
Sphinx: Enabling Privacy-Preserving Online Learning over the Cloud

Han Tian1 Chaoliang Zeng1 Zhenghang Ren1 Di Chai1,2 Junxue Zhang1,2 Kai Chen1 Qiang Yang1
1Hong Kong University of Science and Technology 2Clustar

Abstract—With the growing complexity of deep learning ap-
plications, users have started to delegate their data and models
to the cloud. Among these applications, online learning services,
which involve both training and inference procedures, are widely
deployed. To ensure privacy guarantee on the public cloud,
researchers have proposed a plethora of privacy-preserving deep
learning algorithms with different techniques, ranging from
obfuscation mechanisms to cryptographic tools. However, none of
them is applicable to online learning services. They either focus
only on inference or training procedure while ignoring the other,
or require non-colluding or trusted third parties.

In this paper, we present Sphinx, an efficient and privacy-
preserving online deep learning system without any trusted
third parties. Sphinx strikes a balance between model per-
formance, computational efficiency, and privacy preservation
with systematical optimizations on both private inference and
training protocols. At its core, Sphinx synthesizes homomorphic
encryption and differential privacy reciprocally to maintain the
model by keeping most of its parameters as plaintexts, enabling
fast training and inference protocol designs. Meanwhile, by
refining the homomorphic operation behaviors, Sphinx avoids
most of the heavyweight homomorphic operations and minimizes
the communication cost. As a result, Sphinx is able to reduce the
training time significantly while achieving real-time inference
without exposing user privacy. In our experiments, we find
that compared to the pure homomorphic encryption solution,
Sphinx is 35× faster for training and 4 orders of magnitude
faster for inference, providing real-time inference response (0.05
seconds for MNIST and 0.08 seconds for CIFAR-10). Our
experiments also demonstrate that Sphinx achieves promising
model accuracy under a tight privacy budget (96% accuracy
under ε = 2, δ = 10−5 for MNIST) without a trusted data
aggregator, and is more robust against practical reconstruction
attacks.

I. INTRODUCTION

Although deep learning has become the fundamental infras-
tructure and core functionality for many applications, the com-
putation requirement of decent training and fast inference on
deep neural networks keeps increasing. To relieve the compu-
tation overhead, machine-learning-as-a-service (MLaaS) sys-
tem is involved. The same trend happens in providing online
learning services, which involves both training and inference
procedures during the service time. For example, starting with
a baseline model trained on a generic and large dataset such as
ImageNet [1], the image classification service provider could
provide inference services as well as fine-tuned personalized
models for each user with their personal images.

Delegating the training and inference workloads to a public
cloud inevitably raises privacy concerns. To solve this prob-
lem, previous wisdom has developed MLaaS systems with
supports from various privacy-preserving techniques to protect
user privacy (Section II). However, given the unique charac-
teristic of online learning that requires both efficient inference

Client

Data

Server

Model

Predictions

Updates

Fig. 1: A privacy-preserving online deep learning service with
both training and inference services. Both the data and model
parameters are protected against the service provider.

and training procedures, none of the existing works is applica-
ble to online learning services on deep neural networks. They
either focus on providing inference service over encrypted data
([2]–[5]) that assumes a plain public model on the server, or
concentrate on the training procedure on encrypted models
([6]–[10]) that leads to inefficient inference. Moreover, other
potential solutions ([11]–[19]) make unrealistic assumptions
about the threat model, such as multiple non-colluding servers
or a trusted aggregator.

Therefore, we ponder a fundamental question: as demon-
strated in Figure 1, can we design an efficient and privacy-
preserving online learning framework without additional third
party requirements, e.g., non-colluding servers or a trusted
aggregator? Specifically, we focus on deep neural network, a
widely used model in online learning services.

In this paper, we present Sphinx, an efficient and privacy-
preserving online deep learning system offering both efficient
training and real-time inference services on deep neural net-
works without a trusted party. Sphinx protects both model
and input data, thus allowing users to delegate training and
inference tasks to cloud servers without exposing data pri-
vacy. Sphinx is applicable for feed-forward neural networks
consisting of fully connected layers and convolutional layers.

To achieve the above features, Sphinx uses differential
privacy to bridge privacy-preserving training and private in-
ference solutions. It also introduces new hybrid privacy-
preserving protocols for training and inference phases, respec-
tively, according to their specific characteristics and require-
ments. As far as we know, Sphinx is the first of its kind
in the regime of privacy preserving deep learning to adopt
different privacy-preserving protocols for both phases. To de-
sign privacy-preserving deep learning protocols by combining
different primitives together, we have two-fold key technical
challenges: i) how to design efficient and compatible training
and inference protocols with different primitives respectively
to fulfill their specific requirements, and ii) how to fully exploit

2487

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Han Tian. Under license to IEEE.
DOI 10.1109/SP46214.2022.00066

20
22

 IE
EE

 S
ym

po
si

um
 o

n 
Se

cu
rit

y 
an

d 
Pr

iv
ac

y 
(S

P)
 | 

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

48



the possible merits from the hybrid protocols, in terms of both
privacy and accuracy, by deliberately designing the privacy-
preserving operation behaviors.

At its core, Sphinx divides each linear layer in deep neural
networks into two parts: the linear component W and the
bias component b. Sphinx encrypts all the bias components
with homomorphic encryption (HE), and perturbs the linear
components with differential privacy (DP). We show that
this design enables our high throughput training and low
latency inference protocols (Section V), and builds a reciprocal
relation between DP and HE techniques from both theoretical
(Section VI) and empirical (Section IX) perspectives.

To accelerate the training procedure under the HE scheme,
Sphinx makes several system optimizations (Section VII).
First, by deliberately designing the homomorphic arithmetic
operation behaviors between features, gradients and model
parameters, it avoids most of the expensive rescaling and re-
linearization operations for ciphertext multiplications. Second,
Sphinx accelerates the encryption operation and reduces the
ciphertext size, which further lowers the communication time
between the client and server.

Sphinx combines the above insights and optimizations to
offer a reasonable privacy-accuracy trade-off, efficient training,
and real-time inference. In the experimental section (Section
IX), we show that Sphinx achieves 35× less training time and
5× lower communication costs for both neural networks on
MNIST and CIFAR-10 datasets than the pure HE method. For
inference, Sphinx achieves real-time inference in the online
phase (0.05s for MNIST and 0.08s for CIFAR-10), which is 4
orders of magnitude faster compared to the pure HE method.
Moreover, given the same privacy budget, Sphinx achieves
a similar model accuracy as the pure DP training algorithm
DPSGD in [15] (96% accuracy under ε = 2, δ = 10−5 for
MNIST) without a trustworthy server.

One line of criticism of DP-based algorithms is the huge
gap between the upper bound of privacy loss and the realistic
privacy leakage in adversarial scenarios [20]. To verify the pri-
vacy guarantee provided by Sphinx, we evaluate the privacy-
accuracy trade-off against current reconstruction attacks from
gradients [21] (Section IX-E). The result shows that even with
similar privacy cost compared to DP solutions, Sphinx can
achieve a significantly stronger defense against attacks in a
practical scenario.

II. RELATED WORK

This section reviews existing privacy-preserving deep learn-
ing solutions that focused either on privacy-preserving infer-
ence or on privacy-preserving training but not both, which
motivates our design of Sphinx. We provide a qualitative com-
parison between Sphinx and these works regarding the threat
model and relative training and inference speeds approximated
from their evaluation results in Table I.

Privacy-Preserving Inference on Neural Networks A num-
ber of solutions focus on the inference procedure, where the
server holds a well-trained model to provide predictions-as-a-
service for clients ([2]–[5], [24]–[28]). In this setting, since the

model is either public or proprietary to the service provider,
it is stored and evaluated as plaintext. Thus, the forward
propagation only involves matrix multiplications between the
encrypted input data and unencrypted model parameters, on
which lots of optimizations have been proposed. For instance,
Gazelle [3] introduced a hybrid secure inference algorithm,
where the linear layers are evaluated with packed additively
homomorphic encryption (PAHE) and the non-linear layers
with garbled circuits. Based on Gazelle, Delphi [5] improves
the inference latency significantly by bringing forward the
heavyweight cryptographic computations to the preprocessing
phase and developing a planner based on neural architecture
search (NAS) to search for the most efficient approximation
model meeting the target accuracy goal.

However, these optimizations for private inference cannot
be transferred into online learning setting, as the training
algorithm needs to encrypt the model parameters and gradients
to protect training data against the cloud. Our work, on the
other hand, is able to offer training and inference services
simultaneously in a privacy-preserving way.

Privacy-Preserving Training on Neural Networks Solutions
focusing on privacy-preserving training on neural networks
can be classified into centralized and distributed, depending
on the number of servers required. Some of the centralized
training methods ([10], [22], [29]) adopt HE to encrypt both
model weights and user data to outsource the training to the
service provider. However, their training processes involve
arithmetic operations between the encrypted neural network
layers and encrypted features, which is an order of magnitude
slower than the arithmetic operations between plaintexts and
ciphertexts (Table II). Furthermore, these solutions do not
take inference into consideration and simply apply the time-
consuming forward phase in training for evaluation. Our work,
however, provides a specific inference protocol based on
lightweight secret sharing techniques, which is much faster,
thus achieving real-time inference response.

Some other centralized training solutions adopt DP-based
algorithms to protect privacy information by introducing ran-
domization in the algorithm ([15]–[17], [19], [30]–[32]). For
instance, Abadi et al. [15] proposed differentially private
stochastic gradient descent (DPSGD) with Gaussian noise-
additive mechanism and proved a tighter bound on the privacy
guarantee. DP-FTRL improves DPSGD with tree aggregation
trick to get rid of sampling and shuffling [19]. Instead of
perturbing the gradients, some works proposed to introduce
randomization into the objective function [16], the interme-
diate activation features [17], and the labels [31]. However,
the trade-off between model performance and privacy level
in DP-based algorithms has long been criticized in practice.
Zhu at al. showed that to successfully defend privacy leakage
from gradients, the model performance may drop significantly
due to the noise added on gradients [33]. As a result, to
preserve model performance, the privacy constraint companies
and researchers used can hardly protect individual data ([34],
[35]). Also, while focusing on publishing perturbed models,

2488



MiniONN
[2]

Gazelle
[3]

Delphi
[5]

CryptoDL
[22]

[10]
DPSGD

[15]
DP-FTRL

[19]
SecureML

[11]
SecureNN

[13]
FLASH

[23]
SPHINX

Num of servers 1 1 1 1 1 1 1 2 3 4 1
Adversarial Model 1 P 1 P 1 P 1 P 1 P No No 1 P MT MT 1 P
Collusion / / / / / / / No No No /
Inference Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Latency (relative) 10× 1× 1/10× 100× 100× 1/100× 1/100× 10× 1× 1/10× 1/10×
Train No No No Yes Yes Yes Yes Yes Yes Yes Yes
Throughput (relative) / / / 1/100× 1/100× 100× 100× 1/10× 1× 10× 1×
Techniques HE,GC,SS HE,GC,SS HE,GC,SS HE HE DP DP HE,GC,SS SS SS HE,DP,SS

TABLE I: A qualitative comparison between existing privacy-preserving deep learning outsourcing schemes and Sphinx. A and
P denote active and passive adversarial capabilities. MT denotes honest majority setting, where most of the servers are assumed
to be trustworthy. HE, GC, SS and DP stand for homomorphic encryption, garbled-circuits, secret sharing and differential
privacy, respectively. The relative latency and throughput are approximated from their evaluation results.

DP-based algorithms do not protect the training and inference
data against the service provider in the MLaaS setting. Further-
more, they assume a trusted data aggregator to apply noise and
perform data aggregation, which is not needed in our work.

A number of works for distributed training solutions are
based on MPC algorithms, where the computations on private
data are distributed across multiple servers ([11]–[14], [23],
[36]–[38]). For instance, SecureML [11] firstly proposed MPC
alternatives to linear and non-linear functions to perform
secure neural network training and inference. ABY3 [12]
introduced the three-party computation version of ABY in [39]
to improve efficiency, allowing switching between arithmetic,
boolean, and Yao’s GCs. SecureNN [13] applied three-party
and four-party secure computation protocols to accelerate
neural network secure training. FLASH [23] proposed a four-
party privacy-preserving deep learning framework to achieve
the strongest security notion of guaranteed output delivery,
which allows one of the servers to be an active adversary.
However, all of them assume multiple non-colluding servers
or honest majority setting where the majority of the servers are
trustworthy, and thus are impractical under the MLaaS setting.

There are also a number of works focusing on privacy-
preserving federated learning, where multiple data owners col-
laboratively learn their local models without exposing user pri-
vacy ([40]–[52]). In the federated learning setting, the clients
maintain their data and update the model locally. For instance,
Shokri at al. proposed distributed selective stochastic gradient
algorithm (selective SGD) and applied DP mechanisms on
the uploaded gradients [40]. Meanwhile, Sinem Sav et al.
employed HE to perform federated neural network learning
across data owners with several cryptographic optimizations
[48]. In a federated learning setting, clients are the data owners
as well as main executors for the heavy computations of model
training rather than service providers. As we are focusing
on the MLaaS setting where the clients outsource the heavy
computations to the service provider with large amounts of
computation power, these works are beyond the scope of our
paper.

III. PRELIMINARIES

We provide basic knowledge about the threat model, deep
neural networks, and privacy-preserving techniques, including

HE and DP, that underlie Sphinx’s training and inference
protocols.

A. Threat Model

We consider a client-server model with two parties: client
A and server B, where client A owns the data and server B
provides training and inference services. In the training phase,
A continuously provides collected input data, and B provides
online training service to update the model. After following
the privacy-preserving training protocol, B generates a well-
trained model, which can be sent back to A or stored on the
server to provide further secure inference service for the client.
In the inference phase, the client provides the input data,
and the service provider outputs the prediction result based
on the trained model and the input data. During the training
and inference procedures, B should not obtain any sensitive
individual information from the input data. We consider a
semi-honest server as in [2], [3], [5], [11]: it adheres to the
protocol but is curious to infer privacy information from client
A based on all the available information provided during the
interaction.

B. DNN Training and Inference

Deep neural networks (DNNs), as a family of machine
learning models, adopt stacked artificial neural network layers
to extract features from raw data at different abstract levels
hierarchically. With stacked layers, deep learning models
can approximate arbitrary complex functions after training
on collected massive data, and is capable of performing
classification and regression tasks with higher accuracy and
robustness compared with classical machine learning models
[53]. Here, taking convolutional neural networks (CNNs) as
an example, we focus on the abstraction of DNNs from a
transformation perspective. A typical CNN processes a batch
of input images through a sequence of neural network layers
performing various transformations, including linear layer and
non-linear layers. The CNN output can be probabilities for
classification or prediction results for regression, based on the
target task setting.

Linear layers. In a CNN, linear layers are of two types:
convolutional (Conv) layers and fully-connected (FC) layers.
Generally, input raw images are processed by several Conv
layers to extract image features at different abstractions, which

2489



are then flattened and fed to the FC layers to generate
classification or regression results. Despite the differences in
terms of structure, implementation and functionality, they both
offer affine transformations involving linear transformations
and translations.

Non-linear layers. The non-linear layers perform non-linear
transformations on the input features. The most common
ones in CNNs are max-pooling functions and activation func-
tions. While activation functions such as ReLU and Sigmoid
generally perform non-linear functions on the input features
element-wise, the max-pooling function takes small chunks of
input images or feature maps to perform sub-sampling.

C. Homomorphic Encryption

In our work, we focus on the CKKS HE scheme proposed
in [54] and implemented in SEAL [55]. CKKS is a leveled
homomorphic encryption supporting a limited number of ad-
ditions and multiplications on ciphertexts based on the ring
learning with error (RLWE) problem. Here we only give a
brief introduction to CKKS and some operations (e.g., lazy
rescaling, lazy relinearization) involved in our optimization
section. For more details, please refer to [54].

1) Mathematical Background: To encrypt a message m ∈
CN/2, a vector of floating-point values, CKKS firstly encodes
it into a plaintext r. The plaintext space is a polynomial ring
r ∈ Zq[X]/(Φ2N (X)), where ΦM (X) is the M -th cyclotomic
polynomial and q the modulo of polynomial coefficients. Then
with the public key p, CKKS encrypts a plaintext r with the
public key into a ciphertext consisting of a pair of polynomials
(c0, c1). To protect the preferred precision of messages during
the encoding, CKKS multiplies the message by a scaling factor
∆ > 0 to keep precision of 1/∆.

CKKS supports addition and multiplication between cipher-
texts. More concretely, given two ciphertexts ct1 and ct2 from
messages m1 and m2, we have Dec(ct1+ct2) ≈ m1+m2 and
Dec(ct1 ∗ ct2) ≈ m1 ∗m2. Also, CKKS supports operations
between ciphertexts and plaintexts, which is much cheaper
than the corresponding operations between ciphertexts.

Rescaling After multiplication (with ciphertext or plaintext),
the scaling factor of the output ciphertext turns to ∆2 and
requires rescaling. CKKS performs rescaling by truncating a
ciphertext into a smaller modulus q/∆. For every ciphertext,
the number of rescaling operation allowed is called the ‘level’
of the ciphertext (denoted by L in the paper), representing the
number of multiplication/rescaling operations still allowed.

Relinearization After multiplication between two ciphertexts,
the result ciphertext size will grow exponentially. To prevent
it, CKKS performs relinearization to transform the ciphertext
back to a pair of polynomials. [56] presents this relinearization
technique in detail.

D. Differential Privacy

DP provides a theoretic privacy guarantee for randomized
algorithms. It is a formal definition of privacy loss in the
context of statistical and machine learning analysis. Through

DP, data curators can release statistical results while still
protecting individual information in the dataset.

Definition 1. A randomized mechanism M : D → R with
domain D and range R satisfies (ε, δ)-differential privacy if
and only if for any two adjacent inputs d, d′ ∈ D and for any
subset of outputs S ⊆ R, it holds that

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ. (1)

Adjacent inputs mean any two datasets that differ on only
one row. With this definition, DP mathematically guarantees
that the result of a DP analysis almost makes no difference
to the analysis, whether or not any individual’s private infor-
mation is included in the input. To fulfill its definition, DP
mechanism injects random noise into the original data or the
statistical results, so deleting a single record from the original
dataset will only generate a negligible effect on the algorithm
output. Thus, we can obtain meaningful statistical results with
acceptable accuracy loss. These mechanisms usually involve
a trade-off between model performance and privacy level,
depending on the noise.

IV. COMBINING DIFFERENTIAL PRIVACY AND
HOMOMORPHIC ENCRYPTION

In this section, by diving into the characteristics of DP
and HE, we make several key observations that motivate the
combination of DP and HE in our design of Sphinx.

Differential privacy improves efficiency. As shown in Table
II, we observe that the homomorphic arithmetic operations
(multiplication and addition) take much less time when one
operator is plaintext. As training and inference over DNNs
involve a lot of matrix multiplications, by introducing DP to
protect model parameters as plaintexts, we can significantly
reduce the computation overhead in the training procedure
compared to the pure HE methods. Furthermore, we observe
that DP enables the lightweight techniques used in private
inference works ([2], [3], [5]), which achieve low inference
latency yet assume a public inference model in plaintext. In
Sphinx, most of the model parameters are protected with DP
mechanism and stored in plaintexts on the service provider.
Thus, we can adopt the state-of-the-art cryptographic methods
for private inference in Sphinx and significantly reduce the
inference time in the online phase.

Secure computation improves privacy. We observe that
we can achieve DP preservation without a trusted aggregator
through secure computation schemes. Secure computation pro-
tocols ensure that the computation service provider executes
the computation task without learning anything about the input
data. For example, through HE, users can encrypt their data
before sending them to the aggregator [57]. HE allows the
aggregator to perform secure aggregation to get meaningful
statistical results, upon which the differentially private noise-
additive mechanism is applied. During the procedure, the
individual privacy is protected by HE all the time against the
aggregator. In this way, the combination of the two privacy-
preserving methods enables centralized differentially private

2490



FeatureW W

Bias

F FFeature

Client

Server

Encrypted
Unencrypted

FFeature

Bias Bias

W

ΔWΔBiasΔBias ΔBias

L

Forward propagation

Back propagation

Noise

ΔWΔW

Fig. 2: The architecture of Sphinx. For an DNN model, the linear components W are perturbed with DP, and the bias components
Bias are encrypted with HE. F denotes the non-linear layers.

Operation
Runtime (µs)

N = 212

L = 1
N = 213

L = 3
N = 214

L = 7
Add 21 83 330

Add plain 10 42 166
Multiply 228 906 3682

Multiply plain 78 306 1204
Rescale 441 1894 8254

Relinearize 1257 6824 44273
Encode 414 1144 3926
Encrypt 2034 29947 20947
Decode 520 1922 8898
Decrypt 72 288 1293

Rotate one step 1297 6958 44616
Rotate random 5175 29057 196113

TABLE II: SEAL CKKS performance test for basic operations
under λ=128-bit security. N : the cyclotomic polynomial de-
gree. L: the ’level’ of the ciphertexts.

training algorithms without the requirement of a trusted aggre-
gator. Experiments in Section IX-D have shown that Sphinx,
without a trusted server, achieves a comparable accuracy-
privacy trade-off to the pure DP methods.

Masking defends attacks. We find that by hiding the bias
parameters/gradients, we can effectively lower the risk of an
attacker reconstructing data under DP mechanisms. Geiping
et al. proved that to reconstruct the input of a biased fully-
connected layer uniquely from the network’s gradients, the
knowledge of the derivatives w.r.t both the bias and the
activation layer are essential [58]. By masking these gradients
and activations against potential attackers, Sphinx effectively
defends the reconstruction attacks under the same privacy
level, as shown in Section IX-E.

Based on the above observations, we propose Sphinx, a
privacy-preserving online learning framework for DNNs by
combining HE with DP. In Sphinx, all the linear layers in
DNNs are divided into two parts: the linear components and
the bias components. Sphinx encrypts the bias components
with HE, and perturbs the linear components with DP. We
note that this design builds a reciprocal relation between DP
and HE techniques:
• By leaving the linear components unencrypted and han-

dled by DP mechanisms, we can avoid most of the expen-

sive homomorphic ciphertext-ciphertext matrix operations
in the training procedure;

• With the noisy linear components as plaintexts, we can
adopt state-of-the-art secure inference protocols based on
secret sharing in the inference phase to achieve real-time
prediction response;

• With data and gradients encrypted, we can perform DP
mechanisms to add noise on the aggregated gradient with
no need to trust the cloud;

• Masked neural network layers make it practically harder
for attackers to spy on the input features.

V. DESIGN

This section describes the design of Sphinx in detail. We
illustrate the model architecture in Figure 2. Given one input
sample, the forward propagation operation for each convolu-
tional or fully connected layer in feed-forward neural networks
can be formalized as:

ai+1 = f(Wi
ᵀai + bi), (2)

where ai represents the input vector of the i-th layer (a1 is
the input data), Wi

ᵀai +bi is the affine transformation of the
input feature, and f denotes the composite function including
operations such as pooling and non-linear activation functions.
We separate the affine transformation into the linear part which
involves Wi, and the translation part that contains bi. We call
W = (W1,W2, ...WK) the linear components and b =
(b1,b2, ...bK) the bias components in the rest of the paper,
where K denotes the number of linear layers in the deep neural
networks. In this section, we will explain how to adopt HE
and DP in the two components, respectively, to harvest the
benefits from both techniques.

The design can be adopted for convolutional neural net-
works (CNN) and multilayer perceptron (MLP). Here we focus
on the convolutional neural networks containing convolutional
layers, non-linear activations, pooling layers, and fully con-
nected layers.

A. Training Phase

We observe from Table II that the homomorphic matrix mul-
tiplication between a ciphertext and a plaintext is much faster

2491



Algorithm 1: Sphinx Training Algorithm
Input : Client: Training dataset X with size N , noise

scale σ, gradient norm bound C; Server:
Model M with K layers, loss function
L(θ) = 1

N

∑
j L(θ,xj), learning rate ηt,

batch size B
Output: Trained model parameters θT = {WT , [bT ]}

1 The client creates an encryption key pair (PK,SK)
and send the public key to the server;

2 The server initializes the plaintext linear components
W0 and the encrypted bias components [b0] with
PK;

3 for t← 0 to T − 1 do
4 Client:
5 Takes a random sample batch B = {x1,x2, ...xB}

with sampling probability B/N , encrypt them with
PK and send the encrypted batch to the server;

6 Server:
7 Computes the gradients for the linear components

[∇WL(xj)] and bias components [∇bL(xj)]
according to Equation 3,4 for each sample xj;

8 Computes the average gradients of bias components:
[gb]← 1

B (
∑
j [∇bL(xj)]);

9 Updates the bias components:
[bt+1]← [bt]− ηt[gb];

10 Sends [∇WL(xj)] back to the client;
11 Client:
12 Decrypts [∇WL(xj)] with SK;
13 Clips the gradient:

∇WL̃(xj)← max(1,
‖∇WL(xj)‖2

C ) ;
14 Computes the average gradients of linear

components: gW ← 1
B (
∑
j ∇WL̃(xj));

15 Adds noise: g̃W ← gW +N(0, σ
2C2

B2 I) ;
16 Sends g̃W back to the server;
17 Server:
18 Update the linear components:

Wt+1 ←Wt − ηtg̃W;

than that between two ciphertexts. To exploit such performance
characteristic, for each layer, we extract and encrypt the bias
component b with HE, leaving the linear component W
perturbed with DP later. Here we show how this modification
avoids most of the computationally intensive operations and
improves training efficiency while still protecting the input
data and model functionality against the server.

During the training procedure, the client encrypts the train-
ing data and then sends it to the server as the encrypted input
of the first layer in the model. Given a ciphertext [u] and a
plaintext v, the scalar multiplication result is also a ciphertext
[u∗v]. Thus, for every layer in the neural networks, the forward
propagation operation can be formalized as

[ai+1] = f(Wi
ᵀ[ai] + [bi]), (3)

where only scalar multiplication and homomorphic addition

operation occur: the homomorphic matrix multiplication be-
tween ciphertexts is avoided with Wi unencrypted.

The forward propagation continues layer by layer until it
produces the cost function L(θ). To minimize it using gradient
descent, we need to adopt the backpropagation algorithm
to calculate the gradients of the cost function ∇θL(θ) with
respect to the model parameters θ, including W from the
linear components and b from the bias components. For one
layer described in Equation 2, starting from the gradient with
respect to the output of the layer ∇ai+1

L, the backpropagation
computation consists of two parts: (i) computing the gradients
on the current layer (∇bi

L and ∇Wi
L), and (ii) propagating

the gradients back to the previous layer (∇ai
L). As the prop-

agated gradients are encrypted, the backpropagation operation
in each layer can be formalized as follows:

[∇bi
L] = [∇ai+1

L]� f ′(Wi
ᵀ[ai] + [bi])

[∇Wi
L] = [ai]([∇ai+1

L]� f ′(Wi
ᵀ[ai] + [bi]))

ᵀ

[∇ai
L] = Wi([∇ai+1

L]� f ′(Wi
ᵀ[ai] + [bi])).

(4)

We can see from the formulas that with the linear components
W unencrypted, while the gradient calculation for each layer
(∇bi
L and ∇Wi

L) stays the same as that for the fully
encrypted model, the homomorphic matrix multiplications be-
tween ciphertexts are avoided during the gradient propagation,
i.e., calculating ∇ai

L.
The server trains neural networks with the well-known

stochastic gradient descent (SGD) algorithm, iterating on mini-
batches of the training dataset to update model parameters.
Algorithm 1 outlines Sphinx’s training algorithm. During the
process, the linear component Wi for each layer is perturbed
with DP via introducing additive noise on their gradients.
At each step, the client takes a random sample batch with
size B, encrypts it with the generated public key, and sends
it to the server as the input. Based on the input batch, the
server computes the encrypted gradients of all the model
parameters following the forwarding and back-propagation
formulas described above. For the bias components, the server
aggregates and averages the gradients locally, and directly
updates the model parameters [b]. For the linear components,
the server sends their gradients [∇WL(xj)] back to the client
for decryption. Upon receiving the encrypted gradients, the
client decrypts them with the private key and clips the gra-
dients to ensure that

∥∥∥∇WL̃(xj)
∥∥∥

2
≤ C, thus guaranteeing

that the noise added later is sufficient to meet the target DP
level. Finally, the client adds Gaussian noise on the averaged
gradients and sends perturbed g̃W back to the server to update
the model.

B. Inference Phase

In the inference phase, the client sends the encrypted
samples to the service provider for prediction or classification
requests. We design a specific protocol for inference based
on the following insights: i) while the training data are
prepared beforehand in mini-batches, inference samples often
come in a real-time stream requiring immediate feedback,

2492



and ii) in Sphinx, the updated model contains plain noisy
linear components. Thus, we can utilize the secret sharing
based technique used in private inference protocols on linear
operations [5], which assumes a public plaintext model on the
server. Here we give an overview of our protocol.

On the server, Sphinx converts the linear components W
into fixed-point representations and embeds them into a prime
finite field F . Once the model is updated, Sphinx takes a
preprocessing phase to generate secret shares between the
client and the server for each layer i:

1) The client and the service provider respectively generate
random masking vectors ri, si in Rn and Rm, where
n,m are the sizes of the input and output in i-th linear
layer.

2) The client encrypts ri with HE scheme and sends [ri] to
the server. The server then computes [Wi · ri +bi− si]
and sends it back to the client.

3) The client decrypts it and obtains (Wi · ri + bi − si).
Thus the client and the server hold an additive secret
sharing of Wiri + bi for each layer.

In the online phase, once an input sample x comes, Sphinx
executes the following steps starting with i = 1:

1) The client calculates x − ri and sends it to the server,
and the server calculates Wi(x − ri) + si. Since the
client has (Wi · ri + bi − si), the client and the server
now hold an additive secret sharing of Wix + bi.

2) The server sends Wi(x−ri)+si to the client who then
adds it with the local share to obtain Wix + bi, and
performs non-linear operations on it.

3) The client repeats the same procedure for the next layer.
In the inference algorithm, the encrypted bias components
are handled in the preprocessing phase, and all the arithmetic
operations in the online phase are performed over prime fields.

We note that private inference protocols generally perform
non-linear layers using MPC techniques such as garbled cir-
cuits to protect the intermediate features against both parties
[3], [5]. In our online learning setting, the training data also
comes from the client. Thus, Sphinx has no need to protect
the non-linear function results against the client and avoids
heavyweight cryptographic schemes.

To handle n inference samples, Sphinx needs n different
additive secret shares, which can also be prepared in mini-
batches to accelerate the preprocessing phase, as homomorphic
ciphertexts in CKKS are efficient for SIMD computations [54].

VI. PRIVACY ANALYSIS

We now provide privacy analysis for Sphinx. Essentially,
Sphinx has different levels of privacy preservations of user
data for the training and inference phases.

For the training phase of Sphinx, we adopt DP to provide
theoretical privacy guarantees. Our training protocol can be
viewed as a homomorphic version of DPSGD [15] without
a trusted server. It adopts the Sampled Gaussian mechanism
(SGM) that samples mini-batches from the dataset and adds
Gaussian noise on the aggregated gradients w.r.t. the linear

components. Sphinx enables centralized differentially private
training without a trusted server for several reasons: i) The
input data sent is protected by HE, thus not exposed to the
server; ii) the gradients calculated on the server side are in
encrypted form so that individual gradients are not exposed
to the cloud server, and iii) the noise-additive mechanism is
applied to the aggregated gradients on the client side after
decryption. Thus, the random number generator is preserved
against the server. During the training, only the perturbed
aggregated gradients of the linear components are exposed
to the server, which conforms to the threat model used in
DP-based methods ([15]–[17], [19], [31], [32]) that the DP
mechanism protects both the final model and the aggregated
gradients in mini-batches.

The DP mechanism in Sphinx is an instance of adaptive
composition, where we sequentially introduce noise on the
gradients for each training step. In DP analysis, the privacy
loss is defined as the random variable measuring the difference
between the two probability distributions before and after
adding noise. Specifically, for two adjacent inputs d and d′,
the privacy loss of a DP mechanism M at the outcome o is
defined as:

c (o;M, d, d′) , log
Pr[M(d) = o]

Pr [M (d′) = o]
. (5)

With more and more aggregated gradients exposed to the
server during the training process, the privacy loss accu-
mulates. In our training protocol, we adopt the moments
accountant method proposed in [15] to estimate and trace
the bound of the accumulated privacy loss. The moments
accountant performs composition on the log moments bounds,
which can lead to a tighter bound compared to the strong
composition theorem in [59]. Given two adjacent inputs d, d′

and the DP mechanism M , the λth moment is defined as:

αM (λ; d, d′) , logEo∼M(d) [exp (λc (o;M, d, d′))] . (6)

[15] has proven the composability of moments bound and how
it is related to the (ε, δ)-DP. Thus in Sphinx, the moments
accountant estimates the bound of αM(λ) at each learning
step and sums them all to estimate the overall bound, which
can be converted to the accumulated privacy cost during the
training procedure, i.e., the current (ε, δ)-DP guarantee. The
bound on the privacy loss of Sample Gaussian mechanism
has been studied in several works ([15], [60], [61]). Based on
the asymptotic bound proof in DPSGD [15], we have the DP
guarantee of our training protocol. Due to the post-processing
immunity property of DP, calculations on the model in the
inference phase will not incur any further privacy leaks on the
training data.

Theorem 1. Given the training batch size m, the number
of training steps T , and the size of the training dataset N ,
these exists constants c1, c2 that, ∀ε < c1

m2

N2T, ∀δ > 0,∀σ ≥
c2
m
√
Tlog(1/δ)

εN , Algorithm 1 is (ε, δ)-DP.

For the inference phase, we adopt the private inference
technique based on secret sharing. Here we prove that the

2493



inference protocol gives the privacy guarantee that the ser-
vice provider cannot infer any useful information about the
evaluated data. Specifically, for the inference protocol Π
between the server holding neural network model parameters
M = (W1,W2, ..,WK, [b1], [b2], ...[bK]) and the client
having the evaluated input data x, we prove that there exists
an efficient simulator Sim such that the view of of the server
executing Π is computationally indistinguishable from the
output of the simulator, i.e., ViewΠ

S ≈c SimS(M).
We give the simulator Sim that proceeds as follows:
1) Sim initializes the server with a uniform random tape. It

chooses a public key PK for the HE scheme and sends
PK to the server.

2) In the preprocessing phase, once the model is updated,
Sim encrypts 0, sends [0] to the server, and receives the
returned result for each layer.

3) In the online phase, once an input sample x comes, Sim
chooses a uniformly chosen r, sends it to the server, and
receives the returned result for each layer.

In the preprocessing phase, instead of sending the random
mask [ri], the simulator sends [0] to the server for each layer.
It follows from the semantic security of HE that they are
computationally indistinguishable. In the online phase, instead
of sending masked input x−ri, the simulator sends uniformly
chosen value from R. They are both uniformly distributed and
thus computationally indistinguishable.

As a result, the real world distribution is computationally
indistinguishable from the simulated distribution via a simple
hybrid argument. As the simulator does not use any informa-
tion about the evaluated input x, the server learns nothing in
the real world.

VII. OPTIMIZATIONS

We present several system optimizations for Sphinx, which
fully exploit the possible merits of the combination of cryp-
tographic tools and DP techniques to further accelerate the
encrypted model training procedure.

A. Fast Homomorphic Multiplication

To enable further multiplication, multiplication operation
between a ciphertext and a plaintext are followed by rescaling,
and that between two ciphertexts are followed by both rescal-
ing and relinearization. Inspired by previous HE-based meth-
ods seeking to avoid heavy rescaling and relinearization with
lazy rescaling [26] and lazy relinearization [62] techniques,
we deliberately design multiplication behaviors between model
parameters, input features and gradients in neural network
layers. We show that with the linear components as plaintexts,
Sphinx can eliminate most of the rescaling and relineariza-
tion operations during the training procedure1, which further
enables it to adopt smaller encryption parameters with a
shallower multiplicative depth, leading to less computation
time and communication cost. In particular, while the pure

1Except for those used in the rotation-based gradient aggregation over the
encrypted bias components in our algorithm, which consume at least one
’level’ of ciphertext.

Layer i Layer i+1

𝑾𝒊

[𝒂𝒊]: 𝑅0, 𝐿0 𝑾𝒊
𝑻 𝒂𝒊 : 𝑅1, 𝐿0

[𝒃𝒊]: 𝑅1, 𝐿0

𝑾𝒊
𝑻 𝒂𝒊 + [𝒃𝒊]: 𝑅1, 𝐿0x +

𝛁𝐚𝐢"𝟏𝐋⊙ 𝒇′ : R0, L0

𝛁𝒃𝒊𝐋 : R1, L0

+

Inverse-rescaling

x

𝛁𝑾𝒊𝐋 : R1, L1

x

DP-decryption

𝛁𝒂𝒊𝐋 : R1, L0

Fig. 3: The arithmetic operation behaviors between two layers
in Sphinx.

HE method requires at least three levels (L = 3, N = 213) for
rescaling operations during the training procedure2, Sphinx
allows the encryption parameters (L = 1, N = 212) with only
one level.

For every ciphertext, we set two flags (Rx, Lx) to represent
whether the ciphertext needs rescaling or relinearization for
further multiplication. Fresh encrypted ciphertexts have the
flags (R0, L0), which means that they are ready for multi-
plication. The resulting ciphertext of multiplication between
two ciphertexts has the flags (R1, L1), requiring rescaling and
relinearization operations to enable further multiplication. The
resulting ciphertext of multiplication between a ciphertext and
a plaintext has the flags (R1, L0), requiring only rescaling.

Based on the design in Section V, we illustrate the detailed
arithmetic operation behaviors for each layer in Sphinx in
Figure 3. In the forward propagation, the activations or input
features [ai] fed into layer i are multiplied and aggregated with
the plaintext linear component Wi with no rescaling needed.
The reason is that homomorphic addition can be performed
among the ciphertexts with the same augmented scaling factor
and ciphertext size. In particular, we can perform addition on
two ciphertexts if they both have the flags (R0, L1), (R1, L0),
or (R1, L1). We maintain our encrypted bias components with
the flags (R1, L0), thus the addition between WT

l [ai] and [bi]
can be proceed without rescaling. The result is then fed into
the non-linear activation function.

For backpropagation, given the gradients from the next layer
i + 1, the procedure follows Equation 4. The gradients of
the bias components [∇bi

L] can be obtained directly from
[∇ai+1

L] � f ′(Wi
ᵀai + bi) and have the flags (R0, L0). In

order to update bi efficiently, instead of performing rescaling
on [bi], we perform an inverse-rescaling operation on the
gradients [∇bi

L] to increase the scaling factor of ciphertexts
by simply performing scalar multiplication with 1, which is
much faster. The inverse-rescaled gradients have the flags
(R1, L0) now and can be updated into [bi] without further
rescaling.

For the computation of gradients with respect to the linear
components [∇Wi

L] and the propagated gradients [∇ai
L],

2The encrypted linear layers require at least 3 levels: two levels for the
rescaling operations after matrix multiplication in both FP and BP phases,
and one for rotation-based aggregation.

2494



the result goes back to the client for decryption and DP
mechanism (DP-decryption in Figure 3) to avoid further
rescaling and relinearization operations. Directly performing
decryption without rescaling and relinearization also results in
more accurate plaintexts, because rescaling performs rounding
on ciphertexts and relinearization introduces noise. We also
note that without relinearization, the size of the gradients
of linear components [∇Wi

L] will increase, resulting in a
higher communication cost. However, because the bottleneck
of DP-decryption is the ciphertext decryption on the client side
and Sphinx conducts the communication in an asynchronous
fashion, the overall training runtime will not increase.

B. Accelerating Client-Server Communication

Sphinx adopts an interactive protocol between the client and
the cloud server mainly for two purposes: i) to perform the
DP aggregation on the gradients of model linear components
as shown in Algorithm 1, and ii) to evaluate the non-linear
activation functions in plaintext on the client side for both
training and inference phases, which are not supported by the
current HE schemes. Also, the decryption and re-encryption
on the client-side work as client-aided bootstrapping to re-
fresh ciphertexts to allow more arithmetic operations [3].
The interactive protocol is straightforward: the server sends
the ciphertexts back to the client for evaluation. The client
decrypts and evaluates them in plaintext and sends them back
to the server after either re-encryption or DP mechanism as
shown in Algorithm 1.

To reduce the communication cost between the two parties,
we implement the following optimizations:

Forward propagation cache. In the training procedure,
to backpropagate the gradients across layers, i.e. calculating
[∇ai+1

L] � f ′(Wi
ᵀai + bi), the gradients of the non-linear

activation functions f ′(Wi
ᵀai + bi) are involved. Instead

of sending these encrypted activation functions back to the
client for decryption and gradient calculation in the back-
propagation phase, we realize that it is more efficient to
calculate them beforehand in the forward propagation to avoid
duplicate computations and communications. Thus, we design
the forward propagation cache in Sphinx: In the forward
propagation phase, the client caches the gradients of each
non-linear layer locally as plaintexts, which can later be used
in the backpropagation phase. For max-pooling layers, the
client caches the mapping between the input features and
subsampled output features. Thus, both the maximum feature
values and the subsampled indices are protected against the
service provider.

Zero decryption and zero encryption. In the training pro-
tocol, decryption and re-encryption occur in every ciphertext
sent to the client, for which we realize that no more arithmetic
operations are needed. Thus, Sphinx adopts zero decryption to
reduce the level of prepare-to-send ciphertexts to 0, resulting
in a much smaller ciphertext size during the communication.
Table III shows the ciphertext sizes under different encryption
parameters.

N = 212 N = 213 N = 214

L = 1 L = 0 L = 3 L = 0 L = 7 L = 0

Size (MB) 0.13 0.07 0.52 0.13 2.10 0.26

TABLE III: The ciphertext sizes under different cyclotomic
polynomial degrees and levels.

For the re-encryption part on the client size, we realize
that homomorphic addition between ciphertext and plaintext is
much faster than the encryption operation, as shown in Table
II. Thus, the client in Sphinx adopts an encryption method
we called zero encryption. In the offline preprocessing phase,
the client prepares a stream of zero ciphertexts by encrypting
0, which works as one-time pad ciphertexts. Once the client
needs to encrypt a message, it encrypts the plaintext by directly
adding it with a zero ciphertext and sends it to the server, thus
shortening the encryption time in the online phase.

VIII. SYSTEM IMPLEMENTATION

We implement Sphinx, our privacy-preserving online learn-
ing framework in C++. We use SEAL 3.6 as the homomorphic
encryption library3. Inspired by TenSEAL4, a library support-
ing homomorphic encryption operations on high-dimensional
tensors, we implement the homomorphic versions of the com-
mon operations in neural networks layers, such as convolution,
pooling, and dot-product. Following [26] and [24], we pack
our data and activation features in the batch axis (batch-
axis packing) during the training. For example, for an input
image, Sphinx stores a 3D ciphertext tensor of shape (C,H,W),
removing the batch dimension, which is much efficient for
training over mini-batches. Sphinx’s deep learning framework
implementation is based on KANN5, a lightweight library
allowing efficient inference and training on neural networks
including MLP, CNN, and RNN. We implement our inference
protocol based on Delphi6[5]. Furthremore, we adopt the
moment accountant implemented in [60] to keep track of
the privacy loss during the learning process7.

IX. EVALUATION

In this section, we evaluate the performance of Sphinx with
respect to both computation efficiency and privacy preserva-
tion. Our results reveal that:
• For training, Sphinx achieves 35× less training time and

5× lower communication cost for both neural networks
on MNIST and CIFAR-10 datasets than pure HE methods
(Section IX-B).

• For inference, Sphinx achieves real-time inference in the
online phase (0.05s for MNIST and 0.08s for CIFAR-10),
which is 5.8∗104× and 4.2∗105× faster compared to pure
HE methods, respectively. Moreover, the communication
cost of Sphinx is 1.9 ∗ 105× and 3.6 ∗ 104× lower for
both tasks (Section IX-C).

3https://github.com/microsoft/SEAL
4https://github.com/OpenMined/TenSEAL
5https://github.com/attractivechaos/kann
6https://github.com/mc2-project/delphi
7https://github.com/tensorflow/privacy

2495



• Given the same privacy budget, Sphinx achieves compa-
rable model accuracy compared with the pure DP training
algorithm DPSGD [15], without a trusted server (Section
IX-D).

• We observe that by masking the bias components, Sphinx
effectively defends the reconstruction attack from ex-
posed gradients, compared to the pure DP algorithm
(Section IX-E).

A. Evaluation Setup

We evaluate Sphinx on two physical machines for the two
parties, each with 40 Intel Xeon CPU E5-2683 v4 cores at
2.1GHz and 128GB memory. The two machines are connected
in LAN networking using a 10Gbps link. All experiments
are conducted under Ubuntu 18.04.5 LTS, and our library is
compiled using GCC 7.5.0 with -O2 optimization setting.

In following experiments, we use two image datasets:
1) The MNIST dataset contains 70,000 28*28 grayscale

images for handwritten digits from ’0’ to ’9’, 60,000 for
training, and 10,000 for testing. The task is to classify
the correct handwritten digit in the given image.

2) CIFAR-10 is another image dataset containing 60,000
32×32 color images (with 3 channels), 50,000 for
training and 10,000 for testing. The images in CIFAR-
10 are classified into 10 classes, including birds, cats,
planes, etc. The task is to classify the correct label for
the given color image. The images in CIFAR-10 are
more complicated with more labels and channels, thus
requiring deeper neural networks.

We implement and train the two neural network architec-
tures (Figure 4 and Figure 5) for each dataset similar to [2].
We add the bias components after the linear operation for
each convolutional layer. The best accuracy we achieve for
both non-private models on MNIST and CIFAR-10 is 98.5%
and 78.8%, respectively. To avoid the influence of thread
synchronization, we use a single thread for the server and the
client for runtime measurements in Section IX-B and IX-C.

1) Input: R28×28

2) Convolution: window size 5×5 with stride (1,1), number of
channels 16, no pad, with bias. Outputs: R16×24×24

3) ReLU: ReLU non-linear function. Outputs: R16×24×24

4) Average Pooling: window size 1×2×2, stride (2,2). Outputs:
R16×12×12

5) Convolution: window size 5×5 with stride (1,1), number of
channels 16, no pad, with bias. Outputs: R16×8×8

6) ReLU: ReLU non-linear function. Outputs: R16×8×8

7) Average Pooling: window size 1×2×2, stride (2,2). Outputs:
R16×4×4

8) Fully Connected: hidden neuron number 100. Outputs: R100×1

9) ReLU: ReLU non-linear function. Outputs: R100×1

10) Fully Connected: hidden neuron number 10. Outputs: R10×1

Fig. 4: The neural network architecture for the MNIST dataset.

B. Training with Sphinx

For training, we set the batch size B = 500 for the model in
Figure 4 on MNIST, and B = 2000 for the model in Figure 5

1) Input: R3×32×32

2) Convolution: window size 5×5 with stride (1,1), number of
channels 64, pad (2,2), with bias. Outputs: R64×32×32

3) ReLU: ReLU non-linear function. Outputs: R64×32×32

4) Average Pooling: window size 1×2×2, stride (2,2). Outputs:
R64×16×16

5) Convolution: window size 5×5 with stride (1,1), number of
channels 64, pad (2,2), with bias. Outputs: R64×16×16

6) ReLU: ReLU non-linear function. Outputs: R64×16×16

7) Average Pooling: window size 1×2×2, stride (2,2). Outputs:
R64×8×8

8) Convolution: window size 3×3 with stride (1,1), number of chan-
nels 64, bias is included for each channel. Outputs: R16×8×8

9) ReLU: ReLU non-linear function. Outputs: R64×8×8

10) Convolution: window size 1×1 with stride (1,1), number of
channels 64, pad (1,1), with bias. Outputs: R64×8×8

11) ReLU: ReLU non-linear function. Outputs: R64×8×8

12) Convolution: window size 1×1 with stride (1,1), number of chan-
nels 16, bias is included for each channel. Outputs: R16×8×8

13) ReLU: ReLU non-linear function. Outputs: R16×8×8

14) Fully Connected: hidden neuron number 10. Outputs: R10×1

Fig. 5: The neural network architecture for the CIFAR-10
dataset.

on CIFAR-10. The training data is shuffled, batched, encrypted
on the client and then sent to the cloud. We adopt the stochastic
gradient descent (SGD) method and set the learning rates to be
0.1 and 0.05 for both tasks. For CIFAR-10 task, we initialize
the convolutional layers with the pre-trained weights trained
on CIFAR-100 dataset.

We compare Sphinx with the pure homomorphic encryp-
tion (pure-HE) training method, where the whole model is
encrypted, and all homomorphic arithmetic operations occur
between ciphertexts. Our pure-HE version of the training
protocol is similar to [10]. For a fair comparison, we also adopt
the client-aided method for non-linear layers in the pure-HE
method to avoid expensive bootstrapping operations, but re-
move all the optimizations in Section VII. For both algorithms,
we encrypt the input and bias weights with the lowest modulus
levels available. We note that CryptoDL [22] also offers a HE-
based privacy-preserving training. However, it focuses on how
to accelerate the non-linear activation functions by replacing
them with polynomial functions, while Sphinx makes no
assumption on the model architecture and has no restrictions
on the form of non-linear activation functions. Thus it is
orthogonal to this paper.

Figure 6 and Figure 7 show the improvement of Sphinx over
the pure-HE method in terms of training time and communica-
tion cost, respectively. We observe that Sphinx achieves about
35× less training time and 5× lower communication cost for
both neural networks on MNIST and CIFAR-10 than the pure-
HE method. The main reason behind such improvement is that
Sphinx avoids most of the heavy homomorphic operations,
including ciphertext-ciphertext matrix multiplication, rescal-
ing, and relinearization, by protecting the linear components
as plaintexts. Furthermore, with the fast homomorphic multi-
plication optimization, Sphinx enables a shallower ciphertext
level with lesser computation and communication costs.

2496



Fig. 6: The training execution times on Sphinx and pure-HE
method for one batch.

Fig. 7: The training communication costs on Sphinx and pure-
HE method for one batch.

Table IV shows the breakdown performance in terms of
the contribution by each optimization proposed in Section
VII. We observe that while our naı̈ve Sphinx achieves a
7-8× runtime improvement compared to pure-HE method,
fast homomorphic multiplication optimization (Section VII-A)
further makes another 4-5× improvement on it. However, fast
homomorphic encryption optimization may cause a higher
communication cost due to the larger ciphertext size with
lazy relinearization. The other two optimizations, forward
propagation cache and zero encryption/decryption (Section
VII-B), reduce the communication overhead of the naı̈ve
method by about 20%, by reducing the required transferred
ciphertexts and their sizes. Putting all optimizations together,
Sphinx makes 5× and 1.3× improvements on the overall
runtime and the communication cost, respectively, compared
to the naı̈ve method.

C. Inference with Sphinx

For the inference task, we conduct inference queries for a
single sample and measure its inference latency. We compare
our inference protocol with i) the pure-HE method mentioned
above; ii) the forward propagation in the training protocol of
Sphinx (Sphinx-FP), where noisy linear components, as well
as all optimizations in Section VII, are used; iii) Gazelle [3],
a hybrid private inference method based on HE and garbled
circuits, and iv) Delphi [5], one of the state-of-the-art private
inference protocols based on secret sharing and garbled cir-
cuits.

Framework Runtime (s) Comm. (MB/image)

MNIST

Naı̈ve Sphinx 1916 26.1
+ FHM (§VII-A) 463 34.6
+ FP-Cache (§VII-B) 1908 20.2
+ ZE/ZD (§VII-B) 1890 22.5
+ All 390 18.3

CIFAR-10

Naı̈ve Sphinx 22182 28.8
+ FHM (§VII-A) 4589 36.3
+ FP-Cache (§VII-B) 22156 22.3
+ ZE/ZD (§VII-B) 21937 23.7
+ All 4376 20.0

TABLE IV: The benchmarks of Sphinx variants for training
one batch. Naı̈ve Sphinx only uses plain noisy linear com-
ponents. FHM means the fast homomorphic multiplication
design. FP-Cache denotes the forward propagation cache.
ZE/ZD means the zero encryption/decryption techniques.

Framework
Time (s) Communication (MB)

preproc. online preproc. online

MNIST

Pure-HE - 2915 - 13134
Sphinx-FP 14.4 108 - 3014

Gazelle 12.46 1.44 566.2 127.3
Delphi 6.34 0.09 91.8 0.42
Sphinx 6.01 0.05 87.6 0.07

CIFAR-10

Pure-HE - 33909 - 53048
Sphinx-FP 130 1065 - 13022

Gazelle 42.65 4.82 1907 623
Delphi 48.9 0.18 145 5.45
Sphinx 48.3 0.08 128 1.46

TABLE V: The benchmarks of various inference protocols.
Sphinx-FP prepares zero ciphertexts in the preprocessing
phase. Delphi requires a plain public model on the server,
thus cannot be used for privacy-preserving online learning.

Table V shows the latency and communication cost for
inference with Sphinx in both preprocessing and online phases.
Though we observe that the forward propagation of our
training protocol in Sphinx already achieves almost 30× faster
inference latency and 4× lower communication cost in both
datasets compared to the pure-HE inference, they are still both
expensive due to their homomorphic operations and batch-
axis processing style8. However, our secret sharing based
inference protocol in Sphinx achieves 5.8∗104× and 4.2∗105×
faster inference latency and lower communication cost by
about 1.9 ∗ 105× and 3.6 ∗ 104× in MNIST and CIFAR-
10, respectively, compared to the pure-HE method, which is
also comparable to state-of-the-art private inference methods
such as Delphi. The reason behind the improvement is that
Sphinx moves most of the heavy cryptographic operations
to the preprocessing phase. Therefore, it executes the on-
line inference involving only plain arithmetic operations over
prime field, achieving significantly lower latency. Sphinx also
achieves slightly better latency and communication overhead
than Delphi because our setting avoids the overhead of heavy
MPC techniques for non-linear layers, as mentioned in Section

8Sphinx-FP supports the batch size up to 2048 with the encryption
parameters (L = 1,N = 212).

2497



(a) MNIST, σ = 2 (b) MNIST, σ = 4 (c) MNIST, σ = 8

(d) CIFAR-10, σ = 2 (e) CIFAR-10, σ = 4 (f) CIFAR-10, σ = 8

Fig. 8: Results on the test accuracy and the privacy cost ε with Gaussian noise of different magnitudes on the MNIST and
CIFAR-10 datasets. We fix the δ = 10−5 for all the experiments. One epoch denotes one iteration over the training dataset.

V-B. We note that these private inference protocols, including
Gazelle and Delphi, require a public model and thus cannot
be utilized in the online learning setting.

D. Privacy Cost of Sphinx

To evaluate the privacy-utility trade-off in Sphinx, we fix
δ = 10−5 and keep track of privacy cost ε of the DP
mechanism and the model performance during the training
on MNIST and CIFAR-10, as suggested in [15]. To explore
the influence of the noise mechanism on model performance,
we conduct the experiments under different noise levels (σ =
2, 4, 8). The gradient norm bound C is set to 3. We compare
our Sphinx with the all-noisy algorithm, where all model
parameters, including the bias components, are protected with
the Sampled Gaussian mechanism, thus stored in the server
as plaintexts, which is equivalent to the DPSGD algorithm in
[15].

Figure 8 shows the evolution of accuracy and privacy cost ε
of Sphinx and the all-noisy algorithm as the training proceeds.
We have several observations: i) Sphinx achieves comparable
model accuracy compared with the all-noisy algorithm across
various privacy budgets and noise magnitudes without a trusted
data aggregator; ii) With a larger magnitude of noise (σ), the
training process consumes the privacy budget more slowly
(ε), yet leads to a more unstable learning process and harms
the convergence rate. For example, when σ = 8 for MNIST
and CIFAR-10, the model accuracies rise rapidly to 88% and
40% respectively in the first few epochs, but then struggle
to climb slowly under strong fluctuations; iii) On MNIST,
Sphinx achieves at most 92%, 94%, and 96% test accuracy for
(0.5,10−5), (1,10−5), and (2,10−5)-DP under different noise
levels. For CIFAR-10, Sphinx achieves 54%, 58%, and 72%

test accuracy for (2,10−5), (4,10−5), and (12,10−5)-DP, which
is slightly better across different noise levels compared to the
all-noisy algorithm. It is because the gradients of the bias
components are updated in encrypted form in Sphinx and thus
exempted from the DP mechanism, resulting in overall lesser
noise. Also, Sphinx only needs to clip the gradients over the
norm of the linear components, which is smaller than that of
the whole model: ‖gW‖2 < ‖g‖2, resulting in lesser gradient
loss during clipping and faster convergence.

We note that the accuracy drop of the differentially private
models on CIFAR-10 is larger than those on MNIST. The
phenomenon is also observed in previous work [15]. Besides
the large data and task complexity of CIFAR-10, one reason
is that deeper neural networks have more parameters, which
leads to a larger ‖gW‖2. Thus, with the same norm bound C,
more information in the gradients will be clipped. We have
also tried to choose a larger C, which, however, will increase
the added noise N(0, σ

2C2

B2 I) given the same noise level σ and
degrades the training performance even more. Due to the lack
of a solid theoretical foundation of deep learning and poor
interpretability of neural networks, how to choose a proper
model architecture, noise level σ and norm bound C based
on the task/dataset to maximize the model performance is a
challenging topic, which we leave for future work.

E. Sphinx Against Attacks

To evaluate how well Sphinx defends against known at-
tacks in practical scenarios, we conduct the gradient-matching
attack proposed in [21] on the noisy gradients of Sphinx’s
linear components. The gradient-matching attack is a type of
reconstruction attack method that can recover input images
and labels from the gradients of the model. Initialized from

2498



(a) Original

𝜎 = 0.1 𝜎 = 0.5 𝜎 = 1 𝜎 = 2

(b) All noisy

𝜎 = 0.1 𝜎 = 0.5 𝜎 = 1 𝜎 = 2

(c) Sphinx

Fig. 9: Visualization of the images recovered by the gradient-matching attack in [21] with different magnitudes of Gaussian
noise: (a) the original images, (b) the images recovered from the gradients of all noisy model, where both the linear and bias
components are plaintexts and protected by DP mechanisms, and (c) the images recovered from the gradients of Sphinx.

random input, it utilizes the gradient descent method to recover
the input images and labels by minimizing the difference
between the derived gradients and real gradients. We conduct
the attack on both Sphinx and the all-noisy model under the
CIFAR-10 configuration in Section IX-B. With a large batch
size, the attack effectiveness will decrease significantly due
to the huge number of possible combinations of individual
gradients in a batch. Hence, we relax the constraint and feed
the attacker with the individual gradients of input images,
on which the introduced noise on the aggregated gradients
is distributed uniformly. Because the gradient-matching attack
requires second-order derivatives of the loss function, we
replace the ReLU functions in non-linear layers with Sigmoid
functions, which have also been widely used in various deep
neural networks. For Sphinx, since the bias components are
encrypted, the attacker cannot derive the simulated input
gradients. Thus, we also initialize the bias components with
random values, and the attacker needs to learn the input as
well as the bias weights simultaneously.

Figure 9 shows the results of the attack. We observe
that although the defense against gradient-matching attack
strengthens with the increase in noise level, we can recover
most pixels of the input image from the complete set of noisy
gradients with small noise. With the noise level σ = 2, we can
still recognize the objects in some of the recovered images.
On the contrary, by masking the bias components with the HE
scheme, which is only a small part of the entire model, Sphinx
effectively defends the reconstruction attack than the pure DP
algorithm, even when their privacy costs are almost the same
as shown in Section IX-D. It is because the masking technique
requires the attacker to infer the hiding model parameters and
the input data simultaneously, which is often harder under the
same noise level.

X. CONCLUSION AND FUTURE WORK

In conclusion, we presented Sphinx, a privacy-preserving
online learning system. Sphinx divides online learning into the
training and inference phases and combines different privacy-
preserving techniques reciprocally. Sphinx has significantly
accelerated the privacy-preserving training and inference, en-
abling privacy-preserving online learning services on deep
neural networks.

As Sphinx is compatible with any differentially private
training algorithms that protect aggregated gradients in mini-
batches, we can also replace the Sampled Gaussian Mechanism
with other DP mechanisms with various features according
to the application requirements and data characteristics. For
example, Kairouz et al. proposed an online learning DP
mechanism that allows a more flexible data access pattern [19],
which can be adopted in Sphinx when the training data is Non-
IID. We will explore and evaluate the combinations between
different DP mechanisms and HE schemes in the future.

In the inference phase of Sphinx, we adopted the secret
sharing technique in the preprocessing phase to accelerate
the inference. However, we need to rerun the preprocessing
phase upon the updated model parameters, causing a waste of
computation resources. For future work, we envision a privacy-
preserving online learning approach whose previous prepro-
cessing results can be aligned with new model parameters with
few extra calculations once the model is updated.

ACKNOWLEDGEMENT

This work is supported in part by the Hong Kong
RGC TRS T41-603/20R, GRF-16215119, GRF-16213621
and National Key R&D Program of China under Grant
No.2018AAA0101100. We thank our shepherd and the anony-
mous reviewers for their constructive feedback and sugges-
tions. Kai Chen is the corresponding author of this paper.

2499



REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[2] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 619–631.

[3] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A
low latency framework for secure neural network inference,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
1651–1669.

[4] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private ex-
ecution of neural networks in trusted hardware,” arXiv preprint
arXiv:1806.03287, 2018.

[5] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 2505–2522.

[6] J. L. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup, “Doing
real work with fhe: the case of logistic regression,” in Proceedings of
the 6th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2018, pp. 1–12.

[7] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic
regression based on homomorphic encryption: Design and evaluation,”
JMIR medical informatics, vol. 6, no. 2, p. e19, 2018.

[8] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions of
records,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 334–348.

[9] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and
X. Jiang, “Healer: homomorphic computation of exact logistic regression
for secure rare disease variants analysis in gwas,” Bioinformatics,
vol. 32, no. 2, pp. 211–218, 2016.

[10] K. Nandakumar, N. Ratha, S. Pankanti, and S. Halevi, “Towards deep
neural network training on encrypted data,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 0–0.

[11] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 19–38.

[12] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 35–52.

[13] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure compu-
tation for neural network training,” Proceedings on Privacy Enhancing
Technologies, vol. 2019, no. 3, pp. 26–49, 2019.

[14] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“Quotient: two-party secure neural network training and prediction,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1231–1247.

[15] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[16] N. Phan, Y. Wang, X. Wu, and D. Dou, “Differential privacy preservation
for deep auto-encoders: an application of human behavior prediction,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30,
no. 1, 2016.

[17] N. Phan, X. Wu, H. Hu, and D. Dou, “Adaptive laplace mechanism:
Differential privacy preservation in deep learning,” in 2017 IEEE In-
ternational Conference on Data Mining (ICDM). IEEE, 2017, pp.
385–394.

[18] Z. Bu, J. Dong, Q. Long, and W. J. Su, “Deep learning with gaussian
differential privacy,” Harvard data science review, vol. 2020, no. 23,
2020.

[19] P. Kairouz, B. Mcmahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu,
“Practical and private (deep) learning without sampling or shuffling,”
in Proceedings of the 38th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 5213–5225.
[Online]. Available: http://proceedings.mlr.press/v139/kairouz21b.html

[20] B. Jayaraman and D. Evans, “Evaluating differentially private ma-
chine learning in practice,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1895–1912.

[21] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

[22] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service.” Proc. Priv. Enhancing Tech-
nol., vol. 2018, no. 3, pp. 123–142, 2018.

[23] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “Flash: Fast and
robust framework for privacy-preserving machine learning.” Proc. Priv.
Enhancing Technol., vol. 2020, no. 2, pp. 459–480, 2020.

[24] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International Conference on
Machine Learning. PMLR, 2016, pp. 201–210.

[25] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” arXiv preprint arXiv:1711.05189, 2017.

[26] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “ngraph-
he2: A high-throughput framework for neural network inference on
encrypted data,” in Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, 2019, pp. 45–56.

[27] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushan-
far, “{XONN}: Xnor-based oblivious deep neural network inference,”
in 28th {USENIX} Security Symposium ({USENIX} Security 19), 2019,
pp. 1501–1518.

[28] A. Patra and A. Suresh, “Blaze: blazing fast privacy-preserving machine
learning,” arXiv preprint arXiv:2005.09042, 2020.

[29] A. Vizitiu, C. I. Nita, A. Puiu, C. Suciu, and L. M. Itu, “Applying
deep neural networks over homomorphic encrypted medical data,”
Computational and mathematical methods in medicine, vol. 2020, 2020.

[30] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2006, pp. 486–503.

[31] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, “Func-
tional mechanism: regression analysis under differential privacy,” arXiv
preprint arXiv:1208.0219, 2012.

[32] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised knowledge transfer for deep learning from private
training data,” arXiv preprint arXiv:1610.05755, 2016.

[33] L. Zhu and S. Han, “Deep leakage from gradients,” in Federated
Learning. Springer, 2020, pp. 17–31.

[34] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang, “Privacy loss in
apple’s implementation of differential privacy on macos 10.12,” arXiv
preprint arXiv:1709.02753, 2017.

[35] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggre-
gatable privacy-preserving ordinal response,” in Proceedings of the 2014
ACM SIGSAC conference on computer and communications security,
2014, pp. 1054–1067.

[36] B. Hie, H. Cho, and B. Berger, “Realizing private and practical phar-
macological collaboration,” Science, vol. 362, no. 6412, pp. 347–350,
2018.

[37] R. Rachuri and A. Suresh, “Trident: Efficient 4pc framework for privacy
preserving machine learning,” 2022.

[38] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” Proceedings on Privacy Enhancing Technologies,
2020.

[39] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.

[40] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1310–1321.

[41] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for federated learning on user-held data,” arXiv preprint
arXiv:1611.04482, 2016.

[42] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[43] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

2500



[44] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, “Pro-
tection against reconstruction and its applications in private federated
learning,” arXiv preprint arXiv:1812.00984, 2018.

[45] B. Jayaraman and L. Wang, “Distributed learning without distress:
Privacy-preserving empirical risk minimization,” Advances in Neural
Information Processing Systems, 2018.

[46] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “Hybridalpha:
An efficient approach for privacy-preserving federated learning,” in
Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security, 2019, pp. 13–23.

[47] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and
Y. Zhou, “A hybrid approach to privacy-preserving federated learning,”
in Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security, 2019, pp. 1–11.

[48] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat,
J. S. Sousa, and J.-P. Hubaux, “Poseidon: Privacy-preserving federated
neural network learning,” 2022.

[49] Z. Liu, L. Wang, and K. Chen, “Secure efficient federated knn for
recommendation systems,” in The International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery. Springer, 2020,
pp. 1808–1819.

[50] D. Chai, L. Wang, K. Chen, and Q. Yang, “Secure federated matrix
factorization,” IEEE Intelligent Systems, 2020.

[51] L. Yang, B. Tan, V. W. Zheng, K. Chen, and Q. Yang, “Federated
recommendation systems,” in Federated Learning. Springer, 2020, pp.
225–239.

[52] D. Chai, L. Wang, L. Fu, J. Zhang, K. Chen, and Q. Yang, “Federated
singular vector decomposition,” arXiv preprint arXiv:2105.08925, 2021.

[53] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

[54] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[55] “Microsoft SEAL (release 3.6),” https://github.com/Microsoft/SEAL,
Nov. 2020, microsoft Research, Redmond, WA.

[56] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key homomor-
phic encryption with packed ciphertexts with application to oblivious
neural network inference,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 395–
412.

[57] S. Goryczka, L. Xiong, and V. Sunderam, “Secure multiparty aggrega-
tion with differential privacy: A comparative study,” in Proceedings of
the Joint EDBT/ICDT 2013 Workshops, 2013, pp. 155–163.

[58] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients–how easy is it to break privacy in federated learning?” arXiv
preprint arXiv:2003.14053, 2020.

[59] C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential
privacy,” in 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science. IEEE, 2010, pp. 51–60.

[60] I. Mironov, K. Talwar, and L. Zhang, “R\’enyi differential privacy of the
sampled gaussian mechanism,” arXiv preprint arXiv:1908.10530, 2019.

[61] M. Bun, C. Dwork, G. N. Rothblum, and T. Steinke, “Composable and
versatile privacy via truncated cdp,” in Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, 2018, pp. 74–86.

[62] M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan,
“Optimized homomorphic encryption solution for secure genome-wide
association studies,” BMC Medical Genomics, vol. 13, no. 7, pp. 1–13,
2020.

2501


