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Abstract—Zero-knowledge blocklists allow cross-platform
blocking of users but, counter-intuitively, do not link users
identities inter- or intra-platform, or to the fact they were
blocked. Unfortunately, existing approaches (Tsang et al.
’10) require that servers do work linear in the size of the
blocklist for each verification of a non-membership proof.

We design and implement SNARKBLOCK, a new protocol
for zero-knowledge blocklisting with server-side verification
that is logarithmic in the size of the blocklist. SNARKBLOCK
is also the first approach to support ad-hoc, federated
blocklisting: websites can mix and match their own blocklists
from other blocklists and dynamically choose which identity
providers they trust.

Our core technical advance, of separate interest, is the
HICIAP zero-knowledge proof system, which addresses
a common problem in privacy-preserving protocols: us-
ing zero-knowledge proofs for repeated but unlinakble
interactions. Rerandomzing a Groth16 proof achieves
unlinkability without the need to recompute the proof
for every interaction. But this technique does not apply
to applications where each interaction includes multiple
Groth16 proofs over a common hidden input (e.g., the
user’s identity). Here, the best known approach is to
commit to the hidden input and feed it to each proof, but
this creates a persistent identifier, forcing recomputation.
HICIAP resolves this problem by aggregating n Groth16
proofs into one O(logn)-sized, O(logn)-verification time
proof which also shows that the input proofs share a
hidden input. Because HICIAP is zero-knowledge, repeated
shows of the same aggregate or an updated aggregate are
unlinkable even though the underlying Groth16 proofs are
never recomputed.

I. INTRODUCTION

Moderation is a powerful tool for combating online
harassment, trolling and spam messages. But banning an
account on one platform has an obvious problem: it leaves
the user free to post under other accounts and on other
platforms. As a result, moderation tends towards stronger
centralized identity providers (e.g., Facebook’s real-name

∗Work supported by a National Defense Science and Engineering
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policy [Fac]) and the linking of disparate pseudonymous
identities within and across platforms. Tying users’ online
speech to a centralized identity provider poses major
problems for the decentralized web and user privacy, and
can have a chilling effect on free speech.

Providing both privacy and moderation is a challenge:
a user posting anonymously on a forum presents two
problems to the forum operator, termed service provider:
access control and revocation. First, because the user’s
identity is unknown at post submission, the service
provider cannot verify that the user is authorized to post
(i.e., isn’t blocked). Second, because the user’s identity is
not linked to the post, and posts are not linked together,
the service provider cannot revoke the user’s posting
permissions (i.e., block the user) if their current post
violates forum policies. Linking posts together raises
privacy concerns that may be undesirable on a single
forum and are intolerable if applied across the web.

A. Zero-knowledge proofs of blocklist non-membership

BLAC [TAKS10] introduces the first solution to anony-
mous blocklisting without a trusted third party. It provides
users with long-term identities and allows them to prove,
in zero-knowledge, that they are not on a blocklist.

The approach introduced by BLAC, which we formal-
ize as a zero-knowledge blocklist (ZKBL), is conceptually
simple. A user’s identity is a random PRF key k
signed by an identity provider to ensure Sybil resistance.
Anonymous comments and posts are associated with a
tag tag := Prfk(nonce). A blocklist L consists of tuples
(tag,nonce) from offending posts. A user attests that
they are not blocked by presenting a fresh (tag,nonce)
pair and a zero-knowledge proof that 1) tag is com-
puted correctly; 2) k is signed by a valid party; and
3) none of the blocklisted tags were generated by k,
i.e., ∀(tag′,nonce′) ∈L : Prfk(nonce

′) 6= tag′. A user is
blocked by placing an offending (tag,nonce) pair on L .
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At its core, a ZKBL is a specialized zero-knowledge
proof on the PRF evaluation, tag inequalities, and identity
signature. Both security and privacy depend, mainly,
on the zero-knowledge proof. This gives ZKBLs their
main advantage: because the proofs are over arbitrary
ban lists, the system is ad-hoc. We do not need a
central party to coordinate bans as in [BCD+17], [CL02],
[LLX07], [VB20], or worse, a trusted third party who
can deanonymize users [Cha85], [Cv91], [BMW03]. If
ZKBLs also support private federated identity, this is a
major advantage for deployment.

B. Existing ZKBLs are impractical for both clients and
servers

Unfortunately, the current approach for
ZKBLs [TAKS10] requires the server to do linear
work in the size of the blocklist when verifying a
non-membership attestation. If the size of the blocklist
and the number of attestations per second is proportional
to the number of total users, then the service-provider’s
workload grows quadratically as their site scales. This
is costly under normal circumstances and can be a
major denial of service vector if an attacker can make
concurrent posts or obtain Sybil accounts that are later
banned.

Almost as problematically, proof sizes are also linear
in the size of the blocklist. At 144B per list entry, a
single non-membership proof for a 4M-entry blocklist
would require a client to upload 549MiB of data over a
residential or mobile connection.

C. Our contribution
We design, implement, and benchmark SNARKBLOCK,

a protocol for zero-knowledge blocklists which improves
on the state of the art by offering log-sized proofs and
log-time verification.

Beyond improved performance for ZKBLs, SNARK-
BLOCK makes ZKBLs fully ad-hoc and resolves a privacy
and organization problem with deployment. While ban
lists can be operated by anyone, ZKBLs—like any
ban system, anonymous or not—require Sybil-resistant
identities. Existing ZKBLs assume a single trusted issuer
for credentials. In reality, the existence of different issuers
will lead to fragmentation of user’s identities and also ban
lists, reducing anonymity sets and hindering adoption.

SNARKBLOCK removes the need for a single cen-
tralized identity provider by allowing service providers
to dynamically pick the identity providers that they
support. This avoids coordination concerns and allows
different providers to adopt different levels of Sybil
resistance ranging from CAPTCHAs, to cryptocurrency
payment, to real-world identity verification. Crucially,
during attestation, the service provider learns only that
the user’s identity was issued by some party in their
accepted identity provider set.

The core of SNARKBLOCK is a new type of zero-
knowledge proof, called HIdden Common Input Ag-
gregate Proofs, or HICIAP (pronounced “high-chop”).
HICIAP is a zero-knowledge proof that aggregates n
Groth16 [Gro16] proofs (of the same underlying circuit)
into a single O(logn)-sized proof, and shows that the
aggregated proofs all verify and all share a common
input which is not revealed to the verifier. It is also
possible to link multiple HICIAP proofs, showing in
zero-knowledge that their hidden common inputs are all
equal. SNARKBLOCK uses HICIAP to aggregate chunk
proofs—Groth16 proofs of non-membership in equally
sized non-overlapping portions of the blocklist.
HICIAP addresses a common problem when using

zkSNARKs in privacy-preserving protocols like SNARK-
BLOCK: repeated interactions can require costly proof
recomputations to ensure unlinkability. When presenting
a single Groth16 proof, the proof can be rerandomized
between interactions, achieving anonymity without recom-
putaton. Unfortunately, when presenting multiple proofs
about a common hidden input—e.g., adding proofs about
subsequent state changes—we must recompute all proofs
since the state-of-the-art approach is to commit to the
hidden input and have all proofs be made with respect
to that public commitment. Since the commitment is a
persistent identifier, it and all proofs relying on it must
be recomputed to achieve anonymity. HICIAP resolves
this by supporting zero-knowledge aggregation of proofs
with a common hidden input.

II. INTUITION FOR A ZKBL CONSTRUCTION

Zero-knowledge Succinct Non-interactive Arguments
of Knowledge (zkSNARKs), appear to offer a path
to ZKBLs with fast verification, but limitations on
prover performance—a common problem for nearly all
zkSNARKs—make this challenging. This is clear when
one examines the costs of using Groth16, a zkSNARK
scheme with notably fast verification times.

Existing zkSNARKs can only handle pieces of a block-
list. Producing a zero-knowledge proof of knowledge
is, fundamentally, at least linear in the size of the input,
i.e., the blocklist. But for Groth16 and other zkSNARKs,
the concrete constants are high. Looking ahead, for a
blocklist of 256 entries, a single proof of non-membership
is 63k constraints and takes 2.84s. A blocklist of 221

entries would yield a proof with 229 constraints. But
for Groth16, prover memory usage scales poorly in the
size of the circuit: a 229-constraint proof requires 4TB
of memory and takes 3 hours to compute, due to the
implementation overhead of distributing proving over
a 256-core cluster[WZC+18]. To use zkSNARKs for a
ZKBL, we cannot have the prover do work linear in the
size of the blocklist for each attestation.
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Decomposing blocklists by chunk. We observe that
a blocklist, mostly, does not change. While total prover
workload is inevitably linear in the size of the blocklist,
this work does not need to be recomputed from scratch
every time. By breaking the list up into non-overlapping
chunks we can both reuse work and limit the amount of
recomputation required when the list changes.
A zero-knowledge proof for consistency between
chunks. A sequence of chunk non-membership proofs
for a blocklist L poses three problems:

1) The server would need to verify O(|L |) chunks.
2) Reusing a chunk proof across blocklist non-

membership attestations would identify the client.
3) A malicious client could use a different identity

when proving non-membership in a specific chunk,
avoiding a block in that segment of the blocklist.

To address the above problems, we need a compact proof
that a sequence of chunk non-membership proofs verifies
with respect to a single hidden identity. Further, that proof
must be zero-knowledge to ensure that the chunk proofs
can be safely reused across blocklist non-membership
proofs.
Recursive Groth16 proofs are impractical. Each
chunk proof could recursively check consistency of the
previous chunk proof. The challenge for recursion is
latency: assuming the blocklist changes frequently, each
attestation would need to compute an updated chunk
proof and a recursive step. On our benchmark system,
a single recursive step for Grooth16 takes 16.5s to
prove.1 With recursion, the cost of computing a chunk
proof would also increase by 5–7× because of overhead
imposed by the elliptic curves that are required to support
recursion. [CCDW20].2 Looking ahead, the buffered
approach we take adds 1s of latency to attestation and
supports a buffer of 14 16-element chunk proofs.
Beyond generic IVC and aggregate proofs. We
observe that IVC is not necessary to verify a sequence of
chunk non-membership proofs. There is no intermediate
state in our computation, rather we only require that all
proofs must share the same input private input. Recent
advances in inner product proofs [BMM+20] give a
succinct proof that n Groth16 zkSNARK proofs verify
in aggregate. However, this aggregate approach has two
critical shortcomings: it is not zero-knowledge and it
does not ensure consistency.

A natural approach for consistency would be to commit
to the hidden value and use it as a public input to each

1This is the cost to verify a proof with no inputs using MNT6-753
over MNT4-753.

2Depth-1 recursion using, e.g., BW6-761 over BLS12-377, would
avoid some of these costs compared to the MNT4/6 cycle. However,
any addition to the blocklist would necessitate recomputing the top-
level proof that checks all n chunk proofs. At 3.9s per check on our
benchmark system, this is not feasible.

Groth16 proof. But if the same commitment is used across
multiple anonymous attestations, it forms a persistent
identifier. On the other hand, when a fresh commitment
is used for each attestation, we must regenerate every
chunk proof.

We use [BMM+20] as a starting point and have a
single public input to each chunk proof, then blind
it in the aggregate proof so it is not revealed to the
verifier. The resulting scheme reuses the same blinders
in multiple parts of the zero-knowledge protocol. This
unusual property made proving the honest-verifier zero-
knowledge property challenging.

III. PRELIMINARIES

We write x := z to denote variable assignment, and
y← S to denote sampling uniformly from a set S. For an
arbitrary, efficiently computable predicate P, we say that
a proof of knowledge of a relation R = {(x;w) : P(x,w)}
with respect to an instance x is a proof of knowledge
of the witness w such that P(x,w) is satisfied. We will
often refer to x as a public input and w as a private input,
and we will use zero-knowledge proofs of knowledge
for various relations in order to hide w from the verifier.
The security parameter of our system is denoted by λ .

A. Notation for Groups and Pairings

We will work exclusively with prime-order groups
and their associated scalar fields. Group elements are
denoted with capital letters G ∈G, while field elements
are lowercase r ∈ F. Vectors are bolded: A ∈ Gn, and
r ∈ Fn. We write A[:k] to denote the first k elements of
A ∈Gn, and A[k:] to denote the last n− k elements. We
say that a bilinear function e : G1×G2→GT is a type-3
bilinear pairing if there is no efficiently computable group
homomorphism from G2 to G1. We say e is degenerate
if there is a non-identity G ∈G1 such that e(G,H) = 1
for all H ∈ G2. Following convention, we use additive
notation for G1 and G2, and multiplicative notation for
GT .

For vectors A ∈Gn
1 and B ∈Gn

2 and a bilinear pairing
e, we write A ∗B to denote the inner pairing product
∏

n
i=1 e(Ai,Bi). For vectors A∈Gn and r∈Fn we write Ar

to denote the multiscalar multiplication (MSM) ∑
n
i=1 riAi,

and write r�A to denote the element-wise multiplication
(r1A1, . . . ,rnAn). For a field element x ∈ F, we denote
[x]1 := xG and [x]2 := xH, where G and H are the
canonical generators of G1 and G2, respectively.

B. Groth16

We briefly describe the trusted-setup zkSNARK
scheme defined in [Gro16]. At a high level, given a
description of an arithmetic circuit (over the scalar field
of a pairing-friendly elliptic curve), a Groth16 proof
proves that a circuit is satisfied by a set of public wires
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(values known to the verifier) and private wires (values
which are not known to the verifier, also called witness
elements).

Let e : G1×G2 → GT be an efficiently-computable,
non-degenerate, type-3 bilinear pairing, where |G1| =
|G2|= |GT | is a prime p and p> 2λ . Let G be a generator
of G1 and H be a generator of G2. We use F to denote
the finite field Z/pZ. The Groth16 scheme defines four
procedures:
Setup(desc)→ crs Generates a common reference string

for the given arithmetic circuit description. crs
contains the group elements necessary to compute
the expressions in Groth16.Prove below.

Prove(crs,{ai}`i=0,{ai}m
i=`+1)→ π Proves the circuit de-

scribed by crs is satisfied, where a0, . . . ,a` ∈ F
represent the circuit’s public input wires and
a`+1, . . . ,am ∈ F represent the private wires. π is
of the form ([η ]1 , [θ ]2 , [ι ]1), where

η = α +
m

∑
i=0

aiui(X)+ rδ θ = β +
m

∑
i=0

aivi(X)+ sδ

ι =
m

∑
i=`+1

ai (βui(X)+αvi(X)+wi(X))+h(X)t(X)

δ

+ηs+θr− rsδ

and all otherwise unspecified constants and polyno-
mials come from crs.

Prepare(crs,{ai j}t
j=1)→ Ŝ Aggregates any subset of

public inputs into a single group element called
a prepared input: Ŝ = ∑

t
j=1 ai jWi j , where Wi are the

CRS values whose coefficient represents the value
of the i-th wire of the circuit.

Vfy(crs,π,{a0}`i=0)→{0,1} Verifies the proof π =
(A,B,C) by checking the relation,

e(A,B) ?
= e([α]1 , [β ]2) ·e(C, [δ ]2) ·

`

∏
i=0

e(aiWi, [γ]2) ,

where [α]1, [β ]2, [γ]2, and [δ ]2 come from crs. Vfy
permits any subset of the public inputs to be prepared
as above. The common case will be where all but
the first input is prepared, i.e., calls of the form
Vfy(crs,π,(a0, Ŝ)).

Rerand(π)→ π ′ Rerandomizes the proof π = (A,B,C)
by sampling ζ ,ω ← F and computing

π
′ := (ζ−1A,ζ B+ζ ω [δ ]2 ,C+ωA).

By Theorem 3 in [BKSV20], the output of Rerand
is statistically indistinguishable from a fresh proof
of the same underlying statement.

C. Inner product proofs

Bünz et al. [BMM+20] introduce a proof system for
various inner product relations. We will make use of

RTIPP :=




ck1,∈Gn

2,ck2 ∈Gn
1,

comA,comB,aggAB ∈GT ,

r ∈ Fn ; A ∈Gn
1,B ∈Gn

2

 :

comA = A∗ ck1∧
comB = ck2 ∗B∧
aggAB = Ar ∗B



RMIPP−k :=




ck1 ∈Gn

2,

comC,∈GT ,aggC ∈G1,

r ∈ Fn ; C ∈Gn
1

 :

comC = (C∗ ck1)
∧
aggC = Cr



RHMIPP :=




ck1 ∈Gn

2,ck3 ∈G2,

comC,∈GT ,aggC ∈G1,

r ∈ Fn ; C ∈Gn
1,z ∈ F

 :

comC = e([z]1 ,ck3) · (C∗ ck1)∧
aggC = Cr


Fig. 1: We directly use Bünz et al.’s definition of RTIPP
and RMIPP-k, and we use RHMIPP to refer to the “hiding
commitment” version of RMIPP-k. While RHMIPP admits a zero-
knowledge proof of knowledge, RTIPP does not, as it fails to
hide the witnesses A and B. Patching this is one of the primary
focuses of HICIAP.

the TIPP, MIPPk, and HMIPP proof systems, whose
relations are defined in Figure 1.

In short, RTIPP is satisfied when Ar ∗ B = aggAB,
RMIPP−k is satisfied when Cr = aggC, and RHMIPP is the
same as RMIPP−k except its commitment to C is hiding.

D. HICIAP

Since HICIAP is used extensively in the construction
of SNARKBLOCK, we provide a brief overview of its
functionality here. We defer discussion of these algo-
rithms including their construction and security claims
until Section VI.
HICIAP is a zkSNARK which aggregates multiple

Groth16 proofs of the same relation. Of its aggregated
proofs, it proves that 1) they verify with respect to
verifier-supplied public inputs, and 2) they share a
common public input element (which is hidden by the
aggregate proof). In addition, HICIAP can link aggregate
proofs: it can prove in zero-knowledge that the proofs
in a set of HICIAP proofs all share the same common
input element.

Formally, HICIAP consists of six procedures:
GenCk(n)→ (ck,srs) Generates a commitment key

(ck1,ck2,ck3) ∈ Gn
2×Gn

1×G2 and a (short) struc-
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tured verification key srs which can be used, respec-
tively, to prove and verify HICIAP aggregates of up
to n−2 Groth16 proofs, where n is a power of 2.

Com(ck, Ŝ)→ comin Constructs a commitment to the
prepared Groth16 public inputs Ŝ ∈ Gn−2

1 as
comin := Ŝ∗ ck1,[:n−2].

Prove((ck,crs), Ŝ,(a0,{πi}n−2
i=1 ))→ (π̂,o) Produces a

succinct proof that each Groth16 proof πi verifies
w.r.t. the common witness element a0 ∈ F, the
prepared input Ŝi ∈ G1, and the given Groth16
CRS. Also produces an opening o to a commitment
to a0 contained inside π̂ . The opening is used in
LinkProve.

Vfy(srs, π̂,comin)→{0,1} Verifies the given aggregate
proof w.r.t. the committed public input. Alternatively,
a set of prepared Groth16 inputs can be passed
instead of comin.

LinkProve({π̂i}t
i=1,(a0,{oi}t

i=1))→ πlink Using the
openings oi, produces a proof that the given
aggregate proofs share the witness element a0 ∈ F.

LinkVfy(πlink,{π̂i}t
i=1)→{0,1} Verifies the link proof

w.r.t. the given aggregate proofs.

IV. ZERO-KNOWLEDGE BLOCKLISTS

We now give our framework for zero-knowledge
blocklists, taken directly from BLAC [TAKS10], but with
modifications to support multiple identity providers and
allow for additional precomputation.

A. Setting

A zero-knowledge blocklist allows users to attest that
an identity issued by one of a set of identity providers is
not in a blocklist. We now detail these concepts:

Identity. We use k to denote a user’s private identity.
A single user in the real world can hold arbitrarily many
identities. In all cases, k will be a field element selected
uniformly at random by the user. Other similar schemes
refer to k as a user’s “nym,” “pseudonym,” or “credential.”

Identity providers. Blocking users fundamentally de-
pends on identities being Sybil-resistant. Most approaches
to blocklisting, including BLAC’s approach to ZKBLs,
assume a single issuer.

Here we formalize a more general version of ZKBLs
that supports federated identity:each service provider is
allowed to maintain its own list I of accepted identity
providers, which we call the AIP set. Identity providers
are responsible for ensuring Sybil resistance. The service
provider is allowed to update this set over time, and
should distribute it via the same channels it uses to
distribute its blocklist.

Blocklists and session tuples. A ZKBL blocklist
consists of pairs containing a session nonce nonce and
session tag tag, where tag is bound to the user’s identity

by tag := Prfk(nonce) for some fixed pseudorandom
function Prf. Blocklist entries can support context binding
via structured auxiliary data. By computing nonce as
nonce :=H(aux,r) for some hash H, aux is bound to the
attestation. This data can be used to, for example, bind
attestation to an action (e.g., to prove that the blocked
user is the action’s author) or to a particular blocklist or
policy (e.g., to enforce which lists a banned tuple can be
transferred to).

Finally, in a departure from BLAC, we allow blocklists
to be split into chunks—equally sized non-overlapping
segments—whose sizes are decided by the service
provider. Blocklists are chunked so that users can pre-
compute non-membership proofs over individual chunks
rather than the entire blocklist at once.
Formalizing non-membership proofs. A non-
membership proof πzkbl is a zero-knowledge proof of
three distinct properties:

1) Issuance. That the user’s identity k is signed by an
identity provider.

2) Tag well-formedness. That tag and nonce are
honestly computed, i.e., tag = Prfk(nonce).

3) Blocklist non-membership. That the user’s identity
k did not generate any tuples already on a blocklist,
i.e., ∀(tag′,nonce′) ∈L : tag′ 6= Prfk(nonce

′).

B. ZKBL functionality

A zero-knowledge blocklist consists of five algorithms.
CRS-Setup Generates system-wide parameters.
IdP-Keygen Generates a signing keypair (sk,pk) to be

used by an identity provider for issuance.
Register Executes a protocol between a user and an

identity provider. On success, the user obtains a
signature of (a function of) their identity.

Sync Fetches the latest additions to a service provider’s
blocklist and then precomputes cryptographic ma-
terial for them. Users periodically run this routine
offline, i.e., when not attesting.

Attest Executes a non-interactive protocol in which a
user authenticates to a service provider. First, the
user constructs a session-specific tuple (tag,nonce)
as tag := Prfk(nonce), where nonce is pseudoran-
dom and optionally bound a context aux. This tuple
can be used by the service provider to block the user
at any point in the future by simply including it in the
blocklist. The user then produces a zero-knowledge
proof πzkbl that proves well-formedness of the tuple
and that their (signed) identity did not generate any
tuples already on a blocklist. The session tuple and
zero-knowledge proof are then sent to the service
provider as (πzkbl, tag,nonce).

Verify Checks the validity of a user’s attestation. A ser-
vice provider accepts if and only if πzkbl verifies with
respect to the supplied session tuple (tag,nonce)
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and the service provider’s blocklist L , chunk size
schedule, AIP set I , and optional context-binding
string aux.

Separately, we assume two non-cryptographic opera-
tions for blocklist management:
Blocklist-Add Adds a token to a blocklist.
Blocklist-Remove Removes a token from a blocklist.
We stress that the Add and Remove routines are distinct
from the cryptographic scheme, and can be run by anyone.
How parties decide to manage their blocklists is wholly
orthogonal to the ZKBL construction.

BLAC as a ZKBL. The authors of BLAC construct
their scheme using BBS+ signatures [BBS04] and a
Camenisch-Shoup Σ-protocol [CS03]. Although not de-
scribed as such, this is the same PRF approach we for-
malize here. BLAC’s tag function is nonce 7→H(nonce)k,
and it is done in two steps, with the hash evaluation
outside the zero-knowledge proof, and the exponentiation
witnessed inside. Conceptually, the entire question for
designing a practical ZKBL is how to co-design a PRF
and zero-knowledge proof protocol to make an efficient
non-membership proof.

C. Security requirements

Our desired security properties are taken from BLAC.
For the complete definitions see [TAKS10]. Note the
following aesthetic changes in our description: block-
listability encompasses misauthentication resistance; and
anonymity is described as a distinguishability notion as
opposed to a simulatability notion, which we believe
better captures the actual security properties achieved by
BLAC’s game-based definition.
Blocklistability A coalition of dishonest service

providers and users can only successfully
authenticate to an honest service provider if that
user holds a valid credential issued by an identity
provider that is not included in the blocklist.

Non-Frameability A coalition of dishonest identity
providers, service providers, and users cannot pre-
vent an honest, non-blocklisted user from success-
fully authenticating with an honest service provider.

Anonymity A coalition of dishonest identity providers,
service providers, and users cannot distinguish
attestation transcripts associated with any two honest
users. Further, no such coalition can link any given
authentication transcript with the registration in
which an identity provider issued the associated
credential.

V. SNARKBLOCK DESIGN AND OVERVIEW

The full design of SNARKBLOCK is detailed in
Figure 3. The core relations are defined in Figure 2. In
words, Risu is satisfied when a user’s committed identity

Risu :=


(k,(pki)

`
i=1 ; i∗,σ ,r) :

1≤ i∗ ≤ `∧
Schnorr.Verpki∗ (Com(k,r),σ)


Rtag := {(k, tag,nonce) : Prfk(nonce) = tag}

Rchunk :=

(k,chunk) :
∧

(tag,nonce)∈chunk
Prfk(nonce) 6= tag



Rzkbl :=


(L ,I , tag,nonce ; k, i∗,σ ,r) :

Risu(k,I ; i∗,σ ,r)∧
Rtag(k, tag,nonce)∧c

i=1 Rchunk(k,chunki)


Fig. 2: Rzkbl is the relation which the attestation procedure in
SNARKBLOCK attests to. I is the AIP set {pk1, . . . ,pk`}, and
L is the set of chunks {chunk1, . . . ,chunkc}. Note that k is
a public (rather than private) input to the three sub-relations
Risu, Rtag, and Rchunk. This is because the implementation of
HICIAP requires that the hidden common input be a public
input in the underlying Groth16 proof.

is signed by an issuer in the AIP set, Rtag is satisfied
when tag is computed correctly, and Rchunk is satisfied
when a user did not produce any of the tags in a chunk.

We omit textual descriptions of the full set of algo-
rithms and detail the two key ones: Sync and Attest.

Sync. Sync is the offline phase of attestation. During
Sync a client fetches the most recent versions of the
service provider’s blocklist, chunk schedule, and AIP
set. The client then precomputes Groth16 chunk proofs
πchunki of the relation Rchunk(k,chunki) for every new
chunki received from the service provider. The client
also precomputes πisu, by computing a Groth16 proof πisu

of Risu((k,I ),(i∗,σ ,r)) where i∗ is the chosen identity
provider in the AIP set I = {pk1, . . . ,pk`}, σ is the
identity provider’s signature of the identity commitment,
and r is the randomness used to commit to k.

Attest. To attest to blocklist non-membership, the client
must combine a series of proofs about the user’s identity k.
First the client computes fresh session tuple (tag,nonce)
and proves it is well-formed with respect to k using a
Groth16 proof πtag for the relation Rtag(k, tag,nonce).

Ideally, the client would combine πtag with the pre-
computed πisu and πchunki proofs from Sync. But a single
HICIAP instance only works for proofs over the same
relation. Thus, πtag and πisu are wrapped in HICIAP
proofs π̂tag and π̂isu respectively, the πchunki proofs are
aggregated into a HICIAP proof π̂chunk, and a linking
proof πlink is used to show each aggregate is made with
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IdPKeyGen()

(sk,pk) := Schnorr.KeyGen()

return (sk,pk)

RegU(k)

r← F
com := Com(k,r)

return (com,r)

RegS(sk,com)

σ := Schnorr.Signsk(com)

return σ

CrsSetup(n)

crsisu := Groth16.Setup(Risu)

crstag := Groth16.Setup(Rtag)

crschunk := Groth16.Setup(Rchunk)

(ck,srs) := HICIAP.GenCk(n)

return (ck,srs)

Sync({chunki}c
i=c′ ,I , i∗,k,σ ,r)

for c′ ≤ j ≤ c :

πchunk j := Groth16.Prove(crschunk,(k,chunk j), ·)
πisu := Groth16.Prove(crsisu,(k,I ),(i∗,σ ,r))

return {πchunk1 , . . . ,πchunkc}

Attest(k,πisu,{πchunki}c
i=1)

nonce←{0,1}λ

tag := Prfk(nonce)

πtag := Groth16.Prove(crstag,(k, tag,nonce), ·)
π̂isu := HICIAP.Prove((ck,crsisu),I ,(k,{πisu}))
π̂tag := HICIAP.Prove((ck,crstag),(tag,nonce),(k,{πtag})))

π̂chunk := HICIAP.Prove

(
(ck,crschunk),L ,
(k,{πchunki}c

i=1)

)
πlink := HICIAP.LinkProve(k,(πisu,πchunk,πtag),k)

πzkbl := (πlink, π̂isu, π̂tag, π̂chunk)

return (πzkbl, tag,nonce)

PrepBlocklist({chunki}c
i=1)

for 1≤ i≤ c

Ŝchunki := Groth16.Prepare(crschunk,chunki)

comL := HICIAP.Com(ck,{Ŝchunki}c
i=1)

return comL

Vfy(πzkbl,(tag,nonce),I ,comL )

Ŝtag = Groth16.Prepare(crstag,(tag,nonce))

Ŝisu = Groth16.Prepare(crsisu,I )

return HICIAP.LinkVfy(πlink,(π̂isu, π̂tag, π̂chunk))∧
HICIAP.Vfy(srs, π̂isu,{Ŝisu})∧
HICIAP.Vfy(srs, π̂tag,{Ŝtag})∧
HICIAP.Vfy(srs, π̂chunk,comL )

Fig. 3: A pseudocode definition of the SNARKBLOCK system. We omit buffering and nonce binding.

respect to the same identity k.
The client’s output is thus (πzkbl, tag,nonce), where

πzkbl := (π̂isu, π̂tag, π̂chunk,πlink).
Buffering recent blocklist additions and deletions.
When a ban is added or removed from the blocklist,
the user must redo the corresponding chunk proof. It is
inevitable between Sync operations that some number
of additions and deletions will occur, thus requiring
recomputation during Attest and adding the corresponding
amount of latency. The larger the chunk size, the higher
the latency. While we can avoid this for deletions by
having bans expire in batches, this is undesirable for
additions—we want bans to take effect as soon as
possible.

To avoid a tradeoff between chunk size and attestation
latency, we have the tail of the list be a buffer of smaller
chunks and have a separate instance of HICIAP aggregate
them. Because the circuit is different from the circuit
used for larger chunks, this optimization increases the
number of distinct HICIAP proofs passed to the verifier,

while decreasing the overall attestation time.

A. Security argument

Security of SNARKBLOCK depends on it correctly
instantiating the PRF+Sig+ZKP paradigm using HICIAP.
We state the theorem of security for SNARKBLOCK here
and give a proof sketch in Appendix B. This proof
depends on the security of HICIAP as a building block,
and so HICIAP is the main focus of our security analysis
over subsequent sections and appendices.

Theorem 1 (SNARKBLOCK Security). SNARKBLOCK
described in Figure 3 is blocklistable, anonymous and
non-frameable provided that Groth16 and HICIAP proofs
are knowledge-sound and subversion zero-knowledge;
Schnorr signatures are unforgeable; Prf is pseudorandom;
and Com is binding and hiding.

Looking ahead, in the concrete instantiation, this in
turn assumes the key-prefixed Poseidon hash function
is a PRF and, for Groth16, that the q-SDH [BB04] and
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q-DDH [BB04] assumptions hold in the Algebraic Group
Model [FKL18]. For HICIAP we also depend on the Aux-
iliary Structured Double Pairing assumption [BMM+20].

B. Trusted setup

Our protocol and security proof assumes that a trusted
party generates a CRS for each Groth16 circuit as well
as for each HICIAP instance. The CRSs are similar,
being of the form sG,s2G, . . . for several bases. In most
cases, service providers should be able to run the setup:
assuming subversion resistance [Fuc17], a malicious CRS
only undermines soundness, not privacy. If necessary,
protocols [BGM17], [BCG+15] for multiparty setup
have been used for commercial cryptocurrencies such
as Zcash [Rad21] and Filecoin, where failure would
allow the forgery of billions of dollars. These also ensure
subversion resistance.

VI. HICIAP

We now introduce the core of SNARKBLOCK: HIdden
Common-Input Aggregate Proofs (HICIAP), a novel
zkSNARK scheme which we use to generate the zero-
knowledge proof of blocklist non-membership πzkbl.

Recall the purpose of HICIAP is to aggregate multiple
Groth16 proofs of the same relation. Of its aggregated
proofs, it proves that 1) they verify with respect to
verifier-supplied public inputs, and 2) they share a
common public input element (which is hidden by the
aggregate proof). In the case of SNARKBLOCK, the
relation is chunk non-membership, the verifier-supplied
public inputs are the (prepared) blocklist chunks, and the
common input element is the user’s identity.

In addition, HICIAP can link aggregate proofs: it can
prove in zero-knowledge that the proofs in a set of
HICIAP proofs all share the same common input element.
In the case of (unbuffered) SNARKBLOCK, there are three
aggregate proofs that are linked: chunk non-membership,
issuance, and tag well-formedness.

In this section, we provide intuition for the design
of HICIAP and then describe each of its components in
detail.

A. Intution

To explain HICIAP, we start with a naı̈ve verifier who
takes a full (non-succinct and non-hiding) set of Groth16
proofs πi = (Ai,Bi,Ci) and checks that they verify with
respect to a common public input. We transform this into
a succinct zero-knowledge proof that vector commitments
to A, B and C contain proofs that verify with respect to a
hidden input. For simplicity, we omit the blinding factors
from discussion, and leave their detailed accounting to the
proof of honest verifier zero-knowledge in Appendix B.

The HICIAP verifier must be convinced that there is
some hidden wire value a0 ∈ F for which a set Groth16

proofs {(Ai,Bi,Ci)}n−2
i=1 verify given a set of prepared

public inputs Ŝ, i.e., for all i = 1 . . . ,n−2,

e(Ai,Bi)
?
= e([α]1 , [β ]2) · e(Ci, [δ ]2) · e

(
a0W0 + Ŝi, [γ]2

)
.

Our first step is to combine the above n−2 equations
into a single polynomial equation. Verifying this would
still require the verifier to do linearly many equality
checks, so the verifier picks a random r←F and evaluates
the polynomial “in the exponent” at the random point.
Combining these two steps, the new verifier equation is

∏e(Ai,Bi)
ri

?
= ∏e([α]1 , [β ]2)

ri
·∏e(Ci, [δ ]2)

ri

·∏e
(
a0W0 + Ŝi, [γ]2

)ri
.

By the Schwartz-Zippel lemma, equality here implies the
equality of the initial n−2 equations with overwhelming
probability. We now have one equality check.

The next step is to make the verifier oblivious to
a0. To do that, we split the e(a0W0 + Ŝi, [γ]2)

ri
term in

two. The prover sends W , a blinded version of ∑ria0W0,
to the verifier. It proves that W is computed correctly
using an instance of the Σ-protocol HWW (described in
Section VI-B). The verifier equation is now

∏e(Ai,Bi)
ri

?
= ∏e([α]1 , [β ]2)

ri
·∏e(Ci, [δ ]2)

ri
· e(W, [γ]2)

·∏e
(
Ŝi, [γ]2

)ri
.

For both succinctness and privacy, the prover cannot
give the verifier every Groth16 proof. Instead, the prover
gives only succinct commitments, comA,comB,comC to
the proof vectors A, B, C, respectively. This requires the
prover to calculate aggAB := ∏e(Ai,Bi)

ri
and aggC :=

∏e(Ci, [δ ]2)
ri

itself and send them to the verifier. Since
these calculations can be expressed as inner product
operations, the prover shows they are correct using
instances of TIPP and HMIPP, respectively. The verifier
equation is now

aggAB

?
= ∏e([α]1 , [β ]2)

ri
·aggC · e(W, [γ]2) ·∏e

(
Ŝi, [γ]2

)ri
.

This equation is now verifiable by the HICIAP verifier,
but it is not fully succinct—the verifier must still do
linear work in order to compute the products containing
the ri exponents. The verifier can avoid this for the
term ∏e([α]1 , [β ]2)

ri
by simply using the geometric

sum formula: ∑
n
i=0 ri = (rn+1− 1)/(r− 1). The second

optimization, due to Bünz et al. [BMM+20], moves the
aggregation of the prepared inputs aggin := ∑riŜi to
the prover. The prover sends aggin and proves it was
constructed correctly using an instance of MIPP. The
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HICIAP.Prove

(
(ck,crs), Ŝ,

(a0,A′,B′,C′)

)
HICIAP.Vfy((srs,crs),comin)

(A′,B′,C′)← Groth16.RerandM
′
(A′,B′,C′)

z1,z2,z3,z4← F

A := A′ ‖ [z1]1 ‖ [z2]1 ∈Gn
1

B := B′ ‖ [γ]2 ‖ [δ ]2 ∈Gn
2

C := C′ ‖ [1]1 ‖ [z2]1 ∈Gn
1

coma0 := a0P1 + z1P2 + z3P3

comA := A∗ ck1

comB := ck2 ∗B

comC := e([z4]1 ,ck3) · (C∗ ck1)
coma0 ,comA,comB,comC−−−−−−−−−−−−−−→

r←−− r← F

r := (r,r2, . . . ,rn)

r′ := r[:n−2]

aggin := Ŝr′

aggC := Cr

W :=
[
z1rn−1

]
1 +∑

n−2
i=1 ria0W0

aggin,aggC ,W−−−−−−−−→
MIPPk(ck,(comin,aggin,r′),Ŝ)←−−−−−−−−−−−−−−−→ J := e(aggin, [γ]2)

HMIPP(ck,(comC ,aggC ,r),(C,z4))←−−−−−−−−−−−−−−−−−→

G1 := ∑
n−2
i=1 riW0, G2 :=

[
rn−1

]
1

HWW

(
(coma0 ,W,P1,P2,P3,G1,G2),

(a0,z1,z3)

)
←−−−−−−−−−−−−−−−−−−−→ G1 := ∑

n−2
i=1 riW0, G2 :=

[
rn−1

]
1

aggAB := Ar ∗B
TIPP(ck,(comA,comB,aggAB,r),(A,B))←−−−−−−−−−−−−−−−−−−−−→ aggAB := ∏

n
i=1 e([α]1 , [β ]2)

ri · J

return o := (z1,z3) ·e(W, [γ]2) · e(aggC, [δ ]2)

Fig. 4: The (interactive) HICIAP protocol. Vfy accepts iff all subprotocols MIPP, HMIPP, HWW, and TIPP accept. The group
elements W0, [α]1 , [β ]2 , [δ ]2 , [γ]2 are supplied by crs. The values P1,P2,P3 used to compute coma0 is a Pedersen commitment
basis. The Rerand procedure is only executed on the indices in the (log-sized) masking set M′ =M∪{n− 2}, where M is
defined in the proof of Lemma 4. It is the identity function everywhere else.

verifier checks this with respect to comin, which it can
compute from public inputs independently of the proof-
specific r values. With these two optimizations, the final
verifier equation is

aggAB

?
= e([α]1 , [β ]2)

rn+1−1
r−1 ·aggC · e(W, [γ]2) · e(aggin, [γ]2) .

It is important to reiterate that, while this resembles

HICIAP’s verification equation,3 the protocol outlined
above is not zero-knowledge. W leaks a0; aggAB, comA,
and comB leak parts of A and B; and aggC and comC leak
parts of C. In order to achieve zero-knowledge, we blind
all of these values using the explicit blinders z1, . . . ,z4 ∈F
and the implicit blinders in the Groth16.Rerand sub-
procedure.

3For clarity’s sake, however, the Vfy algorithm in Figure 4 does
not include the geometric sum formula, or any other arithmetic
optimizations.
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B. HICIAP details

We now give the formal definitions of the HICIAP
relations and procedures. The HICIAP relation for a fixed
n, where n is a power of two, is defined to be

RHICIAP =



(
ck,crs,comin,{Ŝ}n−2

i=1 ;

a0,{πi}n−2
i=1

)
:

comin = Ŝ∗ ck1
n−2∧
i=1

Groth16.Vfy(crs,πi,(a0, Ŝi))


.

The associated protocol is given in Figure 4, and is made
non-interactive by applying the Fiat-Shamir transform
[FS87].

Note that Prove outputs an opening o = (z1,z3) of
coma0 . This opening is used for linkage proofs, which
show that multiple HICIAP proofs share the same a0.
Formally, this relation is

Rlink =


(
{π̂i}t

i=1;a0,{oi}t
i=1
)

:
t∧

i=1

com
(i)
a0 = a0P1 + z(i)1 P2 + z(i)3 P3

 ,

where com
(i)
a0 comes from π̂i, (z

(i)
1 ,z(i)3 ) come from oi, and

P1,P2,P3 ∈G1 is a Pedersen basis shared by all HICIAP
instances. The LinkProve and LinkVfy algorithms are
constructed using the generic Σ-protocol framework
defined by Camenisch and Stadler [CS97]. We defer
their full description and security analysis to the extended
version of this paper [RMM21].

For the last relation, recall from the intuition that the
value W in HICIAP proofs must be proven to represent
the value a0 on the wire W0 and no more (i.e., it must
not allow the prover to cancel other wire values). We call
this the hidden wire well-formedness (HWW) relation:

RHWW :=


(

(U,V,{Gi}5
i=1 ∈G1;

w,x,y ∈ F

)
:

U = wG1 + xG2 + yG3∧
V = wG4 + xG5


Like Link, the HWW proof system is a Σ-protocol
constructed using the Camenisch-Stadler framework. The
protocol is described and proven secure in the extended
version of this paper.

We claim that HICIAP is a zkSNARK for the RHICIAP

relation. The proofs of the below theorems can be found
in Appendix B. Lastly, we note that the requirement that
n is a power of 2 greater than or equal to 16 is not a
barrier to usage, since proofs (and their prepared public
inputs) can be duplicated arbitrarily many times to pad
the input of the HICIAP algorithms.

Theorem 2 (HICIAP Soundness). HICIAP on n− 2
proofs has witness-extended emulation against algebraic

adversaries under the DL, n-ASDBP, and 2n-SDH
assumptions.

Theorem 3 (HICIAP Perfect Honest Verifier Zero Knowl-
dege). The HICIAP protocol is perfect HVZK, provided
that n≥ 16.

VII. IMPLEMENTATION AND EVALUATION

We now detail the design and evaluation of SNARK-
BLOCK.

A. Implementation and setup

Hardware. All benchmarks were performed on a
desktop computer with a 2021 Intel i9-11900KB CPU
with 8 physical cores and 64GiB RAM running Ubuntu
20.04 with kernel 5.11.0-40-generic.

Code. SNARKBLOCK consists of 4.3k lines of Rust
code4 using the Arkworks [Ar21] zkSNARK crates and
Rayon for parallelization where possible. The Criterion-rs
crate was used for all benchmarks and statistics.

Statistics. Performance measurements are for medians
and include error bars indicating the 95% confidence
interval. These are not visible: over all benchmarks, the
maximum relative standard error of the median is 1.6%.

Instantiating cryptographic primitives. We set λ =
128. We use BLS12-381 [Bow17] for our Groth16
and HICIAP proofs, and Jubjub [ZCa19] for Schnorr
signatures. We use hash functions H1,H2,H3 for identity
registration, tag computation, and Schnorr signatures,
respectively. Specifically, the commitment scheme used
for Risu is Com(m,r) := H1(r‖m) and the PRF scheme
used for Rchunk is Prfk(m) := H2(k‖m). Each Hi is a
domain-separated instantiation of the Poseidon family
[GKK+19], configured to be compatible with BLS12-
381 and a 128-bit security level (i.e., α = 5 and capacity
= 1).

B. Evaluation

Benchmarks are given in Figures 5 and 6. Lines marked
buf were benchmarked using a size-14 buffer of 16-
element chunks. Lines marked nobuf used no buffer. The
cs parameter refers to chunk size.

Figure 5a gives the time clients take to attest to non-
membership on a blocklist that has recently changed.
Specifically, this is the time it takes for a user to re-
compute the last Groth16 chunk proof; compute HICIAP
proofs over the blocklist, buffer (if the buffer exists),
issuance, and tag well-formedness proofs;5 and compute

4The HICIAP crate source code can be found at https://github.com
/rozbb/hiciap and the SNARKBLOCK crate source code can be found
at https://github.com/rozbb/snarkblock.

5For speed, we combine Risu and Rtag into a single circuit in our
implementation. Thus there are only 2 proofs to link in an unbuffered
SNARKBLOCK attestation.
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Fig. 6: Server-side performance for SNARKBLOCK

the link proof over those. Separately, Figure 5b gives the
offline computation a client must do as a function of the
number of additions/removals to the blocklist (e.g. per
day). This includes syncing chunks and precomputing its
Groth16 issuance and tag well-formedness proofs for the
next attestation.

Figure 6 gives proof sizes and throughput for server
verification. These graphs, which are semi-log scale,
show that, unlike previous work, SNARKBLOCK proofs
scale logarithmically with the number of elements in the
blocklist.

VIII. DISCUSSION

We now discuss real-world performance and possible
extensions.

A. Is SNARKBLOCK practical?

Attestation latency. How long can attestation take in
practice? A client that computes an attestation in the
background while a user drafts their post or comment
adds no latency to the user’s workflow. When the expected
time to write a comment is lower than attestation time
(e.g., writing a tweet), then the comment must be queued
and posted by the client software when attestation is
complete. While this is acceptable in many cases, it
renders SNARKBLOCK impractical for real-time chat
when blocklists are large.

Operating Costs. SNARKBLOCK can be used when
1) logging in to a pseudonymous session, or 2) posting
or commenting anonymously. The latter puts more load
on a server. We use it as an estimate for worst-case
performance costs.

English language Wikipedia had 2 edits per second
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Client Attestation Server Verification Proof Size

BLAC [TAKS10] 2nMG1 (2n+4)MG1 +2P
Abs. (3n+12)|F|+(n+3)|G1|
Real 528B+n ·144B

SNARKBLOCK

(197+10c)MG1

+(160+10c)MG2 +2MGT

+(244+15c)P

25MG1 +38P
+(46+10log2(c))MGT

Abs. 8|F|+29|G1|+14|G2|
+(48+10log2 c)|GT |

Real 29.3KiB+ log2(c) ·5.6KiB

Legend: n = Blocklist length, c = Num. chunks, MG = Var. base MSM in G, P = Pairing op., |G|= Size of group elem., |F|= Size of scalar field elem.

TABLE I: BLAC and SNARKBLOCK operation counts and proof sizes. SNARKBLOCK operation counts assume a fully
synchronized client and an unbuffered blocklist. The top subcell in the Proof Size column represents abstract element counts.
The bottom subcell represents the byte count when instantiated with BLS12-381.

in 2021 [Wik] and Reddit had 64 comments per second
in 2020 [Red20]. Estimating from event logs for June
through October 2020, English language Wikipedia has
about 2k bans per day, of which 250 (12.5%) were
permanent. Assuming a similar ban rate, Reddit has
at least 8k permanent bans per day and perhaps 32k
temporary.

An Amazon EC2 c5.4xLarge costs about $10 USD
per day if reserved for a year.6 For a blocklist of 224

entries, SNARKBLOCK handles at least 35 attestations per
second. At Reddit’s scale, deployed in the more resource-
intensive attestation-per-comment mode, SNARKBLOCK
costs on the order of $20 per day when pessimistically
assuming full EC2 retail pricing at scale. With gener-
ous allowances for CPU differences and virtualization
overhead, SNARKBLOCK is at most $200 per day in the
worst case. For reference, Facebook pays moderators in
the US $120 a day [Sal19].

A final consideration is increased bandwidth usage by
the server. A SNARKBLOCK attestation for a 4M-entry
blocklist is 130KiB, at least two orders of magnitude
larger than an average text comment it would accompany
in the fully anonymous setting. 130KiB, however, is
dwarfed by the size of image and video files uploaded
to many service providers. Moreover, inbound traffic is
typically a small fraction of total traffic for web services.
So much so that on EC2, for example, it’s free.

B. Client side performance vs BLAC

SNARKBLOCK’s main advantage over BLAC is log-
arithmic server-side scaling. Nonetheless, we briefly
discuss client-side performance. The biggest problem
for BLAC, surprisingly, is proof size. A blocklist with
4M bans yields proofs of 549MiB. In contrast, a SNARK-
BLOCK attestation is less than 200KiB for a 134 million
entry list. On a 50Mbps connection, which is 5× the up-

6With 16 virtual Xeon CPUs and 30GB of memory, this is a decent
analog to our test system since in testing, SNARKBLOCK never exceeded
20 GB of memory for verification.

stream bandwidth of the median US household [FCC20],7

uploading a BLAC attestation would take 90s. Even if
both have a 100Mbps fiber connection, SNARKBLOCK
can compute and upload the attestation before a BLAC
proof would upload.

What if we ignore proof size? Although Tsang et
al. give benchmarks for BLAC, they are on 10+ year
old hardware using the very dated PBC library [Lyn]
for pairings. Luckily, Tsang et al. also characterize their
system’s performance in terms of group operations. In lieu
of a reimplementation, we report these measurements and
give the equivalent values for SNARKBLOCK in Table I.

SNARKBLOCK pays an initial overhead in terms
of upfront costs (e.g., the 244 pairings). The major
advantage for SNARKBLOCK is that its operations are
per chunk as opposed to per element. Ignoring constants,
SNARKBLOCK is faster for proving whenever 2nMG1 >
10nMG1

s +
10nMG2

s + 15nP
s , where s = n/c is the chunk size.

Thus, as the blocklist size grows, SNARKBLOCK will
outperform as long as s > 5+12.5o where o = P

MG1
is

the overhead for pairings relative to G1 multiplications.8

On our benchmark system, G2 multiplications are about
3 times G1, and pairings twice that. i.e., o≈ 6.

Unfortunately, giving a precise estimate for the transi-
tion point is impossible with only group operations: we
need to compare runtimes to a full reimplementation of
BLAC. Real-world performance will differ significantly
from group operation counts due to parallelization and
other optimizations. Indeed, SNARKBLOCK outperforms
estimates based on group operations and benchmarked
operation times.

SNARKBLOCK has one substantial cost that BLAC
does not: SNARKBLOCK requires periodic sync computa-
tions for blocklist additions and removals. Per Figure 5,
this is less than 200s for every 12k additions, with appro-
priate batching or buffering. For much faster churning

7FCC measurements are a trailing indicator. The latest report, released
in Sep. 2020 [FCC20], is for data as of Dec. 2018. For Oct. 2021,
Speedtest.net reports its US users have upstream averages of 19.18Mbps
for wired connections and 8.81Mbps for mobile.

8Since MG2 < P, we can approximate them as the same.
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lists, e.g., 64k additions per day, BLAC would have a
large initial advantage by avoiding these recomputation
costs. But at even 8k additions per day, the service
provider will exceed 222 bans within two years. At
this point, under reasonable bandwidth assumptions,
SNARKBLOCK will outperform BLAC.

C. Cold Start

One significant caveat for SNARKBLOCK is that a new
user of a system with a pre-existing blocklist must do
significant work to sync the entire blocklist and compute
the chunk proofs.

One option is to leverage the issuance date for a user’s
identity and allow them to skip proving membership in
blocklist chunks whose last entry is before they joined.
This can be done directly now, albeit at the cost of leaking
the user’s approximate join time for, e.g., a particular
forum. Specifically, a given service provider can use
a custom CRS for their Groth16 chunk proofs. They
can then, using the CRS trapdoor, give each new user
non-membership chunk proofs for earlier portions of the
blocklist. Crucially, proving with a trapdoor is constant-
time, so this process is efficient.

We leave to future work the question of how to build a
general trapdoor for cold start. In particular, it should be
possible skip chunk proofs whose last entry was inserted
before the issuance data of the user’s identity.

IX. RELATED WORK

For a full formalization of privacy preserving blocklists,
we refer the reader to excellent SoK of Henry and
Goldberg [HG11]. This also describes a number of
interesting hybrid systems that can be constructed in
a black-box way from either SNARKBLOCK or BLAC
and allow for pruning of blocklists.

A. Blocklists

The work closest to ours is the ZKBL approach
introduced in BLAC [TAKS10]. As discussed in prior
sections, by replacing the zero-knowledge proofs in
BLAC with our novel proving system HICIAP, we get a
system that offers logarithmic verification time and proof
size, rather than linear. Further, we extend the system to
support federated identities.

Also close to our work is the windowed approach
from PEREA [TAKS08], also by the authors of BLAC.
In PEREA, users are issued a finite number of one-time-
use identity tickets for use during a revocation window,
e.g., one month. To complete an action, a user must prove
none of those tickets are in the blocklist. A user computes
the same proof to get the next set of tickets. Verification
time is proportional to size of the revocation window,
not the total size of the blocklist. It has a number of
drawbacks for broad deployment on the web:

1) Issuing users a small number of tickets is feasible
for individual low-volume sites, but the limit would
apply to all sites in a federated system.

2) The approach is inherently centralized. All blocklists
must be registered with the single identity provider to
ensure non-membership before reissuing identities.

3) Service providers must react quickly to ban users,
since bans expire once the user gets new identities.
The exact time depends on configuration; PEREA
gives the example of a 1-hour window for a site like
Wikipedia.

Finally, a number of systems provide weaker
anonymity. One line of work relies on a trusted third party
to revoke anonymity, e.g, [Cha85], [Cv91], [BMW03].
Another approach is to leverage blind signatures to
remove the linkage between, e.g., an IP address, and the
pseudonym, e.g., [JKTS07], [TKCS11], [LH10]. These
schemes only provide pseudonymity, allowing the linking
of pseudonymous posts across different platforms. In
contrast, SNARKBLOCK provides anonymity and does
not trust a third party to safeguard user identities.

B. Zero-knowledge proofs

Our HICIAP protocol consists of a non-membership
proof and a proof that a revocation tag has been computed
correctly. Bayer and Groth design a non-membership
proof [BG13] with logarithmic proof size and no trusted
setup, but they have (quasi-)linear prover and verifier
costs. Non-membership proofs can also be constructed in
groups of unknown order [CL02], [BCFK19], and have
constant verifier time and prover time. However, it is
not obvious how to apply these techniques to a blocklist
without requiring a finite number of tickets per user as
in PEREA.

An alternative and thus far unexplored direction for
proving blocklist non-membership is recent advances in
recursive zero-knowledge proofs using techniques first
introduced by Bowe et al. for Halo [BGH19]. Halo-
like schemes, formalized in [BCMS20] as accumulator
schemes, have been extended to a wider variety of
polynomial commitment schemes in [BDFG21]. These
use Bulletproofs [BBB+18] as a building block, which
introduces a linear verification time component to the
constructions. This cost is typically small if the individual
computation step is small, but leads to a different set of
design tradeoffs than recursive proofs with fully succinct
verifiers. Bünz et al. [BCL+21] and Kothapalli et al.
[KST21] improve upon these results.

One key challenge to using Halo-like techniques is
the concrete cost of recursion. With SNARKBLOCK,
aggregation costs are less than 8× the cost of native
verification, keeping online costs low. For Halo like
systems, these costs depend heavily on the exact approach
taken.
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APPENDIX

A. Cryptographic Definitions

We leave the full definitions of the cryptographic
assumptions we rely on for the extended version of
this paper [RMM21]. We will use the definition of the
Discrete Log (DL) assumption from [FKL18] and the
definitions of the q-ASDBP and q-SDH assumptions from
[BMM+20].

We will use the definitions of computation knowledge
soundness and perfect honest-verifier zero-knowledge
(HVZK) from [BMM+20] in the following proofs of
soundness and zero-knowledge.

B. Deferred proofs
Recall RHMIPP is a zero-knowledge (“hiding”) version

of the RMIPP−k relation. Both relations are detailed in
Figure 1, and their proof systems are given in [BMM+20].
We defer the proof of knowledge soundness to the
extended version of this paper [RMM21].

Lemma 4. The HMIPP protocol is perfect HVZK.
(Lemma 5 in [BMM+20])

Lemma 5 (HMIPP Computational Knowledge Sound-
ness). HMIPP on n elements is computationally knowl-
edge sound against algebraic adversaries under the n-
ASDBP and 2n-SDH assumptions.

Recall RHWW is the proof of hidden wire well-
formedness described in Section VI. We state its theorems
of soundness and zero-knowledge below, and defer the
proofs and full description of the algorithms to the
extended version of this paper.

Lemma 6. HWW is Perfect HVZK.

Lemma 7. HWW is statistically knowledge-sound.

Theorem 1 (SNARKBLOCK Security). SNARKBLOCK
described in Figure 3 is blocklistable, anonymous and
non-frameable provided that Groth16 and HICIAP proofs
are knowledge-sound and subversion zero-knowledge;
Schnorr signatures are unforgeable; Prf is pseudorandom;
and Com is binding and hiding.

Proof Sketch. Blocklistability. Let A be an adversary
that breaks blocklistability. Then A generates a verifying
attestation (πzkbl, tag,nonce). Either an extractor can
output k such that tag= Prfk(n); or π̂tag is a forgery for
HICIAP and we cannot extract a verifying Groth16 state-
ment and proof k,πtag breaking knowledge soundness;
or πtag is a forgery for Groth16 and tag 6= Prfk(nonce)
breaking knowledge soundness.

Either an extractor can output a verifying signature
σ under some identity providers public key pki∗ on the
message com = Com(k,r) the same k and some r; or
π̂link is a forgery for Link breaking knowledge soundness;
or the adversary can find com= Com(k′,r′) for different
k′,r′ breaking binding; or π̂isu is a forgery for HICIAP
and we cannot extract a verifying Groth16 proof πisu for
k breaking knowledge soundness; or ((k,I ),πisu) is a
forgery for Groth16 breaking knowledge soundness. If
σ is a verifying signature then either pki∗ authenticated
com at some point, or we break unforgeability of the
signature scheme.

If σ has been authenticated by pki∗ that gets blocked
then (tag,nonce) gets added to L . If A later generates a
verifying attestation with respect to the same σ then either
π̂link is a forgery for Link breaking knowledge soundness;
or the adversary can find com= Com(k′,r′) for different
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k′,r′ breaking binding; or π̂chunk is a forgery for HICIAP
and we cannot extract verifying Groth16 proofs πchunk j

for k breaking knowledge soundness; or πchunk j is a
forgery for Groth16 for some j and Prfk(nonce

∗) = tag∗

for some (nonce∗, tag∗) ∈L breaking knowledge sound-
ness; or σ is never associated with a blocked session and
A does not break blocklistability.
Non-Frameability. If an adversarial identity provider
prevents an honest user from authenticating then they
must get some (nonce, tag) added to L such that
tag= Prfk(nonce) for an honest user’s k. By the pseudo-
randomness of Prf and the anonymity of SNARKBLOCK,
the probability that they guess any such tag is negligible.
Anonymity. We claim that the transcript between an
honest user and any number of identity providers and
service providers is uncorrelated. By the hiding of Com
we have that com reveals no information about k (and uses
distinct r each registration). By the zero-knowledge of
HICIAP we have that πzkbl reveals no information (even
to the identity providers). nonce is chosen uniformly
at random for each session associated with k. By the
pseudorandomness of Prf, tag is indistinguishable from
random for users that don’t know k and thus reveals no
information about k. Thus the scheme is anonymous. �

Theorem 2 (HICIAP Soundness). HICIAP on n− 2
proofs has witness-extended emulation against algebraic
adversaries under the DL, n-ASDBP, and 2n-SDH
assumptions.

Proof. We wish to show that, there exists an expected
polynomial time HICIAP extractor EP∗

HICIAP(ck,crs, Ŝ)
which outputs a witness (a0,A′,B′,C′) such that for all
i = 1, . . . ,n−2,

Groth16.Vfy
(
crs,(A′i,B

′
i,C
′
i),(a0, Ŝi)

)
.

By Theorem 3 of [BMM+20], there is an
expected polynomial time extractor ETIPP for
TIPP(comA,comB,aggAB,r) which extracts (A,B)
such that comA = A ∗ ck1, comB = ck2 ∗ B, and
aggAB = Ar ∗B. By Theorem 6 of [BMM+20], there
is an expected polynomial time extractor EMIPP−k for
MIPPk(comin,aggin,r′) which extracts Ŝ′ such that
Ŝ′ ∗ ck1,[:n−2] = comin and (Ŝ′)r′ = aggin. By Lemma 5,
there is an expected polynomial time extractor EHMIPP

for HMIPP(comC,aggC,r) which extracts (C,z4) such
that Cr = aggC and comC = e(z4G,ck3)+(C∗ ck1). By
Lemma 7, there is an expected polynomial time extractor
EHWW(coma0 ,W,P1,P2,P3,G1,G2) for HWW which
extracts (a0,z1,z3) such that coma0 = a0P1 + z1P2 + z3P3
and W = a0G1 + z1G2.

Let P∗ be a probabilistic prover with fixed randomness
and unknown probability ε of producing an argument
that accepts. We define an extractor EP∗

HICIAP(ck,crs, Ŝ),
which extracts the witness (a0,A,B,C), as follows.

First, run HICIAP with a random r← F, and run all
the subprotocols honestly. Note that, by the definition of
witness-extended emulation, if P∗ does not produce an
accepting transcript tr on the first run, the extractor is al-
lowed to exit early with (tr,⊥). If tr is accepting, rewind
to the point after r is chosen and run EMIPP−k, EHMIPP,
EHWW, and ETIPP to extract (a0,z1,z3,z4,A,B,C, Ŝ′).
Finally, output (a0,A[:n],B[:n],C[:n]).

Note that EHICIAP algorithm is expected polynomial
time, since its runtime is at most the sum of the runtimes
of EHMIPP, EHWW, and ETIPP, which are assumed to be
expected polynomial time.

To prove the claimed relations hold, first note that
the commitment comin = Ŝ∗ ck1,[:n−2] is computationally
binding under the (n− 2)-ASDBP assumption, and so,
with overwhelming probability, Ŝ′ = Ŝ.

It remains to show that, with overwhelming probability,
the extracted witness satisfies the Groth16 verification
condition. That is, for all i = 1, . . . ,n,

e(Ai,Bi) = e([α]1 , [β ]2) · e(Ci, [δ ]2) · e
(
Ŝi, [γ]2

)
.

The commitments comA,comB,comC are computationally
binding under the n-ASDBP assumptions. Further, since
P1,P2,P3 are unrelated by assumption, the Pedersen
commitment coma0 is computationally binding by the
DL hardness assumption. Thus, with overwhelming
probability, the formal product being evaluated in TIPP
is the one committed to by comA,comB,comC, i.e.,

n

∏
i=1

e(Ai,Bi)
xi

=
n−2

∏
i=1

e(a0W0, [γ]2)
xi ·

n

∏
i=1

e([α]1 , [β ]2)
xi

·
n−2

∏
i=1

e
(
Ŝi, [γ]2

)xi ·
n

∏
i=1

e(Ci, [δ ]2)
xi

· e([z1]1 , [γ]2)
xn−1

Then by the Schwartz-Zippel lemma, the above relation
holds with probability at least 1−n/p. Since the above
equality directly implies the Groth16 verification condi-
tion, the theorem is proved.

Theorem 3 (HICIAP Perfect Honest Verifier Zero Knowl-
dege). The HICIAP protocol is perfect HVZK, provided
that n≥ 16.

Proof. A HICIAP proof consists of the values

comin,coma0 ,comA,comB,comC,aggin,aggC,W,

trMIPP-k, trHMIPP, trHWW, trTIPP.

We construct a simulator that knows a Groth16 simulation
trapdoor τ to crs and which can choose the verifier’s
randomness in advance, such that the simulated transcript
is indistinguishable from an honest prover’s transcript.
The simulator will also use the simulators described
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in Lemmas 4 and 6 which generate transcripts for
subprotocols HMIPP and HWW,

SimHMIPP(ck,comC,aggc,r)→ trHMIPP

SimHWW(coma0 ,W,P1,P2,P3,G1,G2)→ trHWW.

The simulator is given the Groth16 prepared public
inputs Ŝ and behaves as follows.

1) The simulator computes the first prover message
coma0 ,comA,comB,comC. It chooses randomness
a0,z1,z2← F and coma0 ←G1 and comC←GT . It
runs

(A′i,B
′
i,C
′
i) = SimGroth16(crs,τ,(a0, Ŝi))

for 1≤ i≤ n−2. It sets

A := A′|| [z1]1 || [z2]1
B := B′|| [γ]2 || [δ ]2
C := C′|| [1]1 || [z2]1

comA := A∗ ck1

comB := ck2 ∗B

2) The simulator computes the first verifier message
honestly and chooses r← F randomly.

3) The simulator uses Ŝ to construct aggin and trMIPP-k
honestly.

4) The simulator computes the second prover message
(aggC,W ) honestly as

aggC := Cr

W := [z1rn−1]1 +
n−2

∑
i=1

ria0W0

for r = (r,r2, . . . ,rn).
5) The simulator generates a transcript trHMIPP for the

HMIPP protocol by running

trHMIPP := SimHMIPP(crs,comC,aggc,r)

6) The simulator generates a transcript trHWW for the
HWW protocol by running

trHWW :=
SimHWW(coma0 ,W,P1,P2,P3,

n−2

∑
i=1

riW0, [rn−1]1)

7) The simulator computes aggAB honestly and gener-
ates a transcript trTIPP by running

trTIPP := TIPP(ck,(comA,comB,aggAB,r),A,B).

We will show that the simulator’s transcript is indis-
tinguishable from an honest prover’s. We look at the
distribution of each of the proof components.

The MIPP optimization. We first note that this
optimization is simulated perfectly, since it involves no
witness values. Specifically, comin, aggin, and trMIPP-k are
simulated perfectly, since both the prover and simulator
have access to the Groth16 public prepared inputs Ŝ.

The first prover message. We look at coma0 , comA,
comB, and comC. In the real prover execution: coma0 is
distributed uniformly at random because it is randomized
by z3; comA is distributed uniformly at random because
it is randomized by z2; comB is distributed uniformly
at random because it is randomized by B′n−2; comC is
distributed uniformly at random because it is randomized
by z4. In the simulated execution: coma0 is chosen
uniformly at random; comA is distributed uniformly
at random because it is randomized by z2; comB is
distributed uniformly at random because it is randomized
by B′n−2; comC is chosen uniformly at random. Thus
both the provers and the simulators first messages are
distributed randomly and are indistinguishable.
The second prover message. We second look at aggC,
W . In the real prover execution: aggC is distributed
uniformly at random because it is randomized by C′n−2;
W is distributed uniformly at random because it is
randomized by z1. In the simulated execution: coma0
is chosen uniformly at random; aggC is distributed
uniformly at random because it is randomized by C′n−2;
comW is distributed uniformly at random because it
is randomized by z1. Thus both the provers and the
simulators second messages are distributed randomly and
are indistinguishable.
The hidden MSM argument. We see that trHMIPP gen-
erated by the prover and simulator are indistinguishable
by the zero-knowledge of HMIPP (Lemma 4).
The HWW argument. We see that trHWW generated
by the prover and simulator are indistinguishable by the
perfect zero-knowledge of HWW (Lemma 6).
The TIPP argument. In order to argue that trTIPP
generated by the prover and simulator are indistinguish-
able we must look at the rerandomizations of each
(Ai,Bi,Ci). The bulk of the following argument consists of
demonstrating that enough values in the HICIAP protocol
are independent and uniformly distributed. To do this, we
associate each iid uniform blinding factor to at most one
transcript variable. One thing to be careful about here is
enforcing the “at most one” requirement.

Following [HKR19] we define a masking set M of size
O(log2 n) that defines a position of randomized values
that will ensure the transcripts appear random in the
recursion. We track the parts of the TIPP transcript which
are functions of A,B,ck1,ck2 (where we let A represent
r�A and ck1 represent r−1�ck1 for simplicity). In each
round of the TIPP protocol (of which there are logn),
the prover sends six values:

comLA := A[:h] ∗ ck1 comRA := A[h:] ∗ ck1

comLB := ck2 ∗B[:h] comRB := ck2 ∗B[h:]

aggLR := A[:h] ∗B[h:] aggRL := A[h:] ∗B[:h]
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The verifier sends a challenge x, which defines the
prover’s values for the next round:

A′ := A[:h]+ x ·A[h:] ck′1 := ck1,[:h]+ x−1 · ck1,[h:]

B′ := B[:h]+ x−1 ·B[h:] ck′2 := ck2,[:h]+ x · ck2,[h:]

Note that a randomized Ai value in round k will
yield a uniform value of A j in round k + 1, where
j ≡ i (mod 2k−1), and similarly for Bi.

With 6 proof elements in each round, we need to
ensure there are at least 6 randomizers per round, and
that one unique randomizer appears in each proof element.
We divide them as 3 randomizers in A (to random-
ize comLA,comRA,aggLR) and 3 in B (to randomize
comLB,comRB,aggRL). We define the masking set

M= {2k,2k +1}`−1
k=2∪{2

k−1}`−1
k=2,

where `= log2(n). The two sets making up M are non-
overlapping. Note that because log2(n)≥ 4 we have that
M also does not overlap with the blinders B′n−2 or C′n−2.

For the components aggLR and aggRL in the TIPP
argument, we must use the fact that with overwhelming
probability, none of the components of a Groth16 proof
(Ai,Bi,Ci) equals 0. This implies that the rerandomization
is a uniform proof of the same statement, and also
contains no zeros.

With this in mind we argue that M is sufficient to
randomize the distribution of the comLA, comRA, aggLR
components of TIPP. To see this, observe that in round
k with verifier challenges x0, . . . ,xk−1

comLA =

∏
b∈{0,1}`−k−1

e

 ∑
s∈{0,1}k

A(s,0,b) fk,x(s), ∑
s∈{0,1}k

ckA,(s,1,b) fk,x−1(s)

 ,

comRA =

∑
b∈{0,1}`−k−1

e

 ∑
s∈{0,1}k

A(s,1,b) fk,x(s), ∑
s∈{0,1}k

ckA,(s,0,b) fk,x−1(s)

 ,

aggLR =

∏
b∈{0,1}`−k−1

e

 ∑
s∈{0,1}k

A(s,0,b) fk,x(s), ∑
s∈{0,1}k

B(s,1,b) fk,x−1(s)

 ,

where fk,x(s) := ∏
k−1
j=0

(
s jxk− j−1 +1− s j

)
for s ∈ {0,1}k

and Ab represents Ai when b is the binary representation
of the integer i. Thus

• A0,0,1,0,1 is included in comLA in the kth round and
corresponds to the blinder 2`−k−2 +1

• A0,1,0 is included in comRA in the kth round and
corresponds to the blinder 2`−k−1.

• A0,0,1 is included in aggLR in the kth round and
corresponds to the blinder 2`−k−1−1.

Denote

RLA,k,bbb = ∑
s∈{0,1}k

ckA,(s,1,b) fk,x−1(s)

and

RRA,k,bbb = ∑
s∈{0,1}k

ckA,(s,0,b) fk,x−1(s)

and

RLR,k,bbb = ∑
s∈{0,1}k

Bs,1,b fk,x−1(s)

Observe that with overwhelming probability, each of
{RLR,k−1,(0,0,1)}`−1

k=1 are non-zero, depend non-trivially
on xk−1, and have no dependence on xk Thus the
RLR,0,(0,000,1), . . . ,RLR,`−2,(0,000,1) are pairwise independent
and ensure that: the A0,0,1 term in aggLR,2 (denoting
the second round’s aggLR) is randomized by x1 and
thus is independent from the A0,0,1 terms in aggLR,1;
the A0,0,0,1 term in aggLR,3 is randomized by x2 and thus
is independent from the A0,0,0,1 terms in aggLR,1 and
aggLR,2; etc. Thus A0,0,1 perfectly blinds aggLR except
with negligible probability.

By the same argument, the RLA,k,(000,0,1,000,1) terms are
pairwise independent and the RLB,k,(000,1,000) terms are
pairwise independent ensuring independence between the
A000,0,1,000,1 terms in comLA,k and A000,1,000 terms in comLB,k
respectively. Thus A0,0,1,0,1, A0,1,0 terms perfectly blind
comLA, comRA except with negligible probability.

By a symmetric argument we see that B0,0,1,0,1, B0,1,0,
B0,0,1 perfectly blinds comLB, comRB, aggRL except with
negligible probability.

We now consider the penultimate round (round `−
1). Here the proof elements comLA, comLB, comRA and
comRB of both the honest prover and simulator take the
form

comLA = e(A`−1,1,H2),comRA = e(A`−1,2,H1),

comLB = e(G1,B`−1,2),comRB = e(G2,A`−1,1)

for ck1,`−1 = (H1,H2) and ck2,`−1 = (G1,G2). Thus the
proof elements

aggLR = e(A`−1,1,B`−1,2),aggRL = e(A`−1,2,B`−1,1)

are uniquely determined given comLA, comLB, comRA
and comRB. Hence they are sampled from the same
distribution.
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