
Bad‌‌ Characters:
Imperceptible NLP Attacks

Nicholas Boucher
University of Cambridge

Computer Science & Technology
nicholas.boucher@cl.cam.ac.uk

Ilia Shumailov
University of Cambridge

and Vector Institute
ilia.shumailov@cl.cam.ac.uk

Ross Anderson
University of Cambridge

and University of Edinburgh
ross.anderson@cl.cam.ac.uk

Nicolas Papernot
University of Toronto
and Vector Institute

nicolas.papernot@utoronto.ca

Abstract—Several years of research have shown that machine-
learning systems are vulnerable to adversarial examples, both in
theory and in practice. Until now, such attacks have primarily
targeted visual models, exploiting the gap between human and
machine perception. Although text-based models have also been
attacked with adversarial examples, such attacks struggled to
preserve semantic meaning and indistinguishability. In this paper,
we explore a large class of adversarial examples that can be
used to attack text-based models in a black-box setting without
making any human-perceptible visual modification to inputs.
We use encoding-specific perturbations that are imperceptible
to the human eye to manipulate the outputs of a wide range
of Natural Language Processing (NLP) systems from neural
machine-translation pipelines to web search engines. We find
that with a single imperceptible encoding injection – representing
one invisible character, homoglyph, reordering, or deletion – an
attacker can significantly reduce the performance of vulnerable
models, and with three injections most models can be functionally
broken. Our attacks work against currently-deployed commercial
systems, including those produced by Microsoft and Google, in
addition to open source models published by Facebook, IBM, and
HuggingFace. This novel series of attacks presents a significant
threat to many language processing systems: an attacker can
affect systems in a targeted manner without any assumptions
about the underlying model. We conclude that text-based NLP
systems require careful input sanitization, just like conventional
applications, and that given such systems are now being deployed
rapidly at scale, the urgent attention of architects and operators
is required.

Index Terms—adversarial machine learning, NLP, text-based
models, text encodings, search engines

I. INTRODUCTION

Do x and х look the same to you? They may look identi-
cal to humans, but not to most natural-language processing
systems. How many characters are in the string “123‌‌‌”? If
you guessed 100, you’re correct. The first example contains
the Latin character x and the Cyrillic character h, which are
typically rendered the same way. The second example contains
97 zero-width non-joiners1 following the visible characters.

1Unicode character U+200C

Indeed, the title of this paper contains 1000 invisible characters
imperceptible to human users.

Several years of research have demonstrated that machine-
learning systems are vulnerable to adversarial examples, both
theoretically and in practice [1]. Such attacks initially targeted
visual models used in image classification [2], though there has
been recent interest in natural language processing and other
applications. We present a broad class of powerful adversarial-
example attacks on text-based models. These attacks apply
input perturbations using invisible characters, control charac-
ters, and homoglyphs – distinct characters with similar glyphs.
These perturbations are imperceptible to human users, but the
bytes used to encode them can change the output drastically.

We have found that machine-learning models that process
user-supplied text, such as neural machine-translation systems,
are particularly vulnerable to this style of attack. Consider, for
example, the market-leading service Google Translate [3]. At
the time of writing, entering the string “paypal” in the English
to Russian model correctly outputs “PayPal”, but replacing
the Latin character a in the input with the Cyrillic character
а incorrectly outputs “папа” (“father” in English). Model
pipelines are agnostic of characters outside of their dictionary
and replace them with <unk> tokens; the software that calls
them may however propagate unknown words from input to
output. While that may help with general understanding of
text, it opens a surprisingly large attack surface.

Simple text-encoding attacks have been used occasionally
in the past to get messages through spam filters. For example,
there was a brief discussion in the SpamAssassin project in
2018 about how to deal with zero-width characters, which
had been found in some sextortion scams [4]. Although such
tricks were known to engineers designing spam filters, they
were not a primary concern. However, the rapid deployment
of NLP systems in a large range of applications, from machine
translation [5] through copyright enforcement [6] to hate
speech filtering [7], is suddenly creating a host of high-value
targets that have capable motivated opponents.

1987

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Nicholas Boucher. Under license to IEEE.
DOI 10.1109/SP46214.2022.00045

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

41

TABLE I
IMPERCEPTIBLE PERTURBATIONS IN VARIOUS NLP TASKS

Input Rendering Input Encoding Task Output

Send money to account 1234 Send money to account U+202E4321 Translation (EN→FR) Envoyer de l’argent au compte 4321
(Send money to account 4321)

You are a coward and a fool. You akU+8re aqU+8 AU+8coward and
a fovU+8JU+8ol. Toxic Content Detection 8.2% toxic

(96.8% toxic unperturbed)
Oh, what a fool I feel!
/ I am beyond proud.

Oh, what a U+200BfoU+200Bol IU+200B
U+200BU+200Bfeel! / I am beyond proud. Natural Language Inference 0.3% contradiction

(99.8% contradiction unperturbed)

The main contribution of this work is to explore and develop
a class of imperceptible encoding-based attacks and to study
their effect on the NLP systems that are now being deployed
everywhere at scale. Our experiments show that many devel-
opers of such systems have been heedless of the risks; this is
surprising given the long history of attacks on many varieties
of systems that have exploited unsanitized inputs. We provide
a set of examples of imperceptible attacks across various NLP
tasks in Table I. As we will later describe, these attacks take
the form of invisible characters, homoglyphs, reorderings, and
deletions injected via a genetic algorithm that maximizes a
loss function defined for each NLP task.

Our findings present an attack vector that must be consid-
ered when designing any system processing natural language
that may ingest text-based inputs with modern encodings,
whether directly from an API or via document parsing. We
then explore a series of defenses that can give some protection
against this powerful set of attacks, such as discarding certain
characters prior to tokenization, applying character mappings,
and leveraging rendering and OCR for pre-processing. Defense
is not entirely straightforward, though, as application require-
ments and resource constraints may prevent the use of specific
defenses in certain circumstances.

This paper makes the following contributions:

• We present a novel class of imperceptible perturbations
for NLP models;

• We present four black-box variants of imperceptible at-
tacks against both the integrity and availability of NLP
models;

• We show that our imperceptible attacks degrade per-
formance against task-appropriate benchmarks for eight
models implementing machine translation, toxic content
detection, textual entailment classification, named entity
recognition, and sentiment analysis to near zero in un-
targeted attacks, succeed in most targeted attacks, and
slow inference down by at least a factor of two in sponge
example attacks;

• We evaluate our attacks extensively against both open
source models and Machine Learning as a Service
(MLaaS) offerings provided by Facebook, IBM, Mi-
crosoft, Google, and HuggingFace, finding that all tested
systems were vulnerable to three attack variants, and most
were vulnerable to four;

• We present defenses against these attacks, and discuss
why defense can be complex.

II. MOTIVATION

Researchers have already experimented with adversarial
attacks on NLP models [8]–[19]. However, up until now, such
attacks were noticeable to human inspection and could be
identified with relative ease. If the attacker inserts single-
character spelling mistakes [9]–[11], [15], they look out of
place, while paraphrasing [12] often changes the meaning of
a text enough to be noticeable. The attacks we discuss in this
paper are the first class of attacks against modern NLP models
that are imperceptible and do not distort semantic meaning.

Our attacks can cause significant harm in practice. Consider
two examples. First, consider a nation-state whose primary
language is not spoken by the staff at a large social media
company performing content moderation – already a well-
documented challenge [20]. If the government of this state
wanted to make it difficult for moderators to block a campaign
to incite violence against minorities, it could use imperceptible
perturbations to stifle the efficacy of both machine-translation
and toxic-content detection of inflammatory sentences.

Second, the ability to hide text in plain sight, by making
it easy for humans to read but hard for machines to process,
could be used by many bad actors to evade platform content
filtering mechanisms and even impede law-enforcement and
intelligence agencies. The same perturbations even prevent
proper search-engine indexing, making malicious content hard
to locate in the first place. We found that production search en-
gines do not parse invisible characters and can be maliciously
targeted with well-crafted queries. At the time of initial writ-
ing, Googling “The meaning of life” returned approximately
990 million results. Prior to responsible disclosure, searching
for the visually identical string containing 250 invisible "zero
width joiner" characters2 returned exactly none.

III. RELATED WORK

A. Adversarial Examples

Machine-learning techniques are vulnerable to many large
classes of attack [22], with one major class being adversarial
examples. These are inputs to models which, during inference,
cause the model to output an incorrect result [1]. In a white-
box environment – where the adversary knows the model –
such examples can be found using a number of gradient-
based methods which typically aim to maximize the loss
function under a series of constraints [1], [2], [23]. In the

2Unicode character U+200D

1988

TABLE II
TAXONOMY OF ADVERSARIAL NLP ATTACKS IN ACADEMIC LITERATURE.

Attack Features Integrity Availability
Imperceptible Semantic Similarity Blackbox Classification Translation DoS

RNN Adversarial Sequences [8] X
Synthetic and Natural Noise [9] X X
DeepWordBug [10] X X
HotFlip [11] X
Syntactically Controlled Paraphrase [12] X X X
Natural Adversarial Examples [13] X X X
Natural Language Adversarial Examples [14], [21] X X X
TextBugger [15] X X
seq2seq Adversarial Perturbations [16] X X
Probability Weighted Word Saliency [17] X X
Sponge Examples [18] X X
Reinforced Generation [19] X X X
Imperceptible Perturbations X X X X X X

black-box setting, where the model is unknown, the adversary
can transfer adversarial examples from another model [24], or
approximate gradients by observing output labels and, in some
settings, confidence [25].

Training data can also be poisoned to manipulate the
accuracy of the model for specific inputs [26], [27]. Bitwise
errors can be introduced during inference to reduce the model’s
performance [28]. Inputs can also be chosen to maximize the
time or energy a model takes during inference [18], or to
expose confidential training data via inference techniques [29].
In other words, adversarial algorithms can affect the in-
tegrity, availability and confidentiality of machine-learning
systems [18], [30], [31].

B. NLP Models
Natural language processing (NLP) systems are designed to

process human language. Machine translation was proposed
as early as 1949 [32] and has become a key sub-field of
NLP. Early approaches to machine translation tended to be
rule-based, using expert knowledge from human linguists,
but statistical methods became more prominent as the field
matured [33], eventually yielding to neural networks [5], then
recurrent neural networks (RNNs) because of their ability to
reference past context [34]. The current state of the art is
the Transformer model, which provides the benefits of RNNs
and CNNs in a traditional network via the use of an attention
mechanism [35].

Transformers are a form of encoder-decoder model [36],
[37] that map sequences to sequences. Each source language
has an encoder that converts the input into a learned inter-
lingua, an intermediate representation which is then decoded
into the target language using a model associated with that
language.

Regardless of the details of the model used for translation,
natural language must be encoded in a manner that can be
used as its input. The simplest encoding is a dictionary that
maps words to numerical representations, but this fails to
encode previously unseen words and thus suffers from limited
vocabulary. N-gram encodings can increase performance, but
increase the dictionary size exponentially while failing to

solve the unseen-word problem. A common strategy is to
decompose words into sub-word segments prior to encoding,
as this enables the encoding and translation of previously
unseen words in many circumstances [38].

C. Adversarial NLP

Early adversarial ML research focused on image classi-
fication [2], [39], and the search for adversarial examples
in NLP systems began later, targeting sequence models [8].
Adversarial examples are inherently harder to craft due to
the discrete nature of natural language. Unlike images in
which pixel values can be adjusted in a near-continuous and
virtually imperceptible fashion to maximize loss functions,
perturbations to natural language are more visible and involve
the manipulation of more discrete tokens.

More generally, source language perturbations that will
provide effective adversarial samples against human users
need to account for semantic similarity [16]. Researchers have
proposed using word-based input swaps with synonyms [17]
or character-based swaps with semantic constraints [11]. These
methods aim to constrain the perturbations to a set of trans-
formations that a human is less likely to notice. Both neu-
ral machine-translation [9] and text classification [10], [15]
models generally perform poorly on noisy inputs such as
misspellings, but such perturbations create clear visual artifacts
that are easier for humans to notice.

Using different paraphrases of the same meaning, rather
than one-to-one synonyms, may give more leeway. Paraphrase
sets can be generated by comparing machine back-translations
of large corpora of text [40], and used to systematically gener-
ate adversarial examples for machine-translation systems [12].
One can also search for neighbors of the input sentence in
an embedded space [13]; these examples often result in low-
performance translations, making them candidates for adver-
sarial examples. BLEU score is commonly used for assessing
the quality of machine translations [41], and therefore also for
assessing related attacks. Although paraphrasing can indeed
help preserve semantics, humans often notice that the results
look odd. Our attacks on the other hand do not introduce

1989

any visible perturbations, use fewer substitutions, and preserve
semantic meaning perfectly.

Genetic algorithms have been used to find adversarial
perturbations against inputs to sentiment analysis systems,
presenting an attack viable in the black-box setting without
access to gradients [14]. Reinforcement learning can be used to
efficiently generate adversarial examples for translation mod-
els [19]. There have even been efforts to combine academic
NLP adversarial techniques into easily consumable toolkits
available online [42], making these attacks relatively easy to
use. Unlike the techniques described in this paper, though, all
existing NLP adversarial example techniques result in human-
perceptible visual artifacts within inputs.

Michel et al. also propose that unknown tokens <unk>,
which are used to encode text sequences not recognized by
the natural language encoder in NLP settings, can be leveraged
to make compelling source language perturbations due to the
flexibility of the characters which encode to <unk> [16].
However, all methods proposed so far for generating <unk>
use visible characters.

We present a taxonomy of adversarial NLP attacks in
Table II.

D. Unicode

Unicode is a character set designed to standardize the
electronic representation of text [43]. As of the time of writing,
it can represent 143,859 characters across many different
languages and symbol groups. Characters as diverse as Latin
letters, traditional Chinese characters, mathematical notation,
and emojis can all be represented in Unicode. It maps each
character to a code point, or numerical representation.

These numerical code points, often denoted with the prefix
U+, can be encoded in a variety of ways, although UTF-8 is
the most common. This is a variable-length encoding scheme
that represents code points as 1-4 bytes.

A font is a collection of glyphs that describe how code
points should be rendered. Most computers support many
different fonts. It is not required that fonts have a glyph
for every code point, and code points without corresponding
glyphs are typically rendered as an ‘unknown’ placeholder
character.

E. Unicode Security

As it has to support a globally broad set of languages, the
Unicode specification is quite complex. This complexity can
lead to security issues, as detailed in the Unicode Consortium’s
technical report on Unicode security considerations [44].

One primary security consideration in the Unicode specifi-
cation is the multitude of ways to encode homoglyphs, which
are unique characters that share the same or nearly the same
glyph. This problem is not unique to Unicode; for example,
in the ASCII range, the rendering of the lowercase Latin ‘l’3

is often nearly identical to the uppercase Latin ‘I’4. In some

3ASCII value 0x6C
4ASCII value 0x49

fonts, character sequences can act as pseudo-homoglyphs, such
as the sequences ‘rn’ and ‘m’ in most sans serif fonts.

Such visual tricks provide a tool in the arsenal of cyber
scammers [45]. The earliest example we found is that of pay-
paI.com (notice the last domain name character is an uppercase
‘I’), which was used in July 2000 to trick users into disclosing
passwords for paypal.com [46]. Indeed, significant attention
has since been given to homoglyphs in URLs [47]–[50]. Some
browsers attempt to remedy this ambiguity by rendering all
URL characters in their lowercase form upon navigation, and
the IETF set a standard to resolve ambiguities between non-
ASCII characters that are homoglyphs with ASCII characters.
This standard, called Punycode, resolves non-ASCII URLs to
an encoding restricted to the ASCII range. For example, most
browsers will automatically re-render the URL pаypаl.com
(which uses the Cyrillic а5) to its Punycode equivalent xn–
pypl-53dc.com to highlight a potentially dangerous ambigu-
ity. However, Punycode can introduce new opportunities for
deception. For example, the URL xn–google.com decodes to
four semantically meaningless traditional Chinese characters.
Furthermore, Punycode does not solve cross-script homoglyph
encoding vulnerabilities outside of URLs. For example, ho-
moglyphs have in the past caused security vulnerabilities in
various non-URL areas such as certificate common names.

Homoglyphs have also been proposed for information hid-
ing, such as encoding information via sequences of different
whitespace characters [51].

Unicode attacks can also exploit character ordering. Some
character sets (such as Hebrew and Arabic) naturally display in
right-to-left order. The possibility of intermixing left-to-right
and right-to-left text, as when an English phrase is quoted
in an Arabic newspaper, necessitates a system for managing
character order with mixed character sets. For Unicode, this
is the Bidirectional (Bidi) Algorithm [52]. Unicode specifies a
variety of control characters that allow a document creator to
fine-tune character ordering, including Bidi override characters
that allow complete control over display order. The net effect
is that an adversary can force characters to render in a different
order than they are encoded, thus permitting the same visual
rendering to be represented by a variety of different encoded
sequences. Historically, Bidi overrides have been used by
scammers to change the appearance of file extensions, thus
enabling stealthy dissemination of malware [53].

Lastly, an entire class of vulnerabilities stems from bugs
in Unicode implementations. These have historically been
used to generate a range of interesting exploits about which
it is difficult to generalize. While the Unicode Consortium
does publish a set of software components for Unicode
support [54], many operating systems, platforms, and other
software ecosystems have different implementations. For ex-
ample, GNOME produces Pango [55], Apple produces Core
Text [56], while Microsoft produces a Unicode implementation
for Windows [57].

5Unicode character U+0430

1990

In what follows, we will mostly disregard bugs and focus
on attacks that exploit correct implementations of the Unicode
standard. We instead exploit the gap between visualization and
NLP pipelines.

IV. BACKGROUND

A. Attack Taxonomy
In this paper, we explore the class of imperceptible attacks

based on Unicode and other encoding conventions which are
generally applicable to text-based NLP models. We see each
attack as a form of adversarial example whereby imperceptible
perturbations are applied to fixed inputs into existing text-
based NLP models.

We define these imperceptible perturbations as modifica-
tions to the encoding of a string of text which result in either:
• No visual modification to the string’s rendering by a

standards-compliant rendering engine compared to the
unperturbed input, or

• Visual modifications sufficiently subtle to go unnoticed
by the average human reader using common fonts.

For the latter case, it is alternatively possible to replace
human imperceptibility as indistinguishability by a computer
vision model between images of the renderings of two strings,
or a maximum pixel-wise difference between such rendering.

We consider four different classes of imperceptible attack
against NLP models:

1) Invisible Characters: Valid characters which by design
do not render to a visible glyph are used to perturb the
input to a model.

2) Homoglyphs: Unique characters which render to the
same or visually similar glyphs are used to perturb the
input to a model.

3) Reorderings: Directionality control characters are used
to override the default rendering order of glyphs, allow-
ing reordering of the encoded bytes used as input to a
model.

4) Deletions: Deletion control characters, such as the
backspace, are injected into a string to remove injected
characters from its visual rendering to perturb the input
to a model.

These imperceptible text-based attacks on NLP models
represent an abstract class of attacks independent of different
text-encoding standards and implementations. For the purpose
of concrete examples and experimental results, we will assume
the near-ubiquitous Unicode encoding standard, but we believe
our results to be generalizable to any encoding standard with
a sufficiently large character and control-sequence set.

Further classes of text-based attacks exist, as detailed in
Table I, but all other attack classes produce visual artifacts.

The imperceptible text-based attacks described in this paper
can be used against a broad range of NLP models. As
we explain later, imperceptible perturbations can manipulate
machine translation, break toxic content classifiers, degrade
search engine querying and indexing, and generate sponge
examples [18] for denial-of-service (DoS) attacks, among
other possibilities.

B. NLP Pipeline

Modern NLP pipelines have evolved through decades of re-
search to include a large number of performance optimizations.
Text-based inputs undergo a number of pre-processing steps
before model inference. Typically a tokenizer is first applied
to separate words and punctuation in a task-meaningful way,
an example being the Moses tokenizer [58] used in the Fairseq
models evaluated later in this paper. Tokenized words are then
encoded. Early models used dictionaries to map tokens to
encoded embeddings, and tokens not seen during training were
replaced with a special <unk> embedding. Many modern
models now apply Byte Pair Encoding (BPE) or the WordPiece
algorithm [59] before dictionary lookups. BPE, a common data
compression technique, and WordPiece both identify common
subwords in tokens. This often results in increased perfor-
mance, as it allows the model to capture additional knowledge
about language semantics from morphemes [60]. Both of these
pre-processing methodologies are commonly used in deployed
NLP models, including all five open source models published
by Facebook, IBM, and HuggingFace evaluated in this paper.

Modern NLP pipelines process text in a very different
manner than text-rendering systems, even when dealing with
the same input. While the NLP system is dealing with the
semantics of human language, the rendering engine is dealing
with a large, rich set of different control characters. This struc-
tural difference between what models see and what humans
see is what we exploit in our attacks.

C. Attack Methodology

We approach the generation of adversarial samples as an
optimization problem. Assume an NLP function f(x) = y :
X → Y mapping textual input x to y. Depending on the
task, Y is either a sequence of characters, words, or hot-
encoded categories. For example, translation tasks such as
WMT assume Y to be a sequence of characters, whereas
categorization tasks such as MNLI assume Y to be one of three
categories. Furthermore, we assume a strong black-box threat
model where adversaries have access to model output but
cannot observe the internals. This makes our attack realistic:
we later show it can be mounted on existing commercial
ML services. In this threat model, an adversary’s goal is to
imperceptibly manipulate f using a perturbation function p.

These manipulations fall into two categories:
• Integrity Attack: The adversary aims to find p such that
f(p(x)) 6= f(x). For a targeted attack, the adversary fur-
ther constrains p such that the perturbed output matches
a fixed target t: f(p(x)) = t.

• Availability Attack: The adversary aims to find p such
that time(f(p(x))) > time(f(x)), where time measures
the inference runtime of f .

We also define a constraint on the perturbation function p:
• Budget: A budget b such that dist(x, p(x)) ≤ b. The

function dist may refer to any distance metric.
We define the attack as optimizing a set of operations

over the input text, where each operation corresponds to

1991

Fig. 1. Attack using invisible characters. Example machine translation input
is on the left with model output on the right. Invisible characters are denoted
by red boxes, such as between the ‘e’ and ‘c’.

the injection of one short sequence of Unicode characters
to perform a single imperceptible perturbation of the chosen
class. The length of the injected sequence is dependent upon
the class chosen and attack implementation; in our evaluation
we use one character injections for invisible characters and
homoglyphs, two characters for deletions, and ten characters
for reorderings, as later described. We select a gradient-free
optimization method – differential evolution [61] – to enable
this attack to work in the black-box setting without having
to recover approximated gradients. This approach randomly
initializes a set of candidates and evolves them over many
iterations, ultimately selecting the best-performing traits.

The attack algorithm is shown in Algorithm 1. It takes as
parameters input text x and attack A, representing either an
invisible character, homoglyph, reordering, or deletion attack.
A is a function which applies its attack according to the
parameters passed to it encoding the location and degree of the
perturbation, bounded by BA according to budget β. It also
takes a model T implementing an NLP task, and optionally
a target output y if performing a targeted attack. Finally, it
expects parameters representing a population size s, number of
evolutions m, differential weight F , and crossover probability
CR, which are all standard parameters of differential evolution
optimization [61]. In summary, the attack algorithm defines an
objective function F(·), which seeks to either maximize per-
turbed model output Levenshtein distance from its unperturbed
output, minimize model output Levenshtein distance to a target
value, or maximize model inference time. This objective func-
tion is then optimized using differential evolution, a common
gradient-free genetic optimization. Finally, the perturbed text
optimizing the objective function F(·) is returned.

D. Invisible Characters

Invisible characters are encoded characters that render to
the absence of a glyph and take up no space in the resulting
rendering. Invisible characters are typically not font-specific,
but follow from the specification of an encoding format.
An example in Unicode is the zero-width space character6

(ZWSP). An example of an attack using invisible characters
is shown in Figure 1.

6Unicode character U+200B

Algorithm 1: Imperceptible perturbations adversarial
example via differential evolution.

Input: text x, attack A with input bounds distribution BA,
NLP task T , target y, perturbation budget β, population
size s, evolution iterations m, differential weight
F ∈ [0, 2], crossover probability CR ∈ [0, 1]
Result: Adversarial example visually identical to x against
task T using attack A

Randomly initialize population P := {p0, . . . ,ps},
where pn ∼ BA(x)

if availability attack then
F(·) = execution_time(T (A(x, ·)))

else if integrity attack then
if targeted attack then
F(·) = levenshtein_distance(y, T (A(x, ·)))

else
F(·) = levenshtein_distance(T (x), T (A(x, ·)))

end if
end if
for i := 0 to m do B U is uniform dist.

for j := 0 to s do
pa,pb,pc

rand←−− P s.t. j 6= a 6= b 6= c
R ∼ U(0, |pj|)
p̂j := pj

for k := 0 to |pj| do
rj ∼ U(0, 1)
if rj < CR or R = k then

p̂jk = pak
+ F × (pbk

− pbk
)

end if
end for
if F(p̂j) ≥ F(pj) then

pj = p̂j

end if
end for

end for
f̄ := {F(p0), . . . ,F(ps)}
return A(x,pargmax(f̄))

It is important to note that characters lacking a glyph
definition in a specific font are not typically treated as invisible
characters. Due to the number of characters in Unicode and
other large specifications, fonts will often omit glyph defi-
nitions for rare characters. For example, Unicode supports
characters from the ancient Mycenaean script Linear B, but
these glyph definitions are unlikely to appear in fonts target-
ing modern languages such as English. However, most text-
rendering systems reserve a special character, often � or �? ,
for valid Unicode encodings with no corresponding glyph.
These characters are therefore visible in rendered text.

In practice, though, invisible characters are font-specific.
Even though some characters are designed to have a non-
glyph rendering, the details are up to the font designer. They
might, for example, render all traditionally invisible characters

1992

Fig. 2. Attack using homoglyphs. Example machine translation input is on
the left with model output on the right. Homoglyphs are highlighted with red
boxes, where j is replaced with U+3F3, i with U+456 and h with U+4BB.

by printing the corresponding Unicode code point as a base
10 numeral. Yet a small number of fonts dominate the modern
world of computing, and fonts in common use are likely to
respect the spirit of the Unicode specification. For the purposes
of this paper, we will determine character visibility using
GNU’s Unifont [62] glyphs. Unifont was chosen because of
its relatively robust coverage of the current Unicode standard,
its distribution with common operating systems, and its visual
similarity to other common fonts.

Although invisible characters do not produce a rendered
glyph, they nevertheless represent a valid encoded character.
Text-based NLP models operate over encoded bytes as inputs,
so these characters will be “seen” by a text-based model even
if they are not rendered to anything perceptible by a human
user. We found that these bytes alter model output. When
injected arbitrarily into a model’s input, they typically degrade
the performance both in terms of accuracy and runtime. When
injected in a targeted fashion, they can be used to modify
the output in a desired way, and may coherently change the
meaning of the output across many NLP tasks.

E. Homoglyphs

Homoglyphs are characters that render to the same glyph or
to a visually similar glyph. This often occurs when portions
of the same written script are used across different language
families. For example, consider the Latin letter ‘A’ used
in English. The very similar character ‘А’ is used in the
Cyrillic alphabet. Within the Unicode specification these are
distinct characters, although they are typically rendered as
homoglyphs.

An example of an attack using homoglyphs is shown
in Figure 2. Like invisible characters, homoglyphs are font-
specific. Even if the underlying linguistic system denotes two
characters in the same way, fonts are not required to respect
this. That said, there are well-known homoglyphs in the most
common fonts used in everyday computing.

The Unicode Consortium publishes two supporting docu-
ments with the Unicode Security Mechanisms technical re-
port [63] to draw attention to similarly rendered characters.
The first defines a mapping of characters that are intended to
be homoglyphs within the Unicode specification and should
therefore map to the same glyph in font implementations [64].
The second document [65] defines a set of characters that are

Fig. 3. Attack using reorderings. Example machine translation input is on
the left with model output on the right. The red circle denotes the string is
encoded in reverse order surrounded by Bidi override characters.

likely to be visually confused, even if they are not rendered
with precisely the same glyph.

For the experiments in this paper, we use the Unicode
technical reports to define homoglpyh mappings. We also note
that homoglyphs, particularly for specific less common fonts,
can be identified using an unsupervised clustering algorithm
against vectors representing rendered glyphs. To illustrate
this, we used a VGG16 convolution neural network [66] to
transform all glyphs in the Unifont font into vectorized embed-
dings and performed various clustering operations. Figure 4
visualizes mappings provided by the Unicode technical reports
as a dimensionality-reduced character cluster plot. We find that
the results of well-tuned unsupervised clustering algorithms
produce similar results, but have chosen to use the official
Unicode mappings in this paper for reproducibility.

F. Reorderings

The Unicode specification supports characters from lan-
guages that read in both the left-to-right and right-to-left di-
rections. This becomes nontrivial to manage when such scripts
are mixed. The Unicode specification defines the Bidirectional
(Bidi) Algorithm [52] to support standard rendering behavior
for mixed-script documents. However, the specification also

Fig. 4. Clustering of Unicode homoglyphs according to the Unicode Security
Confusables document, plotted as a 2D PCA of Unifont glyph images via a
VGG16 model.

1993

Fig. 5. Attack using deletions. Example machine translation input is on the
left with model output on the right. The red boxes highlight injected characters
followed by backspace characters.

allows the Bidi Algorithm to be overridden using invisi-
ble direction-override control characters, which allow near-
arbitrary rendering for a fixed encoded ordering.

An example of an attack using reorderings is shown in Fig-
ure 3. In an adversarial setting, Bidi control characters allow
the encoded ordering of characters to be shuffled without
affecting character rendering thus making them a form of
imperceptible perturbation.

Unlike invisible character and homoglyph attacks, the class
of reordering attacks is font-independent and relies only on the
implementation of the Unicode Bidi Algorithm. Bidi algorithm
implementations sometimes differ in how they handle specific
control sequences, meaning that some attacks may be platform
or application specific in practice, but most mature Unicode
rendering systems behave similarly. Appendix Algorithm 2
defines an algorithm for generating 2n−1 unique reorderings
for strings of length n using nested Bidi control characters.
At the time of writing, it has been tested to work against the
Unicode implementation in Chromium [67].

G. Deletions

A small number of control characters in Unicode can cause
neighbouring text to be removed. The simplest examples are
the backspace (BS) and delete (DEL) characters. There is
also the carriage return (CR) which causes the text-rendering
algorithm to return to the beginning of the line and overwrite
its contents. For example, encoded text which represents
“Hello CRGoodbye World” will be rendered as “Goodbye
World”.

An example of an attack using deletions is shown in Fig-
ure 5. Deletion attacks are font-independent, as Unicode does
not allow glyph specification for the basic control characters
inherited from ASCII including BS, DEL, and CR. In general,
deletion attacks are also platform independent as there is
not significant variance in Unicode deletion implementations.
However, these attacks can be harder to exploit in practice
because most systems do not copy deleted text to the clipboard.
As such, an attack using deletion perturbations generally re-
quires an adversary to submit encoded Unicode bytes directly
into a model, rather than relying on a victim’s copy+paste
functionality.

V. NLP ATTACKS

A. Integrity Attack

Regardless of the tokenizer or dictionary used in an NLP
model, systems are unlikely to handle imperceptible perturba-
tions gracefully in the absence of specific defenses. Integrity
attacks against NLP models exploit this fact to achieve de-
graded model performance in either a targeted or untargeted
fashion.

The specific affect on input embedding transformation de-
pends on the class of perturbation used:

• Invisible characters (between words): Invisible charac-
ters are transformed into <unk> embeddings between
properly-embedded adjacent words.

• Invisible characters (within words): In addition to being
transformed into <unk> embeddings, the invisible char-
acters may cause the word in which it is contained to be
embedded as multiple shorter words, interfering with the
standard processing.

• Homoglyphs: If the token containing the homoglyph is
present in the model’s dictionary, a word that contains
it will be embedded with the less-common, and likely
lower-performing, vector created from such data. If the
homoglyph is not known, the token will be embedded as
<unk>.

• Reorderings: In addition to the Bidi control characters
each being treated as invisible characters, the other char-
acters input into the model will be in the underlying
encoded order rather than the rendered order.

• Deletions: In addition to deletion-control characters each
being treated as an invisible character, the deleted char-
acters encoded into the input are still validly processed
by the model.

Each of these modifications to embedded inputs degrades
a model’s performance. The cause is model-specific, but for
attention-based models we expect that tokens in a context of
<unk> tokens are treated differently.

B. Availability Attack

Machine-learning systems can be attacked by workloads that
are unusually slow. The inputs generating such computations
are known as sponge examples [18].

In this paper we show that sponge examples can be con-
structed in a targeted way, both with fixed and increased input
size. For a fixed-size sponge example, an attacker can replace
individual characters with homoglyphs that take longer to
process. If an increase in input size is tolerable, the attacker
can also inject invisible characters, forcing the model to take
additional time to process these additional steps in its input
sequence.

Such attacks may be carried out more covertly if the visual
appearance of the input does not arouse users’ suspicions. If
launched in parallel at scale, the availability of hosted NLP
models may be degraded, suggesting that a distributed denial-
of-service attack may be feasible on text-processing services.

1994

Fig. 6. BLEU scores of imperceptible perturbations vs. unperturbed WMT
data on Fairseq EN-FR model

Fig. 7. Fairseq sponge example average inference time

VI. EVALUATION

A. Experiment Setup

We evaluate the performance of each class of impercep-
tible perturbation attack – invisible characters, homoglyphs,
reorderings, and deletions – against five NLP tasks: machine
translation, toxic content detection, textual entailment classifi-
cation, named entity recognition, and sentiment analysis. We
perform these evaluations against a collection of five open-
source models and three closed-source, commercial models
published by Google, Facebook, Microsoft, IBM, and Hug-
gingFace. We repeat each experiment with perturbation budget
values varying from zero to five.

All experiments were performed in a black-box setting in
which unlimited model evaluations are permitted, but access-
ing the assessed model’s weights or state is not permitted. This
represents one of the strongest threat models for which attacks
are possible in nearly all settings, including against commer-
cial Machine-Learning-as-a-Service (MLaaS) offerings. Every
model examined was vulnerable to imperceptible perturbation
attacks. We believe that the applicability of these attacks
should in theory generalize to any text-based NLP model
without adequate defenses in place.

We perform a collection of untargeted, targeted, and sponge
example attacks across the eight models. The experiments
were performed on a cluster of machines each equipped with
a Tesla P100 GPU and Intel Xeon Silver 4110 CPU running
Ubuntu.

For each class of perturbation, we followed Algorithm 1 and
found that the optimization converged quickly, thus choosing
a population size of 32 with a maximum of 10 iterations
in the genetic algorithm. Increasing these parameters further
would likely allow an attacker to find even more effective
perturbations; i.e. our experimental results obtain a lower
bound.

For the objective functions used in these experiments,
invisible characters were chosen from a set including ZWSP,

ZWNJ, and ZWJ7; homoglyphs sets were chosen according to
the relevant Unicode technical report [64]; reorderings were
chosen from the sets defined using Algorithm 2; and deletions
were chosen from the set of all non-control ASCII characters
followed by a BKSP8 character. We define the unit value of
the perturbation budget as one injected invisible character,
one homoglyph character replacement, one Swap sequence
according to the reordering algorithm, or one ASCII-backspace
deletion pair.

We have published a command-line tool written in Python
to conduct these experiments as well as the entire set of
adversarial examples resulting from these experiments.9 We
have also published an online tool for validating whether text
may contain imperceptible perturbations and for generating
random imperceptible perturbations.10

In the following sections, we describe each experiment in
detail.

B. Machine Translation: Integrity

For the machine translation task, we used an English-French
transformer model pre-trained on WMT14 data [68] published
by Facebook as part of Fairseq [69], Facebook AI Research’s
open source ML toolkit for sequence modeling. We utilized
the corresponding WMT14 test set data to provide reference
translations for each adversarial example.

For the set of integrity attacks, we crafted adversarial ex-
amples for 500 sentences and repeated adversarial generation
for perturbations budgets of 0 through 5. Each example took,
on average, 432 seconds to generate.

For the adversarial examples generated, we compare the
BLEU [41] scores of the resulting translation against the refer-
ence translation in Figure 6. We also provide the Levenshtein
distances between these values in Appendix Figure 14, which

7Unicode characters U+200B, U+200C, U+200D
8Unicode character U+0008
9github.com/nickboucher/imperceptible
10imperceptible.ml

1995

Fig. 8. Percentage of imperceptibly perturbed toxic sentences classified
correctly in IBM’s Toxic Content Classifier.

Fig. 9. Percentage of imperceptibly perturbed toxic sentences classified
correctly in Google’s Perspective API.

increase approximately linearly with reorderings having the
largest distance.

C. Machine Translation: Availability

In addition to attacks on machine-translation model in-
tegrity, we also explored whether we could launch availability
attacks. These attacks take the form of sponge examples,
which are adversarial examples crafted to maximize inference
runtime.

We used the same configuration as in the integrity exper-
iments, crafting adversarial examples for 500 sentences with
perturbation budgets of 0 to 5. Each example took, on average,
420 seconds to generate.

Sponge-example results against the Fairseq English-French
model are presented in Figure 7, which shows that reordering
attacks are by some ways the most effective. Levenshtein
distances are also provided in Appendix Figure 15. Although
the slowdown is not as significant as Shumailov et al. achieved
by dropping Chinese characters into Russian text [18], our
attacks are semantically meaningful and will not be noticeable
to human eyes.

D. Machine Translation: MLaaS

In addition to the integrity attacks on Fairseq’s open-source
translation model, we performed a series of case studies on two
popular Machine Learning as a Service (MLaaS) offerings:
Google Translate and Microsoft Azure ML. These experiments
attest to the real-world applicability of these attacks. In this
setting, translation inference involves a web-based API call
rather than invoking a local function.

Due to the cost of these services, we crafted adversarial
examples targeting integrity for 20 sentences of budgets from
0 to 5 with a reduced maximum evolution iteration value of
3.

The BLEU results of tests against Google Translate are
in Appendix Figure 16 and against Microsoft Azure ML in
Appendix Figure 17. The corresponding Levenshtein results
can be found in Appendix Figures 18 and 19.

Interestingly, the adversarial examples generated against
each platform appeared to be meaningfully effective against
the other. The BLEU scores of each service’s adversarial
examples tested against the other are plotted as dotted lines
in Appendix Figures 16 and 17. These results show that
imperceptible adversarial examples can be transferred between
models.

E. Toxic Content Detection

In this task we attempt to defeat a toxic-content detector.
For our experiments, we use the open-source Toxic Content
Classifier model [70] published by IBM. In this setting, the
adversary has access to the classification probabilities emitted
by the model.

For this set of experiments, we craft adversarial examples
for 250 sentences labeled as toxic in the Wikipedia Detox
Dataset [71] with perturbation budgets from 0 to 5. Each
example took, on average, 18 seconds to generate.

IBM Toxic Content Classification perturbation results can
be seen in Figure 8. Homoglyphs, reorderings, and deletions
effectively degrade model performance by up to 75%, but,
interestingly, invisible characters do not have an effect on
model performance. This could be because invisible characters
were present in the training data and learned accordingly, or,
more likely, the model uses a tokenizer which disregards the
invisible characters we used.

F. Toxic Content Detection: MLaaS

We repeated the toxic content experiments against Google’s
Perspective API [72], which is deployed at scale in the
real world for toxic content detection. We used the same
experiment setting as in the IBM Toxic Content Classification
experiments, except that we generated adversarial examples
for 50 sentences. The results can be seen in Figure 9.

1996

Fig. 10. Untargeted accuracy of Fairseq MNLI model with imperceptible
perturbations

Fig. 11. Targeted accuracy of Fairseq MNLI model with imperceptible
perturbations

G. Textual Entailment: Untargeted

Recognizing textual entailment is a text-sequence classifi-
cation task that requires labeling the relationship between a
pair of sentences as entailment, contradiction, or neutral.

For the textual-entailment classification task, we performed
experiments using the pre-trained RoBERTa model [73] fine-
tuned on the MNLI corpus [74]. This model is published by
Facebook as part of Fairseq [69].

For these textual-entailment integrity attacks, we crafted
adversarial examples for 500 sentences and repeated adver-
sarial generation for perturbation budgets of 0 through 5.
The sentences used in this experiment were taken from the
MNLI test set. Each example took, on average, 51 seconds to
generate.

The results from this experiment are shown in Figure 10.
Performance drops significantly even with a budget of 1.

H. Textual Entailment: Targeted

We repeated the set of textual-entailment classification in-
tegrity experiments with targeted attacks. For each sentence,
we attempted to craft an adversarial example targeting each
of the three possible output classes. Naturally, one of these
classes is the correct unperturbed class, and as such we expect
the budget = 0 results to be approximately 33% successful.

Due to the increased number of adversarial examples per
sentence, we crafted adversarial examples for 100 sentences
and repeated adversarial generation for perturbation budgets
of 0 through 5.

The results can be seen in Figure 11. These attacks were
up to 80.0% successful with a budget of 5.

In the first set of targeted textual entailment experiments, we
permitted the adversary to access the full set of logits output by
the classification model. In other words, the differential evo-
lution algorithm had access to the probability value assigned
to each possible output class. We repeated the targeted textual
entailment experiments a second time in which the adversary
had access to the selected output label only, without probability

values. These results are plotted as a dotted line in Figure 11,
and were up to 79.6% successful with a budget of 5. Label-
only attacks appear to suffer only a slight disadvantage, and
even this diminishes as perturbation budgets increase.

I. Named Entity Recognition: Targeted

In addition to the Textual Entailment experiments, we also
ran targeted attack experiments against the Named Entity
Recognition (NER) task. We used a BERT [75] model [76]
fine-tuned on the CoNLL-2003 dataset [77], which at the time
of writing was the default NER model on HuggingFace [78].
We defined our attack as successful if one or more of the
output tokens was classified as the target label, due to the fact
that imperceptible perturbations typically break tokenizers and
thus result in variable-length perturbed NER model outputs.
We used the first 500 entries of the CoNLL-2003 test data
split targeting each of the four possible labels using the same
attack parameters as the prior experiments.

The attacks were up to 90.2% successful with a budget
of 5 depending on the technique selected, although invisible
characters had no effect on this model.

The results are visualized in Appendix Figure 20.

J. Sentiment Analysis: Targeted

In addition to Textual Entailment and NER, we also ran
targeted attack experiments against the sentiment analysis task.
We used a DistilBERT [79] model [80] fine-tuned on the
Emotion dataset [81] published on HuggingFace [78]. We used
the first 500 entries of the test data split of the Emotion dataset
targeting each of the six possible labels using the same attack
parameters as the prior experiments.

The attacks were up to 79.2% successful with a budget
of 5 depending on the technique selection, although invisible
characters also had no effect on this model.

The results are visualized in Appendix Figure 21.

1997

Fig. 12. Perceptible and imperceptible attack success rates against Facebook
Fairseq RoBERTa MNLI.

K. Comparison with Previous Work

We selected five attack methods described in prior adver-
sarial NLP work to compare with imperceptible perturbations.
Of immediate note is that all prior work results in visually
perceptible perturbations whereas imperceptible perturbations
have no visual artifacts.

Despite this, we leveraged tooling provided by TextAt-
tack [42] to compare all four classes of imperceptible perturba-
tions against TextBugger [15], DeepWordBug [10], Probability
Weighted Word Saliency [17], Natural Language Adversarial
Examples [14], and an optimized version of Natural Language
Adversarial Examples [21].

The results, shown in Figure 12, indicate that with a budget
of 10, imperceptible perturbations have similar adversarial
efficacy as the existing perceptible methods. Moreover, the
imperceptible budget could be arbitrarily increased without
visual effect for even better adversarial performance.

VII. DISCUSSION

A. Ethics

We followed departmental ethics guidelines closely. We
used legitimate, well-formed API calls to all third parties, and
paid for commercial products. To minimize the impact both
on commercial services and CO2 production, we chose small
inputs, maximum iterations, and pool sizes. For example, while
Microsoft Azure allows inputs of size 10,000 [82], we used
inputs of less than 50 characters. Finally, we followed standard
responsible disclosure processes.

B. Experimental Interpretation

Applying imperceptible perturbations drastically degrades
the performance of all models examined, representing NLP
tasks including machine translation, textual entailment classi-
fication, toxic content detection, named entity recognition, and
sentiment analysis. Every performance metric, whether BLEU
translation score, percentage correct classification, or average

inference time, was degraded relative to no perturbations (bud-
get=0), with degradation growing as the perturbation budget
was increased.

The only exception was invisible character attacks against
toxic content, NER, and sentiment analysis models, which
had no effect; this is likely indicative of invisible characters
being present in training data, or the tokenizer for these
models ignoring the chosen invisible characters. For every
other technique/model combination, however, there is a clear
relationship between increased imperceptible perturbations and
decreased model performance.

To make translation quality loss more concrete, we provide
an example of varying BLEU scores in Appendix B.

C. Search Engine Attack

Discrepancies between encoded bytes and their visual ren-
dering affect searching and indexing systems. Search engine
attacks fall into two categories: attacks on searching and
attacks on indexing.

Attacks on searching result from perturbed search queries.
Most systems search by comparing the encoded search query
against indexed sets of resources. In an attack on searching,
the adversary’s goal is to degrade the quality or quantity of
results. Perturbed queries interfere with the comparisons.

Attacks on indexing use perturbations to hide information
from search engines. Even though a perturbed document may
be crawled by a search engine’s crawler, the terms used to
index it will be affected by the perturbations, making it less
likely to appear from a search on unperturbed terms. It is
thus possible to hide documents from search engines “in plain
sight.” As an example application, a dishonest company could
mask negative information in its financial filings so that the
specialist search engines used by stock analysts fail to pick it
up.

D. Attack Potential

Imperceptible perturbations derived from manipulating Uni-
code encodings provide a broad and powerful class of attacks
on text-based NLP models. They enable adversaries to:

• Alter the output of machine translation systems;
• Evade toxic-content detection;
• Invisibly poison NLP training sets;
• Hide documents from indexing systems;
• Degrade the quality of search;
• Conduct denial-of-service attacks on NLP systems.

Perhaps the most disturbing aspect of our imperceptible
perturbation attacks is their broad applicability: all text-based
NLP systems we tested are susceptible. Indeed, any machine
learning model which ingests user-supplied text as input is
theoretically vulnerable to this attack. The adversarial impli-
cations may vary from one application to another and from
one model to another, but all text-based models are based on
encoded text, and all text is subject to adversarial encoding
unless the coding is suitably constrained.

1998

Fig. 13. Evaluation of OCR defense against imperceptible perturbations.

E. Defenses

Given that the conceptual source of this attack stems from
differences in logical and visual text encoding representation,
one catch-all defense is to render all input, interpret it with
optical character recognition (OCR), and feed the output into
the original text model. This technique is described more
formally in Appendix Algorithm 3. Such a tactic functionally
forces models to operate on visual input rather than highly
variable encodings, and has the added benefit that it can be
retrofitted onto existing models without retraining.

To evaluate OCR as a general defense against imperceptible
perturbations, we reevaluated the 500 adversarial examples
previously generated for each technique against the Fairseq
En→FR translation model. Prior to inference, we preprocessed
each sample by resolving control sequences in Python, ren-
dering each input as an image with Pillow [83] and Uni-
font [62], and then performing OCR on each image with
Tesseract [84] fine-tuned on Unifont. The results, shown in
Figure 13, indicate that this technique fully prevents 100%
of invisible character, reordering, and deletion attacks while
strongly mitigating the majority of homoglyph attacks.

Our experimental defense, however, comes at a cost of
6.2% lowered baseline BLEU scores. This can be attributed
to the OCR engine being imperfect; on some occasions, it
outputs incorrect text for an unperturbed rendering. Similarly,
it misinterprets homoglyphs at a higher rate than unperturbed
text, leading to degraded defenses with the increased use of ho-
moglyphs. Despite these shortcomings, OCR provides strong
general defense at a relatively low cost without retraining
existing models. Further, this cost could be decreased with
better performing OCR models.

The accuracy and computational costs of retrofitting existing
models with OCR may not be acceptable in all applications.
We therefore explore additional defenses that may be more
appropriate for certain settings.

1) Invisible Character Defenses: Generally speaking, in-
visible characters do not affect the semantic meaning of text,

but relate to formatting concerns. For many text-based NLP
applications, removing a standard set of invisible characters
from inference inputs would block invisible character attacks.

If application requirements do not allow discarding such
characters, tokenizers must include them in the source-
language dictionary to create non-<unk> embeddings.

2) Homoglyph Defenses: Homoglyphs are perhaps the most
challenging technique against which to defend. Functionally
speaking, the OCR defense attempts to map unusual homo-
glyphs to their more common counterparts, thus increasing the
likelihood that they are present in the NLP model’s dictionary.

This mapping could be specified by model designers; a well-
designed mapping of less-common homoglyphs to their most
common counterparts applied prior to inference would have
a similar effect to a high-performing OCR model. However,
creating such a mapping is a daunting task, as the Unicode
specification is immense. Automated techniques, such as previ-
ously depicted in Figure 4, may help to create these mappings.

3) Reordering Defenses: For some text-based NLP models
with a graphical user interface, reordering attacks can be
prevented by stripping all Bidi control characters as the input
is displayed to the active user. In other settings, it may be
more suitable to throw a warning for Bidi control characters.

A more general solution, however – and one that works for
applications without a graphical user interface – is to apply the
Bidi algorithm to resolve Bidi control characters and coerce
the logical order of text to match the order in which it would
be visually rendered.

4) Deletion Defenses: We suspect that there may not be
many use cases where deletion characters are a valid input
into a model. Deletion characters may be resolved prior to
inference, or a warning may be fired upon their detection.

VIII. CONCLUSION

Text-based NLP models are vulnerable to a broad class
of imperceptible perturbations which can alter model output
and increase inference runtime without modifying the visual
appearance of the input. These attacks exploit language coding
features, such as invisible characters and homoglyphs. Al-
though they have been seen occasionally in the past in spam
and phishing scams, the designers of the many NLP systems
that are now being deployed at scale appear to have ignored
them completely.

We have presented a systematic exploration of text-encoding
exploits against NLP systems. We have developed a taxonomy
of these attacks and explored in detail how they can be used to
mislead and to poison machine-translation, toxic content de-
tection, textual entailment classification, NER, and sentiment
analysis systems. Indeed, they can be used on any text-based
ML model that processes natural language. Furthermore, they
can be used to degrade the quality of search engine results
and hide data from indexing and filtering algorithms.

We propose a variety of defenses against this class of
attacks, and recommend that all firms building and deploying
text-based NLP systems implement such defenses if they want
their applications to be robust against malicious actors.

1999

ACKNOWLEDGMENT

This work was supported by DARPA (through the GARD
program), CIFAR (through a Canada CIFAR AI Chair), by
NSERC (under the Discovery Program, and COHESA strate-
gic research network), and by a gift from Intel. We also thank
the Vector Institute’s sponsors. Ilia Shumailov was supported
with funds from Bosch-Forschungsstiftung im Stifterverband.
We would also like to thank Adelin Travers for help with
natural language annotation, Markus Kuhn and Zakhar Shu-
maylov for help with Unicode magic, and Darija Halatova for
help with visualizations.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

[3] Google, “Google translate,” Aug. 2021. [Online]. Available:
https://translate.google.com

[4] C. Knight, “Evasion with unicode format characters,” in SpamAssassin
- Dev, 2018.

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural proba-
bilistic language model,” Journal of Machine Learning Research, vol. 3,
pp. 1137–1155, 2003.

[6] D. A. Smith, R. Cordel, E. M. Dillon, N. Stramp, and J. Wilkerson, “De-
tecting and modeling local text reuse,” in IEEE/ACM Joint Conference
on Digital Libraries, 2014, pp. 183–192.

[7] A. Schmidt and M. Wiegand, “A survey on hate speech detection using
natural language processing,” in Proceedings of the Fifth International
Workshop on Natural Language Processing for Social Media. Valencia,
Spain: Association for Computational Linguistics, Apr. 2017, pp. 1–10.
[Online]. Available: https://www.aclweb.org/anthology/W17-1101

[8] N. Papernot, P. D. McDaniel, A. Swami, and R. E.
Harang, “Crafting adversarial input sequences for recurrent neural
networks,” CoRR, vol. abs/1604.08275, 2016. [Online]. Available:
http://arxiv.org/abs/1604.08275

[9] Y. Belinkov and Y. Bisk, “Synthetic and natural noise both break neural
machine translation,” CoRR, vol. abs/1711.02173, 2017. [Online].
Available: http://arxiv.org/abs/1711.02173

[10] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, “Black-box generation of
adversarial text sequences to evade deep learning classifiers,” in 2018
IEEE Security and Privacy Workshops (SPW), May 2018, pp. 50–56.

[11] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “HotFlip: White-box
adversarial examples for text classification,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Melbourne, Australia: Association for
Computational Linguistics, Jul. 2018, pp. 31–36. [Online]. Available:
https://www.aclweb.org/anthology/P18-2006

[12] M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer, “Adversarial
example generation with syntactically controlled paraphrase
networks,” CoRR, vol. abs/1804.06059, 2018. [Online]. Available:
http://arxiv.org/abs/1804.06059

[13] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial
examples,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=H1BLjgZCb

[14] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and
K.-W. Chang, “Generating natural language adversarial examples,”
in Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, Oct.-Nov. 2018, pp. 2890–2896. [Online].
Available: https://www.aclweb.org/anthology/D18-1316

[15] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generating
adversarial text against real-world applications,” in 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019. The Internet Society,
2019. [Online]. Available: https://www.ndss-symposium.org/ndss-paper/
textbugger-generating-adversarial-text-against-real-world-applications/

[16] P. Michel, X. Li, G. Neubig, and J. Pino, “On evaluation of adversarial
perturbations for sequence-to-sequence models,” in Proceedings of the
2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 3103–3114. [Online].
Available: https://www.aclweb.org/anthology/N19-1314

[17] S. Ren, Y. Deng, K. He, and W. Che, “Generating natural language
adversarial examples through probability weighted word saliency,”
in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 1085–1097. [Online].
Available: https://www.aclweb.org/anthology/P19-1103

[18] I. Shumailov, Y. Zhao, D. Bates, N. Papernot, R. Mullins, and
R. Anderson, “Sponge examples: Energy-latency attacks on neural
networks,” in Proceedings of the 6th IEEE European Symposium on
Security and Privacy, Vienna, Austria, September 6-10, 2021. IEEE,
2021. [Online]. Available: https://arxiv.org/abs/2006.03463

[19] W. Zou, S. Huang, J. Xie, X. Dai, and J. Chen, “A reinforced generation
of adversarial examples for neural machine translation,” 2020.

[20] S. Frenkel, “Facebook is failing in global disinformation fight, says
former worker,” New York Times, Sep 14 2020.

[21] R. Jia, A. Raghunathan, K. Goksel, and P. Liang, “Certified robustness
to adversarial word substitutions,” in Empirical Methods in Natural
Language Processing (EMNLP), 2019.

[22] E. Tabassi, K. J. Burns, M. Hadjimichael, A. D. Molina-Markham, and
J. T. Sexton, “A taxonomy and terminology of adversarial machine
learning.”

[23] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2019.

[24] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[25] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, 2017, pp. 15–26.

[26] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,
C. A. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to
subvert your spam filter.” LEET, vol. 8, pp. 1–9, 2008.

[27] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 19–35.

[28] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras,
“Terminal brain damage: Exposing the graceless degradation in deep
neural networks under hardware fault attacks,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 497–514. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/hong

[29] C. A. C. Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only
membership inference attacks,” 2020.

[30] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp. 317–
331, 2018.

[31] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the
science of security and privacy in machine learning,” arXiv preprint
arXiv:1611.03814, 2016.

[32] W. Weaver, “Translation,” in Machine translation of languages:
fourteen essays. Cambridge, MA: Technology Press of the
Massachusetts Institute of Technology, Jul. 1949. [Online]. Available:
https://repositorio.ul.pt/bitstream/10451/10945/2/ulfl155512_tm_2.pdf

[33] B. J. Dorr, P. W. Jordan, and J. W. Benoit, “A Survey
of Current Paradigms in Machine Translation,” MARYLAND
UNIV COLLEGE PARK INST FOR ADVANCED COMPUTER
STUDIES, Tech. Rep. LAMP-TR-027, Dec. 1998. [Online]. Available:
https://apps.dtic.mil/docs/citations/ADA455393

[34] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models,” in Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Seattle, Washington, USA:
Association for Computational Linguistics, Oct. 2013, pp. 1700–1709.
[Online]. Available: https://www.aclweb.org/anthology/D13-1176

2000

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[36] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Q. Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014, pp.
3104–3112. [Online]. Available: https://proceedings.neurips.cc/paper/
2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

[37] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[38] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” CoRR, vol. abs/1508.07909, 2015.
[Online]. Available: http://arxiv.org/abs/1508.07909

[39] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387–402.

[40] J. Wieting, J. Mallinson, and K. Gimpel, “Learning paraphrastic
sentence embeddings from back-translated bitext,” in Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for
Computational Linguistics, Sep. 2017, pp. 274–285. [Online]. Available:
https://www.aclweb.org/anthology/D17-1026

[41] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th Annual Meeting of the Association for Computational
Linguistics. Philadelphia, Pennsylvania, USA: Association for
Computational Linguistics, Jul. 2002, pp. 311–318. [Online]. Available:
https://aclanthology.org/P02-1040

[42] J. X. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi,
“Textattack: A framework for adversarial attacks, data augmentation,
and adversarial training in nlp,” 2020.

[43] The Unicode Consortium, “The Unicode Standard, Version 13.0,” Mar.
2020. [Online]. Available: https://www.unicode.org/versions/Unicode13.
0.0

[44] ——, “Unicode Security Considerations,” The Unicode Consortium,
Tech. Rep. Unicode Technical Report #36, Sep. 2014. [Online].
Available: https://www.unicode.org/reports/tr36/tr36-15.html

[45] G. Simpson, T. Moore, and R. Clayton, “Ten years of attacks on
companies using visual impersonation of domain names,” in APWG
Symposium on Electronic Crime Research (eCrime). IEEE, 2020.

[46] B. Sullivan, “PayPal alert! Beware the ’Paypai’ scam,”
Jul. 2000. [Online]. Available: https://www.zdnet.com/article/
paypal-alert-beware-the-paypai-scam-5000109103/

[47] E. Gabrilovich and A. Gontmakher, “The homograph attack,” Commun.
ACM, vol. 45, no. 2, p. 128, Feb. 2002. [Online]. Available:
https://doi.org/10.1145/503124.503156

[48] T. Holgers, D. E. Watson, and S. D. Gribble, “Cutting through the
confusion: A measurement study of homograph attacks,” in Proceedings
of the Annual Conference on USENIX ’06 Annual Technical Conference,
ser. ATEC ’06. USA: USENIX Association, 2006, p. 24.

[49] MITRE, “CAPEC-632: Homograph Attack via Homoglyphs
(Version 3.4),” MITRE, Common Attack Pattern Enumeration
and Classification 632, Nov. 2015. [Online]. Available:
https://capec.mitre.org/data/definitions/632.html

[50] H. Suzuki, D. Chiba, Y. Yoneya, T. Mori, and S. Goto, “Shamfinder: An
automated framework for detecting idn homographs,” in Proceedings
of the Internet Measurement Conference, ser. IMC ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 449–462.
[Online]. Available: https://doi.org/10.1145/3355369.3355587

[51] L. Y. Por, K. Wong, and K. O. Chee, “Unispach: A text-based data
hiding method using unicode space characters,” Journal of Systems and
Software, vol. 85, no. 5, pp. 1075–1082, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121211003177

[52] The Unicode Consortium, “Unicode Bidirectional Algorithm,” The Uni-
code Consortium, Tech. Rep. Unicode Technical Report #9, Feb. 2020.
[Online]. Available: https://www.unicode.org/reports/tr9/tr9-42.html

[53] Brian Krebs, “‘Right-to-Left Override’ Aids Email Attacks,”
Sep. 2011. [Online]. Available: https://krebsonsecurity.com/2011/09/
right-to-left-override-aids-email-attacks/

[54] The Unicode Consortium, “International components for unicode,” Mar.
2021. [Online]. Available: http://site.icu-project.org

[55] The Pango Project Developers, “Pango,” Aug. 2021. [Online]. Available:
https://pango.gnome.org

[56] Apple, “Apple developer documentation: Core text,” 2020. [Online].
Available: https://developer.apple.com/documentation/coretext

[57] Microsoft, “Windows developer documentation: Unicode,” May 2018.
[Online]. Available: https://docs.microsoft.com/en-us/windows/win32/
intl/unicode

[58] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens et al., “Moses:
Open source toolkit for statistical machine translation,” in Proceedings of
the 45th annual meeting of the association for computational linguistics
companion volume proceedings of the demo and poster sessions, 2007,
pp. 177–180.

[59] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,
and J. Dean, “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016.

[60] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” CoRR, vol. abs/1508.07909, 2015.
[Online]. Available: http://arxiv.org/abs/1508.07909

[61] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, Dec. 1997. [Online].
Available: https://doi.org/10.1023/A:1008202821328

[62] Roman Czyborra and Paul Hardy, “Unifont,” Aug. 2021. [Online].
Available: https://unifoundry.com/unifont/

[63] The Unicode Consortium, “Unicode Security Considerations,” The Uni-
code Consortium, Tech. Rep. Unicode Technical Report #39, Feb. 2020.
[Online]. Available: https://www.unicode.org/reports/tr39/tr39-22.html

[64] ——, “Unicode security mechanisms for uts #39: Intentional,” Oct.
2019. [Online]. Available: https://www.unicode.org/Public/security/
latest/intentional.txt

[65] ——, “Unicode security mechanisms for uts #39: Confusables,” Feb.
2020. [Online]. Available: https://www.unicode.org/Public/security/
latest/confusables.txt

[66] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[67] Google, “Chromium,” Aug. 2021. [Online]. Available: https:
//www.chromium.org

[68] M. Ott, S. Edunov, D. Grangier, and M. Auli, “Scaling neural machine
translation,” in Proceedings of the Third Conference on Machine
Translation: Research Papers. Brussels, Belgium: Association for
Computational Linguistics, Oct. 2018, pp. 1–9. [Online]. Available:
https://www.aclweb.org/anthology/W18-6301

[69] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
in Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[70] IBM, “Toxic comment classifier,” Dec. 2020. [Online]. Available:
https://github.com/IBM/MAX-Toxic-Comment-Classifier

[71] N. Thain, L. Dixon, and E. Wulczyn, “Wikipedia talk labels:
Toxicity,” Feb 2017. [Online]. Available: https://figshare.com/articles/
dataset/Wikipedia_Talk_Labels_Toxicity/4563973/2

[72] G. Jigsaw, “Perspective API,” 2021. [Online]. Available:
https://perspectiveapi.com

[73] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692,
2019. [Online]. Available: http://arxiv.org/abs/1907.11692

[74] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge
corpus for sentence understanding through inference,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers). Association for Computational Linguistics, 2018, pp.
1112–1122. [Online]. Available: http://aclweb.org/anthology/N18-1101

[75] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

2001

[76] Münchener Digitalisierungszentrum (MDZ) - Bayerische
Staatsbibliothek. (2020) BERT Large Cased Finetuned
CoNLL03 English. [Online]. Available: https://huggingface.co/dbmdz/
bert-large-cased-finetuned-conll03-english

[77] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-
2003 shared task: Language-independent named entity recognition,” in
Proceedings of the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003 - Volume 4, ser. CONLL ’03. USA: Association
for Computational Linguistics, 2003, p. 142–147. [Online]. Available:
https://doi.org/10.3115/1119176.1119195

[78] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers:
State-of-the-art natural language processing,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Online: Association for
Computational Linguistics, Oct. 2020, pp. 38–45. [Online]. Available:
https://aclanthology.org/2020.emnlp-demos.6

[79] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled

version of bert: smaller, faster, cheaper and lighter,” 2020.
[80] B. Savani. (2021) DistilBERT Base Uncased Emo-

tion. [Online]. Available: https://huggingface.co/bhadresh-savani/
distilbert-base-uncased-emotion

[81] E. Saravia, H.-C. T. Liu, Y.-H. Huang, J. Wu, and Y.-S. Chen, “CARER:
Contextualized affect representations for emotion recognition,” in
Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, Oct.-Nov. 2018, pp. 3687–3697. [Online].
Available: https://aclanthology.org/D18-1404

[82] Microsoft Azure, “Request limits for translator.” [Online].
Available: https://docs.microsoft.com/en-us/azure/cognitive-services/
translator/request-limits

[83] Alex Clark, Fredrik Lundh, and Pillow Contributors, “Pillow,” Aug.
2021. [Online]. Available: https://pillow.readthedocs.io/en/stable

[84] R. Smith, “An overview of the tesseract ocr engine,” in
ICDAR ’07: Proceedings of the Ninth International Conference
on Document Analysis and Recognition. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 629–633. [Online]. Available:
http://www.google.de/research/pubs/archive/33418.pdf

APPENDIX

A. Machine Translation Fairseq Levenshtein Distances

Fig. 14. Levenshtein distances between integrity attack imperceptible pertur-
bations and unperturbed WMT data on Fairseq EN-FR model

Fig. 15. Levenshtein distances between availability attack imperceptible
perturbations and unperturbed WMT data on Fairseq EN-FR model

B. Example BLEU Scores

TABLE III
BLEU SCORES ACROSS VARYING INVISIBLE CHARACTER BUDGETS FOR THE INPUT “AND I THINK ABOUT MY FATHER.” WITH REFERENCE

TRANSLATION “ET JE PENSE À MON PÈRE.” ON THE FAIRSEQ WMT14 EN→FR MACHINE TRANSLATION MODEL.

Budget BLEU Score Adversarial Example Adversarial Translation

0 100 And I think about my father. Et je pense à mon père.
1 19.3 And I think aU+200Dbout my father. Et je pense que c' est un bout de course pour mon père.
2 12.4 And I thinkU+200D about my fatU+200Bher. Et je pense que l' inquiétude au sujet de ma masse adipeuse l' inquiète.
3 1.9 AnU+200Bd I thiU+200Cnk about my fU+200Bather. L " âme d" une personne ne doit pas être confondue avec l " âme d\' une autre personne.
4 1.9 AnU+200DdU+200C I think aU+200Bbout U+200Bmy father. Un parent parent parent parent Je pense qu' un parent parent parent parent parent parent parent parent parent parent parent parent
5 0.9 AndU+200D I thiU+200CnkU+200B U+200Babout my fatheU+200Br. Et Ma r. r. r.

2002

C. Machine Translation MLaaS Results

Fig. 16. BLEU Scores of Azure’s imperceptible adversarial examples on
Google Translate

Fig. 17. BLEU Scores of Google Translate’s imperceptible adversarial
examples on Microsoft Azure

Fig. 18. Levenshtein distances between imperceptible perturbations and
unperturbed WMT data on Google Translate’s EN-FR model

Fig. 19. Levenshtein distances between imperceptible perturbations and
unperturbed WMT data on Microsoft Azure’s EN-FR model

D. Multi-Class Targeted Classification Results

Fig. 20. Attack success rates for targeted Named Entity Recognition attacks
against MDZ’s CoNLL-2003 model with Imperceptible Perturbations

Fig. 21. Attack success rates for targeted sentiment analysis Imperceptible
Perturbations attacks against DistilBERT fine-tuned on the Emotion dataset

2003

E. Bidirectional Reordering Algorithm

Algorithm 2: Generation of 2n−1 visually identical
strings via Unicode reorderings.

Input: string x of length n
Result: Set of 2n−1 visually identical reorderings of x

struct { string one, two; } Swap
string PDF := 0x202C, LRO := 0x202D
string RLO := 0x202E, PDI := 0x2069
string LRI := 0x2066

procedure SWAPS (body, prefix, suffix)
Set orderings := { concatenate(prefix, body, suffix) }
for i := 0 to length(body)-1 do
Swap swap := { body[i+1], body[i] }
orderings.add([prefix, body[:i],

swap, body[i+1:], suffix])
orderings.union(SWAPS(suffix, [prefix, swap], null))
orderings.union(SWAPS([prefix, swap], null, suffix))

end for
return orderings

end procedure

procedure ENCODE (ordering)
string encoding := ""
for element in ordering do

if element is Swap
swap = ENCODE([LRO, LRI, RLO, LRI,

element.one, PDI, LRI,
element.two, PDI, PDF,
PDI, PDF])

encoding = concatenate(encoding, swap)
else if element is string

encoding = concatenate(encoding, element)
end for
return encoding

end procedure

Set orderings := { }
for ordering in SWAPS(x, null, null) do

orderings.add(ENCODE(ordering))
end for
return orderings

F. OCR Defense Algorithm

Algorithm 3: OCR defense technique against imper-
ceptible perturbations via input pre-processing.

Input: model input text x
Result: pre-processed model input text x′

x = resolve_control_chars(x) B Apply Bidi+Deletion
i := render_text(x)
x′ := ocr(i)
return x′ B Pass output to model

2004

