. In contrast,
this project supports classes whose methods are implemented
based on multiple objects. It partitions each method and
separately replicates each partitioned method and field object,
and yet guarantees end-to-end non-interference and resiliency.

XI. CONCLUSION

This paper presented a theoretical framework and a system
for trustworthy distributed systems. It includes a lattice model
of resiliency, a security-typed object-based language to capture
end-to-end type polices for the three aspects of trustworthi-
ness, a partitioning transformation, operational semantics, an
information flow type inference system, and quorum constraint
solving to automatically construct partitioned and replicated
systems that guarantee non-interference and resiliency proper-
ties especially for availability in the face of Byzantine failures.

142280

REFERENCES

[1] Netty project. https://netty.io/, 2021.
[2] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,

Michael K. Reiter, and Jay J. Wylie. Fault-scalable byzantine fault-
tolerant services. In Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, SOSP ’05, pages 59–74, New York, NY,
USA, 2005. ACM.

[3] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane,
Cristina Nita-Rotaru, Josh Olsen, and David Zage. Steward: Scaling
byzantine fault-tolerant replication to wide area networks. volume 7 of
IEEE Transactions on Dependable and Secure Computing, pages 80–93.
IEEE, 2008.

[4] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien
Quema, and Marko Vukolic. The next 700 bft protocols. ACM Trans.
Comput. Syst., 32(4):12:1–12:45, January 2015.

[5] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic
discovery and quantification of information leaks. In 2009 30th IEEE
Symposium on Security and Privacy, S&P ’09, pages 141–153. IEEE,
2009.

[6] Michael Backes, Matteo Maffei, and Kim Pecina. Automated synthesis
of privacy-preserving distributed applications. In Proc. of ISOC NDSS,
NDSS ’12, 2012.

[7] Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. Secure information
flow by self-composition. Mathematical Structures in Computer Science,
21(6):1207–1252, 2011.

[8] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State
machine replication for the masses with bft-smart. In Proceedings of the
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’14, page 355–362, USA, 2014. IEEE
Computer Society.

[9] David Brumley and Dawn Song. Privtrans: Automatically partitioning
programs for privilege separation. In USENIX Security Symposium,
volume 57, 2004.

[10] Mike Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 335–350, Berkeley, CA,
USA, 2006. USENIX Association.

[11] Darion Cassel, Yan Huang, and Limin Jia. Flownotation: An annotation
system for statically enforcing information flow policies in c. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 2207–2209, 2018.

[12] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI ’99, pages 173–186, Berkeley, CA, USA,
1999. USENIX Association.

[13] Saksham Chand, Yanhong A Liu, and Scott D Stoller. Formal ver-
ification of multi-paxos for distributed consensus. In International
Symposium on Formal Methods, pages 119–136. Springer, 2016.

[14] Alvin Cheung, Owen Arden, Samuel Madden, and Andrew C Myers.
Automatic partitioning of database applications. Proceedings of the
VLDB Endowment, 5(11), 2012.

[15] Alvin Cheung, Owen Arden, Samuel Madden, Armando Solar-Lezama,
and Andrew C Myers. Statusquo: Making familiar abstractions perform
using program analysis. In CIDR, 2013.

[16] Stephen Chong, Jed Liu, Andrew C Myers, Xin Qi, Krishnaprasad
Vikram, Lantian Zheng, and Xin Zheng. Secure web applications
via automatic partitioning. ACM SIGOPS Operating Systems Review,
41(6):31–44, 2007.

[17] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo
Alvisi, Mike Dahlin, and Taylor Riche. Upright cluster services.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 277–290, New York, NY, USA,
2009. ACM.

[18] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and
Mirco Marchetti. Making byzantine fault tolerant systems tolerate
byzantine faults. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, NSDI’09, pages 153–
168, Berkeley, CA, USA, 2009. USENIX Association.

[19] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues,
and Liuba Shrira. Hq replication: A hybrid quorum protocol for
byzantine fault tolerance. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages 177–
190, Berkeley, CA, USA, 2006. USENIX Association.

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[21] Dorothy E Denning and Peter J Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504–513,
1977.

[22] Cezara Drăgoi, Thomas A Henzinger, and Damien Zufferey. Psync: a
partially synchronous language for fault-tolerant distributed algorithms.
ACM SIGPLAN Notices, 51(1):400–415, 2016.

[23] Cédric Fournet, Gurvan Le Guernic, and Tamara Rezk. A security-
preserving compiler for distributed programs: From information-flow
policies to cryptographic mechanisms. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 432–441,
2009.

[24] Álvaro Garcı́a-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey.
Paxos consensus, deconstructed and abstracted. In European Symposium
on Programming, pages 912–939. Springer, Cham, 2018.

[25] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet:
Proving practical distributed systems correct. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages 1–
17, New York, NY, USA, 2015. ACM.

[26] Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk
paxos. Archive of Formal Proofs, 2005, 2005.

[27] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon
Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and
Klaus Stengel. Cheapbft: Resource-efficient byzantine fault tolerance.
In Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 295–308, New York, NY, USA, 2012.
ACM.

[28] Pertti Kellomäki. An annotated specification of the consensus protocol
of paxos using superposition in pvs. Technical report, Technical report
36, Tampere University of Technology, Institute of Software . . . , 2004.

[29] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler,
and Michael Franz. Crowdflow: Efficient information flow security. In
Information Security, pages 321–337. Springer, 2015.

[30] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative byzantine fault tolerance. In
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007.
ACM.

[31] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2), 1998.

[32] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzan-
tine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,
1982.

[33] Jinyuan Li and David Maziéres. Beyond one-third faulty replicas in
byzantine fault tolerant systems. In Proceedings of the 4th USENIX Con-
ference on Networked Systems Design & Implementation, NSDI’07,
pages 10–10, Berkeley, CA, USA, 2007. USENIX Association.

[34] Mark C Little and Daniel L McCue. The replica management system:
a scheme for flexible and dynamic replication. In Proceedings of 2nd
International Workshop on Configurable Distributed Systems, pages 46–
57. IEEE, 1994.

[35] Jed Liu, Owen Arden, Michael D George, and Andrew C Myers. Fabric:
Building open distributed systems securely by construction. Journal of
Computer Security, 25(4-5):367–426, 2017.

[36] Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general
pointers in automatic program partitioning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 2359–2371, 2017.

[37] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic
encryption. STOC ’14, pages 1219–1234, 2012.

[38] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Dis-
tributed Computing, 11(4):203–213, 1998.

[39] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
The honey badger of bft protocols. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’16, page 31–42, New York, NY, USA, 2016. Association for Computing
Machinery.

[40] Andrew C Myers. Jflow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 228–241, 1999.

152281

[41] Sri Hari Krishna Narayanan, Mahmut Kandemir, and R Brooks. Perfor-
mance aware secure code partitioning. In 2007 Design, Automation &
Test in Europe Conference & Exhibition, pages 1–6. IEEE, 2007.

[42] Matthias Neubauer and Peter Thiemann. From sequential programs to
multi-tier applications by program transformation. In Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 221–232, 2005.

[43] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed systems. In
Proceedings of the Seventh Annual ACM Symposium on Principles of
Distributed Computing, PODC ’88, pages 8–17, New York, NY, USA,
1988. ACM.

[44] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305–319, 2014.

[45] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
made epr: decidable reasoning about distributed protocols. Proceedings
of the ACM on Programming Languages, 1(OOPSLA):1–31, 2017.

[46] James Parker, Niki Vazou, and Michael Hicks. Lweb: Information flow
security for multi-tier web applications. volume 3 of POPL ’19, pages
1–30. ACM New York, NY, USA, 2019.

[47] Francois Pottier and Vincent Simonet. Information flow inference for
ml. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 319–330, 2002.

[48] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L Constable.
Formal specification, verification, and implementation of fault-tolerant
systems using eventml. Electronic Communications of the EASST, 72,
2015.

[49] Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-
Verissimo. Velisarios: Byzantine fault-tolerant protocols powered by
coq. In European Symposium on Programming, pages 619–650.
Springer, 2018.

[50] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement
for distributed programs. In International Static Analysis Symposium,
pages 376–394. Springer, 2002.

[51] Andrei Sabelfeld and Andrew C Myers. Language-based information-
flow security. IEEE Journal on selected areas in communications,
21(1):5–19, 2003.

[52] Geoffrey Smith and Dennis Volpano. Secure information flow in a
multi-threaded imperative language. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 355–364, 1998.

[53] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo.
Efficient byzantine fault-tolerance. IEEE Transactions on Computers,
62(1):16–30, Jan 2013.

[54] K Vikram, Abhishek Prateek, and Benjamin Livshits. Ripley: automat-
ically securing web 2.0 applications through replicated execution. In
Proceedings of the 16th ACM conference on Computer and communi-
cations security, pages 173–186, 2009.

[55] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. Journal of computer security, 4(2-
3):167–187, 1996.

[56] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy,
and Emmanuel Cecchet. Zz and the art of practical bft execution. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11,
pages 123–138, New York, NY, USA, 2011. ACM.

[57] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+
specifications. In Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, pages 54–66. Springer,
1999.

[58] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C
Myers. Secure program partitioning. ACM Transactions on Computer
Systems (TOCS), 20(3):283–328, 2002.

[59] Lantian Zheng, Stephen Chong, Andrew C Myers, and Steve Zdancewic.
Using replication and partitioning to build secure distributed systems. In
2003 Symposium on Security and Privacy, 2003., pages 236–250. IEEE,
2003.

[60] Lantian Zheng and Andrew C Myers. End-to-end availability policies
and noninterference. In 18th IEEE Computer Security Foundations
Workshop (CSFW’05), pages 272–286. IEEE, 2005.

[61] Lantian Zheng and Andrew C Myers. A language-based approach to
secure quorum replication. In Proceedings of the Ninth Workshop on
Programming Languages and Analysis for Security (PLAS), pages 27–
39, 2014.

XII. ACKNOWLEDGMENTS

We appreciate the S&P 2022 reviewers for the constructive
and insightful comments. This project was supported by the
NSF grants #1718997 and #1942711.

162282

XIII. CONSTRAINT SOLVING

Core Constraints. The constraints C that the type system
generates are of the following forms.

C := Constraint
| τ v τ C1
| τ t τ v τ C2
| τ t τ t τ v τ C3
| c v c′ C4
| i v i′ C5
| a v a′ C6
| tc′m v ∪Q C7
| CIntegrity(Q) v uim C8
| SIntegrity(Q) v ui′m C9
| Availability(Q,H) v ua′m C10

| Availability(Q,H) v a C11

The constraints C can be reduced to the core constraints
A below. By distribution of t over v and then decomposing
types to their three elements, the constraints C1, C2 and C3
is reduced to A1 and A2. The constraint C4 is A1. The
constraint C5 and C6 are A2. By distribution of t over v,
the constraint C7, is reduced to A3. By distribution of v over
u, the constraints C8, C9 and C10 are reduced to A4, A5 and
A6 respectively.

A := Core Constraint
| c v c′ A1

| B v B′ A2

| c v ∪Q A3

| CIntegrity(Q) v B A4

| SIntegrity(Q) v B A5

| Availability(Q,H) v B A6

Translation. We translate the constraints C to the theory
of linear arithmetic. Let the number of principal classes (trust
domains) be n and let Pj denote the set of principals of class j.
For example, in Fig. 1, n is 3, and the principal classes P0, P1

and P2 are A, B and C = {p0}. We represent a confidentiality
value c as a tuple 〈c0, c1, .., cn−1〉 where each cj represents
an integer variable with the value 1 or 0. The principal class j
is trusted or untrusted if the value of cj is 1 or 0 respectively.

We represent a set of hosting principals H as subsets of
given sizes of the principal classes. The hosting principals H
are represented as a tuple where Hj represents the number
of hosting principal from the class j. Similarly, we represent
a quorum system Q or a resiliency value B as subsets of
certain sizes of the principal classes. For example, in Fig. 1.(a),
the availability of τ is P2(A) ×∪ P1(B) that is all the
subsets with 2 principals from A and 1 principals from B.
This can be succinctly represented as the tuple 〈2, 1, 0〉. In
general, we represent the set of subsets s = Ps0(P0) ×∪
Ps1(P1) ×∪ .. ×∪ Psn−1

(Pn−1) as 〈s0, s1, .., sn−1〉. We let
a quorum system Q (or resiliency value B) be the union of
n such sets: Q = ∪i∈{0,1,..,n−1}〈Qij0 , Qij1 , .., Qijn−1〉. The
indices i range over n tuples. In the tuple with index i, the

number of principals from class j is Qij . Having n such
tuples keeps the space of quorums tractable, and is expressive
enough to capture common quorum systems. For example, the
quorum system P4(P0) ∪ P5(P1) ∪ P2(P2) is represented as
〈4, 0, 0〉 ∪ 〈0, 5, 0〉 ∪ 〈0, 0, 2〉 that is all the subsets of size 4
from P0, of size 5 from P1, and of size 2 from P2. Thus, each
quorum system Q or resiliency value B can be represented by
n2 variables. We note that duplicating a tuple does not change
the represented set.

We now define the translation of constraints to the theory of
linear arithmetic. First, we generate the following constraints
for each variable c, H , Q, and B.

Variable c .
∨
j

cj = 0 ∨ cj = 1

Variable H .
∧
j

0 ≤ Hj ≤ |Pj |

Variable Q .
∧
i

∧
j

0 ≤ Qij ≤ |Pj |

Variable B .
∧
i

∧
j

0 ≤ Bij ≤ |Pj |

We now define the translation of each constraint A. Each
constraint is translated to a constraint of size at most O(n4).

c v c′ .
∧
j

c′j = 1→ cj = 1 T1

B v B′ .
∧
i′

∨
i

∧
j

B′i′j ≤ Bij T2

c v ∪Q .
∧
i

∧
j

Qij > 0→ cj = 1 T3

CIntegrity(Q) v B .
∧
i

∧
i′

∨
j

Qij > Bi′j T4

SIntegrity(Q) v B for O(o) = 〈H,Q, 〉 . T5∧
i1

∧
i2

∧
i′

∨
j

Qi1j +Qi2j −Hj > Bi′j

Availability(Q,H) v B . T6∧
i′

∨
i

∧
j

Qij > 0→ Qij ≤ Hj −Bi′j

The translation rule T1 translates a flow relation between
two confidentiality variables c and c′. The assertion states that
the principal classes that are authorized by c′ are authorized
by c as well. More precisely, for each index j (principal class)
of the tuples c and c′, if c′j is 1 then cj is 1 as well.

The translation rule T2 translates a flow relation between
two resiliency variables B and B′. The assertion states that
every set in B′ is a subset of a set in B. More precisely, for
each tuple i′ in B′, there is a tuple i in B such that for each
index j (principal class), B′i′j is less than or equal to Bij .

The translation rule T3 translates the flow relation from a
confidentiality variable c to the union of the quorums of a
quorum system Q. The assertion states that if a quorum in Q
has a principal in class j, then the class j is authorized by c
as well. More precisely, if there is a tuple i in Q whose index
j is greater than zero, then cj is 1.

172283

The translation rule T4 translates the constraint that the
integrity of the communication quorum system Q is stronger
than a resiliency variable B. The assertion states that none of
the quorums of Q is contained in a failure set of B. More
precisely, for each tuple i in Q, and tuple i′ in B, at least in
one of the indices (principal classes) j, Qij is more than Bi′j .

The translation rule T5 translates the constraint that the
integrity of the storage quorum system Q is stronger than a
resiliency variable B. The assertion states that the intersection
of no two quorums of Q is contained in a failure set of B.
More precisely, for each pair of tuples i1 and i2 in Q, and
tuple i′ in B, for at least one of the indices (principal classes)
j, the sum of Qi1j and Qi2j minus the size of the principal
class j in the hosting principals H is more than Bi′j .

The translation rule T6 translates the constraint that the
availability of the quorum system Q on the set of hosts H
is stronger than a resiliency variable B. The assertion states
that for every Byzantine set in B, there is at least one quorum
in Q that falls inside the hosts H and does not intersect the
Byzantine set. More precisely, for each tuples i′ in B, there is
a tuple i in Q such that for every index (principal class) j, Qij

is less than or equal to Hj minus Bi′j . The implication with
the premise Qij > 0 requires the condition above for only the
classes j that the quorums Qi have a member from. Otherwise,
when Qij = 0, no host in principal class j is needed but the
condition fails if Hj < Bi′j .

Optimization. We want to satisfy the constraints above
while minimizing the number of hosts. Replication on fewer
hosts reduces the load on the system. LetM = [m 7→ 〈H,Q〉]
and O = [o 7→ 〈H ′, Q′, Q′′〉]. The optimization constraint is

min
∑
j

Hj +H ′j +
∑
i

∑
j

Qij +Q′ij +Q′′ij

It minimizes the number of principals that host methods and
objects, and the number of principals in the communication
and storage quorum systems. Weighted factors can be added
to the formula incorporate their relative load.

We note that duplicating a tuple in the representation of
a quorum system does not change the represented quorum
system. If there are duplicate tuples in the solution for a
quorum system variable Q (or resiliency variable B), a post-
process filters them and keeps only one instance of each tuple.

182284

