
Hardening Circuit-Design IP Against
Reverse-Engineering Attacks

Animesh Chhotaray
University of Florida

chho58@ufl.edu

Thomas Shrimpton
University of Florida

teshrim@ufl.edu

Abstract—Design-hiding techniques are a central piece of
academic and industrial efforts to protect electronic circuits
from being reverse-engineered. However, these techniques have
lacked a principled foundation to guide their design and security
evaluation, leading to a long line of broken schemes. In this paper,
we begin to lay this missing foundation.

We establish formal syntax for design-hiding (DH) schemes,
a cryptographic primitive that encompasses all known design-
stage methods to hide the circuit that is handed to a (potentially
adversarial) foundry for fabrication. We give two security notions
for this primitive: function recovery (FR) and key recovery (KR).
The former is the ostensible goal of design-hiding methods to
prevent reverse-engineering the functionality of the circuit, but
most prior work has focused on the latter. We then present the
first provably (FR,KR)-secure DH scheme, OneChaffhd.

A side-benefit of our security proof is a framework for
analyzing a broad class of new DH schemes. We finish by
unpacking our main security result, to provide parameter-setting
guidance.

Index Terms—cryptography; provable security; design hiding;
hardware obfuscation; logic locking; logic encryption; IC cam-
ouflaging

I. INTRODUCTION

Modern integrated-circuits (ICs, or “chips”) are the product
of a globally distributed supply-chain [1]. Much of this is
driven by economics: the cost of building and operating a
chip fabrication facility is exorbitant, so circuit designers are
forced to send their digital intellectual property (IP) to external
foundries for fabrication. In 2018, just ten foundries accounted
for more than 95% of the chip-fabrication market [2].

Given the lack of choice they have concerning who will
fabricate and package their IP into chips, IP authors are
motivated to protect their high-value circuit designs from being
reverse-engineered and stolen by untrusted foundries. Along
with IP theft, inserting difficult-to-detect malicious implants
(or trojans) into ICs and producing out-of-contract, counterfeit
ICs are the three major security issues in the IC supply chain.

We focus on the threat of IP theft because (intuitively)
successful trojan insertion and IC counterfeiting are more
difficult tasks when the adversary is denied access to the
original circuit design. What’s more, there are reports that
estimate the cost of IP theft, and subsequent counterfeiting to
be more than a hundred billion dollars in 2011 alone [3], [4].
Note that while there are legal restrictions for the foundries to
not steal the circuit design of IP authors, the fact that they can
steal and sell counterfeit chips in the black market without

Fig. 1: Simplified view of the setting for Design-Hiding
schemes. The IP author is involved in hiding (a) and restoring
(c) chips. The (potentially malicious) foundry controls fabri-
cation (b) of chips.

getting caught gives them incentive to fabricate counterfeit
chips.

IP theft by the foundry is enabled when it obtains (effec-
tively) the gate-and-wire layout for the circuit to be fabricated.
Thus, the last decade has seen a surge in research on methods
to “hide” the circuit IP [5]. We refer to such methods as
design-hiding (DH) schemes. An important constraint on DH
schemes is that the IP author still needs the foundry to fabricate
something useful; simply applying traditional encryption to
the gate-and-wire layout and handing the resulting ciphertext
to the foundry does not suffice. (We discuss relation to other
cryptographic primitives like program obfuscation, multi-party
computation and function secret-sharing in Section B.)

Framing the problem. Fig. 1 gives a simplified picture of
the setting in which DH techniques are typically deployed.
An IP author attempts to hide (Fig. 1(a)) the underlying func-
tionality F that its plaintext circuit computes by presenting
the foundry with an opaque version of the circuit. Upon
receiving the opaque circuit, the foundry is meant to fabricate
it (Fig. 1(b)) into physical chips that compute whatever the
opaque circuit does. These chips will likely not compute F , but
this functionality can be restored (Fig. 1(c)) by the IP author.
Intuitively, the IP author’s security goal is that only they can
produce a chip that correctly computes F , i.e., the IP author’s
restoration mechanism is required, and only they can execute
it properly. Chips that have been restored may enter the market
and are available for purchase by the end-user.

Characterizing prior approaches. Broadly speaking, prior

1672

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Animesh Chhotaray. Under license to IEEE.
DOI 10.1109/SP46214.2022.00023

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

34

work on DH schemes falls into three categories: logic locking
[6]–[8], IC camouflaging [8]–[10], and split manufacturing
[11], [12]. Logic-locking1 techniques are employed when an
IP author must outsource the entire fabrication process to an
untrusted, third-party foundry. Here, the foundry is provided
a complete circuit description (modulo, perhaps, a small
block of uninitialized write-once, tamper-resistant memory)
to fabricate. This is the setting most commonly considered
in the literature on circuit-design hiding. Split manufacturing
primarily aims to prevent an untrusted foundry from inserting
hardware-trojans into the IP author’s circuit [13]; as the name
suggests, the fabrication of chips is spread across multiple par-
ties, one of which is (typically) the IP author or a trusted proxy.
When the trust model is altered, so that the IP author trusts the
foundry but not the end user, IC camouflaging methods [10],
[14] can be employed. Here, the foundry fabricates an opaque
circuit that contains several “camouflaged” logic cells. An end
user that purchases fabricated chips from the market does not
know the functionality of these camouflaged cells and hence
will fail to recover the hidden design.

Our focus will be on adversarial foundries. As such, IC
camouflaging is out of scope. Split manufacturing targets
adversarial foundries, but it requires (effectively) that the IP
author has fabrication capabilities. This is most often not the
case, in practice.

Thus, we drill down on the logic-locking approach to hiding
IP from untrusted foundries, and building DH schemes that
are provably secure in the attack model assumed by logic-
locking schemes. Here, the foundry has unrestricted access2

to the opaque circuit and full control over the entire fabrication
process, making this a challenging setting. We note that the
foundry may also play the role of an end-user by purchasing
packaged (restored) chips from the market. By running the
chips on inputs of its choosing, it may learn the value of the
original circuit design on a subset of inputs. Finally, we note
that although our focus is on the logic-locking setting, our
syntax also covers IC camouflaging and split manufacturing
techniques. Please see Section A to get a historical context of
logic-locking schemes.

Advancing the state of the art. The design of logic-locking
schemes (2008–2021) yielded schemes that were efficient,
in terms of power, performance and area overhead of the
opaque circuit, but ultimately insecure. We attribute this to
a myopic view of what it means for a scheme to be secure,
combined with a natural eagerness to focus upon efficiency.
We are not alone in this belief: in their 2019 paper that
broke the “provably secure” SFLL-HD scheme [15], Sirone
and Subramanyan state

“Our results reinforce the observation that all logic
locking schemes appear to be vulnerable to attack.

1This is one of several monikers used in the hardware community, oth-
ers include hardware obfuscation, logic encryption, design withholding and
encryption.

2We use the racially neutral term “unrestricted access” instead of “whitebox
access” to a circuit/function. Similarly, we use “oracle access” instead of
“blackbox access.”

We assert this is because the logic locking commu-
nity has not adopted notions of provable security
from cryptography.” [16]

Indeed, the paper that presented SFLL-HD claimed provable
security because it (provably) resisted three prominent attacks;
but not Sirone and Subramanyan’s FALL attack. This provides
a clear reminder that a scheme should claim security —
explicitly scoped by a principled and well defined security
notion— only if it provably thwarts all (suitably efficient)
attacks that are admitted by that notion.

In response to this state of affairs, we give a principled,
provable-security foundation to the area. Our main contribu-
tions are as follows:

1) First, we formalize DH schemes as an abstract, syntactic
object, i.e., a definition of what a DH scheme is. A DH
scheme will be defined by two component algorithms,
Hide and Restore, that correspond to the hiding and
restoration phases discussed, above. In addition, we el-
evate the fabrication step, of turning circuit descriptions
(necessarily visible to the foundry) into fully packaged
chips (which require considerable resources and expertise
to “open” and analyze), to an explicit algorithm Fab.
This has important implications for security that have not
previously been surfaced.

2) We establish two security notions that capture the capa-
bilities, and goals (KR and FR), of an adversarial foundry.
These notions make formal the attack model considered
in prior works, and attends to details that have sometimes
been quietly elided, e.g., a priori knowledge about the
hidden function F that the foundry may have.
We note that the SAT attack [17], and other key-
recovery attacks [16]–[26], are admitted by our formal
KR-security notion. (Some of these attacks are against
DH schemes [15], [27]–[32] that were designed (post
2015) to thwart SAT attack.) The KR-security notion and
our formal FR-security notion share the same abstract
attack model, and Theorem 1 shows that KR insecurity
immediately implies FR insecurity. Thus, the existence
of these attacks implies that prior logic-locking schemes
cannot achieve our notion of FR security.

3) We give the first DH scheme, OneChaffhd, that provably
protects a broad class of functions (or their circuit repre-
sentation) against reverse-engineering attacks. Along the
way, we observe that certain types of “simple” functions
(e.g., functions with small domain) cannot be protected
by any DH scheme.

In Section II we will discuss our contributions in more
detail; but, before that, let us mention some of the immediate
next steps that future work might take.

Next Steps. Our work initiates a provable-security exploration
of DH schemes, putting the goals of prior work on a solid
foundation, and showing that these goals are achievable. As
such, it completes an important first step towards the ultimate
goal of providing IP authors with efficient schemes that
provably protect broad classes of practically relevant circuit

1673

designs. But there is much to be done between here and there,
and the following list captures some of the research challenges
that our results suggest.

1) HIDING MORE REALISTIC CIRCUITS. We consider DH
schemes for stateless circuits, as these were the target of
most prior work. However, many real-world circuits are
stateful, and comprised of multiple stateless sub-circuits.
There are very few DH schemes [33]–[36] for stateful
circuits and all of them have been shown to be broken
by a recent attack [37]. Thus, extending our formalisms to
such circuits is an important next step.
One may treat each stateless sub-circuit as an independent
circuit, and try to use OneChaffhd to prevent FR-attacks
on each of these. For reasons that we give in Section II,
OneChaffhd focuses on hiding Boolean circuits, i.e., those
with a single output bit. As we will explain, extending
OneChaffhd to stateless circuits with multiple output bits
requires some care. Intuitively, one can take the transitive
fan-in cone3 (TFC) of any output bit and use OneChaffhd

to hide the Boolean (sub)circuit that is the indicated
TFC. But determining which TFC(s) to hide may not be
straightforward, as we will see.

2) MORE PRACTICAL SECURITY GOALS. Capturing the secu-
rity goals of prior work, our FR-security notion demands
that the foundry recover the full input-output behavior
of the hidden function. But in practice, this is likely
too strong. In particular, it discounts attacks that recover
a “good enough” approximation of the hidden function.
There are many potential ways to address this. For example,
one might modify our FR-security experiment to demand
input-output correctness on a subset of the function’s
domain; but how should this subset be determined, and
how large should it be? Perhaps better, one could add an
explicit Test algorithm the syntax of a DH scheme, and then
modify the FR-security experiment to declare an attack
successful only if it fools the Test algorithm into saying
that the foundry’s dishonestly produced chip (not circuit)
is functionally correct. This would allow the IP author (via
the DH scheme) to specify what counts as a “win” for the
adversarial foundry, rather than having the security notion
assert it.

3) EXPLORING THE EFFECTS OF A PRIORI KNOWLEDGE.
Earlier works implicitly assumed that the adversary has no
a priori information about the hidden function. Our FR-
notion addresses this shortcoming, by restricting the to-
be-hidden function to come from a specified set (which
is a parameter of the notion); intuitively, this set captures
the ability of the foundry to narrow the search space. In
our analysis of OneChaffhd, we assume that the adversary
knows the exact hamming weight of the hidden function,
and we will justify this choice. But a thorough exploration
of the effects of a priori knowledge, on OneChaffhd or

3The transitive fan-in cone of an output bit in a function is the smallest
subgraph in the DAG (circuit) representation that connects the primary inputs
to the output bit.

any other realization of a DH scheme, is likely to be
illuminating.

4) EMPIRICAL EVALUATIONS. We prove that our OneChaffhd

construction is FR-secure for a wide range of functions.
Still, a “head-to-head” empirical evaluation of published
attacks against OneChaffhd and existing schemes, for a
range of parameter settings and families of circuits, would
be interesting. Among other things, this would help to
establish the tightness of our security results, and aid
in guiding security-sensitive choices in practice. Another
dimension for such an empirical evaluation is to explore
the power, performance and area overhead of the opaque
circuits created by OneChaffhd vs. those produced existing
DH schemes. For reasons of scope and focus, we do not
explore this evaluation in the current work.

II. OVERVIEW OF CONTRIBUTIONS

We now provide a more detailed overview of our contribu-
tions, before engaging with the technical core of the paper.

Formal foundations for DH schemes: Syntax. Notably
absent from the area is a provable-security foundation for the
design and analysis of DH schemes. Very few papers in the
area offer anything along these lines. The works that do [5],
[8], [15], [38], [39] fall short of what is needed, e.g., by giving
syntactic descriptions that are imprecise or clearly mismatch
existing schemes.

Such a foundation begins with a precise definition of a DH
scheme as a syntactic object, i.e., what are the component
algorithms that must be realized in a concrete scheme.

So, we begin by providing a formal syntax (in Section IV)
for DH schemes, and our formalization captures all currently
known methods of design-stage circuit hiding. Specifically, a
DH scheme is a pair of algorithms (Hide,Restore) that abstract
the portions (a) and (c) of Fig. 1, respectively. Loosely, the
design-hiding algorithm Hide takes as input a circuit CF
(and some design parameters θ), and it returns an opaque
circuit CL, along with the associated hiding key KO. The
design-restoring algorithm Restore takes an opaque chip CL,
a hiding key KO and design parameters θ as inputs; it returns
either a restored chip CF or an error symbol ⊥, i.e, an
indication that restoring has failed.

The opaque circuit is transformed into a chip by a separate
chip-fabrication algorithm Fab that takes a circuit CL and
design parameters as inputs and returns a chip CL. Notice
that we use the heavy typeface in CL to distinguish between
unrestricted access to circuits (e.g. CL) and oracle access
to chips. This is necessary as otherwise the foundry can
purchase a restored chip and use invasive attacks [40] to read
the hiding key from (tamperproof) memory. In this work,
we consider such attacks to be out of scope as protecting
against invasive attacks will likely require design of special
hardware like active shields [41] and are hence, orthogonal
to the development of DH schemes. We note that no prior
work considered the fabrication process, which turns circuits
into chips, as a first-class syntactic primitive. The effect is

1674

that fabrication-specific security issues could not be cleanly
surfaced. We will see that making the fabrication process
explicit uncovers an important connection between the security
of DH schemes, and detecting stealthy hardware trojans (in
packaged chips). More on this in a moment.

Formal foundations: Security notions. Given a precise
description of what a DH scheme is, we next define formal
notions of what it means for a DH scheme (however it is
realized) to be secure. An intuitive definition of reverse-
engineering the opaque circuit is to recover from it, the hidden
IP F by any means. But literature has tended to focus on
attacks (and countermeasures) that attempt to recover the
secret hiding key KO. Thus, we give two formal notions
of security (in Section V): function recovery (FR) and key
recovery (KR). In both notions, the adversary is provided
unrestricted access to the opaque circuit, and various oracles
that abstractly capture the powers of a foundry.

In the KR notion, the adversary’s goal is to return a key K
that is equivalent to KO, in the sense that when one restores
the functionality of an honestly fabricated chip using either K
or KO, we get restored chips with identical functionalities.

The FR notion captures a stronger attack model. In it, the ad-
versary’s goal is to find any chip that is functionally equivalent
to F . As one expects, KR-insecurity implies FR-insecurity: if
you can recover a key K equivalent to KO, then you can win
the FR game by returning an honestly fabricated chip restored
with K. The converse is not necessarily true, i.e., reverse-
engineering the hidden functionality of the opaque circuit does
not necessarily require recovering something equivalent to the
hiding key.

We note that certain kinds of functions cannot be protected
by any DH scheme in the logic-locking setting, where the
foundry may purchase honest chips and thereby learn input-
output pairs of its choosing. For example, if the domain of the
chip is small, the functionality of the chip can be recovered
by querying the chip on its entire domain. In the case of
Boolean functions, those whose decision-tree representations
have small depth/size cannot be hidden [42], nor can those
whose Fourier spectra contain relatively few significant com-
ponents [43]. So, while our security notions are agnostic to
structural characteristics of the function(s) one wishes to hide,
our security results will surface this concern.

We also note that our security notions allow for fully
malicious foundries that may fabricate arbitrary, “dishonest”
chips, and submit these to be restored with the secret hiding-
key KO. The chip may have been fabricated from the opaque
circuit, but (say) with an embedded hardware trojan that
outputs KO when triggered on a particular input. Unless
knowledge of the secret KO suffices to allow the Restore
algorithm to detect such a trojan (and alert the IP author not to
proceed), the restored chip can be run by the foundry (acting
as user), leaking KO and allowing it to win the FR game.
Given the state of the art in trojan detection, we know of no
remotely practical DH scheme that can be FR-secure against
fully malicious foundries. Thus, we restrict our attention to

designing DH schemes that are secure against honest-but-
curious foundries, i.e., ones that will try to reverse-engineer
the functionality of the IP, but will only fabricate chips that
adhere to the IP author’s opaque circuit. This is in keeping
with all prior work on DH schemes.

A new family of DH schemes: OneChaff. We introduce a
family of DH schemes that we call OneChaff (see Section VI),
and analyze a particular scheme OneChaffhd in this family. In
OneChaffhd, the Hide algorithm takes inspiration from SFLL-
flex [15] as it encodes a single n-input-bit Boolean function H
(one “chaff” function) and an uninitialized lookup table T̃ab
in the opaque circuit. While SFLL-flex allows arbitrary H ,
in our OneChaffhd scheme, the chaff H matches the hidden
function F , except on ∆ ∈ N uniformly chosen inputs.
These are the so-called distinguishing inputs (DIs) for the
pair (H,F). The hiding key KO encodes the correct input-
output behaviors on the DIs. (Practical Hide algorithms will
have ∆ � 2n.) On input of a key K, chip CL, and design
parameters θ, the Restore algorithm in OneChaffhd loads the
key K into the (write-once, tamper-resistant) uninitialized
lookup table of the chip. Under honest operation, key K is
equal to KO.

Proving security of OneChaffhd for Boolean functions.
After giving our foundations for DH schemes and introduc-
ing the OneChaff family of schemes, the remainder of this
work is spent showing that OneChaffhd provably prevents full
recovery of Boolean functions in the presence of honest-but-
curious adversarial foundries. While most real-world circuits
do not compute functions returning a single bit, several
prominent logic-locking schemes [15], [27]–[29] only aim to
hide Boolean functions. Moreover, no provably secure scheme
exists for circuits implementing functions from this “base”
class. We note that for circuits with multiple output bits, one
can attempt to hide Boolean sub-functions that are determined
by the transitive fan-in cone (TFC) of individual output bits.

Our main security result (Theorem 3) gives an upper-
bound on the probability that a computationally bounded,
honest-but-curious foundry manages to win the FR game
against OneChaffhd. To the best of our knowledge, this is the
first positive provable-security result on DH schemes.

Security holds for Boolean functions that are not “simple” in
the sense we mentioned earlier (no DH scheme can hide those)
under some assumptions about the a priori knowledge that
the adversary has about F . All prior schemes assume that the
adversary has no a priori knowledge of F . Such an assumption
is unrealistic and also makes the adversary weak as the initial
“guess” space of the adversary is the set of all Boolean
functions. In our FR analysis of OneChaffhd, we assume that
the adversary knows a priori the hamming weight h, i.e., the
number of inputs that cause F to output one. This narrows the
initial “guess space” to Boolean functions that have hamming
weight of h. Also, the hamming-weight parameter allows us
to capture the fact that the number of functions in the guess
space of the adversary increases exponentially in h. Hence,
functions with hamming weight close to 2n−1 will be more

1675

secure compared to functions with hamming weights close
to zero or 2n. This is also intuitive and in agreement to a
result from learning theory that states that a random Boolean
function (with sufficiently large domain) will not be simple, as
it will lack the highly concentrated Fourier spectral structure
that is typically needed for a function to be learnable. Note
that a random Boolean function will have expected hamming
weight close to 2n−1.

Our analysis essentially bounds the number of functions that
remain in the adversary’s guess space after some number of
true input-output observations (X1, F (X1)), . . . , (Xq, F (Xq))
are (adaptively) obtained. Intuitively, if a large number of
functions remain in the guess space, then the probability of
winning the FR-game will be small, and conversely if the
adversary is able to eliminate all but a few functions, the
adversary’s winning probability will be close to one.

From Theorem 3, and the analysis leading to it, we can glean
some useful observations. In particular, the IP author should
use OneChaffhd to protect Boolean functions (or Boolean sub-
functions) that have large domains, and hamming weights not
too close to 0 or 2n. Functions with small domains cannot
be hidden by any DH scheme, at least not without severely
restrictive assumptions on the adversary. When the hamming
weight tends towards 0 or 2n, the function tends towards a
constant function. Intuitively, as the (known) hamming weight
of the hidden function moves away from 2n−1 towards either
0 or 2n, the number of possible functions decreases. This
makes it more likely, although not necessarily “likely”, that
the hidden function can be guessed after seeing the opaque
circuit and some true (X,F (X)) pairs. Finally, the IP author
should choose to make ∆ as large as is feasible. Intuitively,
if ∆ is small, the number of functions that remain in the
adversary’s guess space after it gets access to the opaque
circuit (that encodes chaff H and a lookup table T̃ab) will
also be small compared to large ∆. Note that the new guess
space will contain only functions that have a hamming weight
of h (due to its a priori knowledge of the hamming weight of
F) and that also differ from H on ∆ DIs (by construction).

III. PRELIMINARIES

Basic notation. When X,Y are strings, we establish the fol-
lowing notations. We write X ‖Y to denote the concatenation
of X and Y ; X[i] for the i-th element of X; and |X| to denote
the length of X . We extend the last two notations to ordered
objects (e.g., a sequence, list, table).

When T is any ordered object, we write T [i] for the i-th
element, and |T | to denote the number of elements in T . In
pseudocode, our convention will be: all such T are initialized
to T [i] = ⊥ for all values of i, where ⊥ is a distinguished
symbol. Likewise, all sets will be initially empty. We use the
notation 〈V 〉 to denote the encoding of object V as a bit
string. The method of encoding is left implicit, and it is silently
overloaded to accommodate whatever is the type of V .

When m is an integer, we use the standard notation [m] to
denote the set {1, 2, . . . ,m}. We write v1, v2, . . . , vr←$ V to

denote sampling (with replacement) r > 0 uniform elements
of V , where V is some non-empty set. An unembellished
← denotes deterministic assignment. This notation is also
used for randomized algorithms, i.e., x←$A(· · ·) means that
algorithm A runs on its indicated inputs, and halts with an
output that is assigned to x. (In this case, the distribution
on output values is determined by A, and is not necessarily
uniform.)

We write AO1,O2,... to denote that algorithm A has oracle
access to the superscripted oracles. For randomized algorithms
X that may return a distinguished symbol ⊥, the support of
the algorithm Sup(X) is defined only over non-⊥ outputs. An
adversary is a randomized algorithm.

Functions and their representations. When D,R are non-
empty sets, we write Func(D,R) for the set of all func-
tions F : D → R. We write Func(n,m) as shorthand for
functions with D = {0, 1}n and R = {0, 1}m. When m = 1,
Func(n, 1) is the set of all Boolean functions. We will use
three representations of functions in this work: circuits, chips
and lookup tables. While circuits and chips will be used to
describe the design phase of the IC supply chain and are
important to denote the type of access (oracle or unrestricted)
to a circuit that an adversary gets as part of the threat model,
lookup tables will be used primarily for functional analyses.

Formally, a circuit CF is a directed acyclic graph that
implements some mapping F ∈ Func(D,R). Access to
circuits will always be unrestricted. This captures a reality of
our setting, in which the foundry is handed a description of a
circuit to be fabricated. Once a circuit CF is fabricated, we will
refer to it as a chip and use the heavy typeface CF to make this
distinction clear. Crucially, access to CF is not unrestricted;
rather an adversary can only use CF to make oracle queries.
This syntactic choice is to make invasive attacks [40] on chips
(to leak secrets) out of scope as they are orthogonal to the
(algorithmic) development of design-hiding schemes — the
central primitive in our work.

The lookup-table representation of a function F with do-
main D and range R is a table TF = 〈(X1, Y1), (X2, Y2), . . .〉,
where Xi ∈ D and Yi = F (Xi).

In all representations of functions, when the underlying
mapping is implicit/understood, we will omit the subscript.

When F,G are two n-bit to m-bit functions, the ham-
ming distance between F and G is the number of inputs
Xi on which the value of the functions differ. We use
I 6=(F,G) to denote the set of such distinguishing inputs, i.e.,
I 6=(F,G) = I 6=(G,F) = {x ∈ {0, 1}n |F (x) 6= G(x)}.
Formally, hd(F,G) = |I 6=(F,G)|. We write F ≡ G whenever
hd(F,G) = 0.

We will also find it useful to define the hamming weight
of Boolean functions. When F ∈ Func(n, 1), the hamming
weight of F is defined as the number of inputs that map to
one, i.e., hw(F) = |{X ∈ {0, 1}n | F (X) = 1}|. Also, for
Boolean functions, we will use sets Xi(F) = {X |F (X) = i},
where i = 0 or 1, to denote the set of inputs for which F map
to 1 or 0. Notice that these two sets fully define F as we can

1676

construct the truth table of F using X0(F) and X1(F).
For any F ∈ Func(n,m), we define the ∆-neighborhood

of F as N∆(F) = {H ∈ Func(n,m) | hd(F,H) = ∆}.

IV. DH SCHEMES

We begin by defining design-hiding scheme as a syntactic
object. Loosely speaking, the syntax describes the inputs and
outputs of the core algorithms that any DH scheme must
realize, as well as what it means for a DH scheme to operate
correctly.

Definition 1. Fix integers n,m > 0. A design-hiding (DH)
scheme Π = (Hide,Restore) for Func(n,m), with key length
ko : {0, 1}∗ → N is a tuple of algorithms with the following
syntax.
• The randomized design-hiding algorithm Hide:

Inputs: a circuit CF implementing F ∈ Func(n,m), and
a string of design parameters θ.
Outputs: the distinguished symbol ⊥ (“error”), or a tuple
consisting of (1) a secret key KO ∈ {0, 1}ko(θ), (2) and an
opaque circuit CL, where L ∈ Func(n+ ko(θ),m).
Requirements: for every input (F, θ), either
Pr[Hide(CF , θ) = ⊥] = 1 or Pr[Hide(CF , θ) = ⊥] = 0.

• The deterministic design-restoring algorithm Restore:
Inputs: a key K ∈ {0, 1}ko(θ), a string of design parame-
ters θ, and a chip CL.
Outputs: a restored chip CF or ⊥. When KO — the key
that is used by Hide to produce CL — is the key input to
Restore, we refer to the resulting chip CF as an honestly-
restored chip.
Requirements: for every input (K, θ,CL), it must be that
CF ← Restore(K, θ,CL) 6= ⊥ implies that F ∈
Func(n,m).

We assume that if an algorithm is called on a point outside of
its domain, in particular if any of its inputs are ⊥, then the
algorithm returns ⊥. 3

The syntax that we have just established is fashioned to
capture the techniques — logic locking, IC camouflaging, and
split manufacturing — that an IP author uses to (a) protect the
“privacy” of its high-value circuit-design CF from adversarial
entities in the post-design phase of the IC supply chain, and
(b) make functionally-correct chips available to the end user.
Let us elaborate using the logic-locking setting.

The IP author often outsources the fabrication of CF into
physical chips CF to third-party foundries. (We will formalize
this transformation in the next section.) The foundries are
potentially malicious entities. Hence, the IP author cannot give
the foundries the circuit design CF (in plaintext). The design-
hiding algorithm Hide abstracts the mechanism by which the
IP author turns CF into an opaque circuit CL that “hides” the
functionality F using a secret key KO. The circuit CL takes
ko(θ) + n bits of input, where n is the length of the input to
F . Here, the additional ko(θ) bits encode the key KO, which
will be used to restore the functionality of the chips (that the
foundry produces) to the original, intended functionality F .

Specific instantiations of Hide include the locking process in
logic-locking schemes like random logic-locking (RLL) [6]
and its variants [44]–[47], SAT-attack-resistant schemes [15],
[27]–[29], [32], etc. We insist that for a given pair (F, θ), either
Hide works always (returns valid KO and L) or it always fails
(returns ⊥).

The meaning of the parameter string θ depends heavily
on the particular instantiation of the design-hiding scheme.
For example, it may encode the number of “key gates” to
be inserted in an RLL scheme [6], or the target hamming
distance in SFLL-HD [15]. It may also encode other design
constraints, such as the maximum size and depth of a locked
circuit, restrictions on gate types, and so on.

We envision that the IP author will securely store the key
KO, and send the opaque circuit CL to the foundry, instead
of the (plaintext) circuit CF . The foundry will fabricate and
package one or more opaque chips; if the foundry is honest,
then each chip will implement L. We formalize this in a
moment.

Intuitively, the design-restoring algorithm Restore abstracts
the mechanism by which a fabricated and packaged chip CL
is restored to its original, intended functionality F . Loosely,
this entails fixing the ko(θ) “key bits” in the input to CL to
KO. In logic locking, the opaque chips are restored by (at
least) having a key installed in some tamper-proof, one-time
writable memory unit within the chip.

Fabrication and DH-scheme correctness. In order to define
the correctness for a DH scheme, we need some mechanism
for turning an opaque circuit into a chip. This is exactly
the role of the fabrication process that the foundry is meant
to provide. Thus, let Fab be a randomized chip-fabrication
algorithm: it takes as inputs a circuit CL and a string of design
parameters θ, and it outputs either a chip CL, or the error
symbol ⊥.

Definition 2. A DH scheme Π = (Hide,Restore) is correct
with respect to chip fabrication Fab if, for any (F, θ) and any
(KO, CL) ∈ Supp(Hide(CF , θ)), we have

Pr[CG←$ Restore(KO, θ,Fab(CL, θ)) : (CG 6= ⊥)⇒
(G ≡ F)] = 1,

where, the probability is over the coins of Fab. 3

In words, this requirement asserts that whenever (F, θ) is
a pair that results in an opaque circuit CL with associated
key KO, it must be the case that an honestly-restored chip
computes F exactly.

We will find it useful to define an honest chip-fabrication
algorithm. Loosely, we say that a chip-fabrication algo-
rithm Fab is honest if the chip that it produces computes
exactly what it is supposed to compute. Formally, this re-
quires that for any circuit CL, and design-parameters θ,
Pr
[
CL̂←$ Fab(CL, θ) :

(
CL̂ 6= ⊥

)
⇒ (L̂ ≡ L)

]
= 1, where

the probability is over the coins of Fab. We note that the
correctness of a DH scheme does not require honest Fab;
indeed, Fab(CL, θ) may produce a chip CL̂ such that for

1677

some Y ∈ Dom(F), L̂(K,Y) 6= L(K,Y) for (say) a small
set of keys K 6= KO. For example, a hardware trojan [48]
can be embedded in the description of Fab such that a
fabricated opaque chip CL̂ implements L(KO, ·) honestly; on
keys K̂ 6= KO, L̂ may leak information about KO.

V. SECURITY NOTIONS

We consider two notions of security for DH schemes. Both
notions deal with an adversarial foundry that attempts to
recover the original functionality that the opaque circuit hides.
The adversary gets unrestricted access to the opaque circuit,
as this is something that a real foundry would receive in order
to carry out fabrication. It is also given oracles that capture
various capabilities that a foundry is likely to have.

Function recovery. We begin with a notion of function
recovery for a design-hiding scheme Π = (Hide,Restore).
The pseudocode for the FR experiment is given in Fig. 2.
The experiment is parameterized by the DH scheme Π,
some design parameters θ that Π uses, and an honest chip-
fabrication algorithm Fab. It takes as inputs: an adversary’s
attack algorithm A, and a set F ⊆ Func(n,m). Intuitively,
the set F captures the a priori uncertainty/knowledge that the
adversary has about the function F that the DH scheme Π is
used to protect. Clearly, there must be some uncertainty, since
otherwise, the adversary already knows the functionality of the
IP author’s circuit design. Note that the design of Π does not
depend on F .

The experiment begins by sampling F uniformly from F .
A circuit CF (that implements F) and the design parameters θ
are inputs to the hiding algorithm Hide, which returns the key
KO, and the opaque circuit CL. The adversary is given CL and
θ as inputs, and it is provided oracles named FAB,RESTORE,
and RUN. These oracles model processes that an adversarial
foundry can employ while trying to recover F .

When the foundry is honest-but-curious, it will only produce
chips that are fabricated from the opaque circuit that the IP
author generates using the DH scheme Π, and the design
parameters θ. In the fully-malicious setting, the adversary
can produce any arbitrary chip using arbitrary circuits and
arbitrary design parameters.

For our security experiments, we define an honest-but-
curious adversary as one that always queries FAB with zero
arguments, i.e., Z = ε. On the other hand, a fully-malicious
adversary can call FAB with any circuit CN , and any design
parameters γ of its choice, i.e., Z = (CN , γ).

When Z = ε, the FAB oracle runs Fab with CL (generated
in the FR experiment) and θ as inputs to get an honest chip
CL. Otherwise, FAB parses Z to get (CN , γ) and runs the
Fab algorithm on (CN , γ) to get an arbitrary chip CN of the
adversary’s choice. We use the sets H and N to keep track of
the honest and arbitrary chips, respectively.

The RESTORE oracle models the adversary’s ability to obtain
honestly-restored chips, i.e., chips that are restored with the
secret key KO. We allow the adversary to query RESTORE
on any chip that it obtained from FAB, i.e., chips in set H ∪

N . We use U to keep track of honestly-restored chips. The
RESTORE oracle does not return the restored chips in order
to prevent the adversary from reading the secret key from the
description of the chip. Instead, we return the index of the
restored chip in U . Notice that we do not restrict the adversary
to run the deterministic Restore algorithm locally on any triple
(K, γ,CN) of its choice.

The RUN oracle captures the foundry’s ability to see the
output of any honestly-restored chip CP (that is stored in U)
on any input of its choice. The oracle takes as input the index
j of CP in U and X ∈ {0, 1}n, and returns the value P (X).
(By notation, CP implements function P .)

The goal of the adversary in the FR experiment is to output
a chip CG as its guess for F . The adversary is said to win the
FR experiment if F ≡ G. Notice that we prevent trivial wins
— by returning honestly-restored (honestly-fabricated) chips
— by not allowing the adversary direct access to chips that
are restored by the RESTORE oracle.

We define the FR advantage of the pair (F , A) against
DH scheme Π, design parameters θ, and honest-fabrication
algorithm Fab to be

AdvFR
(Π,θ),Fab(F , A) = Pr

[
ExpFR

(Π,θ),Fab(F , A) = 1
]
,

where the probability is over the indicated experiment. We
say A is (t, qf , qs, qr)-resource when its time complexity is
t, and it makes qf queries to the FAB oracle, qs queries to
the RESTORE oracle, and qr queries to the RUN oracle. By
convention, an FR adversary does not make pointless queries
to any oracle, i.e. queries that cannot increase its advantage.

Key recovery. The notion of key recovery (KR) is similar
to the FR notion, except the adversary’s goal is to recover a
key K, and the key is then used to get an honestly restored chip
CG that is obtained by running the honest Fab algorithm on
(CL, θ). In the final step of the KR notion, we check whether
the function G that the chip CG implements is functionally
equivalent to F . We define the KR advantage of A as

AdvKR
(Π,θ),Fab(F , A) = Pr

[
ExpKR

(Π,θ),Fab(F , A) = 1
]
,

where the probability is over the indicated experiment. The
resources are the same as those for the FR advantage.

Note that one might think it more natural to define key
recovery as determining the secret key KO. We define it as we
do because some of the existing DH schemes, including RLL
[6] and strong logic obfuscation (SLO) [44], admit multiple
keys K ∈ {0, 1}ko(θ) that map to the hidden function F ,
i.e., F ≡ Restore(KO, θ,CL) ≡ Restore(K, θ,CL). (These
keys are said to constitute an equivalence class of the hidden
function.) Thus, our KR notion captures (for example) the
SAT attack of Subramanyan et. al [17], which recovers some
key in the equivalence class of the hidden function. It also
captures other key-recovery attacks [16], [18], [21] that exploit
structural and functional characteristics of the opaque circuit.

It is intuitively clear that FR security implies KR security
for any design-hiding scheme. We formalize this relation in

1678

Experiment ExpFR
(Π,θ),Fab(F , A)

F ←$ F ; i← 0
(KO, CL)←$ Hide(CF , θ)
CG←$AFAB,RESTORE,RUN(CL, θ)
Ret [G ≡ F]

Experiment ExpKR
(Π,θ),Fab(F , A)

F ←$ F ; i← 0
(KO, CL)←$ Hide(CF , θ)
K←$AFAB,RESTORE,RUN(CL, θ)
CG ← Restore(K, θ,Fab(CL, θ))
Ret [G ≡ F]

oracle FAB(Z):
if Z = ε then //make intended chip
CL←$ Fab(CL, θ)
H ← H∪ {CL}
Ret CL

else //make arbitary chip
〈CN , γ〉 ← Z
CN ←$ Fab(CN , γ)
N ← N ∪ {CN}
Ret C

oracle RESTORE(CL̂):
if CL̂ /∈ H ∪N then Ret ⊥
CP ← Restore(KO, θ,CL̂)
if CP 6= ⊥ then
i← i+ 1; U [i]← CP

Return i

oracle RUN(j,X):

CP ← U [j]
Ret P (X)

Fig. 2: Experiments for function-recovery (FR) and key-recovery (KR) notions for DH scheme Π = (Hide,Restore), given
F ⊆ Func(n,m) and design parameters θ, when chips are fabricated according to Fab.

Experiment F̃R(Π,θ)(F , B)

F ←$ F
(KO, CL)←$ Hide(CF , θ)
CG←$BTRUE(CL, θ)
Ret [G ≡ F]

oracle TRUE(X):

Ret F (X)

Fig. 3: FR-game in the honest-but-curious setting. All three
oracles in the original FR-security experiment are replaced
with TRUE.

Theorem 1.

Theorem 1. Fix integers n,m > 0, F ⊆ Func(n,m), and
design parameters θ for a DH scheme Π = (Hide,Restore).
Let Fab be honest. For any KR-adversary A, there is an FR-
adversary B such that

AdvKR
(Π,θ),Fab(F , A) ≤ AdvFR

(Π,θ),Fab(F , B).

Here, A is (t, qf , qs, qr)-resource where t = O(qf + qs + qr),
and B is (O(t), O(qf), O(qs), O(qr)) resource. �

The proof of this theorem is straightforward. Given the KR-
adversary A guesses K, the FR adversary B can generate CG
by fixing the ko(θ) input bits in the opaque circuit CL with
K (using the deterministic algorithm Restore), and then using
Fab to fabricate the restored circuit. With CG, B wins the FR
experiment with probability no less than the probability with
which A wins the KR experiment.

The converse, i.e., KR security implies FR security, is not
true. Consider that the opaque circuit that the hiding algorithm
outputs is an encoding of the original circuit, and the secret
key is sampled uniformly at random from {0, 1}128. While
admittedly pathological, this example suffices to make the
point.

Simplified FR-notion in the honest-but-curious setting. Re-

call that in the security experiments, the goal of the adversary
is to recover the full-functionality of F . In the honest-but-
curious setting, the foundry effectively will have oracle access
to F and unrestricted access to L. (We discuss the fully-
malicious setting in Section C.) Let’s see this in the context
of the FR-security definition.

Let CL be the opaque circuit that the IP author generates
using Hide. In the honest-but-curious setting, the foundry
uses Fab honestly. By definition of honest Fab, any opaque
chip that Fab produces will implement L. Thus, running (the
deterministic) Restore algorithm on the honestly-fabricated
opaque chips with KO will result in chips with identical
functionalities. Since the adversary gains no additional in-
formation about F from multiple queries to the oracles FAB
and RESTORE, we can fix qf = 1 and qs = 1, where the
only (useful) query that A makes to FAB is Ẑ = 〈CL, θ〉,
and the only (useful) query that A makes to RESTORE is
ĈL = Fab(Ẑ). Notice that this results in U to store a single
restored chip CF = Restore(KO, θ, ĈL) at index one. Using
its qr queries (1, Xi) to RUN oracle, the adversary will learn
qr pairs (Xi, F (Xi)). Thus, in the honest-but-curious setting,
we can replace all the oracles with a single TRUE oracle, that
takes Xi as input and returns F (Xi). We show these changes
in the security experiment F̃R(Π,θ)(F , B); See Fig. 3.

Notice that the changes are all either syntactic (i.e., no
change to the advantage) or conservative (i.e., cannot decrease
advantage) with respect to the original FR experiment. This
observation gives rise to the following simple, but useful
lemma.

Lemma 1. Fix DH scheme Π and parameters θ. For ev-
ery honest-but-curious FR-adversary A that is (t, qf , qs, q)-
resource, there exists a closely related adversary B such that

Pr
[
ExpFR

(Π,θ),Fab(F , A) = 1
]
≤ Pr

[
F̃RΠ,θ(F , B) = 1

]
where B makes at most q queries to TRUE (see Fig. 3), and

1679

runs in time O(t). �

As discussed in Section B, almost all existing DH schemes
[6], [15], [27]–[30], [44]–[46], [49] have been shown to be
KR-insecure, i.e., these schemes have large (close to one) KR
advantage due to various key-recovery attacks [16]–[26]. Per
our Theorem 1, if a DH scheme is KR-insecure, then it is
also FR-insecure, i.e., large FR advantage. The few (recent)
schemes [31], [32] that have not been shown to be broken
were designed specifically to thwart SAT attack. In order to
prove FR-security, we need to show that a DH scheme thwarts
all FR-attacks — not specific KR-attacks. In the next section,
we will construct an FR-secure DH scheme.

VI. A FRAMEWORK FOR DESIGNING FR-SECURE
DESIGN-HIDING SCHEMES

In the FR-security experiment as well as in F̃R, the
adversary’s guess space is the set F ⊆ Func(n,m) before
it gets full access to the opaque circuit. As the adversary
learns new information via its unrestricted access to the opaque
circuit CL and oracle access to F , it can prune its guess
space to a smaller set M1 ⊆ F of functions. Let D1 be the
probability distribution of M1. Then, the probability that B
wins F̃R will be upperbounded by 2−H∞(D1), where H∞(D1)
is the min-entropy of D1. In this section, we will describe a
framework that an IP author can use to build a DH scheme
(with formal descriptions of Hide and Restore) such that it
can concretely define the distribution D1, and find concrete
FR-security guarantees of its construction.

Abstractly, the opaque chip CL can be viewed as a cir-
cuit that encodes a set RL ⊆ Func(n,m) of n-bit to m-
bit functions (not necessarily distinct) that are selected by
Hide (either implicitly or explicitly), and each key K in set
K = {0, 1}ko(θ) is associated with some function in RL.
Minimally, correctness will require that the hiding key KO is
associated with the true function F . We define a chaff function
H ∈ Func(n,m) as one that is not functionally equivalent to
F ; we refer to the inputs on which H differs (in output) from
F as “distinguishing” inputs.

In our framework, we insist that the set RL be “extractable”
from the opaque circuit, i.e., given CL and the description
of Hide, the IP author knows the full-functionality of each
function in RL. This is a reasonable assumption as during the
design of circuit, the functionality of a circuit is fixed first
as part of the system specification and architectural design,
and then the topology of the circuit is decided. In RLL
[6] and its variants [31], [32], [44]–[46], the functionality
of the chaff functions is not decided during the design of
Hide. Rather, the chaff functions are an artifact of random
structural modifications — the positions of key gates in the
original circuit. So, for a non-pathological circuit, i.e., circuits
with sufficiently complex functionality and reasonably large
domain, it is almost impossible to extract the functionality of
the chaff functions. Consequently, it is difficult to evaluate the
FR security of such schemes in our framework. As mentioned
earlier, RLL and its variants (designed before SAT attack) as

Fig. 4: a) An opaque circuit generated by any OneChaff
scheme. b) An honestly-fabricated-and-restored chip. Adver-
sary gets unrestricted access to (a) and oracle access to (b).

well as SAT-attack-resistant schemes [15], [27]–[30] (designed
post SAT attack) are FR-insecure due to various key-recovery
attacks [16]–[26].

A. OneChaff: a family of DH schemes

We present a family of DH schemes called OneChaff with
the following common features:
• the design-hiding algorithm returns an opaque circuit that

contains the circuit of a single chaff H with ∆ ∈ N
distinguishing inputs and an uninitialized lookup table (see
Fig. 4(a)) that is used for restoring the functionality of the
hidden function;

• the hiding key encodes the set of distinguishing inputs and
the correct value of the hidden function on the distinguishing
inputs;

• the design-restoring algorithm, in an honest run, initializes
the lookup table with the hiding key (see Fig. 4(b)).

Notice that the description of OneChaff leaves H unspecified;
specific OneChaff schemes will define H explicitly.

The opaque circuit that OneChaff generates consists of:
the circuit of a single Boolean function, and a lookup table
that is effectively a restore unit. Structurally, this is similar
to the opaque circuits that SAT-attack-resistant DH schemes
[15], [27]–[29] generate. However, the functionalities of the
Boolean function and the restore unit are different across
schemes. In SFLL-HD [15] and TTLock [29], the encoded
Boolean function H is such that its functionality differs from
F only on non-key inputs Xi that are at a hamming-distance
of h (in SFLL-HD, 0 ≤ h ≤ 2n; in TTLock, h = 0) from
the correct key KO; on the remaining inputs, H and F have
identical functionalities. In AntiSAT [27] and SARLock [28],
the original function F is encoded in the opaque circuit with
the assumption that the circuit-synthesis tools will “meld” the
functionalities of F and the restore unit –a comparator that
checks whether the key-input to the opaque circuit is identical
to the hard-coded correct key (KO)– in such a way that the
adversary will not be able to locate F .

Several key-recovery attacks [16], [21], [26], [50] have
exploited structural as well as functional weaknesses in the
opaque circuits that the SAT-attack-resistant DH schemes [15],
[27]–[29] generate to recover the correct key (and hence the
entire functionality of the original circuit). In our construction
OneChaffhd, which we describe next, we chose the functional-
ity of the Boolean function and the restore unit in such a way

1680

that we can prove its security for a wide class of functions
against all attacks admissible in the standard threat model of
logic-locking.
Let θ = (n,m,∆), where n,m > 0, and ∆ ∈ [2n − 1].

Description of Hide. Given F , the Hide algorithm in
OneChaffhd selects F as the anchor function and sam-
ples a single chaff uniformly from its ∆-neighborhood, i.e.,
H ←$N∆(F). Equivalently, the chaff H is initialized to F
and then, on a random subset I 6=(F,H) = {X1, X2, . . . , X∆}
of the domain of F , the value of H(Xi)←$ {0, 1}m \
{F (Xi)}; when m = 1, H(Xi)← ¬F (Xi).

Formally, the opaque circuit CL returned by Hide computes
the function L : ({0, 1}n ∪ { })∆× ({0, 1}m ∪ { })∆ ×
{0, 1}n → {0, 1}m defined by

L (((U1, V1), (U2, V2), . . . , (U∆, V∆)) , X)

=

{
Vi if ∃Ui = X
H(X) otherwise

where the distinguished (non-string) symbol is understood
to mean “uninitialized”. We implicitly assume that all string-
valued Ui are distinct so that L is well defined, and that if any
Ui = , then all Ui = . Thus, L computes H and a family
of functions RL = N∆(H), one of which is F .

In practice, we envision CL to be a circuit that encodes H
and an uninitialized table T̃ab, whose gate-and-wire represen-
tation allows for a sub-circuit CH (computing H) to be easily
parsed out; overloading the 〈·〉 notation, we will sometimes
write CL = 〈H, T̃ab〉 to reflect this. This way, one can
evaluate CH given CL and, by loading T̃ab in CL with a
list of ∆ pairs in {0, 1}n × {0, 1}m, any of the functions in
N∆(H).

Description of Restore. The Restore algorithm parses the
input (design) parameters θ to determine n,m,∆. It then
expects a key K = 〈(U1, V1), . . . , (U∆, V∆)〉 where each
(Ui, Vi) ∈ {0, 1}n×{0, 1}m, and a chip CL that was fabricated
from a circuit CL = 〈H, T̃ab〉. When these expectations are
met, Restore loads the pairs (Ui, Vi) into the uninitialized
lookup table. (When not, it returns ⊥.) We write CL ↑K for
this, the notation suggesting that K is “uploaded” into CL.
Thus, when provided with an honestly fabricated chip from
the opaque circuit CL returned by Hide(F, θ), and the cor-
responding key KO, the restored chip CL ↑ KO properly
computes the hidden function F . Note that, we abstract away
the physical mechanism by which uploading the (Ui, Vi) is
implemented, and assume that if this mechanism is able to
detect upload failure, Restore returns ⊥.

B. OneChaffhd is efficient

Hide is efficient. Note that Hide in OneChaffhd is abstracting
the process by which an IP author goes from the “idea”
(i.e., informal specification) of a functionality F to an opaque
circuit described in some format that is suitable for fabrication
(e.g., a GDSII file). This process typically involves writing
a program for the desired functionality in some high-level

language like Verilog, and then converting the program to a
circuit description by an EDA tool. In OneChaffhd, this process
can be augmented to sample ∆ random domain points, and
incorporate these to yield a program (hence a circuit) for the
chaff function H . More specifically, the IP author can follow
a two-step approach in order to create H from F . Let m = 1.
In the first step, it creates a set of ∆ random n-bit inputs and
finds the value of F on those inputs. Next, it sets the value of
H on the ∆ inputs Xi to ¬F (Xi); on the remaining inputs H
and F have identical values. Hence, runtime of Hide to create
H will be O(n∆)+T (H) , where T (H) is the time needed to
create the circuit for H . Note that the IP author would have
anyways spent T (F) time to build the circuit for F in the
honest setting. So, effectively, the additional runtime of Hide
in OneChaffhd is O(n∆)+T (H)−T (F). (Time to create KO

will also be O(n∆) as |KO| = n∆.) When ∆� 2n , T (H)
will be roughly same as T (F). Thus, the efficiency of Hide
should be roughly same as that of the original process, at least
when ∆� 2n.

Also, note that such an implementation does not leak
any additional information about F apart from H when the
adversary gets full view of the opaque circuit 〈H, T̃ab〉.

Restore is efficient. Since Restore involves uploading the
n∆-bits hiding key KO to T̃ab, it’s runtime will be O(n∆).

C. FR security of OneChaffhd

In F̃R, given unrestricted access to CL = 〈H, T̃ab〉, the
IP author knows that the foundry can (at best) extract the set
RL = N∆(H) and compute M0 = F ∩ N∆(H) to reduce
the size of its original guess space F . Using queries to TRUE,
the foundry can further reduce the guess space to M1 ⊆M0

by removing functions inM0 whose distinguishing-input sets
contain query inputs.

In practice, the IP author will not know the set F because
that captures the foundry’s initial guess at the set of possible
functions F that may be what the IP author intends to hide.
(Recall that the FR-notion samples F ←$ F , suggesting that
the foundry’s initial set is the correct set.) More plausibly,
the author may assume that the foundry’s initial guess is
based upon knowledge of likely “properties” of F . These
properties may be gleaned from discussions with the IP au-
thor, statements in fabrication contracts, historical and market
information, etc. The IP author may use these assumed-
known properties in its description of Hide,Restore, or into
the parameters θ. In particular, it can use these assume-known
properties to compute its estimates of the sets M0 and M1

that can help the foundry reduce the guess space. We will use
these observations in our upcoming analysis.

Scoping the set F . In what follows, we will focus on
the case that m = 1, i.e., F ⊂ Func(n, 1). We focus on
Boolean functions for a few reasons. First, even if the circuit
representation of the hidden function has n′ ≥ n bits of input
and m > 1 bits of output, we can take as a first consideration
whether or not one can securely hide the transitive fan-in cone
(TFC) of any particular output bit. For a collection of output

1681

bits that have disjoint transitive fan-in cones, one can consider
hiding these in parallel.

Second, focusing on Boolean functions makes the analysis
less complicated. In particular, for all distinguishing inputs
Ui ∈ I 6=(F,H), Vi = ¬F (Ui); otherwise Vi←$ Um \ F (Ui).
Note that when m > 1, the TFCs of different output bits may
not be disjoint. In such a case, the adversary can potentially
use information it learns about one TFC to learn about the
functionality of a different TFC.

Third, barring SFLL-flex [15], in the remaining SAT-attack-
resistant DH schemes (AntiSAT [27], SARLock [28], TTLock
[29] and SFLL-HD [15]), F is Boolean.

Simple functions cannot be hidden. We borrow the def-
inition of “simple” functions from learning theory; simple
functions are those that can be efficiently learned via a
reasonably small number of input-output values of F . Now,
if F consists predominantly of simple functions, then no DH
scheme will be secure4 in hiding functions sampled from F .
For example, functions that have a small domain can be
learned by brute force. In addition, results from computational
learning theory tell us that functions whose decision-tree
representation have small depth/size can be learned via the
Kushilevitz-Mansour algorithm [42]. More generally, meth-
ods exist to (approximately) learn Boolean functions whose
Fourier spectra are sparse (e.g., dominated by relatively few
Fourier coefficients) [43].

To loosely capture a measure of the density of “simple”
Boolean functions within a given set F , we give the following
definition.

Definition 3. [“Simple” functions in F .] Let F ⊆ Func(n, 1)
be a set of Boolean functions. Let t, q ≥ 0 be integers,
and let δ ∈ [0, 1] be a real number. Let Ft,q,δ ⊆ F be
a subset such that the following holds: ∃ a q-query, t-time
adversary A such that, ∀f ∈ Ft,q,δ , when g←$Af(·) we have
Pr[x←$ {0, 1}n : g(x) = f(x)] ≥ δ. Furthermore, define
εt,q,δ = |Ft,q,δ|/|F|. In particular, εt,q,1 is the fraction of F
that can be exactly learned (by some A) with q input-output
values and time-complexity t. �

Our security bounds for OneChaffhd will reflect the term
εt,q,1, although we stress that corresponding bounds for any
DH scheme would also have to reflect this term (perhaps not
explicitly) because any “simple” function will not be hideable.

In general, specifying a set F for which εt,q,1 is small
enough for practically meaningful security statements (for
reasonable t, q) is challenging, as this would require results
of the following kind: There exist no adversary that can learn
any function in F \Ft,q,1 with q queries in time t. We are not
aware of any such results. Also, note that it is not sufficient
for F to be large (although it is necessary to avoid simply
guessing F), as one can specify large sets of functions with
sparse Fourier spectra.

4Shamsi et al. [5] made a similar observation and gave impossibility results
on logic locking when F consists of entirely simple functions. Our security
experiments are more generic as they allow F to contain functions of varying
degrees of “simplicity”.

We conjecture that if F is sufficiently “unstructured”, then
εt,q,1 will be small enough to not dominate the FR-security
bounds we will prove, for practically reasonable t, q. For
example, a random Boolean function lacks the highly con-
centrated spectral structure — the number of non-zero Fourier
coefficients is (1 − o(1))2n [51] — that leads to efficient
learnability from input-output pairs.

Under the above conjecture, we will focus on F =
F[h0,h1] ⊆ Func(n, 1) that consists of all Boolean functions
with hamming weight at least h0 and at most h1. Recall that
the set F in our FR experiment is meant to reflect the adver-
sary’s a priori “knowledge” about the function hidden in the
opaque circuit, and that our FR-notion samples F uniformly
from F . At the extremes, setting h0 = 0, h1 = 2n considers
the case that the adversary has no a priori knowledge; setting
h0 = h1 considers an adversary that knows exactly the
hamming weight of the hidden function F . In our analysis
of OneChaffhd, we will conservatively assume the latter.

A random Boolean function has an expected hamming
weight close to 2n−1. Hence, when F comprises functions
with hamming weights close to 2n−1, then a randomly sam-
pled function from F is unlikely to be easily learned (i.e.,
“simple”) given the current state of the art, and will have
very small εt,q,1. We conjecture this based on the fact that
a random Boolean function almost certainly does not have a
concentrated Fourier spectrum [51] thereby making efficient
learning-theoretic attacks out-of-scope.

A practical warm-up: FR security with q = 0. Chips that
are used in critical infrastructure (e.g., military devices) will
most likely require considerable effort to obtain. In this case,
we can assume that the foundry cannot get access to honestly
restored chips, and thereby learn the true input-output behavior
of F on inputs of its choice. Thus, we begin our analysis of
OneChaffhd for F[h,h] in the q = 0 case.

Given Lemma 1, recall that we were left to find an up-
per bound on Pr

[
F̃R(B) = 1

]
, where B has some time-

complexity t and asks q queries to its TRUE oracle. Let us
fix q = 0, and consider an arbitrary adversary B0 with these
resource bounds.

Recalling the notation that RL is the set of functions
realizable by the opaque circuit L = 〈H, T̃ab〉, we have
RL = N∆(H); F ∈ RL. The adversary B0 knows a
priori that F ∈ F[h,h]. Hence, for all F̂ ∈ RL, hw(F̂) ∈
[hw(H)−∆, hw(H) + ∆]. To get an intuition of the claim on
hw(F̂), consider two cases: hw(H) = 0 and hw(H) = 2n.
When hw(H) = 0, hw(F̂) = hw(H) + ∆ = ∆; when
hw(H) = 2n, hw(F̂) = hw(H)−∆ = 2n −∆.

While attacking OneChaffhd, the optimal strategy for B0

is to return the circuit implementation of the most-likely
function in F[h,h] ∩ RL. (We will use F j[h,h], R

j
L to denote

the subset of functions in F[h,h] and RL, respectively, that
have correct values on some 0 ≤ j ≤ q inputs.) But as
sampling is done in a uniform and independent fashion in
F̃R, all functions inM0 =

(
F0

[h,h] ∩R
0
L

)
are equally likely.

1682

Then, Pr
[
F̃R(B0) = 1

]
= |M0|−1. We will proceed to give

a lowerbound on |M0| in the q = 0 case.

Claim 1. Let hw(H) = h + α, where α < (2n−1 − h), and
∆ < h. Then,

|M0| =
∣∣∣(F0

[h,h] ∩R
0
L

)∣∣∣ =

(
h+ α

(∆ + α)/2

)(
2n − h− α
(∆− α)/2

)
.

�

When ∆ < h and hw(H) < 2n−1, we found (in the
proof of Claim 1) that more than half (∆/2 + α/2) of the
distinguishing inputs will belong to X1(H). Hence, we can
assume, without any loss in the FR advantage of the adversary,
that the adversary will make all of its queries from X1(H) until
it finds all (∆ +α)/2 distinguishing inputs in X1(H). (Later,
we will show that when q < min(hw(H)/4,∆2/64 lnn), the
adversary can find at most half of the distinguishing inputs in
X1(H), without loss.)

The lower bound on |M0| in Claim 1, a function of hw(H)
as α = (h − hw(H)), gives us an upper bound on the
FR advantage of adversary that attacks OneChaffhd without
making any queries to any of the three oracles. But, hw(H)
is not a parameter of the FR-security experiment. In the next
claim, we give a lower bound on the hamming weight of H
using the Hoeffding lemma; the bound is a function of h, ∆
and n and all three are parameters of the FR experiment.

Claim 2. Let ∆ < h and 0 < (∆ + h) < 2n−1. Then,
hw(H) ≥ h + ∆(1 − h/2n−1), with probability at least
(1− 1/∆2). �

We will assume that the bound on hw(H) is tight and we
will reflect the uncertainty in the claim/theorem statements.

Now, we are ready to give the upper bound on the FR
advantage of adversary A in the zero-query setting. We use
the standard relation

(
p
r

)
≥ (p/r)r in the bound in Claim 1

to make the final bound in Theorem 2 easier to interpret.
We also use the weaker bound hw(H) > h (instead of the
tighter bound in Claim 2) to make the final bound even more
interpretable. Note that practical OneChaffhd schemes will
have ∆ � 2n−1 as the run time of Hide as well as Restore
will be linear in ∆. Thus, the loss in using hw(H) > h instead
of hw(H) ≥ h + ∆(1 − h/2(n−1)) will not be significantly
large.

Theorem 2. Fix m = 1 and integers n, h,∆ > 0 such that
∆ < h, and ∆ + h < 2(n−1). Let εt,0,1 be as defined in
Definition 3. When an honest-but-curious adversary A attacks
the FR security of Π = OneChaffhd without making any
queries to any oracle, then, it achieves

AdvFR
(Π,θ),Fab(F[h,h], A) ≤

(
∆2

2nh

)∆/2

+ εt,0,1,

with probability at least (1− 1/∆2). �

In the next section, we will see that when we account
for the adversary’s access to the oracles, more specifically,
the TRUE oracle, the upper bound on the FR advantage

will be
(

∆2

2n·(h−q)

)∆/4

+ εt,q,1. Observe that the queries to
TRUE increase the FR advantage of an adversary significantly
(compared to the zero-query setting) as the exponent ∆/2
decreases to ∆/4; the denominator also is smaller compared
to the zero-query setting. Since the first term is very similar to
the bound in Theorem 3, we defer the unpacking of Theorem 2
to the next section.

FR analysis of OneChaffhd with q > 0. The ability to learn
true input-output pairs, via queries to TRUE, provide a way for
the adversary to verify guesses at portions of the key KO.
Recall that the key encodes (X1, F (X1)), . . . , (X∆, F (X∆))
for Xi ∈ I 6=(F,H), and the opaque circuit CL allows for
local computation of H(X). Thus, as a first step in analyzing
the FR security of OneChaffhd in the q > 0 case, we derive a
bound on the number of points in I 6=(F,H) that an adversary
uncovers in its q queries to the TRUE oracle.

Let Qj = {x1, x2, . . . , xj} be the the first j queries to
TRUE, and let random variable Qkey

j = Qj ∩I 6=(F,H) denote
the queries in Qj that uncover a portion of the distinguishing
inputs. Observe that |Qkey

0 | = 0, and for j > 0 the value
of |Qkey

j | depends only upon |Qkey
j−1| and the query xj ; in

particular that |Qkey
j | = |Qkey

j−1| + 1 if xj ∈ I 6=(F,H), and
|Qkey

j | = |Q
key
j−1| if not.

Let Ij be the indicator random variable indicating that the
event xj ∈ Qkey

j occurs. We claim that Pr[Ij = 1] = (∆ −
|Qkey

j−1|)/ (hw(H) − (j − 1)). To see this, observe that the
number of uncovered points in I 6=(F,H) is precisely (∆ −
|Qkey

j−1|) and, given how those points were sampled, any of the
remaining, unqueried points in X1(H) are equally likely to be
in I 6=(F,H). Given this, we can prove the following lemma.

Lemma 2. Let ∆ < h and (∆ + h) < 2n−1. Then, we have
E
[
|Qkey

q |
]

= q∆
hw(H) , and, |Qkey

q | < E
[
|Qkey

q |
]

+
√

4q ln ∆

with probability at least 1− (2/∆2). �

Notice that when q < ∆2/(256 ln ∆),
√

4q ln ∆ < ∆/8;
when q < hw(H)/8, q∆/hw(H) < ∆/8. Thus, with
probability 1 − (2/∆2), the adversary will uncover no more
than quarter of the distinguishing inputs in I 6=(F,H) when
q < min(hw(H)/8,∆2/(256ln∆)).

The adversary can increase its FR advantage by removing
functions from

(
F0

[h,h] ∩R
0
L

)
that are not correct on any input

in Qkey
q . In fact, it can remove all functions that do not agree

with F on any point in the query set Qq .
Extending Claim 1 to account for Qkey

q , we give a lower

bound on |M1| =
∣∣∣(Fq[h,h] ∩R

q
L

)∣∣∣ in Claim 3. Since one
wins against OneChaffhd if and only if the hidden function F
is completely recovered, a lowerbound on |M1| will give us an
upperbound on Pr

[
F̃R(B) = 1

]
, and in turn (by Lemma 1)

an upper bound on the FR advantage of an adversary A that
attacks OneChaffhd.

Claim 3. Let hw(H) = h + δ, where δ = ∆(1 − h/2n−1),

1683

and ∆ < h. Then,

|M1| ≥
(

(h+ δ − q)
(∆ + δ)/2− |Qkey

q |

) (
2n − h− δ
(∆− δ)/2

)
,

with probability at least (1− 2/∆2). �

Comparing the bounds in Claims 1 and 3, we can see that
the adversary B can remove a large number — at least(

2n−h−δ
(∆−δ)/2

)
— of functions from

(
F0

[h,h] ∩R
0
L

)
using its

queries to TRUE.

Upperbound on the FR security of OneChaffhd. Recall
that the lowerbound on |M1| gives us an upperbound on
the FR advantage of an adversary that attacks OneChaffhd,
where RqL denotes the set of functions in the ∆ neighborhood
of H that are correct on all the queries that the adversary
makes to TRUE. The bound in Claim 3 is a little complex and
hard to interpret. In the following Corollary to Claim 3, we
derive a weaker, but easier to interpret bound on |M1|. In the
derivation, we use the standard relation

(
p
r

)
≥ (p/r)r, and the

assumptions: q < min(h/8,∆2/256n) and (h < h+∆ < 2n)
to get the bound.

Corollary 1. Let 0 ≤ q < min(h/8,∆2/256n). Let ∆ < h
and 0 < (∆ + h) < 2n−1. Then,

|M1| =
∣∣∣(Fq[h,h] ∩R

q
L

)∣∣∣ ≥ (2n(h− q)
∆2

)∆/4

,

with probability at least (1− 2/∆2). �

We are now prepared to state the upper bound on the
FR-advantage of an adversary attacking OneChaffhd. Since
AdvFR

(Π,θ),Fab(F[h,h], A) ≤ 1/|M1| + εt,q,1, the final bound
follows directly from Corollary 1. Recalling that εt,q,1 captures
the probability that the sampled hidden function F is a
“simple” function (see Definition 3), we have the following
theorem.

Theorem 3. Fix m = 1 and integers n, h,∆, q > 0 such that
∆ < h, 0 < ∆+h < 2n−1, and 0 ≤ q < min(h/8,∆2/256n).
Let an honest-but-curious adversary A attack the FR security
of OneChaffhd using resources (t, qf = 1, qs = 1, qr = q). Let
εt,q,1 be as defined in Definition 3. Then,

AdvFR
(OneChaffhd,θ),Fab(F[h,h], A) ≤

(
∆2

2n(h− q)

)∆/4

+ εt,q,1,

with probability at least (1− 2/∆2). �

See Theorem 4 (Section D) for a much tighter, but harder
to interpret upperbound on AdvFR

(Π,θ),Fab(F[h,h], A). Let us
unpack Theorem 3 a bit. We will carve out three criteria from
the theorem in terms of: |Dom(F)|, hw(F) and ∆, that are
needed for FR security of OneChaffhd. Note that an IP author
can configure ∆ while running Hide.

The FR security of OneChaffhd increases polynomially in
the size of the domain of the hidden function, as well as
the hamming weight of the function (as the hamming weight
approaches 2n−1). The rate of increase depends on the value

of ∆ — large values of ∆ result in a faster rate of increase.
All three criteria are quite intuitive. Functions with small
domains will be simple because they can be learnt by brute
force; functions with very small hamming weights will be
“close” to being constant functions. On the contrary, when
F is a uniformly sampled balanced Boolean function with
large domain, the min-entropy of the (uniform) distribution
on F will be very large (compared to functions with very
small hamming weights) as |F| =

(
2n

2n−1

)
>
(

2n

`

)
for any

` ∈ [0, 2n] \ {2n−1}.
While efficient OneChaffhd schemes will require ∆ to be

small (as the size of KO is n∆), the IP author should choose
as large ∆ as possible to maximize FR-security guarantee.
This criterion is also quite intuitive as large ∆ implies large
number of secret distinguishing inputs (that are encoded in
KO) on which the adversary does not know the value of F .

Even when ∆ is not so large, say ∆ = 210, security holds
with probability at least (1− 1/220) which is almost equal to
one. And when the domain of the hidden function as well as
the hamming weight is large, i.e., h, 2n � 0, then the first
term (∆2/(2n(h− q))(∆/4) in Theorem 3, will be extremely
small. (Please note that we give concrete security bounds,
not asymptotic ones, precisely because it allows this kind of
analysis — one can evaluate what security is possible (in our
model) for any setting of the parameters.)

None of the previous works consider these factors while
discussing the security of DH schemes. For example, in
the evaluation of the SAT attack [17], four base-benchmark
circuits (c17, ex5, apex4, ex1010) have very small domains: in
c17, n = 5; in ex5, n = 8; in apex4 and ex1010, n = 10. Note
that the authors used each base-benchmark circuit to create 21
opaque circuits. That means roughly 19% of the benchmark
circuits5 in the test corpora of SAT attack cannot be protected
by any DH scheme. It is noteworthy to also point that the
open-source test corpora of SAT attack is used by other attack
algorithms as well [22], [23].

VII. CONCLUSIONS

In this paper, we gave a provable security treatment to the
problem of hiding circuit-design IP from adversarial foundries.
We formalized a new primitive, called a design-hiding scheme,
that abstractly captures all prior work on so-called logic-
locking schemes (which forms the bulk of prior work in the
area), and our security notions capture the intended goals of
logic-locking schemes. With this formal foundation in place,
we described a DH scheme called OneChaffhd and proved that
it meets our function-recovery security notion in the honest-
but-curious foundry setting. (It is unclear, given the state of
the art in hardware trojan detection, how to achieve security in
the fully malicious foundry setting.) Our work surfaced some
important issues that had gone unmentioned in prior work,
for example the matter of “simple” circuits. We see this work
as an important first step towards the ultimate goal of the

5Out of 441 benchmark circuits, 84 circuits have very small domains in
the test corpora.

1684

community, namely to provide efficient and provably secure
DH schemes to protect high-value circuit IP from being reverse
engineered by untrusted foundries.

ACKNOWLEDGEMENT

We acknowledge the hard work of the reviewers, and their
helpful feedback. We also acknowledge the National Science
Foundation for their support under award NSF-1564444

REFERENCES

[1] The-Intercept, “Everybody does it: the messy truth of
computer suppy chains.” https://theintercept.com/2019/01/24/
computer-supply-chain-attacks/, Tech. Rep., 2019.

[2] TrendForce, “Trendforce reports top 10 ranking of global semiconductor
foundries of 2018,” https://press.trendforce.com/press/20180524-3106.
html, Tech. Rep., 2018.

[3] “Top 5 most counterfeited parts represent a $169 billion potential
challenge for global semiconductor market,” https://technology.informa.
com/405654/, 2012, accessed: 2020-08-25.

[4] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1207–1228, 2014.

[5] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in 2019 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2019, pp. 161–170.

[6] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe. ACM, 2008, pp. 1069–1074.

[7] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan,
“Threats on logic locking: A decade later,” in Proceedings of the
2019 on Great Lakes Symposium on VLSI, ser. GLSVLSI ’19. New
York, NY, USA: ACM, 2019, pp. 471–476. [Online]. Available:
http://doi.acm.org/10.1145/3299874.3319495

[8] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin,
“Ip protection and supply chain security through logic obfuscation:
A systematic overview,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 24, no. 6, pp. 1–36, 2019.

[9] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis
of integrated circuit camouflaging,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, ser.
CCS ’13. New York, NY, USA: ACM, 2013, pp. 709–720. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516656

[10] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu,
“Physical design obfuscation of hardware: A comprehensive investi-
gation of device and logic-level techniques,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 1, pp. 64–77, 2016.

[11] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing se-
cure?” in 2013 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2013, pp. 1259–1264.

[12] B. Shakya, N. Asadizanjani, D. Forte, and M. Tehranipoor, “Chip editor:
leveraging circuit edit for logic obfuscation and trusted fabrication,” in
Proceedings of the 35th International Conference on Computer-Aided
Design, 2016, pp. 1–8.

[13] S. Dziembowski, S. Faust, and F.-X. Standaert, “Private circuits iii:
Hardware trojan-resilience via testing amplification,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 142–153.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978419

[14] L. W. Chow, J. P. Baukus, B. J. Wang, and R. P. Cocchi, “Camouflaging a
standard cell based integrated circuit,” Apr. 3 2012, uS Patent 8,151,235.

[15] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran,
and O. Sinanoglu, “Provably-secure logic locking: From theory to
practice,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: ACM, 2017, pp. 1601–1618. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3133985

[16] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019, pp. 936–939.

[17] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), May 2015, pp. 137–
143.

[18] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel bypass
attack and bdd-based tradeoff analysis against all known logic locking
attacks,” in International Conference on Cryptographic Hardware and
Embedded Systems. Springer, 2017, pp. 189–210.

[19] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of
logic encryption algorithms,” in Proceedings of the on Great
Lakes Symposium on VLSI 2017, ser. GLSVLSI ’17. New
York, NY, USA: ACM, 2017, pp. 179–184. [Online]. Available:
http://doi.acm.org/10.1145/3060403.3060469

[20] Y. Shen, A. Rezaei, and H. Zhou, “Sat-based bit-flipping attack on logic
encryptions,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 629–632.

[21] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal at-
tacks on logic locking and camouflaging techniques,” IEEE Transactions
on Emerging Topics in Computing, 2017.

[22] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Appsat:
Approximately deobfuscating integrated circuits,” in 2017 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST),
May 2017, pp. 95–100.

[23] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “Besat:
behavioral sat-based attack on cyclic logic encryption,” in Proceedings of
the 24th Asia and South Pacific Design Automation Conference. ACM,
2019, pp. 657–662.

[24] H. Zhou, R. Jiang, and S. Kong, “Cycsat: Sat-based attack on cyclic
logic encryptions,” in Proceedings of the 36th International Conference
on Computer-Aided Design. IEEE Press, 2017, pp. 49–56.

[25] Y.-C. Chen, “Enhancements to sat attack: Speedup and breaking
cyclic logic encryption,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 23, no. 4, pp. 52:1–52:25, May 2018. [Online]. Available:
http://doi.acm.org/10.1145/3190853

[26] F. Yang, M. Tang, and O. Sinanoglu, “Stripped functionality logic
locking with hamming distance based restore unit (sfll-hd)–unlocked,”
IEEE Transactions on Information Forensics and Security, 2019.

[27] Y. Xie and A. Srivastava, “Mitigating sat attack on logic locking,” in
International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 2016, pp. 127–146.

[28] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock: Sat
attack resistant logic locking,” in 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 2016, pp.
236–241.

[29] M. Yasin, A. Sengupta, B. C. Schafer, Y. Makris, O. Sinanoglu, and
J. J. Rajendran, “What to lock?: Functional and parametric locking,”
in Proceedings of the on Great Lakes Symposium on VLSI 2017, ser.
GLSVLSI ’17. New York, NY, USA: ACM, 2017, pp. 351–356.
[Online]. Available: http://doi.acm.org/10.1145/3060403.3060492

[30] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic
obfuscation for creating sat-unresolvable circuits,” in Proceedings of
the on Great Lakes Symposium on VLSI 2017, ser. GLSVLSI ’17.
New York, NY, USA: ACM, 2017, pp. 173–178. [Online]. Available:
http://doi.acm.org/10.1145/3060403.3060458

[31] S. Roshanisefat, H. Mardani Kamali, and A. Sasan, “Srclock: Sat-
resistant cyclic logic locking for protecting the hardware,” in Proceed-
ings of the 2018 on Great Lakes Symposium on VLSI. ACM, 2018, pp.
153–158.

[32] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock:
Hard distributions of sat instances for obfuscating circuits using fully
configurable logic and routing blocks,” in Proceedings of the 56th
Annual Design Automation Conference 2019, ser. DAC ’19. New York,
NY, USA: ACM, 2019, pp. 89:1–89:6.

[33] R. S. Chakraborty and S. Bhunia, “Harpoon: an obfuscation-based soc
design methodology for hardware protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[34] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of
ics for piracy prevention and digital right management,” in Proceedings
of the 2007 IEEE/ACM international conference on Computer-aided
design. IEEE Press, 2007, pp. 674–677.

[35] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall,
“Interlocking obfuscation for anti-tamper hardware,” in Proceedings of

1685

the eighth annual cyber security and information intelligence research
workshop. ACM, 2013, p. 8.

[36] J. Dofe and Q. Yu, “Novel dynamic state-deflection method for gate-level
design obfuscation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 2, pp. 273–285, 2017.

[37] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier,
and C. Paar, “On the difficulty of fsm-based hardware obfuscation,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 293–330, 2018.

[38] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic
locking for secure outsourced chip fabrication: A new attack and
provably secure defense mechanism,” CoRR, vol. abs/1703.10187,
2017. [Online]. Available: http://arxiv.org/abs/1703.10187

[39] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z.
Pan, “Provably secure camouflaging strategy for ic protection,” in
Proceedings of the 35th International Conference on Computer-Aided
Design, ser. ICCAD ’16. New York, NY, USA: ACM, 2016, pp. 28:1–
28:8. [Online]. Available: http://doi.acm.org/10.1145/2966986.2967065

[40] S. Engels, M. Hoffmann, and C. Paar, “The end of logic locking?
a critical view on the security of logic locking,” Cryptology ePrint
Archive, Report 2019/796, 2019, https://eprint.iacr.org/2019/796.

[41] J.-M. Cioranesco, J.-L. Danger, T. Graba, S. Guilley, Y. Mathieu,
D. Naccache, and X. T. Ngo, “Cryptographically secure shields,” in
2014 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST). IEEE, 2014, pp. 25–31.

[42] E. Kushilevitz and Y. Mansour, “Learning decision trees using the fourier
spectrum,” SIAM Journal on Computing, vol. 22, no. 6, pp. 1331–1348,
1993.

[43] P. Gopalan, R. O’Donnell, R. A. Servedio, A. Shpilka, and K. Wimmer,
“Testing fourier dimensionality and sparsity,” SIAM Journal on Com-
puting, vol. 40, no. 4, pp. 1075–1100, 2011.

[44] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in DAC Design Automation Conference 2012, June
2012, pp. 83–89.

[45] ——, “Logic encryption: A fault analysis perspective,” in Proceedings
of the Conference on Design, Automation and Test in Europe, ser.
DATE ’12. San Jose, CA, USA: EDA Consortium, 2012, pp. 953–958.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2492708.2492947

[46] S. Dupuis, P.-S. Ba, G. Di Natale, M.-L. Flottes, and B. Rouzeyre,
“A novel hardware logic encryption technique for thwarting illegal
overproduction and hardware trojans,” in On-Line Testing Symposium
(IOLTS), 2014 IEEE 20th International. IEEE, 2014, pp. 49–54.

[47] S. M. Plaza and I. L. Markov, “Protecting integrated circuits from
piracy with test-aware logic locking,” in 2014 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2014, pp. 262–
269.

[48] R. S. Chakraborty and S. Bhunia, “Security against hardware trojan
attacks using key-based design obfuscation,” Journal of Electronic
Testing, vol. 27, no. 6, pp. 767–785, 2011.

[49] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing ic piracy
using reconfigurable logic barriers,” IEEE Design & Test of Computers,
vol. 27, no. 1, 2010.

[50] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security
analysis of anti-sat,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2017, pp. 342–347.

[51] R. De Wolf, “A brief introduction to fourier analysis on the boolean
cube,” Theory of Computing, pp. 1–20, 2008.

[52] Z. Brakerski and G. N. Rothblum, “Virtual black-box obfuscation for
all circuits via generic graded encoding,” in Theory of Cryptography
Conference. Springer, 2014, pp. 1–25.

[53] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im) possibility of obfuscating programs,” in
Annual International Cryptology Conference. Springer, 2001, pp. 1–18.

[54] A. C.-C. Yao, “Protocols for secure computations,” in FOCS, vol. 82,
1982, pp. 160–164.

[55] D. Evans, V. Kolesnikov, M. Rosulek et al., “A pragmatic introduction to
secure multi-party computation,” Foundations and Trends® in Privacy
and Security, vol. 2, no. 2-3, pp. 70–246, 2018.

[56] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proceedings of the 2012 ACM conference on Computer and
communications security. ACM, 2012, pp. 784–796.

[57] Y. Lindell, “Secure multiparty computation for privacy preserving data
mining,” in Encyclopedia of Data Warehousing and Mining. IGI Global,
2005, pp. 1005–1009.

[58] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 478–492.

[59] V. Kolesnikov, P. Mohassel, and M. Rosulek, “Flexor: Flexible garbling
for xor gates that beats free-xor,” in Annual Cryptology Conference.
Springer, 2014, pp. 440–457.

[60] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2015, pp. 220–250.

[61] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A new
approach to practical active-secure two-party computation,” Cryptology
ePrint Archive, Report 2011/091, 2011, https://eprint.iacr.org/2011/091.

[62] H. Carter and P. Traynor, “Opfe: Outsourcing computation for private
function evaluation.” IACR Cryptology ePrint Archive, vol. 2016, p. 67,
2016.

[63] S. Kamara, P. Mohassel, and B. Riva, “Salus: a system for server-aided
secure function evaluation,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp. 797–808.

[64] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi, “A framework for
outsourcing of secure computation,” in Proceedings of the 6th edition
of the ACM Workshop on Cloud Computing Security, 2014, pp. 81–92.

[65] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella et al., “Fairplay-secure two-
party computation system.” in USENIX Security Symposium, vol. 4. San
Diego, CA, USA, 2004, p. 9.

[66] B. Kreuter, A. Shelat, B. Mood, and K. Butler, “{PCF}: A portable
circuit format for scalable two-party secure computation,” in Presented
as part of the 22nd {USENIX} Security Symposium ({USENIX} Security
13), 2013, pp. 321–336.

[67] L. Malka, “Vmcrypt: modular software architecture for scalable secure
computation,” in Proceedings of the 18th ACM conference on Computer
and communications security, 2011, pp. 715–724.

[68] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “Tinygarble: Highly compressed and scalable sequential
garbled circuits,” in 2015 IEEE Symposium on Security and Privacy.
IEEE, 2015, pp. 411–428.

[69] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in Annual
international conference on the theory and applications of cryptographic
techniques. Springer, 2015, pp. 337–367.

APPENDIX

A. Historical context

In 2008, the first logic-locking scheme (random-logic lock-
ing (RLL) [6]) was designed. The ostensible security goal of
RLL was to construct an opaque circuit that hides the full
functionality F of the IP author’s circuit from an adversarial
foundry who has unrestricted access to the opaque circuit and
oracle access to F . However, the authors of RLL claimed
that their scheme is secure because it prevents an adversary
from recovering the correct key using a brute-force key-search
attack.

Note that the security goal of preventing key recovery (KR)
misses the original intent; namely, to prevent the adversary
from learning the functionality of the IP author’s circuit. Thus,
preventing function recovery (FR) is arguably a more pertinent
security goal.

Between 2008 and 2015, several variants [6], [44]–[46], [49]
of RLL were designed. Each claimed security by (empirically)
showing that their scheme is resilient against few KR attacks.
In 2015, Subramanyan et al. [17] gave a KR attack (popularly
known as the SAT attack) and empirically showed that the
correct key can be efficiently recovered from circuits locked
with RLL and its variants.

From 2015 to 2021 (before our work), several new logic-
locking schemes [15], [27]–[32] were designed, primarily to
thwart the SAT attack.

1686

At a high level, prior works use the following steps to design
a logic-locking scheme:

1) generate an opaque circuit using some structural modifi-
cations of the original circuit;

2) show that the opaque circuit has low power, performance
and area overhead;

3) claim security by empirically showing that the scheme is
resilient against few KR attacks.

Strangely, these schemes (implicitly) claim that circuits with
very small domain can be hidden. This is impossible since
an adversary can use its oracle access to a restored chip
(purchased from the market) to build the full truth table of
the original circuit. Not only that, almost all logic-locking
schemes have been shown to be vulnerable to efficient KR
attacks, e.g., [16]–[26] that allows the foundry to define the
functionality F in full.

B. Relation to Existing Cryptographic Primitives

Our security notions capture an attack on the privacy of
the IP author’s circuit design. Thus, it is natural to think of
related cryptographic primitives: program obfuscation, multi-
party computation, encryption and function secret sharing.
PROGRAM OBFUSCATION. Design hiding is orthogonal to
recent work in cryptography on program/circuit obfuscation
(e.g. [52], [53]). Loosely, obfuscation in the latter setting
makes the syntactic requirement that the obfuscated circuit
have the same input-output functionality as the original circuit.
In the design-hiding setting, at an abstract level, the opaque
circuit implements a set of functions. It is only when the chip
is restored, via the secret key, that the chip must faithfully
compute the intended function.

MULTIPARTY COMPUTATION. Secure multi-party computa-
tion [54]–[57] allows two or more parties to “securely” com-
pute some arbitrary function on inputs that are secrets of the
respective parties.

Though MPC has become increasingly feasible to deploy
in real-world systems [58]–[68], we cannot use it to design
secure DH schemes in the logic-locking setting because of
the fundamental differences in the threat models.

Logic locking involves two parties: the IP author (whose
IC design needs to be protected), and the adversarial foundry
(who is responsible for fabricating multiple opaque chips from
the opaque circuit). The two popular settings of two-party
computation that have some similarity to the logic-locking
setting are: secure-function evaluation (SFE) [55], [56], [63]
and private-function evaluation (PFE) [55]–[57], [62], and the
threat models of both are different compared to logic locking.

In SFE, the function that is evaluated is public, and the
input of the other party is private. Clearly, SFE is not suitable
in the logic-locking setting as it requires the IC design of the
IP author to be public. In PFE, the function that is evaluated
is a private input of one party, and the input to the function
is private to the other party. The logic-locking setting satisfies
this aspect of PFE as the IC design is the private input of
the IP author. However, the adversarial foundry gets a lot

of side information about the concealed IC design due to its
unrestricted access to the opaque circuit and oracle access to
an honestly-restored chip. This violates the PFE security goal
as the party that does not have access to the function — secret
input of the other party — should learn only the value of the
function on the secret input. Hence, PFE is also not suitable
in the logic-locking setting.

ENCRYPTION. In order to fabricate chips, the foundry parses
the layout (described using the GDSII format) of a circuit
design to replace the API calls to its hardware library with
physical circuits. Thus, one cannot simply encrypt (say) the
layout file before handing it to the foundry: secure encryption
schemes produce ciphertexts that are indistinguishable from
random bit-string, which almost certainly will not encode
a valid circuit. Even if it did, that circuit would have no
relationship to one realizing the intended functionality, thereby
forfeiting the economic benefit of outsourced fabrication. And
clearly the foundry cannot be allowed to decrypt the ciphertext,
if it is not trusted in the first place.

FUNCTION SECRET SHARING. In 2015, Boyle et al. [69]
introduced a cryptographic primitive called function secret
sharing (FSS) that partitions a function F into multiple shares
— the shares are distributed among multiple parties — such
that an adversary that does not have access to all the shares
learns nothing about F . The threat model of FSS prevents the
adversary to learn the value of F on any input. In fact, if
the adversary gets oracle access to F akin to the DH setting,
the security of the FSS construction [69][Section 3] for point
functions in the two-party setting falls apart as the adversary
can use a single oracle query to identify the point function
that was protected by FSS in the security experiment.

C. Fully-malicious adversaries break KR security

Hardware trojans are malicious modifications to a target
circuit that are hard to detect [48]. For example, a key-leaking
hardware trojan in a cryptographic IP core (say, AES) leaks
the secret key, when the IP core is run on a small and specific
sequence of triggering inputs. A standard assumption in trojan-
insertion attacks requires the adversary to have unrestricted
access to the target circuit in order to make trojans stealthy.

In our security experiments, an adversarial foundry gets un-
restricted access to the opaque circuit CL that the experiments
generate using Hide. When the foundry is fully malicious, it
can insert a key-leaking hardware trojan (T) in CL to leak the
key KO.

Consider the following (slightly informal) KR attack in
the fully-malicious setting against any DH scheme Π where:
Restore fixes the ko(θ) key-input bits to restore the original,
intended functionality. (Logic-locking schemes like RLL [6]
and its variants [44]–[46] and SAT-attack-resistant schemes
[15], [27]–[29], [32] fit this description perfectly.)
• Query FAB with CTL to get a chip CTL , where CTL denotes

the opaque circuit CL with trojan T .
• Query RESTORE with CTL to get the index p of an honestly-

restored chip CP . Let I be the sequence of triggering inputs

1687

Fig. 5: Representation of F and H using Xi(·). The orange
(resp. blue) box denotes the distinguishing inputs that fall in
set X1(H) (resp. X0(H)). By construction of OneChaffhd, the
orange (resp. blue) box belongs to X0(F) (resp. X1(F)).

for the trojan T . By design, CP contains the trojan T and
leaks the key Ko when CP is run on inputs in I.

• Query RUN with inputs (p, I[1]), (p, I[2]), . . . , (p, I[v]) to
recover KO. Here, v = |I|.
This attack breaks the KR security of Π. In order to

thwart this attack, Restore has to detect arbitrary, key-leaking
hardware trojans. We do not know how this can be achieved in
the setting of design-hiding schemes such as logic locking —
the main focus of our work — where the IP author outsources
the entire fabrication process to an external foundry. Therefore,
our security theorems assume that the adversary is honest-
but-curious. Recall that none of the existing DH schemes
considered Fab as part of the syntax. Hence, by default, these
schemes are designed in the honest-but-curious setting.

Note that Dziembowski et al. [13] showed that it is possible
to design “trojan-resilient” circuits using split manufacturing
as a DH scheme; as mentioned earlier, split manufacturing
requires the IP author to fabricate a portion of the circuit and
hence is not a common setting in IC supply chain; instead we
focus on the stronger logic-locking setting in this work.

D. Delayed Proofs and a Theorem

Proof of Claim 1. Any Boolean function H can be described
fully using sets X0(H) and X1(H). Recall that Xi(H) denotes
the set of all inputs for which H’s value is i. In Fig. 5, we
show the representation of F and H using their respective Xi.

For i ∈ {0, 1} and for any F̂ ∈ RL, let Si(H, F̂) = Si =
I 6=(H, F̂) ∩ Xi(H). By construction: S1, S0 are disjoint, and
Si ⊂ X1−i(F̂) as F̂ (X) = ¬H(X) for all X ∈ I 6=(H, F̂).

We can build X1(F̂) using the sets X1(H) and Si in three
steps. First, initialize X1(F̂) = X1(H). Then, remove all
elements in set S1 from X1(F̂), and in the final step, add
all elements of set S0, i.e., X1(F̂) = (X1(H) \ S1) ∪ S0.
(X0(F̂) = (X1(H) \ S0) ∪ S1.)

By construction, the hamming weight of all functions in
RL will fall in the window [hw(H) − ∆, hw(H) + ∆], i.e.,
hw(F̂) ∈ [hw(H) − ∆, hw(H) + ∆] for all F̂ ∈ RL.
Since F0

[h,h] comprises of functions with hamming weight

h only, we can construct
(
F0

[h,h] ∩R
0
L

)
by only keeping

functions F̂ ∈ RL whose hw(F̂) = h. That is, for each
F̂ ∈

(
F0

[h,h] ∩R
0
L

)
, the hamming weight of F̂ will satisfy:

|X1(H)|−|S1(H, F̂)|+|S0(H, F̂)| = h. Also, by construction

of OneChaffhd, the total number of distinguishing inputs will
be ∆. Hence, |S1(H, F̂)| + |S0(H, F̂)| = ∆. Solving these
two equations, and using hw(H) = h+ α gives us:

|S1(H, F̂)| = (∆ + α)/2; |S0(H, F̂)| = (∆− α)/2.

These equations tell us that given H , each function F̂ in the
set F[h,h]∩RL has (∆+α)/2 distinguishing inputs in X1(H)
and (∆ − α)/2 distinguishing inputs in set X0(H). Total
number of such functions will be Bin (|X1(H)|, (∆ + α)/2)×
Bin (|X0(H)|, (∆− α)/2), where α = hw(H) − h and
Bin (n,m) =

(
n
m

)
. Substituting |X1(H)| = hw(H) and

|X0(H)| = 2n − hw(H) in the previous equation gives us
the final bound in the claim. �

Proof of Claim 2. We will use the sets Xi(F) and Si(F,H) =
Si = I 6=(F,H) ∩ Xi(F), where i ∈ {0, 1}, to define Xi(H)
similar to how we used sets Xi(H) and I 6=(F,H)∩Xi(H) to
define Xi(F) in the proof of Claim 1. Note that the set Xi(F)
is used as the base function in this proof; in Claim 1, we used
Xi(H) as the base function. Following the same three steps as
in the proof of Claim 1, we will get X1(H) = (X1(F)\S1)∪S0

and |X1(H)| = |X1(F)| − |S1|+ |S0|.
Next, we need bounds on Si’s. Before that, observe that

the set I 6=(F,H) = {X1, X2, . . . , X∆} is a random variable
that follows a uniform distribution, i.e., I 6=(F,H)←$ (Un)∆.
Since hw(F) = h, Pr[X ∈ X1(F)] = h/2n, and
Pr[X ∈ X0(F)] = 1− h/2n, where X ←$ I 6=(F,H).

Now, the size of Si, i.e., |Si| is a random variable that
is binomially distributed, with E[|S1|] = µ1 = ∆(h/2n) and
E[|S0|] = µ0 = ∆(1−h/2n). By a standard Hoeffding bound,
we have, for all ε > 0, Pr[|Si| ≥ µi + ∆ε] ≤ exp(−2∆ε2).
Setting ε =

√
(ln ∆)/∆, we get with probability at most

1/∆2, Pr
[
|Si| ≥ µi +

√
∆ ln ∆

]
. We can write this other-

wise as: Pr
[
|Si| < µi +

√
∆ ln ∆

]
with probability at least

1−1/∆2. We will assume that the bounds on Si are tight; we
will reflect the uncertainty in the claim/theorem statements.
Using the bounds on Si in |X1(H)| = |X1(F)| − |S1|+ |S0|,
we get

|X1(H)| = |X1(F)| − (µ1 +
√

∆ ln ∆) + (µ0 +
√

∆ ln ∆)

= h−∆(h/2n) + ∆(1− h/2n)

= h+ ∆− (∆h)/2n−1,

with probability at least (1− 1/∆2). �

Proof of Theorem 2. Let δ = ∆(1−h/2n−1). From Lemma 1,
Claims 1 and 2, we get:

AdvFR
(Π,θ),Fab(F[h,h], A)

≤
((

h+ δ

(∆ + δ)/2

)(
2n − h− δ
(∆− δ)/2

))−1

+ εt,q,1. (1)

Since δ = ∆(1−h/2n−1), we have: ∆−δ < ∆, ∆+δ < 2∆,
and h + δ ≤ h + ∆ < 2n−1. Using the above observa-

1688

tions, and the standard inequality Bin (p, r) ≥ (p/r)r, where
Bin (p, r) =

(
p
r

)
, we get,

Bin (h+ δ, (∆ + δ)/2) ≥
(
h

∆

)∆/2

, and

Bin (2n − h− δ, (∆− δ)/2) ≥
(

2n−1

(∆/2)

)∆/2

≥
(

2n

∆

)∆/2

.

Plugging these bounds in equation 1 gives us the final bound in
the claim. Note that the inequalities will shift as the equation
has the inverse of each binomial term. �

Proof of Lemma 2. Let j ≤ q and Zj = Qkey
j . We prove this

claim by induction. We have already identified the base case
of E[Z0] = Z0 = 0 and E[Z1] = ∆/hw(H). In the general
case, we will compute E[Zj] = E[E[Zj |Zj−1]]. First,

E [Zj |Zj−1] = (Zj−1 + 1)
∆− Zj−1

hw(H)− (j − 1)

+ (Zj−1)

(
1− ∆− Zj−1

hw(H)− (j − 1)

)
= Zj−1 +

(
∆− Zj−1

hw(H)− (j − 1)

)
=

(
(hw(H)− j)Zj−1 + ∆

hw(H)− (j − 1)

)
Now taking the expected value of both sides, we get the
expression

E [Zj] =

(
hw(H)− j

hw(H)− (j − 1)

)
E [Zj−1] +

∆

hw(H)− (j − 1)

=

(
hw(H)− j

hw(H)− (j − 1)

)
(j − 1)∆

hw(H)
+

∆

hw(H)− (j − 1)

=

(
j∆ (hw(H)− (j − 1))

hw(H) (hw(H)− (j − 1))

)
=

j∆

hw(H)

Thus, for j = q, E [Zq] = q∆
hw(H) .

We now show that Zq is tightly concentrated around its
expectation. Observe that Zj−Zj−1 ≤ 1 for all 1 ≤ j ≤ q, so
by the Azuma-Hoeffding inequality Pr[Zq ≥ (1 + ε)E [Zq]]

≤ 2 exp
(
− (εE[Zq])

2

2q

)
. If we set the upperbound to equal

a parameter α and solve for ε, we obtain ε =

√
2q ln(2

α)
E[Zq]

.
Pushing a bit further, we set α = 2/∆2 and arrive at the
following result: Zq < E [Zq] +

√
4q ln ∆ with probability at

least 1− (2/∆2). �

Proof of Claim 3. After q queries, the adversary learns |Qkey
q |

distinguishing inputs. Let δ = hw(H) − h. From the proof
of Claim 1, we know that given H , each function F̂ in
the set F[h,h] ∩ RL has (∆ + δ)/2 distinguishing inputs in
X1(H) and (∆ − δ)/2 distinguishing inputs in set X0(H).
Since Qq ⊂ X1(H) with high probability (from Lemma
2) and the adversary knows |Qkey

q | distinguishing inputs in

set X1(H), the total number of functions in F[h,h] ∩RL
that have values F (Xi) on all inputs Xi ∈ Qq will be(|X1(H)|−q

(∆+δ)/2−|Qkey
q |

)(|X0(H)|
(∆−δ)/2

)
. �

Proof of Corollary 1. Let Zq = Qkey
q . From Claim 2 and

Lemma 2, we have, Zq ≤
√

4q ln ∆ + q∆
h+∆(1−h/2(n−1))

, with
probability at least (1 − 2/∆2). Since we are finding an
upperbound on Zq , we can substitute h + ∆(1 − h/2(n−1))
with h to get a weaker-but-easier-to-interpret bound. As dis-
cussed earlier, for practical OneChaffhd schemes, the loss in
accuracy will not be much since ∆ � 2n. In the first term,
ln ∆ < ln 2n−1 < (n− 1) ln 2 < n. Thus,

√
4q ln ∆ <

√
4qn.

In order to prove the bound, which is the inverse of the product
of the two binomial terms in Claim 3, we will show that the
left binomial term satisfies(

(h+ δ − q)(
(∆ + δ)/2− (q∆/h+

√
4qn)

)) ≥ (h− q
∆

)∆/4

,

and the right binomial term satisfies(
2n − h− δ
(∆− δ)/2

)
≥
(

2n

∆

)∆/4

.

Under our assumption q < h/8, q∆/h < ∆/8. When q <
∆2/256n,

√
4qn < ∆/8. Thus, (q∆/h+

√
4qn) < ∆/4, and(

(h+ δ − q)(
(∆ + δ)/2− (q∆/h+

√
4qn)

)) ≥ ((h+ δ − q)
(∆/4 + δ/4)

)
Using Bin (p, r) =

(
p
r

)
≥ (p/r)r, we get:

Bin ((h+ δ − q), (∆ + δ)/4) ≥
(
h+ δ − q
(∆ + δ)/4

)(∆+δ)/4

≥
(
h− q

∆

)∆/4

.

Since δ = ∆(1−h/2n−1), and h+∆ < 2n−1, we have: ∆−
δ < ∆, and h+ δ ≤ h+ ∆ < 2n−1. Using these observations,
we get

Bin (2n − h− δ, (∆− δ)/2) ≥ Bin
(
2n−1, (∆− δ)/2

)
≥
(

2n

(∆− δ)/4

)(∆−δ)/4

≥
(

2n

∆

)∆/4

�

Theorem 4. Fix m = 1 and integers n, h,∆, q > 0 such that
∆ < h, 0 < ∆ + h < 2n−1. Let δ = ∆(1 − h/2n−1). Let
an honest-but-curious adversary A attack the FR security of
OneChaffhd using resources (t, qf = 1, qs = 1, qr = q). Then,

AdvFR
(OneChaffhd,θ),Fab(F[h,h], A)

≤ 1(h+δ−q
(∆+δ)/2−

√
4q ln(∆)−q∆/(h+δ)

) (
2n−h−δ
(∆−δ)/2

) + εt,q,1,

with probability at least (1− 2/∆2). �

1689

