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Abstract—Machine learning for malware classification shows
encouraging results, but real deployments suffer from perfor-
mance degradation as malware authors adapt their techniques to
evade detection. This phenomenon, known as concept drift, occurs
as new malware examples evolve and become less and less like the
original training examples. One promising method to cope with
concept drift is classification with rejection in which examples
that are likely to be misclassified are instead quarantined until
they can be expertly analyzed.

We propose TRANSCENDENT, a rejection framework built on
Transcend, a recently proposed strategy based on conformal
prediction theory. In particular, we provide a formal treatment of
Transcend, enabling us to refine conformal evaluation theory—its
underlying statistical engine—and gain a better understanding
of the theoretical reasons for its effectiveness. In the process,
we develop two additional conformal evaluators that match
or surpass the performance of the original while significantly
decreasing the computational overhead. We evaluate TRANSCEN-
DENT on a malware dataset spanning 5 years that removes
sources of experimental bias present in the original evaluation.
TRANSCENDENT outperforms state-of-the-art approaches while
generalizing across different malware domains and classifiers.

To further assist practitioners, we showcase optimal opera-
tional settings for a TRANSCENDENT deployment and show how
it can be applied to many popular learning algorithms. These
insights support both old and new empirical findings, making
Transcend a sound and practical solution for the first time. To
this end, we release TRANSCENDENT as open source, to aid the
adoption of rejection strategies by the security community.

Index Terms—security, machine learning, malware detection

I. INTRODUCTION

Machine learning (ML) algorithms have displayed superhu-
man performance across a wide range of classification tasks
such as computer vision [23] and natural language process-
ing [17]. However, a great deal of this success is conditional
on one central assumption: that the training and test data are
drawn identically and independently from the same underlying
distribution (i.i.d.) [12].

In a security setting this assumption often does not hold.
In particular, malware classifiers are deployed in dynamic,
hostile environments [34]. New paradigms of malware evolve
to pursue profits, new variants arise as novel exploits are
discovered, and adversaries switch behavior suddenly and
dramatically when faced with strengthened defenses. This
causes the incoming test distribution to diverge from the
original training distribution, a phenomenon known as concept

∗Equal contribution.

drift [28]. Over time, classifier performance begins to degrade
as the model fails to classify the new objects correctly.

There appear to be two broad approaches to tackling concept
drift. The first is to design systems which are intrinsically
more resilient to drift by developing more robust feature
spaces. For example, it has recently been suggested that neural
networks may be more resilient to concept drift as the latent
feature space better generalizes to new variants [35]. However,
designing robust feature spaces is an open research question
and it is not clear if there exists such a malware representation
for which concept drift will not occur.

A second solution is to adapt to the drift, for example
by updating the model using incremental retraining or online
learning [30, 50], or rejecting drifting points. However, to be
effective, decisions about when and how to take action on
aging classifiers must be taken quickly and decisively. To do
so, accurate detection and quantification of drift is vital.

This problem is precisely the focus of Transcend [20],
a statistical framework that builds on conformal predic-
tion theory [47] to detect aging malware detectors during
deployment—before their accuracy deteriorates to unaccept-
able levels. Transcend [20] proposes a conformal evaluator
that utilizes the notion of nonconformity to identify and reject
new examples that differ from the training distribution and
are likely to be misclassified; the corresponding apps can
then be quarantined for further analysis and labeling. While
effective, the original proposal suffers from experimental bias,
is extremely resource intensive and thus impractical, lacks
experiments to support generalization claims, fails to provide
guidance on how to integrate it into a detection pipeline
and, perhaps more importantly, lacks a theoretical analysis to
explain its effectiveness.

In this paper, we revisit conformal evaluator and Transcend
to root its internal workings in sound theory and determine its
most effective operational settings. We additionally propose
TRANSCENDENT, a framework that surpasses the performance
of the original in terms of drift detection and computational
overhead, making it a sound and practical solution.

In summary, we make the following contributions:
• Formal Treatment. We investigate the theory underpin-

ning the motivation and intuition of conformal evaluation
to provide a missing link between conformal evaluation
and conformal prediction theory that explains its effec-
tiveness and supports the empirical evaluations presented
in both this work and the original (§III).
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• Novel Conformal Evaluators. Building on this insight,
we develop two novel conformal evaluators: inductive
conformal evaluator (ICE) (§IV-B) and cross-conformal
evaluator (CCE) (§IV-C), both of which are firmly
grounded in conformal prediction theory and able to
effectively identify and reject drifting examples while
being significantly less computationally demanding than
the original. We formalize Transcend’s calibration proce-
dure as an optimization problem and propose an improved
search strategy for finding thresholds (§V).

• Operational Guidance. We evaluate our proposals on
a dataset spanning 5 years (2014–2019) that eliminates
sources of bias present in past evaluations (§VI). We
compare different operational settings, including the ef-
fects of including algorithm confidence (§VI-C) and of
using different search strategies (§VI-D) during thresh-
olding. Our methods outperform existing state-of-the-art
approaches (§VI-E), and generalize well across different
malware domains and underlying classifiers (§VI-F). To
aid practitioners in adopting rejection strategies, we in-
clude a discussion of how to integrate TRANSCENDENT
into a typical security detection pipeline (§VII).

To enable researchers and practitioners to make better use
of classification with rejection strategies, we publicly release
our data and implementation of TRANSCENDENT.1

II. BACKGROUND

We focus on classification for security tasks (§II-A) which
are affected by concept drift (§II-B). In particular, we are
interested in improving the state-of-the-art approaches for
classification with rejection (§II-C).

A. Machine Learning and Security Detection

Machine learning is a set of statistical methods for automat-
ing data analysis and enabling systems to perform tasks on
the data without being explicitly programmed for them. In
the malware domain, typical tasks include binary classification
(detecting malicious examples [6, 50]) and multiclass classifi-
cation (predicting the malware family [16, 42, 43]) but can also
extend to more complex tasks such as predicting how many
AV engines would detect an example [22], inferring Android
malware app permissions based on their icons [49], or gener-
ating Windows malware using reinforcement learning [4].

In this paper we focus on classification tasks where a
classifier g aims to learn a function mapping X → Y , where
X ⊆ Rn is a feature space of vectors capturing interesting
properties of the apps and Y is a label space containing binary
labels for the detection task or the names of malware families
for the multiclass classification task.

B. Concept Drift

One of the greatest challenges facing machine learning-
based malware classifiers is the presence of dataset shift [1,
20, 27] as the distribution of malware at test time begins to

1https://s2lab.cs.ucl.ac.uk/projects/transcend/

diverge from the training distribution. This violates one of
the core assumptions of most classification algorithms: that
the training and test time examples are identically and inde-
pendently drawn from the same joint distribution (i.i.d.). As
this assumption weakens over time, the classifier’s predictions
become less and less reliable and performance degrades.

Dataset shift can be broadly categorised into three types of
shift [28]. Covariate shift refers to a change in the distribution
of P (x ∈ X ), when the frequency of certain features rises or
falls (e.g., variations in API call frequencies over time). Prior
probability shift or label shift is a change in the distribution
of P (y ∈ Y), when the base rate of a particular class is
altered (e.g., an increase in malware prevalence over time).
Concept drift is a change in the distribution P (y ∈ Y|x ∈ X ).
This often occurs when the definition of the ground truth
changes, e.g.,, if a new family of malware arises which, given
the feature space representation X , is indistinguishable from
benign applications. Due to limited knowledge, the model will
start misclassifying examples from the new family, even if no
covariate or prior probability shift has occurred. In practice, it
can be extremely difficult to determine how much error should
be attributed to each type of shift [28]. Given this, it is common
in the security community to collectively refer to all types of
shift as concept drift, a custom that we continue in this work.

The impetus for concept drift in malware classification
is the adversarial nature of the task. Malware authors are
driven by the profit motive to try and evade detection or
classification by app store owners, antivirus companies, and
users. This incentivizes them to innovate: to obfuscate features
of their malware, develop new methods for exploitation and
persistence, and explore new avenues of profiteering and
abuse. This causes the definition of malware to evolve over
time, sometimes in drastic or unexpected ways.

C. Rejection

There are multiple routes to dealing with concept drift.
The most effective would be to design a feature space X
such that it is entirely robust to concept drift, essentially
distilling all possible malware behaviour down to a ‘Platonic
ideal’ [37] that captures maliciousness no matter what form it
takes. While recent proposals for augmenting feature spaces
with robust features are promising [e.g., 45, 53], the diversity
of malware makes it extremely difficult to design such a
feature space. Additionally, some behaviour is only considered
malicious due to its context, for example, requesting access to
the device contacts might be considered suspicious for a torch
app but not for a social messaging app [52].

An orthogonal approach is to identify, track, and mitigate
the drift as it occurs. One promising method is classification
with rejection [8], in which low confidence predictions, caused
by drifting examples, are rejected. Drifting apps can then
be quarantined and dealt with separately, either warranting
manual inspection or remediation through other means.

Transcend [20] is a state-of-the-art framework for perform-
ing classification with rejection in security tasks. It uses a
conformal evaluator to generate a quality measure to assess
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(a) Nearest centroid (b) Polynomial SVM (c) RBF SVM (d) 3-NN

(e) Random forest (f) QDA (g) MLP sigmoid (h) MLP with SVM RBF

Fig. 1: Possible NCMs for different classification algorithms: nearest centroid, support-vector machines (SVMs), nearest neighbors (NN), random forest,
quadratic discriminant analysis (QDA), and multilayer perceptron (MLP). The solid line delineates the decision boundary between classes  and # while the
dotted lines show SVM margins. The shaded region captures points which are more nonconform (i.e., ‘less similar’) than the new test point, shown by the
asterisk, with respect to class  . As NCMs, (a) uses the distance from the class centroid; (b) and (c) use the negated absolute distance from the hyperplane;
(d) uses the proportion of nearest neighbors belonging to class #; (e) uses the proportion of decision trees that predict #; (f) uses the negated probability of
belonging to class  ; (g) uses the negated probability output by the final sigmoid activation layer; (h) uses the outputs of the final hidden layer to train an
SVM with RBF kernel and uses the negated absolute probabilities output by that SVM—note the decision boundary still depends on the MLP output alone.

whether a new test example is drifting with respect to the
training data. If the prediction of an underlying classifier
appears to be affected by the drift, the prediction is rejected.
The original proposal presented two case studies: Android
malware detection—a binary classification task, and Windows
malware family classification—a multiclass classification task.
The experiments showed that the framework is consistently
able to identify drifting examples, providing a significant
improvement over thresholding on the classifiers’ output prob-
abilities. However, the lack of a theoretical treatment and
the computational complexity of the framework limited its
understanding and use in real-world deployments.

III. TOWARDS SOUND CONFORMAL EVALUATION

The statistical engine that drives Transcend’s rejection
mechanism is the conformal evaluator, a tool for measuring
the quality of predictions output by an underlying classifier.
Conformal evaluator design is grounded in the theory of con-
formal prediction [47], a method for providing predictions that
are correct with some guaranteed confidence. In this section
we investigate the relationship between the two to provide
novel insights and intuition into why conformal evaluation is
effective in the classification with rejection setting.

A. Conformal Evaluation vs. Prediction

Here we give an overview of conformal prediction and
how it motivates the use of conformal evaluation; for a more
formal treatment of conformal prediction we refer to Vovk

et al. [47]. Conformal prediction allows for predictions to
be made with precise levels of confidence by using past
experience to account for uncertainty. Given a classifier g,
a new example z = (x, y), and a significance level ε, a
conformal predictor produces a prediction region: a set of
labels in the label space Y that is guaranteed to contain
the correct label y with probability no more than 1 − ε. To
calculate this label set, the conformal predictor relies on a
nonconformity measure (NCM) derived from g and uses it
to generate scores representing how dissimilar each example
is from previous examples of each class. To quantify this
relative dissimilarity, p-values are calculated by comparing the
nonconformity scores between examples (§III-B). As well as
these p-values, two important metrics are derived from the
prediction region, confidence and credibility (§III-C), which
can be used to judge the effectiveness of the conformal
prediction framework. Conformal predictors are able to make
strong guarantees on the correctness of each prediction so
long as two assumptions about new test examples hold: the
exchangeability assumption, that the sequence of examples is
exchangeable, a generalization of the i.i.d. property; and the
closed-world assumption, that new examples belong to one of
the classes observed during training.

Rather than making predictions, conformal evaluators [20]
borrow the same statistical tools (i.e., nonconformity measures
and p-values) but use them to evaluate the quality of the
prediction made by the underlying classifier g. By detecting
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instances which appear to violate the aforementioned assump-
tions they can, with high confidence, reject new drifting exam-
ples which would otherwise be at risk of being misclassified.

B. Nonconformity Measures and P-values

In order to reject a new example that cannot be reliably
classified, conformal evaluators rely on a notion of non-
conformity to quantify how dissimilar the new example is
to a history of past examples. In general, a nonconformity
measure (NCM) [38] is a real-valued function that outputs a
score describing how different an example z is from a bag of
previous examples B = Hz1, z2, ..., znI:

αz = A(B, z). (1)

The greater the value of αz , the less similar z is to the
elements of the bag B. An NCM is typically formed of two
components: a metric d(z, z′) to measure the distance between
two points, and a point predictor ẑ(B) to represent B:

A(B, z) := d(ẑ(B), z). (2)

Illustrating this, Figure 1a shows an NCM for a nearest
centroid classifier in which the Euclidean distance is used for
d(z, z′), and the nearest class centroid is used for ẑ(B).

For a new example z∗, the conformal evaluator must decide
whether or not to approve the null hypothesis asserting that z∗

does not belong in the prediction region formed by elements of
B. To perform such a hypothesis test, p-values are calculated
using the NCM values for each point. First the nonconformity
score of z∗ must be computed (Equation 3) along with
nonconformity scores of elements in B (Equation 4), then the
the p-value pz∗ for z∗ is given as the proportion of points with
greater or equal nonconformity scores (Equation 5):

αz∗ = A(B, z∗) (3)
S = HA(B \ HzI, z) : z ∈ BI (4)

pz∗ =
|α ∈ S : α >= αz∗ |

|S|
(5)

In the classification context, we can calculate p-values in a
label conditional manner, such that B contains only previous
examples of class ŷ ∈ Y where ŷ = g(z∗) is the pre-
dicted class of the new example. If pz∗ falls above a given
significance level the null hypothesis is disproved and ŷ is
accepted as a valid prediction. Transcend [20] computes per-
class thresholds to use as significance levels (§V).

As p-values are calculated by considering nonconformity
scores relative to one another, NCMs can be transformed
monotonically without any impact on the resulting p-values.
Thus, when designing an NCM in the form given by Equa-
tion 2, the distance metric d(z, z′) is significantly less impor-
tant than the point predictor ẑ(B). It is important to note that
conformal evaluator algorithms are agnostic to the underlying
NCM chosen, but the quality of the NCM—and particularly
of ẑ(B), will impact the ability of conformal evaluators to
discriminate between valid and invalid predictions [38].

An alpha assessment [20] can be used to empirically
evaluate how appropriate an NCM is for a given dataset by

1 - max(p  , p ) 1 - p 

{   }

0 10.68 0.92

{   ,   }Ø

Fig. 2: The nested intervals at which labels  and # are present in the output
label set for a test example with per-class p-values p = 0.32 and p# = 0.08.
Shaded areas outline how credibility and confidence relate to the intersection
of prediction regions for which the label set contains a single element. The
relatively high probability of the empty set containing the correct label (i.e.,
low credibility) indicates that one of conformal prediction’s assumptions may
have been violated. In conformal evaluation, this is used as a signal that the
new example is likely out-of-distribution and is indicative of concept drift.

plotting the distribution of p-values for each class, further
split into whether the prediction was correct or incorrect. As
incorrect predictions should be rejected, they are expected to
fall below the threshold, while correct predictions are expected
to fall above the threshold. Well-separated distributions of
correct and incorrect predictions suggest a viable threshold
exists to separate them at test time. Poorly separated prediction
p-values indicate an inappropriate NCM. An example of an
alpha assessment on a toy dataset is shown in Figure 4d.

Figure 1 illustrates possible NCMs for different algorithms
on a toy binary classification task with existing class exam-
ples  /# and new test example B. The solid line delineates the
decision boundary between the two classes, the dotted lines
show SVM margins where applicable, and the blue shaded
region captures points that are more nonconform (i.e., less
similar) than B with respect to class  . Note that the shape
of the nonconformal region need not reflect the shape of the
regions for the predicted classes (e.g., Figure 1a) and that
there may be multiple viable NCMs for the same underlying
algorithm (e.g., Figures 1g and 1h).

C. Successfully Identifying Drift

Recall that conformal prediction produces a prediction
region given a significance level ε. The possible prediction
regions are nested such that the higher the confidence level, the
more labels will be present. As a trivial example, a prediction
region containing all possible labels may be produced for a
significance level of ε = 0 (maximum likelihood) as it will
contain the true label y with certainty. At the other extreme,
an empty set can be produced at a significance level of ε = 1
(minimum likelihood), as this is an impossible result under
the closed-world assumption of conformal prediction.

Of particular interest is the prediction region containing a
single element which lies between these extremes. Related to
this prediction region, a conformal predictor also outputs two
metrics: confidence and credibility (Figure 2).

Confidence is the greatest 1 − ε for which the prediction
region contains a single label which can be calculated as the
complement to 1 of the second highest computed p-value.
Confidence quantifies the likelihood that the new element
belongs to the predicted class.

Credibility is the greatest ε for which the prediction region
is empty and corresponds to the largest computed p-value.
Conformal predictors can be forced to output single predic-
tions (rather than a label set induced by ε), for which they
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will output the class with the highest credibility. Credibility
quantifies how relevant the training set is to the prediction. A
low credibility indicates conformal prediction might not be a
suitable framework to use with the given data because a low
credibility means the probability of the correct label being in
the empty set is relatively high, which is an impossible result
under the closed-world assumption of conformal prediction.

We propose that conformal evaluation’s effectiveness stems
from this relationship: that in conformal evaluation, this
probability is being directly interpreted as the probability
that the i.i.d. assumption has been violated. Thus, a low
credibility means that there is a high probability that the
corresponding example is drifting with respect to the previous
history of training examples. Such an example is at risk of
being misclassified due to limited knowledge of the classifier.

It should be noted that formally, conformal evaluation de-
fines credibility and confidence slightly differently. In confor-
mal evaluation, the credibility is the p-value corresponding to
the predicted class and the confidence is the complement to 1
of the maximum p-value excluding the p-value corresponding
to the predicted class (i.e., the credibility p-value). This subtle
difference is important to clarify the operational context of
a conformal evaluator: whereas conformal predictors output
the final classification decision, conformal evaluators output
a statistical measure separate to the decision of the underly-
ing classifier (hence the nomenclature: one predicts and the
other evaluates). In practice, given reasonable NCMs, these
definitions can be treated as equivalent.

IV. TOWARDS PRACTICAL CONFORMAL EVALUATION

In assessing the quality of a prediction for a new test point,
there is the question of which previously encountered points
the new point should be compared to—that is, which elements
are included in the bag B of Equation 3, and how. Typically,
new test points are compared against a set of calibration points.

In Jordaney et al. [20], conformal evaluation was realized
using a Transductive Conformal Evaluator (TCE). With a TCE,
every training point is also used as a calibration point. To
generate the p-value of a calibration point, it is first removed
from the set of training points and the underlying classifier
trained on the remaining points. Given the newly trained
classifier, a predicted label is generated for the calibration
point. Finally, using a given NCM, its p-value is computed
with respect to the points whose ground truth label matches its
predicted label. This procedure is repeated for every training
point. Following this, Transcend’s thresholding mechanism
operates on the calculated p-values to determine per-class
rejection thresholds (§V). At test time, the underlying classifier
is retrained on the entire training set, and, similarly to the
calibration points, the p-values are computed with respect to
the p-values of the calibration sets.

While the Transductive Conformal Evaluator (TCE) used in
the original proposal [20] appears to perform well, it does not
scale to larger datasets as a newly trained classifier is required
for every training point. Consider the experiments in §VI
where fitting a single instance of the underlying classifier takes

10 CPU minutes. In this case, we estimate a single run using
vanilla TCE to take 1.9 CPU years.

We propose a number of novel conformal evaluators that
overcome this limitation and present their advantages and
disadvantages. A comparison of their runtime complexities and
operational considerations are presented in Table I and §VII,
respectively. Formal algorithms for their calibration and test
procedures are included in Appendix F while Figure 3 provides
a graphical intuition to their different calibration splits.

Note that while our illustrative examples and evaluation are
given for the binary detection task, TRANSCENDENT and con-
formal evaluation are agnostic to the total number of classes
and this is captured in the formal definitions. If multiclass
NCMs cannot be derived, per-class conformal evaluators may
be arranged as a one-vs-all ensemble.

A. Approximate TCE (approx-TCE)

Our first attempt at reducing the computational overhead
induced by the Transductive Conformal Evaluator is the ap-
proximate Transductive Conformal Evaluator (approx-TCE).
In the original TCE, p-values are generated for each calibration
point by removing them from the training set, retraining the
underlying classifier on the remaining points, and repeating
until a p-value is computed for every training point.

In approx-TCE, calibration points are left out in batches,
rather than individually. The training set is randomly parti-
tioned into k folds of equal size. From the k folds, one is used
as the target of the calibration and the remaining k−1 folds are
used as the bag to which those points are compared to. This
process repeats k times, until each fold has been used as the
calibration set exactly once. Note that all of the k calibration
sets are mutually exclusive; the corresponding batches of p-
values are then concatenated in the same manner as in TCE.

The statistical soundness of the approx-TCE relies on the
assumption that the decision boundary obtained from leaving
out calibration points in batches approximates each of the deci-
sion boundaries that would have been obtained per calibration
point in the batch if the point had been left out individually.
If this assumption holds, the generated p-values will be the
same as, or similar to, the p-values generated with a TCE.
The approximation grows more accurate as k increases until
k equals the cardinality of the training set at which point the
approx-TCE and the TCE are equivalent. In this sense, the
approx-TCE can be viewed as a generalization of the TCE.

This assumption is more likely to hold with algorithms with
lower variance (e.g., linear models), but becomes more tenuous
as the variance increases unless k increases also—sacrificing
the saved computation to mitigate the statistical instability.

B. Inductive Conformal Evaluator (ICE)

The second conformal evaluator we propose is the Inductive
Conformal Evaluator (ICE) which, unlike the approx-TCE, is
based on a corresponding approach from conformal prediction
theory [32, 46, 47]. The ICE directly splits the training set
into two non-empty partitions: the proper training set and
the calibration set. The underlying algorithm is trained on
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P-value target Included in bag Excluded from calibration

(a) TCE

(b) Approx-TCE

(c) ICE

(d) CCE

Fig. 3: Illustration of the different calibration splits employed by each of the
conformal evaluators showing the target of the p-value calculation, relative
points included in the bag, and points excluded from the calibration.

the proper training set, and p-values are computed for each
example in the calibration set. Unlike the TCE, p-values are
not calculated for every training point, but only for examples
in the calibration set, with the proper training set having no
role in the calibration at all. The ICE aims to inductively learn
a general rule on a single fold of the training set.

This induces significantly less computational overhead than
the TCE and approx-TCE (see Table I) and in practice is
extremely fast, but also very informationally inefficient. Only
a small proportion of the training data is used to calibrate
the conformal evaluator, when ideally we would use all of it.
Additionally, the performance of the evaluator depends heavily
on the quality of the split and the calibration set’s ability to
generalize to the remainder of the dataset. This results in some
uncertainty: an ICE may perform worse than a TCE due to a
lack of information, or better due to a lucky split.

C. Cross-Conformal Evaluator (CCE)

The Cross-Conformal Evaluator (CCE) draws on inspiration
from k-fold cross validation and aims to reduce both the
computational and informational inefficiencies of the TCE
and ICE. Like the ICE, the CCE has a counterpart rooted
in conformal prediction theory [48].

The training set is partitioned into k folds of equal size. So
that a p-value is obtained for every training example, each fold
is treated as the calibration set in turn, with p-values calculated
as with an ICE, using the union of the k − 1 remaining folds
as the proper training set to fit the underlying classifier.

Finally we concatenate the p-values in a way which pre-
serves their statistical integrity when decision quality is evalu-
ated. We set aside the k fit underlying models and correspond-

TABLE I: Runtime complexities and empirical runtime for conformal eval-
uator calibration where n is the number of training examples and p is the
proportion of examples included in the proper training set each split/fold.

CONFORMAL EVALUATOR COMPLEXITY RUNTIME IN §VI-B

TCE O(n2) est. 1.9 CPU yrs
Approx-TCE, 1/(1− p) folds O(n/(1− p)) 46.1 CPU hrs
ICE O(pn) 11.5 CPU hrs
CCE, 1/(1− p) folds O(pn/(1− p)) 36.6 CPU hrs

ing calibration sets for test time. When a new point arrives,
the prediction from each classifier is evaluated against the
corresponding calibration set. The final result is the majority
vote over the k folds, i.e., the prediction of a particular class
is accepted if the number of accepted classifications is greater
than k

2 , and rejected otherwise.
The CCE can be viewed as k ICEs, one per fold, and these

ICEs can operate in parallel to reduce computation time—if
the resources are available. However, there is an additional
memory cost with storing the separate models.

V. SOUND AND PRACTICAL TRANSCENDENT

Once p-values are calculated, thresholds are derived to
decide when to accept or reject new test examples. Here we
revise and formalize the strategy used in Transcend [20] and
propose a more efficient search strategy.

A. Calibration Phase

The first phase of Transcend [20] is the calibration proce-
dure which searches for a set of per-class credibility thresholds

T = { τy ∈ [0, 1] : y ∈ Y }

with which to separate drifting from non-drifting points. Given
that low credibility represents a violation of conformal predic-
tion’s assumptions, these points are likely to be misclassified
by the underlying classifier that similarly relies on the i.i.d.
assumption. Note that thresholds can be found with different
optimization criteria and it is also possible to threshold on a
combination of credibility and confidence (see §VI-C).

Calibration aims to answer the question: “how low a cred-
ibility is too low?”, by analyzing the p-value distribution of
points in a representative, preferably stationary, environment
such as the training set. Which points are selected as calibra-
tion points depends on the underlying conformal evaluator, and
this comes with various trade-offs (see §IV). Typically, each
calibration point (or partition of the calibration set) is held out
and the underlying classifier trained on the remaining points.
Then a class is predicted for the calibration point(s) with p-
values calculated with respect to that predicted class. This
process is repeated until all calibration points are assigned a
corresponding p-value. Using the ground truth, these p-values
can be partitioned into correct and incorrect predictions that
should be separated by T . Methods to find an effective T
can be manual (e.g., picking a quartile visually using an alpha
assessment) or automated (e.g., grid search).

Figure 4 shows an example of the Transcend [20] thresh-
olding procedure on a toy dataset composed of two classes:
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Fig. 4: Thresholding procedure applied to a linear SVM with approximate-TCE (3 folds). Four points highlighted with dotted outlines are left out as calibration
in each fold, with the decision boundary obtained with the remaining points as training. P-values, shown above or below each calibration point, are calculated
using the negated absolute distance from the decision boundary as an NCM. The shaded regions capture points which are more nonconform with respect to
the predicted class (blue for class  and red for class #). The alpha assessment (d) shows the distribution of p-values and per-class thresholds derived from
Q1 of the correctly classified points (see §V-D for a discussion of more complex search strategies for finding thresholds).
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Fig. 5: Test-time procedure applied to a linear SVM and calibrated Transcend [20] with distances from hyperplane and corresponding nonconformity scores
shown in (a). In (b) a new test point is classified as class #. The p-value is calculated as the proportion of points belonging to # with equal or greater
nonconformity scores (captured by the shaded region) than the new point. In (c), the new point is compared against the threshold for class # as derived
during the calibration phase (Figure 4). As the p-value of the new point is greater than the threshold for the predicted class, the prediction is accepted.

 and #. A linear SVM is paired with a TCE (§IV) to
generate NCMs and p-values for the binary classification with
rejection task. The decision boundary is depicted as a solid line
and margins are drawn through support vectors with dotted
lines. Due to the use of approximate TCE, the dataset is
partitioned into folds, where each fold leaves out four points
for calibration and trains on the remainder. The three folds
are depicted in Figures 4a, 4b, and 4c. Calibration points are
shown with dotted outlines and are faded for class  .

In each fold, a p-value is calculated for each calibration
point as the proportion of other objects that are at least
as dissimilar to the predicted class as the calibration point
itself. In the linear SVM setting shown, less similar objects
are those closest to the decision boundary (i.e., those with a
higher NCM) residing in the shaded area between the decision
boundary and the parallel line intersecting the point (blue for
class  and red for class #). The calculated p-values are
shown aligned above or below each calibration point.

To evaluate how appropriate an NCM is for a given model,
the p-values can be analyzed with an alpha assessment.
Here the distribution of p-values for each class are divided
into groups depending on whether the calibration point was
correctly or incorrectly predicted as that class. Given that
there may not be enough incorrectly classified examples to
perform the assessment with, it is standard to perform an
alpha assessment in a non-label-conditional manner, using
p-values computed with respect to all classes, not just each

point’s predicted class. The greater the margin separating the
distributions of correct and incorrect p-values, the better suited
an NCM is for a model. The alpha assessment in Figure 4d
shows the distribution of p-values for correctly and incorrectly
predicted calibration points for classes  and #. Given the
size of the example dataset, the assessment is computed in
a label-conditional manner and the threshold is set at Q1 of
the p-values for correctly classified points (more insight into
threshold search strategies can be found in §V-D). Test points
generating p-values below this threshold will be rejected.

B. Test Phase

At test time, there are |Y|+ 1 outcomes. When a new test
object z∗ arrives, its p-value pŷz∗ is calculated with respect
to the predicted class ŷ (label conditional). If pŷz∗ < τŷ , the
threshold for the predicted class, then the null hypothesis—that
z∗ is drifting relative to the training data and does not belong
to ŷ—is approved and the prediction rejected. If pŷz∗ ≥ τŷ , the
prediction is accepted and the object classified as ŷ.

Figure 5 follows on from the calibration example above.
Figure 5a illustrates the NCM being used: the negated absolute
distance from the hyperplane. In Figure 5b, a new test example
B appears and is classified as class #. The p-value p#B =
0.714 is calculated as the proportion of points belonging to
# with equal or greater nonconformity scores than B. Finally,
Figure 5c shows p#B compared against the threshold τ# and, as
p#B ≥ τ#, the prediction is accepted.
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C. Rejection Cost

What happens to rejected points depends on the rest of the
detection pipeline. In a simple setting, rejected points may be
manually inspected and labeled by specialists. Alternatively,
they may continue downstream to further automated analyses
or to other ML algorithms such as unsupervised systems.

In all cases there will be some cost associated with rejecting
predictions. When choosing rejection thresholds, it is vital
to keep this cost in mind and weigh it against the potential
performance gains. The Tesseract framework [35] defines three
important metrics to use when tuning or evaluating a system
for mitigating time decay.

Performance ensures that robustness against concept drift is
measured appropriately depending on the end goal (e.g., high
F1 score or high TPR at an acceptable FPR threshold).

Quarantine cost measures the cost incurred by rejections.
This is important for putting the performance of kept elements
in perspective—there will often be a trade-off between the
amount of rejections and higher performance on kept points.

Labeling cost measures the manual effort needed to find
ground truth labels for new points. While this is more pertinent
to retraining strategies, it is related to the overhead associated
with rejection as many may need to be manually labeled. As an
example, Miller et al. [27] estimate that the labeling capacity
for an average company is 80 samples per day.

D. Improving the Threshold Search

Here we model the calibration procedure as an optimization
problem for maximizing a given performance metric (e.g.,
F1, Precision, or Recall of kept elements). Usually this max-
imization is subject to some constraint on another metric, for
example, it is trivial to attain high F1 performance in kept
elements by accepting very few high quality predictions, but
this will cause many correct predictions to be rejected.

Formally, given n calibration points, we represent this as:

argmax
T

F(Y , Ŷ , P ; T )

subject to G(Y , Ŷ , P ; T ) ≥ C ,
(6)

where Y and Ŷ are n-dimensional vectors of ground truth
and predicted labels respectively, P is a |Y| × n-dimensional
matrix of calibration p-values, and T = { τy ∈ [0, 1] | y ∈ Y }
is the set of thresholds. The objective function F maps these
inputs to the metric of interest in R, for example F1 of kept
elements, while G maps to the metric to be constrained, such
as the number of per-class rejected elements. C is the threshold
value that bounds the constraint function.

Given this formalization, we propose an alternative random
search strategy to replace the exhaustive grid search used in
the original paper [20]. In the exhaustive grid search, each
possible combination of thresholds over all classes is tested
systematically, considering some fixed range of variables
V = {v : v ∈ [0, 1]}. However, this suffers from the curse of
dimensionality [9], resulting in |V ||Y| total trials, growing ex-
ponentially with the number of classes. Additionally, reducing

the granularity of the range considered in V increases the risk
of ‘skipping’ over an optimal threshold combination. Similarly,
often many useless threshold combinations are considered
(where one is either too high or too low). This failure to evenly
cover subspaces of interest worsens as the dimensionality
increases [10], making it especially problematic for multiclass
classification. The granularity for V can be chosen manually
based on intuition, however this results in parameters which
are difficult to reproduce and transfer to other settings.

It has been shown for hyperparameter optimization that
random search is able to find combinations of variables at
least as optimal as those found with full grid search over the
same domain, at a fraction of the computational cost [10]. We
apply these findings to the threshold calibration and replace
the exhaustive grid search with a random search (Algorithm 1).
We choose random combinations of thresholds in the interval
[0, 1], keeping track of the thresholds that maximize our chosen
metric given the constraints (see §V-D). The search continues
until either of two conditions are met. A limit is set on the
number of iterations, determined by the time and resources
that are available for the calibration. Intuitively a higher limit
will increase the likelihood of finding better thresholds and so
acts as the upper bound of the optimization. Secondly, a stop
condition can be set. In this work we consider a no-update
approach in which the search will stop once a fixed point is
found, i.e., if there is no improvement to performance after a
certain number of consecutive iterations. Note that this search
procedure can be easily parallelized.

We empirically compare the two search strategies in §VI-D.

VI. EXPERIMENTAL EVALUATION

We evaluate our novel evaluators when faced with grad-
ual concept drift caused by the evolution of real malicious
Android apps over time (§VI-B), the performance gained by
including confidence scores (§VI-C), how our random search
implementation fares against exhaustive search (§VI-D), how
the evaluators compare to alternative methods (§VI-E), and
perform on PE and PDF malware domains (§VI-F).

A. Experimental Settings

Prototype. We implement TRANSCENDENT as a Python
library encompassing out new proposals as well as the func-
tionality of the original Transcend [20]. We release the code
as open source—note that this is the first publicly available
implementation of Transcend in any form.

Dataset. We first focus on malware detection in the Android
domain. We sample 232,848 benign and 26,387 malicious apps
from AndroZoo [2]. This allows us to demonstrate efficacy
when faced with a natural, surreptitious concept drift. The
apps span 5 years, from Jan 2014 through to Dec 2018.
We use the Tesseract [35] framework to temporally split the
dataset, ensuring that Tesseract’s constraints are accounted for
to remove sources of spatial and temporal experimental bias.
Training and calibration are performed using apps from 2014
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(a) Training [20] (b) Test [20] (c) Training (d) Test at 1 year (e) Test at 2 years (f) Test at 3 years (g) Test at 4 years

Fig. 6: Frequency distributions of features depicting covariate shift between training and test malware examples. The data from Jordaney et al. [20], displayed
in (a) and (b), shows a sudden and significant shift, while the data used in §VI, displayed in (c–g), shows a more subtle, natural drift occurring over time.

and testing is evaluated over the concept drift that occurs over
the remaining period on a month-by-month basis.

Eliminating Sampling Bias. The original evaluation of
Transcend [20] artificially simulated concept drift by fusing
two datasets: Drebin [6] and Marvin [25], a process which
may have induced experimental bias [7] and made it easier to
detect drifting examples. Figure 6 shows a visibly significant
covariate shift in the distribution of features for training and
test malware examples from Jordaney et al. [20], with a
Kullback-Leibler (KL) divergence [24]—an unbounded mea-
sure of distribution difference—of 696.66. The covariate shift
in our dataset is much more subtle and natural over time, with
an average KL divergence of 189.55 between each training
and test partition. From this we conclude that the distributions
were significantly more different in the original evaluation than
would be expected in naturally occurring concept drift, which
would have made it easier to detect drifting examples.

Classifier. For the underlying classifier, we use Drebin [6]
which has been shown to achieve state-of-the-art performance
if a retraining strategy is used to remediate concept drift [35].
Due to this, we hypothesize that if Transcend [20] is used
to reject drifting points, Drebin will be able to classify the
remaining points with high accuracy. Drebin uses a linear
SVM and a binary feature space where components (activities,
permissions, URLs, etc) are represented as present or absent.

Calibration. To optimize the thresholding, we maximize the
F1 of all kept elements for a rejection rate less than 15%.
These metrics are computed in aggregate for each time period
of the temporal evaluation. On our dataset, this would amount
to an average rejection of ∼20 samples a day, well below the
estimated labeling capacity of 80 a day suggested by Miller
et al. [27]. However, we note that these constraints may need
to be adjusted according to specific operational requirements,
for example, it may be more appropriate to minimize the
rejection rate while sacrificing F1 for kept elements. For the
random search we use 100,000 random iterations with early
stopping after 3,000 consecutive events without improvement.
For approx-TCE and CCE we calibrate using k = 10 folds.

B. Novel Conformal Evaluators

Here we compare the novel conformal evaluators of TRAN-
SCENDENT. As vanilla TCE is not feasible for this experiment
setting due to the size of the training set (§IV), we use approx-
TCE as a stand-in, however we provide a minimal experiment
in Appendix C to show that the expected performance differ-
ence between vanilla TCE and our evaluators is negligible.

Performance Metrics. Figure 7 shows the the F1, Preci-
sion, and Recall (rows 1–3) for each of the novel evaluators
(columns). The middle dashed line shows the baseline perfor-
mance when no rejection is enforced. This is the performance
decay caused by concept drift present in the dataset that results
from an evolving malicious class. Note that classifiers degrade
rapidly, becoming worse than random in under one year.

The upper solid line shows the performance of kept ele-
ments, those with test p-values that fall above the threshold of
their predicted classes. While decay is still present, approx-
TCE and ICE are able to maintain F1 > 0.8 for two years,
doubling the lifespan of the model. Note that the sudden drop
in performance of the last three months is likely an artifact of
the fewer examples crawled by AndroZoo in those months.

The lower solid line shows the performance of rejected
elements. Low metrics mean the rejected elements would have
been incorrectly classified by the underlying classifier and
were rightfully rejected, while high metrics means rejections
were erroneous. Approx-TCE and ICE have F1, Precision, and
Recall of 0 for rejected elements for every test month meaning
that all rejected elements would have been misclassified.

The result of CCE differs in that it is less conservative in its
rejections. The performance of kept elements is much higher,
but also slightly higher for rejected elements, indicating that
a small proportion of rejected elements would have actually
been correctly classified. We observe that this conservatism
can be increased or decreased by modifying the conditions of
the majority vote. If more folds are required to agree before
a decision is accepted, the CCE will be more conservative,
rejecting more elements. If less folds are required, more
elements will be accepted. In this respect, CCE offers an
alternative dimension of tuning in addition to the threshold
optimization. Additionally, this is parameter can be altered
during a deployment, rather than being set at calibration. This
allows for some adaptability, such as when the cost of False
Negatives is very high (e.g., not alerting security teams to
attacks in network intrusion detection), or when the cost of
False Positives is very high (e.g., withholding benign emails
in spam detection, or disabling legitimate user accounts in fake
account detection). A further empirical analysis of the effect
of the majority vote conditions is included in Appendix D.

Rejection Rates. Gray bars show the proportion of rejected
test elements. In each case, rejections begin close to the rate
used for calibration before slowly rising each year, averaging
26.45 samples per day. While rejection rates may appear
high, these are symptomatic of rising concept drift and de-
teriorating performance in the underlying classifier and are
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Fig. 7: Performance for the three proposed conformal evaluators (columns) using different quality metrics. The first three rows show F1-Score, Precision,
and Recall, respectively, of the different evaluators using credibility p-values. The lower two rows show F1-Score using a combination of credibility and
confidence p-vaules, and probabilities, respectively. The dashed line shows the performance with no rejection mechanism. The upper line (� marker) shows
the performance on kept examples whose classifications were accepted. The lower line (#marker) shows the performance on rejected examples. These are
the mistakes that would have been made if the predictions were accepted by the degrading model. The bars show the proportion of rejected elements in each
period, while the x and o markers show the proportion of ground truth malware and goodware that was identified as drifting and quarantined, respectively.
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often preferable to taking incorrect actions on False Positives
and False Negatives. In an extreme case where a classifier
always predicts the incorrect label, rejection rates could reach
100% but the F1 of rejected elements would be 0%. The
gray markers show the proportion of ground truth malware
and goodware that are rejected each period, illustrating the
evaluators’ perception of drift in that class. Strikingly, for our
evaluators the drift rate of the malicious class is inversely
correlated to the performance loss in the baseline, while
the drift rate for goodware is relatively stable. This supports
our hypothesis that performance decay is mostly driven by
evolution in the malicious class. We reiterate that in the case
of Approx-TCE and ICE, the low F1 of rejected elements
indicates that all of the rejected malware would have evaded
the classifier if they had not been identified as drifting.

Runtime. The runtime of the conformal evaluators during this
experiment match what would be expected from their relative
complexities (cf. Table I). The ICE is the quickest at 11.5 CPU
hours. The CCE took 35.6 CPU hours, but our implementation
is parallelized resulting in a wall-clock time identical to the
ICE. The Approx-TCE took 46.1 CPU hours. As discussed,
vanilla TCE was computationally infeasible, but we estimate a
runtime of 1.9 CPU years, considering that the time required
to fit the underlying classifier once is ∼10 minutes and the
classifier must be trained once for each training example.

We conclude that the ICE is the most useful for settings
where resources are limited or models with a rapid iteration
cycle (e.g., daily), while the CCE offers greater confidence
and flexibility at a slightly higher computational cost.

C. Credibility, Confidence, and Probabilities

Here we compare the performance under different quality
metrics. The exact performance over time for all settings
discussed in this subsection is reported in Table II.

Credibility with Confidence. Intuitively, including confi-
dence thresholds when evaluating a classifier prediction would
be beneficial as confidence represents how certain the classifier
is in its own prediction. However, as credibility is the main
indicator that i.i.d. has been violated, and thus that concept
drift is occurring, it is unclear what further gain confidence
could provide. Here we test this by evaluating the conformal
evaluators under the same conditions as §VI-B, using per-class
thresholds for both credibility and confidence.

Figure 7 compares the F1 for each conformal evaluator
(columns) using different thresholding metrics (rows 1, 4–5).
The upper blue line shows the performance of kept elements
while the lower red line shows the performance of rejected el-
ements. The gray dashed line depicts the baseline performance
when no rejection mechanism is used.

The penultimate row shows the F1 when confidence is in-
cluded. Performance for the approx-TCE and CCE is relatively
unchanged, but is markedly improved for the ICE with degra-
dation postponed much longer than before. The confidence
appears to restore some of the statistical information lost by
using only a small amount of the training data for calibration.

However, the computation required to find thresholds is
higher than with credibility only—equivalent to doubling the
number of classes. We conclude that the performance gain
from including confidence is situationally dependent; although
it will improve the accuracy of an ICE, a CCE will often
provide the same accuracy with comparable calibration time.

Probabilities. The final row of Figure 7 shows the F1 when
the classifiers’ output probabilities are used for thresholding,
rather than generating per-class p-values for each calibration
and test point. For each evaluator, the same training and
calibration split is used as with p-values, to ensure a fair
comparison. The plot shows probabilities alone offer a very
small improvement for kept elements over the baseline in the
first year, becoming increasingly volatile as the concept drift
becomes more severe. Additionally, the perceived drift rate for
each class has no relation to the baseline performance loss,
indicating that the root cause of the drift is not identified.
This shows the statistical support offered by the conformal
evaluator’s p-value computation is significant and justifies the
additional computational overhead that it induces.

D. Full Grid Search vs Random Search

Here we evaluate our random search implementation (§V-D)
compared to the full grid search used in the original pro-
posal [20]. We show the random search can find high quality
calibration thresholds more efficiently than the full search.

Due to the full grid search cost, here we train and calibrate
on 1 month of data and test on the remaining 59 months using
an approx-TCE with 10 folds. We maximize F1 for an accept-
able rejection rate of less than 15%. To ensure the baseline
discovers high quality thresholds we use a fine granularity grid
covering 1,317,520 combinations of thresholds. For random
search we set an upper limit of 10,000 trials.

Table III compares the performance without rejection, with
rejection thresholds from the full grid search, and with re-
jection thresholds from random search. Note there is no
significant performance difference between the two strategies,
but the random search is able to cover the same search space
with two orders of magnitude fewer trials. We observe that
the full grid search makes erroneous assumptions on the
distribution of quality thresholds which the random search
does not. Additionally, while the random search allows for a
variety of stopping conditions, the only mechanism to control
the length of the full grid search is the size of the interval
to search and the granularity of the search steps—which are
difficult to choose beforehand.

E. Comparison to Prior Approaches

To provide further context on the performance of TRAN-
SCENDENT, we compare against two closely related state-of-
the-art approaches: Linusson et al. [26] (which we denote
CP-Reject) and DroidEvolver [50].

CP-Reject [26]. The first approach is a recent method for
performing rejection using conformal prediction. For a given
test set and hyperparameter k, CP-Reject aims to output the
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TABLE II: Area Under Time (AUT) of F1 performance with respect to concept drift over the 48 month test period for different quality metrics: credibility,
credibility with confidence, and probabilities (cf. Figure 7). We aim to maximize the metrics of kept elements and minimize the metrics for rejected elements.

Approx-TCE ICE CCE

Baseline
AUT(F1 w/ credibility, 48m) .480 .440 .483
AUT(F1 w/ cred + conf, 48m) .480 .440 .483
AUT(F1 w/ probability, 48m) .456 .405 .455

Kept Elements
AUT(F1 w/ credibility, 48m) .829 .762 .950
AUT(F1 w/ cred + conf, 48m) .822 .887 .962
AUT(F1 w/ probability, 48m) .531 .388 .532

Rejected Elements
AUT(F1 w/ credibility, 48m) .000 .000 .064
AUT(F1 w/ cred + conf, 48m) .000 .000 .063
AUT(F1 w/ probability, 48m) .410 .426 .410

largest possible set of predictions containing on average no
more than k errors, while rejecting test objects for which it
is too uncertain. The training and calibration dataset splits
are the same as we use for the ICE setting; however while
TRANSCENDENT makes decisions on individual test objects
as they appear, CP-Reject operates a posteriori on a batch of
test inputs and predictions. Given this advantage, to ensure
a fair comparison we test on each month with k set to the
85th percentile which ensures a rejection rate of 15%—the
same rejection rate TRANSCENDENT is calibrated for. The
underlying classifier is a random forest classifier with 100 trees
and the conformal prediction NCM is the maximum margin
between the output probability for the predicted class and the
output probabilities for all other classes.

DroidEvolver [50]. The second approach is a state-of-
the-art Android malware detector designed for drift adap-
tation, but that includes a rejection component, in which
the drift identification mechanism is inspired by the original
Transcend [20]. DroidEvolver is built on an ensemble of five
linear online learners, with a weighted sum as the ensemble
decision function. For each new test object a juvenilization
indicator (JI) score is computed per model as the proportion
of apps in a fixed-size buffer of previously encountered apps,
of the same class, that have decision scores greater than the
new object. An object is marked as drifting when the JI score
falls outside of a precalibrated range and the corresponding
decisions are rejected, i.e., excluded from the weighted sum
which is used to pseudo-label and update with the drifting
point. The ongoing performance of the system relies on the
quality of the pseudo-labels and thus indirectly on the quality
of the drift identification. The JI scores are very similar to
the credibility p-values from conformal evaluation, with the
computational complexity of full TCE being addressed by
using the small fixed-size app buffer: drift identification should
be effective so long as the app buffer is representative of
the overall data population. Due to this relationship, it is
informative to compare against TRANSCENDENT.

Results. Figure 8 shows the F1 performance of CP-Reject
and DroidEvolver trained and calibrated on the first year of
the dataset and tested on the two subsequent years at monthly
intervals. This can both be compared to the first 24 months of
ICE and CCE results of Figures 7b and 7c. For CP-Reject, the
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Fig. 8: F1-Score over time for two prior approaches with mechanisms similar
to TRANSCENDENT (cf. Figures 7b and 7c).

similar F1 performance for kept, rejected, and baseline predic-
tions indicate that it is unable to distinguish between drifting
and non-drifting points. Although it may effectively reject
low-quality predictions in a stationary environment, conformal
prediction relies heavily on the exchangeability assumption,
which is violated in this dataset. To obtain a prediction,
CP-Reject follows conformal prediction principles and outputs
the class with the highest credibility (see §III-C), but we argue
this output is not trustworthy under drifting conditions. Con-
versely in conformal evaluation, by decoupling the prediction
of the underlying classifier from the rejection mechanism and
directly interpreting the credibility as a measurement of drift
when comparing it to the calibrated thresholds, we can more
effectively detect poor quality predictions.

While the detection performance of DroidEvolver is
mediocre on this dataset, the pseudo-labeling update mech-
anism manages to stabilize the system against the impact of
drift up until the last four months. After this, performance
deteriorates due to the poor quality of pseudo-labels used for
updating the online models—as DroidEvolver uses predicted
labels as pseudo-labels, the negative feedback loop is difficult
to recover from. Surprisingly, the drift identification mecha-
nism rejects more correct predictions than it keeps for each test
period. We posit that the small app buffer fails to sufficiently
represent the true app population, which may in turn lead
to the negative feedback loop in the later months. Although
much more extreme here, this informational inefficiency is
also responsible for the variability we see when using ICEs—
different dataset splits may be more or less representative of
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the true distribution and result in better or worse accuracy,
a phenomenon that is mitigated by using a CCE. These
limitations, among others, have recently been explored in
concurrent work by Kan et al. [21].

F. Beyond Android Malware and SVMs

While TRANSCENDENT and conformal evaluation are ag-
nostic to the underlying classifier and feature space, we have so
far focused on detecting Android malware with a linear SVM.
Here we demonstrate the performance beyond this setting.
To simplify the axes of comparison, we apply an ICE to
each setting, using credibility p-values and random search for
threshold calibration with the same constraints as before.

Windows PE malware with GBDT. We take examples from
the EMBER v2 dataset [3] spanning 2017, containing 47,888
benign and 69,202 malicious executables (labeled as having
40+ VirusTotal AV detections). The feature space contains
a diverse set of features which can be categorized as either
parsed features (e.g., header information), histograms (e.g.,
byte-value histograms), and printable strings (e.g., URL fre-
quency). As the underlying classifier, we use gradient boosted
decision trees (GBDT) [19] as in Anderson and Roth [3], and
for the NCM we use the output probability for the predicted
class, negated for positive predictions. We train on executables
from the first five months and test on the remaining.

PDF malware with RF. We use examples from the Hidost
dataset [41] spanning five weeks in Aug–Sep 2012, consisting
of 181,792 benign and 7,163 malicious files (labeled as having
5+ VirusTotal AV detections). The feature space is created by
statically parsing the PDF files to extract structural paths in
the PDF hierarchy that map to boolean or numeric feature
values, such as the presence of certain PDF objects or metadata
such as the number of pages. As the underlying classifier
we use a random forest (RF) classifier following Srndic and
Laskov [41]. As the NCM we use the proportion of decision
trees that disagree with the prediction of the ensemble (as
illustrated in Figure 1e). Interestingly, a major contribution of
the Hidost feature space in contrast to prior approaches [e.g.,
40] is that similar features are consolidated in order to be more
robust to drift. This means the distribution should be relatively
stationary compared to the Android dataset and will allow
us to test whether TRANSCENDENT is able to make effective
decisions on prediction quality when drift is less severe.

Note that we are unable to find authoritative measurements
for the expected class balance for PE and PDF malware in the
wild as we are for Android malware, so we defer to the class
balance in the original datasets. This may result in a slight
spatial bias if the class balance is unrealistic [35], however
all approaches will be affected equally. Additionally, we can
here examine whether the class balance affects the ability for
TRANSCENDENT to identify low quality predictions.

Results. The results for Windows PE malware (Figure 9)
are consistent with those on Android data. TRANSCENDENT
outperforms probabilities alone which tend to reject many
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Fig. 9: F1-Score, EMBER Windows PE malware [3] and GBDT.
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Fig. 10: F1-Score, Hidost PDF malware [41] and RBF SVM.

otherwise correct predictions. In particular, a large spike in
drifting malware affects month six which probabilities are
unable to cope with, while TRANSCENDENT raises the rate of
rejections accordingly without making any additional errors.

As noted earlier, the PDF dataset gives us the opportunity
to evaluate TRANSCENDENT on a relatively stationary distri-
bution. As expected, thresholding using probabilities is much
more effective than it is in a drifting setting, however it under-
rejects compared to TRANSCENDENT, which is able to find
thresholds that push the F1 of kept predictions to 1.0 while
rejecting almost entirely incorrect predictions. Exceptions to
this are months one and nine, in which a small quantity
of true positive predictions are rejected. However this is
anomalous (i.e., it does not continue as drift increases) and
could be mitigated by calibrating with a constraint on the F1

of rejected samples rather than the F1 of kept examples alone.
From this we conclude that TRANSCENDENT is useful for
maximizing the potential of a high-quality robust classifier,
and does not rely on relatively severe drift—as present in the
Android dataset—to detect low quality decisions. To this end
TRANSCENDENT can be combined with robust feature spaces
which is an orthogonal direction to combating concept drift.

As an additional result we observe that TRANSCENDENT
outperforms CP-Reject for both domains, with more details
reported in Appendix B.

VII. OPERATIONAL CONSIDERATIONS

Here we discuss some actionable points regarding the use
of conformal evaluation and TRANSCENDENT.
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TABLE III: Performance of optimal thresholds discovered using a full grid
search vs. random search. Random search discovers thresholds equivalent to
the full grid search but with two orders of magnitude fewer trials (§VI-D).

FPS FNS PREC. REC. F1 #TRIALS

No rejection 3,529 19,486 0.98 0.92 0.95 N/A
Full grid 2,187 0 0.99 1.00 0.99 1,317,520
Random 3,259 0 0.98 1.00 0.99 10,000

TRANSCENDENT in a Detection Pipeline. TRANSCENDENT
has particular applications in detection tasks where there is
a high cost of individual False Positives, (e.g., spam [31],
malware [6, 15, 40], fake accounts [13, 14]). In these cases, it
may be preferable to avoid taking a decision on low-confidence
predictions or, where a gradated response is possible, diverting
rejected examples towards alternative remediation actions.
Consider an example in the fake accounts setting: owners
of accounts in the set of rejected positive predictions can be
asked to solve a CAPTCHA on their next login (a relatively
easy check to pass) while the owners of accounts in the set
of kept positive predictions can be asked to submit proof of
their identity. Increasing rejection rates signal a performance
degradation of the underlying classifier without immediately
submitting to the errors it produces, giving engineers more
time to iterate and remediate.

Operational Recommendations. Based on our empirical
evaluation (§VI), we make the following recommendations for
TRANSCENDENT deployments:

• TRANSCENDENT is agnostic to the underlying learning
algorithm, but the quality of the rejection relies on the
suitability of the NCM. Some examples of possible NCMs
for different types of classifiers are described in Figure 1.

• Using an ICE or CCE is preferred over TCE due to their
computational efficiency, and is preferred over approx-TCE
due to approx-TCE’s reliance on assumptions that may not
universally hold.

• ICEs are relatively fast and lightweight and excel when
resources are limited. CCEs make rejections with higher
confidence but at a higher computational cost.

• Thresholding with credibility alone is sufficient to achieve
high quality prediction across all conformal evaluators.
While confidence can improve the stability of an ICE
(§VI-C), it requires greater calibration time.

• Random search is preferred over grid search as it finds
similarly effective thresholds at significantly lower cost.

• Rising rejection rates should be interpreted as a signal that
the underlying model is degrading. This signal can be used
to trigger model retraining or other remediation strategies.

• Guidance on tuning calibration thresholds and an example
of using alternative constraints is presented in Appendix E.

VIII. RELATED WORK

Conformal evaluation is based on conformal prediction
theory, a mechanism for producing predictions that are correct
with some guaranteed confidence [38]. Additionally, the ICE

and CCE are inspired by inductive [32, 46, 47] and cross-
conformal predictors [48], respectively. However, conformal
prediction is intended to be used exclusively in settings where
the exchangeability assumption holds which makes it unsuit-
able for adversarial contexts such as malware classification.
In this regard, we are the first to ‘join the dots’ between the
conformal prediction of Vovk et al. [47] and the conformal
evaluation of Jordaney et al. [20] and show how the vio-
lation of conformal prediction’s assumptions is detected and
exploited by Transcend [20] to detect concept drift.

That work introduced the concept of conformal evaluation
based on conformal prediction theory and the use of p-values
for calibrating and enforcing a rejection strategy for malware
classification. However the evaluation artificially simulated
concept drift by merging malware datasets which introduced
experimental bias [7, 35] (§VI). In our experiments we sample
from a single repository of applications and perform a tempo-
ral evaluation to simulate natural concept drift caused by the
real evolution of malicious Android apps. Additionally, the
role of confidence in thresholding was unclear, and the use
of exhaustive grid search to find thresholds was suboptimal
compared to our random search. Most significantly, the TCE
originally employed was not practical for real-world deploy-
ments, which we rectify by proposing the ICE and CCE.

CADE [51] focuses on explaining drift and relies on con-
trastive learning to perform a distance-based feature trans-
formation which results in more homogenous class clusters
relative to which outliers are easier to detect. They compare
against using conformal evaluation as an active learning query
strategy using an arbitrary NCM and without Transcend [20]
thresholding. We believe CADE and TRANSCENDENT are
orthogonal and that such feature transformations can be used to
devise stronger NCMs—we leave the development of optimal
NCMs for active learning as future work.

Other works have explored alternative solutions to tackling
concept drift. As described in §VI-E, DroidEvolver [21, 50] is
a malware detection system motivated by Transcend [20] that
identifies drifting examples based on disagreements between
models in an ensemble. As models degrade, the examples
identified as drifting are used to update the models in an
online fashion. However, we find the drift identification mech-
anism is inferior to TRANSCENDENT and leads to a negative
feedback loop. Other solutions solely adapt to concept drift
without using rejection: DroidOL [29] and Casandra [30]
use online learning to continually retrain the models, with
API call graphs as features. Like all online-trained neural
networks, these are susceptible to catastrophic forgetting [18],
where performance degrades on older examples as the model
attempts to adapt to the new distribution. Pendlebury et al.
[35] present a comparison of different strategies for combating
concept drift, including rejection, incremental retraining, and
online learning, illustrating the advantages and disadvantages
of each. Semi-supervised techniques may be used to reduce the
labeling burden of such strategies as drift increases, as recently
demonstrated for intrusion detection by Andresini et al. [5].

The related task of detecting adversarial examples [11, 36,
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44] is addressed by Sotgiu et al. [39], who propose a rejection
strategy for neural network-based classifiers that identifies
anomalies in an input’s latent feature representation at different
layers of the neural network. Additionally, Papernot and Mc-
Daniel [33] combine a conformal predictor with a k-Nearest
Neighbor algorithm to identify low-quality predictions that are
indicative of adversarial inputs. However, both methods are
restricted to deep learning-based image classification.

IX. CONCLUSION

We provide a thorough formal treatment of Transcend [20]
which acts as the missing link between conformal prediction
and conformal evaluation. We propose TRANSCENDENT, a
superset of the original framework which includes novel
conformal evaluators that match or surpass the original perfor-
mance while significantly decreasing the computational cost.
We show TRANSCENDENT outperforms the existing state-of-
the-art approaches while generalizing across different malware
domains and exploring realistic operational settings.

We envision these improvements will enable researchers
and practitioners alike to make use of conformal evaluation
to build rejection strategies to improve their security detec-
tion pipelines. To this end, we release our implementation
of TRANSCENDENT, making Transcend [20] and conformal
evaluation available to the community for the first time.
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APPENDIX

A. Symbol Table

Table IV reports the major symbols and abbreviations used
throughout the paper.

B. Additional CP-Reject Results

In §VI-F we demonstrate how TRANSCENDENT can apply
to other classifiers and domains, comparing the performance
of an ICE using credibility against using probabilities alone,
for both PE and PDF malware (Figures 9 and 10). Here we
show in Figure 11 additional results to compare against the
prior rejection approach CP-Reject (we exclude DroidEvolver
as it is specific to Android malware). Similar to the results on

TABLE IV: Table of symbols and abbreviations.

SYMBOL DESCRIPTION

X Feature space X ⊆ Rn.
Y Label space.
z Example pair (x, y) ∈ X × Y .
z∗ Previously unseen test example.
ŷ Predicted class g(z∗).
az Nonconformity score output by an NCM for z.
pz Statistical p-value for z.
pyz Statistical p-value for z, calculated with respect to

class y ∈ Y (used in label conditional calculations).
τy A rejection threshold τy ∈ [0, 1] for class y ∈ Y .
T The set of all per-class rejection thresholds { τy ∈

[0, 1] | y ∈ Y }.
B Bag of examples Hz1, z2, ..., znI.
d Distance function d(z, z′).
ẑ Point predictor ẑ(B).
A Nonconformity measure (NCM) usually composed

of a distance function and point predictor.
S Collection of nonconformity scores computed in

elements of B, relative to other elements in B,
S = HA(B \ HzI, z) : z ∈ BI.

g Classifier g : X −→ Y that assigns object x ∈ X to
class y ∈ Y . Also known as the decision function.

ε Significance level used in conformal prediction to
define prediction region with confidence guarantees.

NCM Nonconformity measure.
TCE Transductive Conformal Evaluator.
ICE Inductive Conformal Evaluator.
CCE Cross-Conformal Evaluator.
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Fig. 11: F1-Score of CP-Reject [26] on alternative malware datasets.

the Android dataset (§VI-E), the overall ability for CP-Reject
to distinguish between drifting and non-drifting points is poor
on the PE malware dataset. For the PDF malware dataset,
which exhibits much less drift, CP-Reject is significantly more
effective, which supports the hypothesis that it is the violation
of conformal prediction’s exchangeability assumption which
results in the lower performance on the Android and PE
datasets. Nevertheless, TRANSCENDENT with credibility (and
even probabilities) outperforms CP-Reject in this setting also
(cf. Figure 10).

C. Full Vanilla TCE on EMBER Subset

A full scale comparison to the original TCE is not possible
due to its computational complexity—recall that one classifier
must be trained for each example in the training set. However,
it is informative to perform a small-scale experiment as there
may be settings where the vanilla TCE is viable, and we wish
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TABLE V: AUT(F1, 7m) comparing vanilla TCE to our novel conformal
evaluators on Windows PE malware data. To be computationally viable, 10%
of the training data was randomly sampled to use for training and calibration.

TCE Approx-TCE ICE CCE

Baseline 0.68 0.70 0.45 0.69
Kept Elements 0.97 0.97 0.94 1.00
Rejected Elements 0.00 0.00 0.00 0.21
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Fig. 12: F1-Score of an ICE optimized to find calibration thresholds that
minimize the rejection rate with F1-Score no less than 0.8. These settings
keep the rejection rate low (below 10%) while sacrificing the F1 performance
on kept elements (cf. Figure 7b).

to ensure that there is no significant performance difference
between vanilla TCE and our novel conformal evaluators.

We perform an experiment on the Windows PE malware
dataset, where 10% of the training data is randomly sampled
to use for training and calibrating the evaluators (this is the
largest subsample we can take given our resource constraints).
We choose the PE dataset over the Android dataset due to
the high dimensionality of the Android feature space that may
cause instability when the number of examples is very low, and
over the PDF dataset which is relatively stationary and may
make it harder to discern performance differences between
the different evaluators. One caveat of this subsampling is the
reduced performance of the baseline for the ICE, which is
due to the reduced data available to the proper training set,
although TRANSCENDENT appears unaffected by this.

Table V summarizes the F1 performance over the seven
month-long test periods using the area-under-time (AUT)
metric [35]. The performance difference between TCE and our
evaluators in terms of distinguishing between drifting and non-
drifting examples is negligible, shown by the very high AUT
of kept elements and very low AUT of rejected elements. That
is, there is little to no performance sacrifice when using our
evaluators over the vanilla TCE. The overall trends otherwise
follow those in our main Android experiments (cf. Figure 7).

D. Analysis of CCE Tuning

Here we revisit the majority vote conditions for the CCE
applied to the Android malware dataset in §VI-B. The size of
the quorum for the CCE affects how conservative the CCE is in
accepting test examples. Figure 13 shows the performance over
time summarized using the AUT metric for F1 (a), Precision
(b), and Recall (c). Note that Figure 13 omits the setting where
the majority vote must be unanimous, as the CCE eventually
rejects every example—causing F1, Precision, and Recall to

be undefined for kept elements. As more folds of the CCE are
required to agree with each other before a decision is accepted,
the CCE will reject more elements. If less folds are required,
more elements will be accepted. Similarly, the quality of the
rejection lessens: more elements are rejected on which the
underlying classifier would not have made a mistake. Tuning
the majority vote conditions on the calibration set can help find
the sweet spot between the performance of kept elements, and
the quality—and volume—of rejections.

E. Guidance for Choosing Calibration Constraints

In §V-D we formally describe the threshold calibration as
an optimization problem in which one metric of interest is
maximized or minimized given constraints on another metric.
Throughout our evaluation we focus on maximizing the F1

of kept elements, while keeping a reasonably low rejection
rate. We choose 15% after taking into account the size of our
dataset and using guidance from Miller et al. [27] to estimate
a reasonable labeling capacity.

Recall that the calibration constraints are with respect to the
calibration set which ideally exhibits minimal drift. It is clear
from our evaluation that as concept drift becomes more severe
during a deployment, constraints such as those on the rejection
rate will be surpassed to some degree. This is the desired
outcome—so long as the performance on rejected elements
remains low (i.e., they would likely be misclassified) we would
rather reject drifting examples.

Figure 12 presents an alternative to the optimization used
in our previous experiments which is more appropriate if the
rejection rate must be kept low. By finding thresholds that
minimize the rejection rate on the calibration set with F1-
Score no less than 0.8, during deployment the rejection rate
stays much lower, consistently staying below 10% even as
the drift increases. Similar to how the rejection rate begins
close to the calibration constraint and then increases in our
previous experiments, in this setting the F1 begins close to the
calibration constraint, and then decreases. The overall effect
here is that the ICE is more conservative in its rejections:
while the F1 of kept elements decreases as more incorrect
predictions are accepted, the ICE rejects only those predictions
that are most likely to be incorrect, keeping the F1 of rejected
elements at 0.

In summary, to estimate how many rejections will be accept-
able, we advise practitioners to consider the expected volume
of incoming samples, the available resources for processing
quarantined examples, and the lifetime of the classifier before
being retrained (as drift will likely increase during this period).
Next they should identify which metrics are most important,
or nonnegotiable, and use these to balance the threshold
optimization. As the emergence of concept drift will likely
result in the calibration values being surpassed, a ballpark is
more important than the exact values.

F. Formal Calibration Algorithms

We present algorithms for our random search calibration and
calibration and test procedures for TCEs, ICEs, and CCEs.
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Fig. 13: AUT of performance metrics showing the effect of tuning the quorum size k of the majority vote in a CCE.

Algorithm 1: Random search threshold calibration
Input: y, ŷ, pvalc
Input: Y ∈ Yn, ground truth labels for n examples

Ŷ ∈ Yn, predicted labels for n examples
P ∈ Rn×|Y|, per-class p-values for n examples

Parameters: m ∈ R, maximum number of iterations
F : Y × Ŷ × P −→ R, performance measure to
optimize (e.g., F1)
G : Y × Ŷ × P −→ R, performance measure to
constrain (e.g., kept examples)
C ∈ R, lower bound for constrained measure G

Output: t∗, a vector of per-class thresholds
Output: t∗ ∈ [0, 1]|Y|, a vector of per-class thresholds

1 t∗ ← 0
2 counter ← 0
3 while counter ¡ m do
4 t

$←− [0, 1]|Y| . Pick random thresholds
5 if F(Y , Ŷ , P ; t) > F(Y , Ŷ , P ; t∗) and G(Y , Ŷ , P ; t) ≥ C

then
6 t∗ ← t

7 else if F(Y , Ŷ , P ; t) = F(Y , Ŷ , P ; t∗) and
G(Y , Ŷ , P ; t) > G(Y , Ŷ , P ; t∗) then

8 t∗ ← t
9 counter ← counter + 1

10 end
11 return t∗

Algorithm 2: Transductive Conformal Evaluator (TCE
and approximate TCE)

Input: Z = Hz0, z1, . . . , zn−1I, n training examples
Z∗ = Hz∗0 , z∗1 , . . .I, stream of test examples
A, NCM for producing nonconformity scores
k ∈ N, number of folds—TCE is approximate when
k < n

Output: Stream of boolean decisions
0 = reject, 1 = accept

Calibration Phase

1 P ← 0
2 i← 0
3 partition Z equally into Zpart ← {Z′0, Z′1, . . . , Z′k−1 }
4 foreach partition Z′ of Zpart do
5 Z′′ ← Z \ Z′
6 g ← Fit (Z′′)
7 foreach z′ of Z′ do

. Predicted label
8 ŷ ← g(z′)

. Bag of examples with same label
9 Z′ŷ ← Hz ∈ Z′ : z.y = ŷI

. Nonconformity score
10 αz′ ← A(Z′ŷ, z

′)
. Nonconformity scores for bag elements

11 S ← HA(Z′ŷ \ HzI) : z ∈ Z′ŷI
. Credibility p-value

12 pz′ ←
|α∈S:α>=αz′ |

|S|
13 Pi ← pz′
14 i← i+ 1
15 end
16 end
17 t∗ ←Transcend.FindThresholds (Z, Ŷ ,P )

Test Phase
18 g ← Fit (Z)
19 foreach z∗ of Z∗ do

. Predicted label for test example
20 ŷ ← g(z∗)

. Bag of training examples with same label
21 Zŷ ← Hz ∈ Z : z.y = ŷI

. Nonconformity score
22 αz∗ ← A(Zŷ, z

∗)
. Nonconformity scores for bag elements

23 S ← HA(Zŷ \ HzI) : z ∈ ZŷI
. Credibility p-value

24 pz∗ ← |α∈S :α>=αz∗ |
|S|

25 if Pz∗ < t∗ŷ then emit 0 else emit 1
26 end
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Algorithm 3: Inductive Conformal Evaluator (ICE)
Input: Z = Hz0, z1, . . . , zn−1I, n training examples

Z∗ = Hz∗0 , z∗1 , . . .I, stream of test examples
A, NCM for producing nonconformity scores
m, number of examples to use for calibration

Output: Stream of boolean decisions
0 = reject, 1 = accept

Calibration Phase

1 P ← Ŷ ← 0
2 i← 0
3 Ztr ← Hz0, z1, . . . , zn−m−1I
4 Zcal ← Hzn−m, zn−m+1, . . . , zn−1I
5 foreach z′ of Zcal do
6 g ← Fit (Zcal \ Hz′I)

. Predicted label
7 ŷ ← Ŷi ← g(z′)

. Bag of examples with same label
8 Zcalŷ ← Hz ∈ Zcal : z.y = ŷI

. Nonconformity score
9 αz′ ← A(Zcalŷ , z′)

. Nonconformity scores for bag elements
10 S ← HA(Zcalŷ \ HzI) : z ∈ Zcalŷ I

. Credibility p-value
11 g pz′ ←

|α∈S :α>=αz′ |
|S|

12 Pi ← pz′
13 i← i+ 1
14 end
15 t∗ ←Transcend.FindThresholds (Z, Ŷ ,P )

Test Phase

16 g ← Fit (Ztr)
17 foreach z∗ of Z∗ do

. Predicted label for test example
18 ŷ ← g(z∗)

. Bag of training examples with same label
19 Zcalŷ ← Hz ∈ Zcal : z.y = ŷI

. Nonconformity score
20 αz∗ ← A(Zcalŷ , z∗)

. Nonconformity scores for bag elements
21 S ← HA(Zcalŷ \ HzI) : z ∈ Zcalŷ I

. Credibility p-value
22 pz∗ ← |α∈S :α>=αz∗ |

|S|
23 if Pz∗ < t∗ŷ then emit 0 else emit 1
24 end

Algorithm 4: Cross-Conformal Evaluator (CCE)
Input: Z = Hz0, z1, . . . , zn−1I, n training examples

Z∗ = Hz∗0 , z∗1 , . . .I, stream of test examples
A, NCM for producing nonconformity scores
k ∈ { 2t+ 1 : t ∈ N }, number of folds

Output: Stream of boolean decisions
0 = reject, 1 = accept

Calibration Phase

1 P ← Ŷ ← G← t∗ ← 0
2 i← j ← 0
3 partition Z equally into {Z′0, Z′1, . . . , Z′k−1 }
4 foreach j of { 0, 1, . . . , k − 1 } do
5 foreach z′ of Z′j do
6 g ← Fit (Z′j \ Hz′I)

. Predicted label
7 ŷ ← Ŷj,i ← g(z′)

. Bag of examples with same label
8 Z′jŷ ← Hz ∈ Z′j : z.y = ŷI

. Nonconformity score
9 αz′ ← A(Z′jŷ , z

′)

. Nonconformity scores for bag elements
10 S ← HA(Z′jŷ \ HzI) : z ∈ Z′jŷI

. Credibility p-value
11 Pj,i ←

|α∈S :α>=αz′ |
|S|

12 i← i+ 1
13 end
14 Gj ← Fit (Z \ Z′j)
15 T ∗j ←Transcend.FindThresholds (Z′j , Ŷj ,Pj)
16 end

Test Phase
17 s← 0
18 foreach z∗ of Z∗ do
19 foreach j of { 0, 1, . . . , k − 1 } do

. Predicted label for test example
20 ŷ ← Gj(z

∗)
. Bag of training examples with same label

21 Z′jŷ ← Hz ∈ Z′j : z.y = ŷI
. Nonconformity score

22 αz∗ ← A(Z′jŷ , z
∗)

. Nonconformity scores for bag elements
23 S ← HA(Z′jŷ \ HzI) : z ∈ Z′jŷI

. Credibility p-value
24 pz∗ ← |α∈S :α>=αz∗ |

|S|
. Track positive evaluations

25 if Pz∗ ≥ T ∗jŷ then s← s+ 1

26 end
. Majority vote for final decision

27 if s < k/2 then emit 0 else emit 1
28 end
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