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Abstract—Causality analysis generates a dependency graph
from system audit logs, which has emerged as an important
solution for attack investigation. In the dependency graph, nodes
represent system entities (e.g., processes and files) and edges
represent dependencies among entities (e.g., a process writing
to a file). Despite the promising early results, causality analysis
often produces a large graph (> 100, 000 edges) and it is
a daunting task for security analysts to inspect such a large
graph for attack investigation. To address challenges in attack
investigation, we propose DEPCOMM, a graph summarization
approach that generates a summary graph from a dependency
graph by partitioning a large graph into process-centric commu-
nities and presenting summaries for each community. Specifically,
each community consists of a set of intimate processes that
cooperate with each other to accomplish certain system activities
(e.g., file compression), and the resources (e.g., files) accessed
by these processes. Within a community, DEPCOMM further
identifies redundant edges caused by less-important and repetitive
system activities, and perform compression on these edges.
Finally, DEPCOMM generates the summary for each community
using the InfoPaths that represent the information flows across
communities. These InfoPaths are more likely to capture a set
of attack-related processes that work together to achieve certain
malicious goals. Our evaluations on real attacks (∼ 150 million
events) demonstrate that DEPCOMM generates 18.4 communities
on average for a dependency graph, which is ∼ 70× smaller
than the original graph. Our compression further reduces the
edges in each community to 32.1 on average. Compared with the
9 state-of-the-art community detection algorithms, on average,
DEPCOMM achieves a 2.29× better F1-score than these algo-
rithms in detecting communities. Through cooperating with the
automatic techniques HOLMES, DEPCOMM can identify attack-
related communities by a recall of 96.2%. Our case studies on
the real attacks also demonstrate DEPCOMM’s effectiveness in
facilitating attack investigation.

Keywords-attack investigation; system auditing; graph summa-
rization; community detection

I. INTRODUCTION

Recent cyber attacks have penetrated into many well-

protected businesses, causing significant financial losses [1–

7]. To counter these attacks, causality analysis [8–15] based

on ubiquitous system monitoring has emerged as an important

approach for performing attack investigation [8, 9, 12, 13, 16–

19]. System monitoring observes system calls and generates

kernel-level audit events as system audit logs. These logs

enable causality analysis to identify entry points of intrusions
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(backward tracing) and ramifications of attacks (forward trac-

ing), which have been shown to be effective in assisting attack

investigation and timely system recovery [10, 11, 14, 20, 21].

While early results are promising for causality analysis,

existing approaches require non-trivial efforts of manual in-

spection [14, 22], which hinders their wide adoption. Causal-

ity analysis approaches consider system entities (e.g., files,

processes, and network connections) that are involved in

the same system call event (e.g., a process reading a file)

to have causal dependencies. Based on these dependencies,

these approaches represent system-call events using a system

dependency graph, where nodes represent system entities and

edges represent dependencies derived from system events.

Using a dependency graph, security analysts can investigate

the contextual information of an attack by reconstructing

the chain of events that lead to the POI (Point-Of-Interest)

event (e.g., an alert event reported by intrusion detection

systems [14, 23]). Such contextual information is effective in

revealing attack-related events such as distinguishing benign

uses of ZIP from ransomware [14, 24]. However, due to

the dependency explosion problem [25–27], it is hard for

security analysts to effectively extract the desirable contextual

information from a huge graph (typically containing >100K

edges [14, 22]).

Recognizing the challenges of using dependency graphs in

attack investigation, recent techniques have been proposed to

automatically filter irrelevant events and reveal attack-related

events [12–15, 28]. While these techniques achieve promising

results, manual attack investigation is still indispensable due

to three major reasons. First, in spite of being rare, there

are always residual risks in a system, which cannot be accu-

rately revealed by these automation techniques, especially for

techniques that heavily rely on system profiles [14]. Second,

threats are continually evolving to evade defence techniques,

such as emerging attack tactics and techniques lately devel-

oped by adversaries. Third, existing techniques mainly rely on

heuristic rules that cause loss of information [8, 9] and intru-

sive system changes [13, 15] such as binary instrumentation,

hindering their practical adoption.

Motivation. To effectively assist attack investigation, in this

paper, we aim to develop a graph summarization approach
that preserves the semantics of system activities in a
dependency graph while shrinking its size by hiding less-
important details. More specifically, we aim to generate a
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summary graph by dividing a dependency graph into a number

of communities (i.e., sub-graphs) and presenting a succinct

summary for each community. Each community contains only

closely related processes, and they work together to accom-

plish certain system tasks (e.g., file compression). We then

compute the summary using these processes and their accessed

resources, which can represent high-level system activities that

jointly outline the skeleton of the original dependency graph.

Furthermore, our graph summarization can be combined with

existing automatic investigation techniques [12–15, 28] to

highlight attack-related communities.

Challenges. Graph summarization techniques [29–31] have

been shown to be effective in managing large-scale graphs

by generating a compact representation of a graph, i.e., a
summary graph. However, little has been studied on the

security implications of summary graphs for attack investi-

gation. In particular, the unique characteristics of dependency

graphs pose three major challenges for DEPCOMM to generate

summary graphs for dependency graphs.

� A dependency graph is a type of heterogeneous graph,

where nodes represent different types of system entities (i.e.,

processes, files, and network connections) and play different

roles in attack steps. A general purpose summarization tech-

nique that treats each node equally cannot effectively detect the

communities to represent major system activities. Additionally,

a domain-specific technique of a non-security domain, even if

it is designed for heterogeneous graphs, most likely leads to

loss of attack information.

� Causality analysis [8, 9, 12, 14] relies on the event time

to identify causal dependencies (e.g., a process reading a file

after another process writing to it) and the dependency graph

contains lots of less-important dependencies that represent

irrelevant system activities such as chronicle system mainte-

nance tasks and irrelevant web browsing. These dependencies

become the majority parts of the dependency graphs and it is

a challenging task to compress and hide these activities.

� Graph summarization techniques [29–31] mainly deal with

the data stored in databases, and their schema and constraints

play an important role in the generated summary graphs. But

in dependency graphs, a sequence of edges that represent

system activities should be the core of the generated summary

graphs for attack investigation. How to summarize these edges

becomes another challenge for DEPCOMM.

Contributions. To address the aforementioned challenges in

graph summarization for dependency graphs, we propose

DEPCOMM, a graph summarization approach that detects
process-centric communities, compresses the less-important
edges inside each community, and summarizes each commu-
nity using top-ranked paths that represent information flows
among the communities. DEPCOMM is a general approach

that performs graph summarization on large-scale dependency

graphs and can cooperate with various automatic investigation

techniques [14, 32] to highlight and visualize attack-relevant

communities. The design of DEPCOMM is driven by the

following key insights.

First, in system audit logs, system activities (e.g., down-

loading a malicious script and executing the script) are often

represented as a set of process nodes that have either strong

correlation with each other or data dependencies through some

resource nodes. For example, a process tar spawns a child

process bzip2 and they work together to compress a file. By

carefully examining the cooperation of processes, we observe

that these processes (1) either have parent-child relationships

(i.e., a process spawning a set of children nodes) or (2) share

the same parent process (i.e., sibling processes) and have data

dependencies through some resources (e.g., files). We refer to

this type of closely related processes as intimate processes.

Thus, to address the challenge �, DEPCOMM partitions a
dependency graph into process-centric communities, where
each community includes a group of intimate processes and
the system resources accessed by these processes.

Second, as shown in recent studies [26, 27, 33], there are

many redundant edges caused by less-important and repetitive

system activities, such as chronicle tasks and backup file

updates. Thus, to addressing the challenge �, DEPCOMM

identifies process-based and resource-based patterns and com-

presses the edges based on these patterns for each com-

munity. Rather than preserving dependencies as the existing

work [27, 33], our community detection allows aggressive
compression among multiple processes inside a community.

Third, by carefully inspecting the dependency graphs of

various attacks [12, 13, 15, 18], major system activities (e.g.,

compressing files) and attack behaviors (e.g., leaking data)

are often represented as information flows among attack-

related processes, such as compressing sensitive data and

leaking the compressed file. Such information flows are often

represented as the paths from the input nodes to the output

nodes in a community, referred to as InfoPaths. For exam-

ple, a malicious script leaks a sensitive file by packaging,

encrypting and uploading, and the corresponding InfoPath

is: ../secret.doc→tar→../upload.tar→bzip2→../upload.tar

.bz2→gpg→../upload.gpg→curl→xxx->xxx. Moreover, there

could be many InfoPaths from the inputs to the outputs in

a community, and not all of them are related to major sys-

tem activities. Thus, to address the challenge �, DEPCOMM

prioritizes the InfoPaths inside each community and ranks the
InfoPaths that are more likely to represent attack steps and
major system activities at the top.

Approach. Based on these insights, DEPCOMM provides

novel techniques to detect process-centric communities, per-

forms compression inside the detected communities, and gen-

erates representative summaries for each community.

To detect process-centric communities (Section IV-C), DE-

PCOMM learns the behavior representations of a dependency

graph’s process nodes, and clusters the process nodes with

similar representations into a community. Specifically, DEP-

COMM performs random walks [34] on each process node to

obtain walk routes and computes the behavior representation

for each process node by vectorizing these walk routes.

Particularly, as existing random walk algorithms [34–38] treat
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each node equally, they are less effective to generate similar

behavior representations for intimate processes. Thus, we

design a series of novel hierarchical walk schemes, which

leverage both the information of the processes’ local neighbors

and the global process lineage trees [39] to choose the walk

routes that are more likely to find intimate processes. With

the learned representations for each process node, DEPCOMM

clusters these process nodes into communities, and further

classifies these processes’ accessed resource nodes into the

detected communities, producing process-centric communities.

To perform community compression (Section IV-D), DEP-

COMM first computes a process lineage tree for each com-

munity, and associates each process node with the events

that access resource nodes. By searching this tree, DEP-

COMM can identify process-based patterns (e.g., a bash process

spawning multiple vim processes) and resource-based patterns

(e.g., multiple vim processes editing a source file). Based

on the identified process-based and resource-based patterns,

DEPCOMM merges all of the repeated edges and nodes to

compress a community.

After compressing communities, DEPCOMM generates In-

foPaths for each community, prioritizes the InfoPaths, and

presents the top-ranked InfoPaths as the summary of a com-

munity (Section IV-E). To do that, DEPCOMM first identifies

the input nodes and the output nodes of each community

according to the information flows among communities, and

then generates InfoPaths by finding paths for every pair of

input and output nodes. Next, DEPCOMM assigns a priority

score to each InfoPath based on its likelihood to represent

major system activities in the community (e.g., containing the

POI event). Finally, DEPCOMM ranks these InfoPaths based

on the priorities and shows the top-ranked InfoPaths as the

summary for a community. While top-2 InfoPaths can reveal

attack behaviors for most communities (Section V-E), security

analysts can decide the number of top InfoPaths shown in the

summary of a community based on their needs.

Evaluation. We evaluate DEPCOMM on 6 real attacks per-

formed in our lab setting and 8 attacks from the DARPA TC

dataset [40]. In total, there are ∼150 million system audit

events and the generated dependency graphs consist of 1, 302.1
nodes and 7, 553.4 edges on average. In our evaluations,

DEPCOMM generates 18.4 communities on average for a

dependency graph, which is ∼ 70× smaller than the original

graph. These communities contain 43.1 nodes and 248.5 edges

on average. Compared with the 9 state-of-the-art community

detection algorithms [36, 38, 41–47], the F1-score achieved by

DEPCOMM (94.1%) is averagely 2.29 times better than those

achieved by the algorithms. Next, DEPCOMM compresses

the communities based on the detected process-based and

resource-based patterns, and achieves a compression rate of

44.7% on average. The compressed communities have 15.7
nodes and 32.1 edges on average, which are reduced by 63.6%
and 87.1%, respectively. Moreover, all the attacks can be

effectively investigated by using the top-2 InfoPaths, i.e., 2 out

of the 15.7 found InfoPaths on average (12.7%). These results

show that these summary graphs require much less manual

effort for attack investigation. Furthermore, the evaluation of

cooperating with HOLMES [32] shows that all the attack-

related communities except two ones are mapped to the steps

in Kill Chain [48] (achieving a recall of 96.2%), and these

two unrevealed communities can be easily recognized by con-

sidering the adjacent attack communities. Our implementation

of DEPCOMM and the evaluation datasets are available at our

project website [49].

II. BACKGROUND AND MOTIVATION

A. System Event and Causality Analysis

System Audit Event: Monitoring and analyzing kernel-

level audit events are crucial for attack investigation and

detection. System auditing events describe the interactions

between two system entities, which are represented as 3-

tuple 〈subject, operation, object〉. According to the previous

work [8, 9, 12, 13, 16–19], subjects represent process entities,

and objects represent process, file, or network entities. System

audit events are categorized based on the types of their objects:

process events, file events, and network events. Process events
record the operations of processes, such as fork and clone. File
events record the operations on files, such as files read, write,

and rename. Network events record the operations of network

accesses, such as send and receive messages from sockets.

Causality Analysis: Causality analysis has been widely

applied to attack investigation and detection [8–15]. It infers

the causal dependencies among system audit events, and

organizes them as a dependency graph. A dependency graph

is a directed graph, where nodes represent system entities (i.e.,

processes, files, and network connections) and edges represent

system audit events. In a dependency graph G(E, V ), a system

audit event is denoted as a directed edge e(u, v), where

u ∈ V, v ∈ V , e ∈ E, and the direction of the edge represents

the direction of data flow (i.e., flowing from u to v). In

addition, the edge records the start time (e.st) and the end

time of the event (e.et). Given two nodes n1 and n2, n2 has

a causal dependency on n1 if there exist two edges e1(n1, v1)
and e2(v2, n2) such that v1 = v2 and e1.st ≤ e2.et.

B. Motivating Example

We use a data exfiltration attack as an example to motivate

DEPCOMM. In this attack, the attacker downloads and exe-

cutes a backdoor program bdoor in a target system through an

Apache Sever, and opens a terminal (i.e., bash) via exploiting

the opened backdoor at the port 9999. The attacker then

downloads an executable script leak.sh, and exploits the root

access to run the script to collect sensitive files, which are

sent to a suspicious remote host. All these activities among

processes and OS resources are captured in the system audit

logs. We construct the dependency graph by applying causality

analysis from the suspicious event that sends the files to

the remote IP (i.e., the POI event). Fig. 1 shows a part of

the dependency graph. The complete dependency graph has

1,038 nodes and 4,039 edges, including attack-related and

benign events. As we can see, it requires non-trivial efforts
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Fig. 1: Partial dependency graph for a data exfiltration attack. The complete dependency graph has 1,038 nodes and
4,039 edges. DEPCOMM partitions the dependency graph into 10 process-centric communities, where the red dashed
frames are the communities with attack-related events (bold red edges), and the blue dashed frames are the communities
with only normal events. For the nodes that represent the inputs and the outputs of communities, we create replicas
of such nodes (blue nodes) and assign each copy to a community. These replicas are connected with directed edges
(dashed blue arrows), where the direction indicates the direction of the information flow across communities.
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Fig. 2: Summary graph for the dependency graph in Fig. 1

for security analysts to understand the dependencies among

nodes by inspecting such a large graph.

In this paper, we design DEPCOMM to summarize a large

dependency graph into a compact graph that can facilitate at-

tack investigation. DEPCOMM includes three key components:

(1) community detection, (2) community compression, and (3)

community summarization.

Community Detection. DEPCOMM first partitions the depen-

dency graph into 10 process-centric communities (C1–C10), as

shown in Fig. 1. Each community consists of a set of intimate

process nodes and their accessed resource nodes. For example,

in C3, leak spawns tar, bzip2, gpg and curl, and thus leak

has parent-child relationships with these child process nodes.

Moreover, the resource nodes ../upload.tar, ../upload.tar.bz2

, ../upload and xxx->xxx are accessed by these process nodes

and thus are classified into C3. Additionally, dependencies

betwen communities are either (1) edge-based dependencies

that represent the inter-community edges (e.g., bdoor→bash

between C1 and C2) or (2) node-based dependencies (blue

ovals in Fig. 1) that indicate the input/output relationships

between communities (e.g., leak in C2 and C3).

Community Compression. To further decrease the size of

each community yet preserving their semantics, DEPCOMM

compresses less-important and redundant dependencies in a

community, including nodes and edges represented with the

stacked shapes and the hollow arrows in Fig. 1. For example,

in C9, bash repetitively spawns python (12 times) and vim (13

times) to read and write ../adjust.py and /dev/null, which can

be summarized as a process-based pattern (i.e., bash creating

many python and vim nodes) and a resource-based pattern (e.g.,

../adjust.py accessed by many python and vim nodes). After

compression, the number of edges of C9 decreases to 33 from

108 (69.4% compression rate). Similarly, C5 is compressed

into 2 edges from 58 edges (96.5% compression rate).
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Fig. 3: The architecture of DEPCOMM

Community Summarization. As shown in Fig. 2), for each

community, DEPCOMM generates a summary, which consists

of three parts: (1) a master process node that is the source

of a community’s behaviors (e.g., leak in C3), (2) the time

span between the start time of the earliest event and the end

time of the latest event in a community, and (3) the top-ranked

InfoPaths to show major information flows of a community.

The top-ranked InfoPath is a dependency path from leak

to xxx->xxx: leak→tar→../ upload.tar→bzip2→../upload.tar

.bz2→gpg→../upload→curl→xxx->xxx, which has the highest

priority because it includes the POI event curl→xxx->xxx.

Attack Investigation. We next show how to use the summary

graph in Fig. 2 to investigate an attack from the POI event curl

→xxx->xxx in C3. First, by inspecting all of the edges from

other communities (C2, C4, C6, C7, C8) to C3, we find that the

edge from C2 is more relevant to the master process node leak

of C3 and the top-1 InfoPath of C3 than those from the other

communities. Thus, C2 is considered to have attack-related

events that lead to the POI event. Next, for the edges between

C2 and other communities, we identify the edge bdoor→bash

from C1 is more relevant than the edge from C5. Moreover,

there exists no dependencies from other communities to C1.

Therefore, C1 is likely to represent the initial steps of the

attack. In summary, we identify 35 attack-related events by

inspecting only 53 nodes and 8 InfoPaths, which shows a great

reduction of manual efforts.

III. OVERVIEW AND THREAT MODEL

Fig. 3 shows the architecture of DEPCOMM. DEPCOMM

consists of five components: (1) Dependency Graph Genera-

tion, (2) Dependency Graph Pre-processing, (3) Community

Detection, (4) Community Compression, and (5) Community

Summarization.

The dependency graph generation component leverages

causality analysis to compute a dependency graph from sys-

tem audit events (Section IV-A). The dependency graph pre-

processing component processes the graph by merging the

same types of edges between two nodes and filtering out

read-only file nodes (Section IV-D). The community detection

component partitions the graph into multiple process-centric

communities and associates the resource nodes to the commu-

nities (Section IV-C). The community compression component

compresses the nodes and the edges in each community based

on the identified process-based patterns and resource-based

patterns (Section IV-D). The community summarization com-

ponent extracts InfoPaths for each community and prioritizes

these InfoPaths. Finally, DEPCOMM generates a summary

graph with top-ranked InfoPaths (Section IV-E).

Threat Model: We follow the same threat model as the

previous works on security investigation [8, 9, 25, 50, 51].

OS-level events are collected from the system kernel. We

assume that the system kernel is trusted and not tampered by

adversaries [52, 53]. Any kernel-level attacks that deliberately

compromise security auditing systems are beyond the scope

of this work, and existing software and kernel hardening

techniques [50, 54–56] can be used to better protect log

storage. We also do not consider the attacks performed using

side channels or inter-procedural communications (IPC) that

cannot be captured by the underlying provenance tracker.

Finer-grained auditing tools that capture memory traces or

side channel analysis techniques can be used to address these

attacks and they are not the focus of this work.

DEPCOMM clusters the system behaviors into communities

and prioritizes InfoPaths that represent the information flows

across communities. Thus, attackers who have full knowledge

of DEPCOMM’s summarization approach may deliberately

limit their attack within a few processes and files, minimizing

their traces within a community and across communities. Such

attacks typically compromise the processes by manipulating

the memories of the processes (e.g., code reuse attacks [57]),

and specialized techniques such as memory randomization [58,

59] can be applied to strengthen the memory protection.

Attackers may also flood system audit logs by performing

activities that generate a large amount of logs, e.g., creating

lots of temporary files. To defend against such attacks, existing

log compression techniques [26, 27, 33, 60] can be employed

to compress system audit logs, and DEPCOMM can work

seamlessly on the compressed logs since these compressed log

preserve the dependencies. Furthermore, anomaly detection

techniques [14, 61] can be deployed to raise alerts for such

unexpected spikes in log collection.
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TABLE I: Attributes of system entities
Entity Attributes

Process PID, Name, User, Cmd
File Name, Path
Network IP, Port, Protocol

TABLE II: Attributes of system events
Event Attributes

Process Event Start time, End time, Subject ID, Object ID,
Operations (execve, fork, clone)

File Event Start time, End time, Subject ID, Object ID,
Operations (write, read, rename, readv, writev)

Network Event Start time, End time, Subject ID, Object ID,
Operations (write, read, recvmsg, sendto, recvfrom)

IV. DESIGN OF DEPCOMM

A. Dependency Graph Generation

DEPCOMM uses system monitoring tools that run on main-

stream operation systems (e.g., Windows, Linux, Mac OS and

Android) to collect system audit events, including process
events, file events, and network events. For each collected

entity and event, DEPCOMM records the attributes that are

essential for security analysis (e.g., PID, file name and IP

for entities; start time, end time and operation for events),

as shown in Table I and Table II. Given a POI event (e.g., an

alert about a file download), DEPCOMM builds a dependency

graph by performing backward causal analysis to track the

dependencies. Starting from the POI event, the causal analysis

iteratively finds the events that have dependencies to the POI

event and happen before the POI event. These found events

(i.e., edges) form the dependency graph for the POI event,

such as the graph shown in Fig. 1.

B. Dependency Graph Pre-processing

Edge Merge: A dependency graph often has many paral-

lel edges between a process node and a file/network node,

indicating repetitive read/write operations in a short period.

This is because OS typically performs a read/write task by

distributing the data proportionally to multiple system calls.

As shown in the recent study [26], these parallel edges do

not offer extra useful information for attack investigation, and

thus DEPCOMM directly merges the parallel edges of the same

operation type into one edge.

Filtering Read-only file nodes: As shown in recent stud-

ies [33, 51], a dependency graph has many read-only files,

which are typically libraries, configuration files, and resources

(e.g., /lib64/libdl.so.2) for process initialization that do not

contain useful attack-related information [33]. Thus, DEP-

COMM filters out read-only files and retains the processes to

preserve the semantics of major system activities.

C. Community Detection

DEPCOMM identifies a group of intimate processes as a

process-centric community. A process-centric community is
a graph that contains (1) one master process node, (2) a
set of child process nodes that represent a subset of the
master process’ spawned child processes such that these
child processes have data dependencies among each other,
and (3) a set of resource nodes accessed by the master
processes and these child processes.. For example, leak in
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child

child

child
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... child
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Fig. 4: Three types of overlapping nodes

Fig. 1 is the master process of C3, which spawns the child

processes tar, bzip, gpg, and curl to compress and upload a

file. These child processes have data dependencies with at least

another child process, as reflected by the following path in the

dependency graph: tar→../upload.tar→bzip2 →../upload.tar

.bz2→gpg→../upload→curl→xxx->xxx. Additionally, there are

processes or resources that can belong to more than one com-

munities and are referred as overlapping nodes. For example,

in Fig. 1, leak first cooperates with curl to accomplish the

execution of the script leak.sh in C2, and then spawns child

processes tar, bzip2, gpg and curl to compress and upload a

file in C3. In this case, leak is the overlapping node in both

C2 and C3. We categorize overlapping nodes into three types

as shown in Fig. 4:

a© a process node that cooperates with different sets of child

processes for different system activities;
b© a process node that cooperates with its siblings to ac-

complish a system activity, and meanwhile spawns child

processes to accomplish a different system activity;
c© a resource node accessed by process nodes from different

communities.

We next describe the two phases of the community detection

component of DEPCOMM: process-centric community detec-

tion and resource node association.

Process-Centric Community Detection. DEPCOMM per-

forms random walks on each process node based on our

proposed hierarchical walk schemes to generate walk routes,

and then applies a word2vec model [62] to learn the behavior

representation based on the walk routes for each process node.

Based on the behavior representations, DEPCOMM clusters

the process nodes with similar representations into the same

communities. We next describe each step in detail.

1) Hierarchical Random Walk. A random walk rooted

from a node v1 generates a walk route of a specific length

W = {v1, · · · , vl}, where vi ∈ W is randomly chosen with a

transition probability [34]. The transition probability from vi
to its neighbor node n is Pr(vi, n) = w(vi, n)/WN(vi), where

w(vi, n) denotes the walk weight from vi to n, and WN(vi)

denotes the sum of walk weights among all the neighbors of

vi. Unlike existing random walk algorithms that treat neighbor

nodes with equal probabilities [34], the walker in DEPCOMM

gives higher probabilities to vi’s neighbors that are more likely

to be its intimate processes.

Specifically, the walker considers both the processes’ neigh-
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Fig. 5: Hierarchical walk schemes, where w denotes the walk weight.

bors and the global process lineage trees to ensure that

intimate processes are more likely to be sampled into the

same walk route, and thus they will have the similar contexts.

For each process node p, DEPCOMM examines p’s one-hop

neighbor nodes, and associates p with: � parent process node,

� child process nodes, and � accessed resource nodes. In

particular, we observe that for a process pr and its child

process pc, if pc starts to spawn its own child processes

(typically more than one child processes), pc is very likely to

initiate a new system task and the spawned child processes

do not cooperate with pr. Thus, the child processes of pc
should be in a different community from pr’s. To identify such

creations of child processes, DEPCOMM searches the global

process lineage trees and associates each process node with �
its lowest ancestor that has multiple child processes.

With the information collected from the neighbors of the

processes and the global process lineage trees (i.e.,����),

DEPCOMM employs 8 hierarchical walk schemes to generate

walk routes. Specifically, when the walker starts at a process

node v1, it assigns equal weights to each of neighbors and

randomly move to one of them. After this initial step, the

walker chooses the next node based on 8 hierarchy walk

schemes, as shown in Fig. 5. Without loss of generality, we

assume that the walker is currently at the node vi, the walk

route produced so far is Wv1 = {v1, · · · , vi}, the neighbors

of vi is a set of nodes N = {n1, · · · , nk}, R(v) returns

the resources accessed by a process node v, and L(v) finds

the process node v’s lowest ancestor that has multiple child

processes. We next describe the walk schemes in detail:

• Scheme S1: Consider that vi−1 presents the parent process

of vi. If N contains other neighbor nodes except vi−1, the

walker will randomly walk to one of these neighbors, i.e.,

∀nj ∈ N, nj 	= vi−1, w(vi, nj) = 1, w(vi, vi−1) = 0. If

vi has only one neighbor (i.e., vi−1), to avoid the early

termination of the walk, the walker will return to vi−1, i.e.,

w(vi, vi−1) = 1.

• Scheme S2: Consider that vi−1 represents a child process

of vi. In this case, other child processes of vi may not

belong to the same community as vi−1, unless they have

data dependencies with vi−1. Thus, if there are other child

processes that access the same resources as vi−1, the walker

will walk to the child process nodes with a high probability,

i.e., ∀nj ∈ N, nj 	= vi−1,R(nj)∩R(vi−1) 	= ∅, w(vi, nj) =
1, w(vi, vi−1) = 0. Otherwise, the walker will return to

vi−1, i.e., w(vi, vi−1) = 1, w(vi, nj) = 0.

• Scheme S3: Consider that vi−1 represents a child process

of vi and vi−1 is the only child process of vi. This indicates

that vi and vi−1 cooperate to process some data, and thus

they belong to the same community. Thus, if there are other

neighbors except vi−1, the walker will continue to explore

without return, i.e., ∀nj ∈ N, nj 	= vi−1, w(vi, nj) =
1, w(vi, vi−1) = 0. Otherwise, to avoid the early termi-

nation of the walk, the walker will return to vi−1, i.e.,

w(vi, vi−1) = 1.

• Scheme S4: Consider that vi−1 is a process node and vi
is a resource node. The processes accessing vi may belong

to the vi−1’s community if vi−1 and these processes have

a common parent process. Thus, we let the walker walk to

the neighbors that share the same parent process as vi−1

with a high probability, i.e., ∀nj ∈ N, nj 	= vi−1,L(nj) =
L(vi−1), w(vi, nj) = 1, w(vi, vi−1) = 0. Otherwise, the

walker will return to vi−1, i.e., w(vi, vi−1) = 1, w(vi, nj) =
0.

• Scheme S5: Consider that vi−1 is a resource node, vi is a

process node with more than one child processes, and vi−2

is the child process of vi. In this case, other child processes

of vi may not belong to the community as vi−2, unless they

have data dependencies with vi−2. Thus, the walker will

walk to vi−2 and the child process nodes that access the

same resources as vi−2, i.e., ∀nj ∈ N, nj 	= vi−1, nj 	=
vi−2,R(nj) ∩R(vi−2) 	= ∅, w(vi, nj) = 1, w(vi, vi−2) = 1,

and the weights of the other neighbors are set to 0.

• Scheme S6: Consider that vi−1 is a resource node, vi is a

process node with more than one child processes, and vi−2

is not the child process of vi. In this case, we treat vi as

a master process of a community, and the child processes
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of vi and vi−2 do not belong to the same community.

Thus, the walker will return to vi−1, i.e., ∀nj ∈ N, nj 	=
vi−1, w(vi, nj) = 0, w(vi, vi−1) = 1.

• Scheme S7: Consider that vi−1 is a resource node, vi is

a process node with more than one child processes, and

vi−2 = vi. This indicates that vi−1 is the end of an

information flow. To increase the efficiency of sampling

intimate processes, the walker will walk without return, i.e.,

∀nj ∈ N, nj 	= vi−1, w(vi, nj) = 1, w(vi, vi−1) = 0.

• Scheme S8: Consider that vi−1 is a resource node and vi
is a process node with at most one child process. In this

case, if vi has other neighbor nodes except vi−1, the walker

will walk to the neighbor nodes without return, i.e., ∀nj ∈
N, nj 	= vi−1, w(vi, nj) = 1, w(vi, vi−1) = 0. If vi−1 is the

only neighbor of vi, to avoid the early termination of the

walk, the walker will return to vi−1, i.e., w(vi, vi−1) = 1.

2) Process Node Representation. We make an analogy

by regarding nodes in a dependency graph as words and

walk routes as ordered sequences of words. DEPCOMM

employs SkipGram [62], a widely-used word representation

learning algorithm, to learn the behavior representation of

process nodes in walk routes. More specifically, given a

process node p and a contextual window size t, SkipGram

extracts the sub-sequence Wp = {vi−t, · · · , vi, · · · , vi+t}
that consists of vi = p and its contextual nodes vi+k

(k ∈ (−t, t)) from each walk route containing p. Then, the

d-dimension vector Φ(vi) of vi is learned by maximizing the

log-probability of any node appearing in the sub-sequences,

i.e., logPr({vi−t, · · · , vi−1, vi+1, · · · , vi+t}|Φ(vi)). The op-

timization process aims to learn similar behavior represen-

tations for intimate process nodes with the similar con-

textual nodes. However, the optimization problem is NP-

hard. To make the optimization problem tractable, we as-

sume that the probabilities of choosing each node are con-

ditional independent, and the objective function is con-

verted into: log
∏

−t≤k≤t,k �=0

Pr(vi+k|Φ(vi). Further, the ob-

jective function is modeled using the softmax function:

log
∏

−t≤k≤t,k �=0

exp(Φ(vi+k)·Φ(vi))∑
v∈V exp(Φ(v)·Φ(vi))

[37]. However, it is still

expensive to solve this optimization for a large graph, and

thus we further use NEG (Negative Sampling) function [63]

to approximate it. The model parameters for Φ(vi) is adjusted

using stochastic gradient ascent.

3) Process Node Clustering. To compute the overlapping

clustering for process nodes based on their behavior represen-

tations, DEPCOMM employs a soft clustering method, FCM

(Fuzzy C-Means) [64]. Unlike the hard clustering method

(i.e., K-means) that classifies a process node to only one

cluster, FCM outputs the membership degree of each process

node in each cluster by minimizing the objection function:

J =
∑|Vp|

i=1

∑|C|
j=1 u

2
ij ||vi − cj ||2, where uij denotes the

degree of a process node vi belonging to a community cj .

vi is classified to cj , if uij is higher than a given thresh-

old. Following the recent work [65], we set the threshold

λ = 0.8 · maxj{uij}. If a process node is labeled with
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Fig. 6: Community compression based on (a) a process-
based pattern and (b) a resource-based pattern

multiple communities (i.e., overlapping), we create multiple

replicas of the node, and assign one replica to each com-

munity. In addition, DEPCOMM determines the number of

communities |C| according to the fuzzy partition coefficient

(FPC) F (|C|)=1/|Vp|
∑|C|

j=1

∑|Vp|
i=1 u

2
ij [66], which is used to

measure the cluster validity for different numbers of clusters.

As a higher value of FPC indicates a better description for the

data distribution, DEPCOMM selects the number of clusters

|C| with the maximum FPC, i.e., |C|=argmax(F (|C|)).
Resource Node Association. Given a resource node r and a

process node p, if they are connected by an edge, then v is

associated to the community that p belongs to. If a resource

node are connected with multiple process nodes from different

communities, this resource node is an overlapping node, and

we create replicas of the resource node and assign a replica

to each community.

Dependencies across Communities. We categorize depen-

dencies across communities as edge-based dependencies (i.e.,

the dependency represented by an inter-community edge be-

tween communities) and node-based dependencies (i.e., the

dependency represented by overlapping nodes). As these nodes

lack visible information flow directions for security analysts,

DEPCOMM creates a directed edge to connect the replicas

(e.g., the blue dashed arrows in Fig. 1). Specifically, given

two replicas v1(1) and v1(2) of a node v1, where v1(1) is in

the community Ci and v1(2) is in the community Cj , if v1(1)
has an in-edge e1, v1(2) has an out-edge e2, and the start time

of e1 is earlier than the end time of e2, then we create an

directed edge from v1(1) to v1(2).

D. Community Compression

Process-based Patterns. Process-based patterns describe

repetitive activities that spawn same set of processes to process

some resources. Fig. 6(a) shows an example: a process P0

repetitively spawns the child processes named P1 and P2 to

write the file F1. But keeping repetitive activities do not provide

extra values for security analysts. Thus, DEPCOMM aims to

identify such patterns and merge the repeated nodes and edges.

This process includes the following four steps:

• Step 1: Building process lineage tree. Given a process-

centric community, DEPCOMM builds a process lineage tree

rooted from the master process of the community by travers-

ing the process nodes inside the community. The process

lineage tree can present processes’ spawning behaviors.

• Step 2: Association with Accessed Resources. To capture

the resource usage of each process in the process lineage
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tree, DEPCOMM inspects the events inside the community

to identify the resources accessed by these processes. Specif-

ically, each process is associated with the representative

attributes of the accessed resources (i.e., file names for files

and IPs for network connections) and the operation types

on these resources.

• Step 3: Mining Process-based Patterns. A process-based

pattern in the process lineage tree is the repeated bottom-

up sub-trees [67]. , where a bottom-up sub-tree includes

a node and all its descendants. Unlike induced sub-tree

and embedded sub-tree that have partial descendants [68], a

bottom-up sub-tree can present a complete process spawning

activity. Specially, DEPCOMM uses the process lineage

tree to generate a sub-tree for each process node. Then,

DEPCOMM encodes a sub-tree to a string by appending

the associated resource attributes of the process nodes in

the sub-tree, and identifies identical strings (i.e., repeated

subtrees).

• Step 4: Compression based on the Patterns. The identified

repeated sub-trees may have different parent nodes. To

ensure the dependencies between the sub-trees and their

parent nodes are not broken, DEPCOMM selects only the

repeated sub-trees having the same parent node, and merges

the selected sub-trees into one sub-tree. The attributes of

each node and edge in the merged sub-tree are the unions

of the attributes of the original nodes and edges.

Resource-based Patterns. A resource pattern identifies re-

sources that are repetitively accessed by a same set of pro-

cesses. To identify such patterns, DEPCOMM first associates

the processes with their accessed resources, and then search

each resource to identify the repetitive accesses. Based on the

found patterns, the resource nodes are merged into one node,

and the attributes of the merged nodes are the union of the

attributes of the original resource nodes.

E. Community Summarization

For each community, DEPCOMM generates a summary that

consists of three parts: the master process, the time span, and

the top-ranked InfoPaths, as shown in Fig. 2). The master

process represents the root process for the system activities

in the community. The time span is computed using the

earliest start time and the latest end time among all the events

in the community (i.e., c.st = minei∈c{ei.st} and c.et =
maxei∈c{ei.et}), which provides the timing information for

tracing certain activities. InfoPaths indicate the information

flows from the inputs to the outputs in the community,

representing the major activities in the community.

InfoPaths Extraction. Given a process-centric community,

DEPCOMM first identifies its input and output nodes. An

input node represents the incoming information flow for a

community, which are the target node of an inter-community

edge (e.g., leak and ../analysis.txt of C3 in Fig. 1) and

network nodes with outgoing edges (e.g., xxx->xxx of C1

in Fig. 1, representing the external IP which a community

receives files from). In addition, for the communities without

incoming edges (e.g., C5 in Fig. 1), we select the master

process as the input node. An output node represents the

outgoing information flow of a community, which are the

source node of an inter-community edge (e.g., leak of C2

in Fig. 1), network nodes with incoming edges (e.g., xxx->

xxx of C3 in Fig. 1, representing the external IP which a

community sends files to), and POI nodes. Then, for each pair

of input and output nodes, DEPCOMM uses Depth First Search

(DFS) algorithm to find a longest path without duplicate nodes

as an InfoPath. Such a path generally covers more activity

information than the shorter ones.

InfoPaths Prioritization. A community often contains mul-

tiple inputs and outputs, and thus has multiple InfoPaths.

DEPCOMM priorities the InfoPaths based on their likelihoods

to represent major activities (e.g., attack behaviors). The

priority score of an InfoPath Pk : v0→v1→· · ·→v|Pk|−1 is

computed based on the following four key features:

(a) POI Event (fpoi). An InfoPath that contains the POI event

is directly related to the attack. Thus, fpoi is 1 if an InfoPath

contains the POI event, and is 0 otherwise.

(b) Input/Output Type (fiot). As processes drive the attack

execution, an security analyst is more likely to find another

attack stage through process nodes. For example, in Fig. 1,

tracking the attack from C3 to C2 can be done through the

input process node leak but not through the input file node

../analysis.txt. Thus, fiot gives an InfoPath whose input or

output node is a process a higher priority:

fiot =
1

2
(δ(v0) + δ(v|Pk|−1)) (1)

where δ(vi) is 1 if vi is a process and 0 otherwise.

(c) Event Uniqueness (funi). File events that appear in fewer

communities are more likely to represent the major activities

in the community, such as the event vim write ../analysis.txt

that occurs only in C4, while file events that are frequently

observed in different communities often represent irrelevant

chronicle tasks running in the background. Based on this

observation, we design the feature funi to measure the unique-

ness of file events:

funi =
1

|Evt(Pk)|
∑

ei∈Pk,ei∈Evtf

1

|Comm(ei)| (2)

where |Evt(Pk)| denotes the number of file events in Pk,

ei ∈ Evtf denotes file events, and |Comm(ei)| denotes the

number of communities in which ei occurs. funi has a larger

value when |Comm(ei)| is smaller.

(d) Time Span (fspan). Intuitively, an InfoPath whose time

span is similar to the time span of the community is more

likely to represent the major activities in the community. We

design the feature fspan to model this intuition:

fspan =
e(v|Pk|−2, v|Pk|−1).et− e(v0, v1).st

c.et− c.st
(3)

where the numerator denotes the time span of the InfoPath,

and the denominator denotes the time span of the community.
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TABLE III: Statistics of the attacks’ dependency graphs

Attack Cases Dep. Graph Pre-processed Attack |C|Dep. Graph
|V | |E| |V | |E| |V | |E|

A1: Email Penetration 527 24,470 201 476 42 65 8
A2: Compile Crash 369 4,675 160 351 9 9 17
A3: Files Tamper 5,810 387,086 787 1,613 63 94 16
A4: Data Exfiltration 1,038 24,094 203 620 23 35 10
A5: Password Crack 557 10,917 43 82 39 77 4
A6: VPN Filter 22,358 275,917 518 1,424 79 130 12
D1: Phishing Email (C.S.) 7,724 2,174,649 2,545 6,483 5 6 48
D2: Phishing Email (F.D.) 2,311 1,007,062 815 18,858 12 17 20
D3: Firefox Backdoor (F.D.) 7,645 1,598,642 5,210 34,047 14 18 43
D4: Browser Extension (F.D.) 9,533 1,900,715 7,056 38,419 9 18 45
D5: Browser Extension (Theia) 3,302 37,109 172 750 12 15 11
D6: Firefox Backdoor (Theia) 3,501 37,468 205 819 13 17 13
D7: Phishing Email (Theia) 2,745 29,987 123 559 5 6 8
D8: Pine Backdoor (Trace) 2,945 133,890 192 1,247 16 23 7
Average 5,026.1 546,191.5 1,302.1 7,553.4 24.3 38.3 18.7

Based on these features, we compute the priority score of

Pk by giving equal weights to each feature. According to the

assigned priority scores, we sort the InfoPaths and select the

top-n paths as the summary, where security analysts have the

flexibility to choose the value of n.

V. EVALUATION

DEPCOMM includes ∼15k lines of python code and is

deployed on a server with two Intel Xeon E5-2630 v3 2.4GHz

CPUs (32 processors) and 128GB memory. The evaluation

dataset includes 6 attacks performed in our test environment

deployed with system monitoring tools and 8 attacks in the

DARPA TC (Transparent Computing) dataset [40]. In the eval-

uations, we aim to answer the following research questions:

• RQ1: What is the overall effectiveness of DEPCOMM in

summarizing dependency graphs?

• RQ2: How does DEPCOMM cooperate with the automatic

investigation technique HOLMES [32]?

• RQ3: How effective is DEPCOMM in community detection,

compared with other state-of-the-art approaches?

• RQ4: How effective is DEPCOMM in community compres-

sion?

• RQ5: How effective is DEPCOMM in generating community

summaries using top-ranked InfoPaths?

• RQ6: What is the turnaround performance of DEPCOMM

in summarizing dependency graphs?

A. Evaluation Setup
Attack Dataset: We adopt Sysdig [69] to collect the attack

dataset from 6 Linux hosts that have 10 active users. Routine

system tasks on these hosts include web browsing, text editing,

code development, and some other services (e.g., databases).

On these hosts, we performed 6 multi-step attacks based on

the known exploits [12, 13, 26, 70] and Kill Chain [71]. The

collected dataset contains ∼ 100 million events for three days.

Below are the details of these attacks:

• A1: Penetration into Email Server. An attacker inside a

corporation inserts malicious code into a normal software

and uploads this modified software to the corporation’s

resource server. One employee downloads this modified

software and executes it, and the malicious code creates a

connection to the attacker’s host that allows the attackers to

easily hijack emails.
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• A2: Crashing Compiler. An insider attacker uploads a

malicious C code to the internal resource server. When

an employee downloads and compiles the source code, the

malicious code causes the compiler to crash, and at last the

compiler generates an incorrect executable file.

• A3: Tampering Sensitive Files. During a three-day period,

an insider attacker logs into an employee’s host using

the stolen password several times, and then collects and

tampers some sensitive files. Finally, the attacker sends these

sensitive files back by email.

• A4: Data Exfiltration. An attacker penetrates into a victim

host via exploiting the Shellshock vulnerability [72] to set

up a backdoor, and exflitrate sensitive data by installing

malware into the host. This attack is shown in Section II-A.

• A5: Cracking Password. After the shellshock penetration,

the attacker downloads a password cracker payload from the

C&C server, and then obtains the root’s password by running

the cracker. The attacker then penetrates to other hosts inside

the same network using the root privilege obtained via the

cracked passwords.

• A6: VPN Filter To launch a more persistent and stealthy

attack, the attacker uses a more sophisticated multi-stage

VPN Filter malware [73] After the shellshock penetration,

the attacker downloads the Stage 1 executable from the

C&C server. When triggered, the Stage 1 executable will

download the Stage 2 executable, which will gather sensitive

documents and establish a stealthy connection to the C&C

server for data exfiltration.

DARPA TC Dataset: DARPA TC dataset [40] is an effort

to develop forensics analysis and detection of Advanced

Persistent Threats (APT) [74–76]. This dataset records the

attack traces of various vulnerability exploits on different

operating systems (e.g., Linux and Windows). Based on the

attack descriptions, we exclude the failed attacks and use 8

attacks in our evaluations (∼ 50 million events).

Labeling Ground Truth: We build system dependency

graphs via the cross-host backward causality analysis [9] from
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TABLE IV: Statistics of edges generated by DEPCOMM and NoDoze
A1 A2 A3 A4 A5 A6 D1 D2 D3 D4 D5 D6 D7 D8 Average

Nodoze 538 157 2,403 1,641 612 198 727 3,135 5,337 7,160 2,752 2,631 2,257 1,744 2,235.14
DEPCOMM (Top-1) 74 68 86 70 27 47 77 69 122 127 44 45 36 33 66.07
DEPCOMM (Top-2) 93 82 123 91 30 56 109 94 171 180 68 65 45 40 89.07
DEPCOMM (Top-3) 115 84 147 114 32 68 121 119 202 208 76 81 55 52 105.28

the POI events. We use the attack scripts and the attack

descriptions to identify the POI events and the attack-related

events for the attacks performed in our test environment and

DARPA TC dataset, respectively. The detailed statistics of the

dependency graphs are shown in Table III. Column “Dep.

Graph” shows the number of nodes and edges of original de-

pendency graphs. Column “Pre-processed Dep. Graph” shows

the number of nodes and edges of graphs after the pre-

processing (i.e., merging edges and filtering read-only file).

Column “Attack” shows the number of attack-relevant nodes

and edges. Finally, we manually partition each dependency

graph into communities. Specially, we first identify the pro-

cesses that are created by the identical parent processes and

are related to each other by checking whether they have data

dependencies through resources. Each group of the related

processes are put into a community. We then label the parent

process as the master process of the community, and associate

the resource nodes to the found communities according to their

dependencies with the process nodes. To further obtain more

objective ground truths, three independent experts are asked

to verify our ground truths. These experts have Ph.D. degrees

of computer sciences and have been conducting research in

computer system field for more than ten years. We revise our

ground truths if at least two experts consider certain nodes

should belong to different communities. All these results are

available at our project website [49]. Column “|C|” shows the

number of communities that are manually partitioned.

B. RQ1: Overall Effectiveness of DEPCOMM

We applied DEPCOMM to generate summary graphs for

the dependency graphs shown in Table III, and measured

the number of the detected communities and their sizes to

demonstrate the effectiveness of DEPCOMM. Fig. 7 shows

the results of the detected communities. We can see that

DEPCOMM partitions the dependency graphs into 18.4 com-

munities on average. Compared with the original dependency

graphs, which have 1, 302.1 nodes on average, it is 70.7 times

smaller. These results indicate that with the much smaller

number of communities, it is feasible to visualize all the

communities for security analysts to easily see the overview of

all the related system activities. We can also see that the largest

number of communities is 48 for Phishing Email (C.S), which

includes different system tasks (e.g., browsing web pages in

Firefox, sending or receiving E-mail and calendar service).

We next show the distributions of community sizes (the

number of nodes in each community) for the 14 attacks in

Fig. 8. As we can see, the community sizes are relatively

small (15.7 nodes on average), which greatly reduce security

analysts’ efforts in inspecting each community. Compared with

the original dependency graphs, these results also show that the

community compression is quite effective in compressing the

redundant edges, reducing 216.4 redundant edges on average

for each community. Furthermore, the summary graphs need

only 2.26MB on average to store the summary graphs, while

the original dependency graphs need 344.32MB on average.

We also compare against the state-of-the-art dependency

graph reduction approach, NoDoze [14]. Nodoze learns an

execution profile from benign system behaviors and reduces

a dependency graph based on the anomaly scores computed

using the profile for each path in the dependency graph. We

use the events collected when the hosts are not under attack

to generate the execution profile. We compare the number

of events in the top-1, top-2, and top-3 InfoPaths for all the

communities with the events identified by NoDoze, as shown

in Table IV. Top-3 InfoPaths of DEPCOMM have averagely

∼ 21× less edges than NoDoze. NoDoze achieves poor per-

formances since its effectiveness heavily depends on whether

an execution profile can cover all the benign events and is

representative, which is very difficult due to the versatility

of runtime environment of most systems. Thus, the execution

profile learned from one system is difficult to generalize to

other systems. DEPCOMM does not suffer from the same

limitations as DEPCOMM does not require extra execution

profiles.

Case Study. We here illustrate how summary graphs can

be used to facilitate attack investigation. Fig. 9 shows the

summary graph generated by DEPCOMM for the attack D5

in the DARPA dataset. DEPCOMM partitions the dependency

graph into 13 process-centric communities. Fig. 9(a) shows 4
communities (C1-C4), and Fig. 9(b) shows the corresponding

summary graph, where the top-1 InfoPath is used as the

community summary. C2 contains the POI event, and thus

is an attack-related community. From the 8 events in C2,

we can easily identify 8 attack events (red edges). These

attack events represent the attack behaviors that open an

backdoor to the attacker’s console using mail. Based on the

InfoPaths of C1 and C2, we can see that C1 is another attack-

related community. Similarly, it is easy to identify another 7
attack-related events from 17 events in C1, which represents

the attack behavior of downloading the malicious file /home

/admin/profile. By inspecting the InfoPaths, we can further

identify C3 and C4 via their dependencies on C1. However,

the outputs of their InfoPaths are not the same as the input

of C1’s InfoPaths. Thus, C3 and C4 are not attack-related

communities. In summary, we reveal the attack-related events

of the attack D5 by inspecting only 25 events out of the 37, 109
events in the original graph.

C. RQ2: Cooperation with HOLMES

We next illustrate how DEPCOMM cooperates with one of

the state-of-the-art investigation technique, HOLMES [32].

HOLMES builds a high-level scenario graph (HSG) that

550



xxx->xxx

fluxbox
8063

firefox
8130

firefox
8183

xxx->xxx

xxx->xxx

/home/admin/profile

/home/admin/profile

../glx_alsa_675

profile
8187

mail
14370

profile
14370/var/log/mail

clean
5xxx->xxx

../glx_alsa_675 fluxbox
4126

firefox
4167

../cookies.sqlite

../glx_alsa_675 fluxbox
3475

thunder
3507xxx->xxx

../global-messages-
db.sqlite

C1

C2

POI

. . .

. . . C3

C4

. . .
Master: fluxbox
Time: 2018-04-11 02:53:23 
~ 2018-04-11 02:56:32 
Inf oPaths :   (xxx->xxx)→ 
fluxbox→firefox→firefox→/
home/admin/profile  [0.4743]

Master: fluxbox
Time: 2018-04-11 01:07:25 
~ 2018-04-11 01:08:07 
Inf oPath s:  (xxx->xxx)→ 
fluxbox→firefox→../global-
messages-db.sqlite [0.4259]

Master: clean
Time: 2018-04-13 01:16:49 ~ 
2018-04-13 01:17:04 
InfoPaths: /home/admin/profile 
→profile→profile→/var/log/ma
il→mail→(xxx->xxx) [0.7368]

C2

Master: fluxbox
Time: 2018-04-11 01:28:17 
~ 2018-04-11 01:28:17 
InfoPath s: (xxx->xxx)→ 
flubox→firefox→../cookies
.sqlite[0.4591]

C1

C4

C3
../glx_al
sa_675

POI

/home/admin
/profile

(a) Process-centric communities (b) Summary graph

Fig. 9: Communities and summary graph for the attack D5
TABLE V: Kill Chain Steps for attack-related communities

Attack Case Kill Chain Steps for Attack-Related Communities (AC)
A1: Email Penetration AC1: Initial Compromise (Top-2); AC2: -; AC3: Complete Mission (Top-1); AC4: Complete Mission (Top-1); AC5: Complete Mission (Top-1)

A2: Compile Crash AC1: Initial Compromise (Top-1); AC2: -; AC3: Complete Mission (Top-1)

A3: Files Tamper AC1: Initial Compromise (Top-1); AC2: Internal Recon (Top-2); AC3: Internal Recon (Top-2); AC4: Internal Recon (Top-2); AC5: Internal
Recon (Top-1); AC6: Complete Mission (Top-1)

A4: Data Exfiltration AC1: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1), Privilege Escalation (Top-1); AC3: Internal Recon (Top-2), Complete Mission
(Top-1)

A5: Password Crack AC1: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1), Privilege Escalation (Top-1); AC3: Complete Mission (Top-1)

A6: VPN Filter AC1: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1), Privilege Escalation (Top-1); AC3: Privilege Escalation (Top-1), Internal
Recon (Top-1); AC4: Initial Compromise (Top-1); AC5: Complete Mission (Top-1); AC6: Internal Recon (Top-2), Complete Mission (Top-1)

D1: Phishing Email (C.S.) AC1: Initial Compromise (Top-1), Establish Foothold (Top-1)

D2: Phishing Email (F.D.) AC1: Initial Compromise (Top-1), Establish Foothold (Top-1)

D3: Firefox Backdoor (F.D.) AC1: Initial Compromise (Top-1), Establish Foothold (Top-1), Internal Recon (Top-2)

D4: Browser Extension (F.D.) AC1: Initial Compromise (Top-1), Complete Mission (Top-1)

D5: Browser Extension (Theia) AC1: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1)

D6: Firefox Backdoor (Theia) AC1: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1)

D7: Phishing Email (Theia) AC1: Initial Compromise (Top-1), Establish Foothold (Top-1)

D8: Pine Backdoor (Trace) AC1: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1)

integrates the TTP (Tactics, Techniques, and Procedures) [77],

an important indicator for describing the steps of Advanced

Persistent Threats (APT), and uses the HSG to map the

low-level event information flows to the steps in the Kill

Chain [48]. In this evaluation, we first build the HSGs for the

14 attack cases, and then use the HSG to map the top-ranked

InfoPaths to the steps in the Kill Chain.

Table V shows the mapping results for attack-related com-

munities. We can observe that the Top-2 InfoPaths are suffi-

cient to find the Kill Chain. We also manually inspect these

InfoPaths to create the mappings, and confirm that most of

the mappings found by the HSGs agree with our manual

mappings. In total, HOLMES identifies 35 out of the 37 attack-

related communities, achieving a recall of 96.2%. HOLMES

fails to map two attack-related communities (AC2 of A1 and

AC2 of A2) to the Kill Chain. The attack behavior in AC2 of

A1 is to download a modified software application to the host

of a victimized employee from the corporation’s resource web

and executing the software application, where the resource

server has a trusted IP and the modified software application

has a trusted file name. Therefore, the activities in AC2 cannot

be captured by the TTP rule of HOLMES. Nevertheless, while

HOLMES’s rules fail to map AC2, the InfoPaths computed by

DEPCOMM can be used to complement HOLMES’s rules. In

fact, AC2 has an InfoPath from the attack-related community

AC1, which represents the attack behavior of uploading the

modified software application to the resource web, and has an-

other InfoPath that leads to another attack-related community

AC3, which represents the attack behavior of tampering the

system files /etc/mail.rc for email server. Thus, the activities

in AC2 form an indispensable step of the attack A1, and can be

easily inferred as an attack-related community after inspecting

these InfoPaths. HOLEMS fails to map the attack behaivor in

AC2 of A2 for the similar reason. AC2 of A2 describe the

actitivies that a compiler CC1 reads an anomaly file that is

created by AC1 and generates an incorrect binary file that

is the input node of AC3. Unfortunately anomaly file access

activities are not included in the TTP rules of HOLMES, and

thus AC2 cannot be mapped. Similarly, AC2 has two InfoPaths

that connect to two attack-related communities, AC1 and AC3,

which makes the activities in AC2 an indispensable step of

the attack A2 as well. These results show that DEPCOMM can

easily cooperate with other automatic techniques to highlight

the attack-related communities and help security analysts to

recognize residual attack-related communities missed by the

automatic techniques.
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TABLE VI: Results of community detection for 14 attack cases

Attack Cases
NISE EgoSpliter NMNF DANMF PMCV CGAN VGRAPH CNRL DeepWalk DEPCOMM
2016 2017 2017 2018 2019 2019 2019 2019 2014

F1 |C| F1 |C| F1 |C| F1 |C| F1 |C| F1 |C| F1 |C| F1 |C| F1 |C| F1 |C|
A1: Email Penetration 0.459 5 0.327 6 0.553 5 0.696 6 0.509 5 0.302 8 0.354 8 0.521 5 0.674 5 0.928 8
A2: Compile Crash 0.492 9 0.273 9 0.376 7 0.320 8 0.274 10 0.219 17 0.343 17 0.730 8 0.413 7 0.952 16
A3: Files Tamper 0.301 7 0.242 7 0.455 9 0.522 11 0.359 8 0.174 16 0.204 16 0.672 12 0.645 11 0.958 16
A4: Data Exfiltration 0.426 6 0.516 8 0.509 9 0.684 7 0.327 5 0.329 10 0.300 10 0.642 7 0.647 7 0.937 10
A5: Password Crack 0.666 3 0.622 3 0.756 3 0.847 3 0.711 4 0.505 4 0.487 4 0.910 4 0.988 4 1.0 4
A6: VPN Filter 0.629 7 0.705 7 0.675 6 0.604 6 0.343 5 0.305 12 0.315 12 0.686 7 0.650 7 0.915 11
D1: Phishing Email (C.S.) 0.164 6 0.244 10 0.109 7 0.251 10 0.0 1 0.113 48 0.452 48 0.234 9 0.384 10 0.944 48
D2: Phishing Email (F.D.) 0.235 6 0.168 5 0.206 6 0.314 8 0.187 6 0.136 20 0.161 20 0.353 7 0.266 6 0.955 19
D3: Firefox Backdoor (F.D.) 0.357 7 0.203 8 0.293 8 0.399 9 0.227 6 0.175 43 0.128 43 0.316 9 0.391 9 0.930 41
D4: Browser Extension (F.D.) 0.242 6 0.212 7 0.213 9 0.298 9 0.297 8 0.091 45 0.139 45 0.447 12 0.403 11 0.923 42
D5: Browser Extension (Theia) 0.464 6 0.356 5 0.453 7 0.406 8 0.413 7 0.179 11 0.221 11 0.600 8 0.508 8 0.911 13
D6: Firefox Backdoor (Theia) 0.396 6 0.321 5 0.393 6 0.485 8 0.388 7 0.194 13 0.234 13 0.608 8 0.529 9 0.887 14
D7: Phishing Email (Theia) 0.307 5 0.458 6 0.505 5 0.507 6 0.286 4 0.231 8 0.283 8 0.694 6 0.698 6 0.966 9
D8: Pine Backdoor (Trace) 0.537 4 0.623 5 0.449 4 0.481 4 0.318 3 0.340 7 0.418 7 0.773 5 0.758 5 0.971 7

D. RQ3: Comparison of Community Detection

We compare DEPCOMM with other state-of-the-art com-

munity detection algorithms to show the effectiveness of

DEPCOMM’s community detection technique. Considering the

overlapping nature of dependency graphs, we select 9 typical

overlapping community detection algorithms as the baselines,

including NISE (2016) [36], EgoSpliter (2017) [41], NMNF

(2017) [42], DANMF (2018) [43], PMCV (2019) [44], CGAN

(2019) [45], VGRAPH (2019) [46], CNRL (2019) [47] and

DeepWalk (2014) [38]. We use F1-score [78] to evaluate the

overall correspondence between the detected communities and

the ground-truth communities labeled by us.

Table VI shows the F1-score and the number of detected

communities |C| for DEPCOMM and the baselines. The results

show that F1-score achieved by DEPCOMM is averagely 2.29
times higher than those achieved by the baselines. This shows

that our community detection algorithm is effective to detect

the process-centric communities, while the other baselines

have poorer performance due to the following reasons: (1)

they mainly focus on homogeneous graphs, and are oblivious

to the types of system events. Thus, they cannot effectively

distinguish process nodes and resource nodes, and mix these

nodes in a community, causing a community to contain

multiple irrelevant system activities or spread a system activity

across multiple communities; (2) they depend on a common

assumption that edges inside a community are more than the

edges linking with the nodes of other communities. Thus,

they fail to split two master process nodes connected with

information flows into two communities, even though the two

processes represent distinct system activities.

Furthermore, even though DEPCOMM and DeepWalk both

use SkipGram to learn the node representation from the

walk routes, DEPCOMM outperforms DeepWalk by 1.65×
on average. This shows that DEPCOMM’s hierarchical walk

schemes are more effective than the random walk scheme

adopted by DeepWalk, which treats each node equally.

E. RQ4: Effectiveness of Community Compression

To evaluate the effectiveness of community compression, we

compute the compression rates as γ = 1−Sizepost/Sizepre,

where Sizepre denotes the number of nodes or edges of a

community before applying compression and Sizepost is the
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Fig. 10: Community compression rate for nodes
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Fig. 11: Community compression rate for edges

number of nodes or edges after using compression. The box

plots in Fig. 10 and Fig. 11 show the distributions of the

compression rates for the nodes and the edges, respectively.

We can see that for a community, the number of nodes and the

number of edges are reduced averagely by 38.4% and 44.7%,

respectively, with the maximum reduction being 97.3% for the

nodes and 98.9% for the edges. In addition, we verify that the

InfoPaths are not changed after compression. The reason is

that the repeated activities have a same information flow that

often enters the subgraph formed by the repeated activities

through a single node and leave the subgraph via another

single node, and thus compressing the repeated activities will

not change the events inside InfoPaths. In a word, compressing

these repeated activities still preserves the semantics for the

task represented by a community.

F. RQ5: Effectiveness of InfoPath Ranking

For each community, DEPCOMM extracts InfoPaths based

on its input and output nodes. On average, a community has

4.3 input nodes and 3.9 output nodes, forming 15.7 InfoPaths.

We manually inspect the top-3 InfoPaths for each community

and confirm that the top-2 InfoPaths are sufficient to represent

system activities and attack behaviors. That is, we only need

to inspect 12.7% of the extracted InfoPaths.
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TABLE VII: Top 3 InfoPaths of the community C3 with attack-related events and C8 without attack-related events
InfoPaths Priority Score

C3 Top-1: leak→tar→../upload.tar→bzip2→../upload.tar.bz2→gpg→../upload→cur→xxx->xxx 0.8234
Top-2: ../analysis.txt→tar→../upload.tar→bzip2→../upload.tar.bz2→gpg→../upload→cur→xxx->xxx 0.7141
Top-3: ../userlist→tar→../upload.tar→bzip2→../upload.tar.bz2→gpg→../upload→cur→xxx->xxx 0.7137

C8 Top-1: xxx->xxx→sshd→bash→scp→../statistics.tar.bz2→tar→../userlist 0.4914
Top-2: xxx->xxx→scp→../statistics.tar.bz2→tar→../userlist 0.3839
Top-3: /dev/null→bash→scp→../statistics.tar.bz2→tar→../userlist 0.1830

We next use two communities to illustrate the effectiveness

of the top-ranked InfoPaths. Table VII shows the top 3 In-

foPaths of an attack-related community C3 that contains attack

behaviors and a community without attack-related events C8

for the attack A4. The events in C3 show that an attacker

runs a malicious script to compress, encrypt, and upload the

sensitive files to a remote server. We can see that these attack

behaviors can be effectively represented by using the top-

1 InfoPath whose priority score is 0.8234. While the top-2

and the top-3 can also cover the behaviors, the input node

of the top-1 InfoPath is a malicious script process (i.e., leak

) and it is easier to help security analysis further trace the

community that creates the malicious script. The events in

C8 show that a user logs into a host using sshd, transfers a

compressed file from a server to the host, and decompresses

the file. We can see that the top-1 InfoPath with the highest

priority score (0.4914) can represent all these activities, while

the top-2 InfoPath lacks the events for sshd login, and the top-

3 InfoPath lacks the sshd login event and contains a file event

(/dev/null→bash) that appears in many communities.

G. RQ6: Turnaround Time Performance of DEPCOMM

To understand the turnaround time performance of DE-

PCOMM, we measure the turnaround time of each phase

in DEPCOMM for the 14 attack cases. As the hierarchical

walks and vectorization in the community detection phase are

independent to each other, it is feasible to parallelize all the

hierarchical walks and vectorization. We use multi-processes

(20 processes) in a host to realize the parallelization. The

results are shown in Table VIII. On average, DEPCOMM takes

1, 148.90s to generate a summary graph, which is ∼ 6×
faster than running in a single process. More specifically,

dependency graph construction uses 32.12s, dependency graph

pre-processing uses 256.72s, and community detection uses

858.48s. For community detection, hierarchical walks uses

581.28s and vectorization uses 269.26s, which are ∼ 7× and

∼ 4× faster than running in a single process. Finally, commu-

nity compression uses 1.41s and community summarization

uses 0.17s. We can observe that (1) the community detection

phase takes up most of the time due to the walking sampling

and representation learning, and they can be accelerated by

parallelization; (2) DEPCOMM takes less time to compress

process-centric communities due to the highly efficient fre-

quent pattern mining algorithm; (3) the community summa-

rization phase requires the lest time because of the small

community sizes after compression. In a word, the turnaround

time performance of DEPCOMM can be further improved by

parallelizing the hierarchical walks and vectorization.

VI. DISCUSSION

Cooperation with Other Investigation Techniques. Besides

highlighting attack-related communities, visualization tech-

niques can be applied on the summary graphs generated by

DEPCOMM to show the overview of system activities, and

provide on-demand zoom in (zoom out) functionality to show

(hide) the detailed events in the communities. Additionally, by

integrating with other causality analysis techniques [12, 14,

28], DEPCOMM can generate a heat map that highlights the

communities that are likely to contain suspicious behaviors.

Forensics of Real-World Attacks. Recent real-world attacks,

such as Advanced Persistent Threat (APT) [75, 76], are sophis-

ticated (multi-step attacks that exploit various vulnerabilities)

and stealthy (staying dormant for a long period). With the

advances of log compression techniques [26, 27, 33, 60] and

the continuing decreases of storage costs, it is affordable to

store system audit logs for months or even years. Furthermore,

recent distributed database solutions [18, 19, 79, 80] show

promising results to improve the search performance of the

logs, which can be used to generate dependency graphs for

massive amount of logs. By working together with these

solutions, DEPCOMM can be applied on the generated de-

pendency graphs to detect communities, and integrate with

other detection techniques [14, 32] to highlight attack-related

communities.

Analysis Turnaround Time. Our current implementation

of DEPCOMM takes averagely 1, 148.90s (in Table VIII) to

generate a summary graph. As the hierarchical walks and

vectorization are independent to each other, it is feasible to

parallelize all the hierarchical walks and vectorization [63].

By working with intrusion detection systems [11, 23] that

can provide real-time alerts and defenses, DEPCOMM can

be applied to identify the attack entry points and impacts,

enabling quicker turnaround time for system recovery and

preventing future compromises.

Limitations of DEPCOMM. Hierarchical graph embedding

is a novel graph embedding technology for system depen-

dency graphs. However, there are still some hyper-parameters

(e.g., the walking length, the window size for sub-sequence

extraction, and the dimension of vectors) that need to be set

manually. We adjust them based on the existing sensitivity

analysis [38], where the walking length is set to 200, the

window size is 20, and the dimensions is 20. There are still

some less-important events that cannot be compressed by

DEPCOMM, such as some interactions with system files (e.g.,

bash→/dev/null). By inspecting the communities, these events

can be found in different communities, and thus mining dis-

criminative patterns [81, 82] may help identify such patterns.
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TABLE VIII: Turnaround Time of DEPCOMM

Attack Cases Dep. Graph Dep. Graph Community Community Community Total(s)Construction(s) Preprocess(s) Detection(s) Compression(s) Summarization(s)
A1: Email Penetration 1.15 7.14 186.72 0.032 0.054 195.09
A2: Compile Crash 0.23 1.4 78.38 0.0096 0.089 80.11
A3: Files Tamper 30.64 147.13 740.28 0.029 0.13 918.21
A4: Data Exfiltration 1.11 6.55 172.24 0.027 0.074 180.00
A5: Password Crack 0.80 3.19 20.54 0.0075 0.0085 24.54
A6: VPN Filter 13.42 111.9 1,463.45 0.049 0.17 1,588.99
D1: Phishing Email (C.S.) 141.63 1,028.32 110.77 0.0052 0.060 1,280.78
D2: Phishing Email (F.D.) 60.72 486.57 2,247.12 4.53 0.31 2,799.25
D3: Firefox Backdoor (F.D.) 83.38 780.93 2,968.01 7.36 0.47 3,840.15
D4: Browser Extension (F.D.) 93.06 953.06 2,846.95 7.70 0.41 3,901.18
D5: Browser Extension (Theia) 5.87 10.21 135.69 0.017 0.16 151.95
D6: Firefox Backdoor (Theia) 5.76 10.4 159.11 0.025 0.16 175.45
D7: Phishing Email (Theia) 5.86 8.27 105.28 0.011 0.11 119.53
D8: Pine Backdoor (Trace) 6.06 38.97 784.18 0.022 0.17 829.40
Average 32.12 256.72 858.48 1.42 0.17 1,148.90

VII. RELATED WORK

Causality Analysis via System Audit Logs. Causality anal-

ysis was initially proposed by King et al. [8, 9], which aims

to automatically reconstruct a series of events that represent

attack steps. As causality analysis suffers from the depen-

dency explosion problem [26, 27, 33, 51], recent research has

proposed techniques to perform fine-grained causality analy-

sis [13, 15, 25, 83, 84] and prioritize dependencies [12, 14].

Also, Gui et al. [85] proposed an approach that presents

updates of causality analysis periodically and involves human

in the loop to provide heuristics in reducing the generated

dependency graphs. Unlike these techniques that aim to re-

veal attack-related events, DEPCOMM generates a summary

graph from the dependency graph, and can work with these

techniques to highlight the attack-related communities.

Behavior Analysis via System Audit Logs. Gao et al. [18, 19]

proposed domain-specific languages that query system audit

logs for efficient attack investigation. Milajerdi et al. [32]

proposed to rely on the correlation of suspicious information

flows to detect ongoing attack campaigns, and used the knowl-

edge from cyber threat intelligence (CTI) reports to align the

attack behaviors recorded in system audit logs [86]. Pasquier

et al. [87] proposed a runtime analysis of provenance by com-

bining runtime kernel-layer reference monitor with a query

module. Hossain et al. [28] proposed a tag-based technique

to perform real-time attack detection and reconstruction from

system audit logs. The summary graphs generated by DEP-

COMM can be integrated with these techniques to facilitate the

understanding of attack behaviors and provide better defenses.

Furthermore, recent approaches [14, 88] leverage alerts from

threat detection systems or software applications’ runtime

logging activities [89] to generate compact graphs. Unlike

these approach whose quality heavily depend on the detected

alerts and the generalizability of the learned system profiles,

DEPCOMM is a general approach that leverages only the

information inside dependency graphs to detect communities,

and can easily cooperate with various automatic investigation

techniques [32] to detect attack-related communities.

Community Detection. NISE [36] is a local-expansion al-

gorithm, which expands a initialized seed set into clusters

with overlaps. EgoSplitter [41] first build a node-decoupling

graph through splitting nodes into multiple replicas, then

applies some classic methods for disjoint community detection

to the build graph. NMNF [42] uses non-negative matrix

factorization to learn node representation with mesoscopic

community structure. DANMF [43] proposed a novel deep

NMF model for overlapping community detection, which

models the non-negative matrix factorization process by auto-

encoder network. PMCV [44] detects overlapping communi-

ties through searching and joining adjacent k-cliques sharing

k-1 nodes. CGAN [45] uses the Generative Adversarial Nets

to learn the membership strength of nodes to communities.

VGRAPH [46] uses neural networks to model the generation

of node neighbors, which joins community detection and node

representation learning. CNRL [47] applies the Latent Dirich-

let Allocation model (LDA) to the random walk sequences to

learn the community membership. DeepWalk [38] joins ran-

dom walk schemes and word2vec to learn node representation

with community structure. These existing algorithms mainly

focus on homogeneous graphs and treat each node equally,

while DEPCOMM gives priorities for neighbor nodes that are

more likely to represent intimate processes.

Graph Summarization. Graph summarization produces a

compact representation of a large-scale graph, facilitating the

identification of structure and meaning in data [29–31]. It

has extensive applications, such as clustering, classification,

community detection, and outlier detection. Unlike these tech-

niques whose target data is mainly stored in databases, DEP-

COMM processes dependency graphs, a type of heterogeneous

graphs where process nodes and other resource nodes represent

different steps of system activities.

VIII. CONCLUSION

We have presented DEPCOMM, which clusters intimate

processes that cooperate with each other to accomplish cer-

tain system tasks into a community and compresses the

repeated events inside each community. For each commu-

nity, DEPCOMM further identifies InfoPaths that represent

the information flows across communities, and ranks these

InfoPaths based on their likelihoods to reveal attack behaviors.

The top-ranked InfoPaths are then used as the summary for

each community. Our evaluations on real attacks demonstrate

the effectiveness of DEPCOMM in detecting process-centric

communities, compressing repeated events, and prioritizing

InfoPaths to assist attack investigation.
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