
Delay Wreaks Havoc on Your Smart Home:
Delay-based Automation Interference Attacks

Haotian Chi1∗, Chenglong Fu1∗, Qiang Zeng2, Xiaojiang Du3
1 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

2 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29201, USA
3 Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA

∗ The first two authors contributed equally to this work.
Email: {htchi, chenglong.fu}@temple.edu, zeng1@cse.sc.edu, xdu16@stevens.edu

Abstract—With the proliferation of Internet of Things (IoT)
devices and platforms, it becomes a trend that IoT devices
associated with different IoT platforms coexist in a smart home,
demonstrating the following characteristics. First, a smart home
may use more than one platform to support its devices and
automation. Second, IoT devices of a home may transmit mes-
sages over different paths. By selectively delaying IoT messages,
our study finds that two issues, inconsistency and disorder,
can be exacerbated by attackers significantly. We then explore
how these issues can be exploited and present seven types of
exploitation, collectively referred to as Delay-based Automation
Interference (DAI) attacks. DAI attacks cause home automation
to yield incorrect interaction results, placing the IoT devices
and smart home in insecure, unsafe, or unexpected states. It
is worth highlighting that DAI attacks do not depend on any
IoT implementation vulnerabilities or leaked keys/tokens, and
they do not trigger alarms at any layers of the IoT protocol
stack. To demonstrate and evaluate the new attacks, we set up
two real-world testbeds, where commercial IoT devices and apps
are deployed. The week-long experiments from both testbeds
show that an attacker has adequate opportunities to launch DAI
attacks that cause security or safety issues.

I. INTRODUCTION

Rapid development of Internet of Things (IoT) has led to
flourishing smart environments, (e.g., smart homes, offices,
and laboratories). IoT platforms, such as Apple HomeKit [1],
Samsung SmartThings [2], and Amazon Alexa [3], enable
configurations of automation rules for interactions between
IoT devices in a home, also known as home automation. For
example, users can create automations on SmartThings, or
routines on Alexa, to have their devices automatically react
to sensor measurements, device status, time, etc.1

When multiple rules interplay in a physical environment,
they may interfere with each other and cause unexpected
automation. The cross-rule interference (CRI) problem has
been intensively studied (on individual platforms) [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13]. However, existing
work that studies the CRI problem makes the following two
assumptions: (1) They assume that all rules run on the same
platform [6], [7], [9], [10], [5], [12], [13], [8] (or rules on
different platforms do not interact with one another and can
be analyzed separately [11]); (2) They also assume that all IoT

1We refer to automations and routines as automation rules or rules.

Fig. 1: An example showing a unique CRI problem. If the trans-
mission of the button-pressed event (which sets “Away” mode) to
Platform B suffers a non-negligible delay due to the DAI attack, the
rule on Platform B will fail to lock the door.

messages are transmitted with identical delays. For example,
the first systematic categorization of CRI [4], [5] assumes both.

The assumptions, however, do not necessarily hold true in
real-world systems. Due to the fragmented IoT ecosystem [14],
[15], different platforms are compatible with different subsets
of IoT devices. When users cannot find a single platform
to work with all their devices, they need to use multiple
platforms. Furthermore, different devices use heterogeneous
communication technologies and transmit messages through
different paths. For example, a ZigBee device talks with a
platform A’s server via an IoT hub, while a WiFi-based device
talks with its vendor’s cloud B, which then delegates access
to the device to the platform A. The communication paths are
different and thus have different transmission delays. Worse,
such delays can be manipulated by attackers without relying
on any implementation vulnerabilities (Section II-C).

We thus consider a more general and realistic smart home
system, where (1) users may use more than one platform to
support their devices and install automation, and (2) IoT de-
vices can transmit messages via more than one communication
path. We classify smart home systems into three categories:
single-platform single-path (SPSP) systems, single-platform
multi-path (SPMP) systems, and multi-platform (MP) systems,
which certainly contain multiple paths (Section III describes
the three categories in details). By incorporating message
transmission delays as a factor, we study two issues which do
not exist in SPSP (where the two assumptions aforementioned
hold): disorder and inconsistency. Disorder occurs when two

285

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Haotian Chi. Under license to IEEE.
DOI 10.1109/SP46214.2022.00146

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

20

IoT events (or commands) arrive at platforms (or devices) in
an order different from their actual occurrence order, while
inconsistency arises when two platforms have inconsistent
observations on the state of the same device.

We then re-examine cross-rule interference (CRI) in SPMP
and MP systems, and reveal a new family of attacks that
are overlooked by previous work, referred to as Delay-based
Automation Interference (DAI) attacks, which exploit the in-
teraction of automation rules in SPMP or MP systems. Fig. 1
illustrates an example. If the button-pressed event (which sets
the home mode on both platforms to “Away”) sent to Platform
B is delayed by an attacker, the automation rule on Platform
A succeeds in closing garage door when the homeowner’s
car leaves, but the rule on Platform B fails to lock the front
door. We utilize two attack primitives [16], selective event
delaying and selective command delaying (which leverage
TCP hijacking attacks to significantly delay IoT events and
commands without requiring session keys or triggering any
alarms), as a building block to realize the DAI attacks. In
short, an attacker exacerbates the inconsistency and disorder
issues to launch DAI attacks, which exploit new CRI patterns
and cannot be detected by existing work on CRI [6], [7], [8],
[9], [10], [5], [11], [12], [13].

To demonstrate and evaluate the new attacks, we set up
two real-world testbeds in two apartments. In the testbeds, we
examine a variety of IoT devices, six cloud-based platforms
and two local platforms. We validate all of the new attacks
in the testbeds and verify that the attacks put the devices
into insecure, unsafe or unexpected states. The one-week
data from both testbeds also demonstrate that the attackers
have adequate opportunities to launch the attacks. Finally, we
discuss countermeasures. Our contributions are as follows:
• Given the fragmented IoT ecosystem, we present a much

more general and realistic smart home model, where mul-
tiple IoT devices associated with multiple IoT platforms
interact in the same physical space. Under this model, we
study the disorder and inconsistency issues and leverage
delay-attack primitives to exacerbate them.

• Compared to existing work on CRI [4], [5], we are the first
to incorporate the delay factor into analyzing CRI problems.
We are thus able to reveal new CRI patterns and build Delay-
based Automation Interference attacks that are overlooked
by existing work. These attacks do not rely on any leaked
tokens or implementation vulnerabilities. Unlike jamming
or discarding packets, the attacks do not trigger alarms at
any layers of the IoT protocol stack.

• We evaluate the proposed attacks in two real-world testbeds,
where commercial off-the-shelf (COTS) IoT devices and
multiple popular platforms are used. It is demonstrated that
the attacks can cause various problematic home automations
and put the IoT devices and home in hazardous states.

II. BACKGROUND AND ATTACK MODEL

A. Smart Home Systems
In modern smart homes, various components (e.g., IoT

devices, IoT hubs, home router, and IoT platforms) interact

Fig. 2: Architecture of a smart home ecosystem. The arrows (labeled
with circled numbers) denote the paths and directions of event flows.
Command flows follow the same paths but in reverse directions.

in the same physical space. We show the architecture of a
modern smart home ecosystem in Fig. 2.

Devices and Hubs: IoT devices consist of sensors and actua-
tors. A sensor (e.g., temperature sensor) simply reports mea-
surements of a physical property, while an actuator (e.g., smart
lock) can receive and execute commands (e.g., unlock/lock) to
change its status and report that after executing a command.
The sensor measurements and actuator statuses are sent to an
IoT platform via events. The current sensor measurement or
actuator status is called the device’s state. A device’s state at
a platform is updated by the device’s latest event.

IoT devices employ a variety of techniques (e.g., WiFi, Zig-
Bee, Z-Wave, Bluetooth) to send events or receive commands.2

Devices that use WiFi (e.g., LIFX bulbs, Amazon Echo
speakers) can connect to the home router directly 1 ; those
that use non-IP protocols (e.g., ZigBee, Z-Wave, Bluetooth,
etc.) usually require a hub. The hub converts non-IP payloads
from IoT devices 2 to IP-based payloads, which can be sent
to the home router 3 . The home router then forwards the
IP-based payloads to cloud servers 4 or to other devices in
the local area network (LAN) 5 for further processing. A
local platform (e.g., HomeKit) can connect non-IP devices
directly (6). Multiple IoT hubs may be deployed in a home
to accommodate their supported devices.

Platforms: Cloud-based IoT platforms may be classified into
three types: endpoint, service, and hybrid. An endpoint plat-
form is a messaging cloud that mediates communication be-
tween IoT devices and service platforms. It may be maintained
by a device manufacturer or a third-party service provider
(e.g., AWS IoT [17]). A service platform such as IFTTT (If
This Then That) is a cloud that runs automation rules and
usually obtains access to devices from endpoint platforms,
via a cloud-to-cloud integration 7 . A hybrid platform is a
combination of an endpoint and a service platform. Many
popular smart home platforms, such as Amazon Alexa and
SmartThings, belong to this category. In contrast to the
aforementioned cloud-based platforms, a local platform (e.g.,
HomeKit, openHAB) is usually hosted on a local device (e.g.,
PC, laptop, HomePod speaker) in the home area network, and

2For the sake of brevity, we mainly discuss event flows. Command flows
follow the same paths but in the reverse direction.

2286

can connect with IoT devices directly, via non-IP protocols
(e.g., ZigBee, Z-Wave, Bluetooth) 6 or via LAN 1 → 5 .
A local platform can also access devices that have been
connected to an IoT hub (2 → 3 → 5) or an endpoint/hybrid
platform (1 → 4 → 9 → 5 or 1 → 4 → 7 → 8 → 5), by using
the APIs provided by the hub (e.g., Hue bridge) or the
endpoint/hybrid platform (e.g., LIFX cloud), respectively. For
the sake of brevity, in this paper, we collectively use the term
platforms to denote all service, hybrid, and local platforms
that can run automation rules.

Automation: An automation rule is a reactive app that follows
a trigger-condition-action paradigm. A rule’s trigger specifies
a constraint that a certain type of event (termed as trigger
event) must satisfy to activate the rule. Before an action in
a rule is taken, its condition is checked to verify whether
states (e.g., devices states, time) have satisfied the predefined
constraints. Different platforms may have distinct supports
for defining rule conditions. For instance, SmartThings allows
using both device states and time to define rule conditions,
Philips Hue only allows the usage of time in conditions, and
Amazon Alexa only supports trigger-action rules.

B. Inferring Home Configuration from Encrypted Traffic

Recent work has illustrated the effectiveness of inferring
smart home configuration information (i.e., device types,
automation apps, the app-device bindings, etc.) from en-
crypted network traffic. Side-channel attacks can utilize the
metadata in the traffic, such as source/destination IP/MAC
addresses, DNS, packet lengths, frequencies, etc., to identify
device information (e.g., manufacturer, model) [18], [19], [20],
[21], [22], [23], [24] and recognize events/commands in real
time [25], [26], [27], [28], [29], [30]. By analyzing a sequence
of accurately-recognized IoT events/commands, routines and
automation rules can also be inferred [26], [31], [32], [30].
For instance, the device identification [18] and [19] achieve an
accuracy of 0.91 and 0.81, respectively. The average accuracy
for inferring events [29] is 0.97. The precision and F1 score
for inferring automation rules [26] are 1 and 0.96, respectively.
This work utilizes side-channel attacks to infer smart home
configuration information and build attacks.

C. Selective Event/Command Delaying

In smart home systems, most communication paths (see
Fig. 2) between an IoT device/hub and a platform go through
a home router.3 On IP/TCP links, events and commands are
typically transmitted using the SSL/TLS protocol, which runs
on top of the transport layer. Each pair of an IoT device/hub
and a cloud establishes a unique TLS session. IoT events and
commands are conveyed in a specific type of TLS record, i.e.,
Application record, whose type field in header is “0x17”.

Although TLS provides the confidentiality and order-
preserving features, neither TLS nor the upper application-
layer protocols used by smart home systems, such as HTTP

3An exception is the communication between non-IP devices and a local
platform (6).

and MQTT, have a strict liveness checking on messages. IoT
devices and clouds usually exchange TLS-protected heartbeat
(a.k.a., keep-alive) messages periodically. If an IoT device/-
cloud cannot receive a heartbeart request/reply or an event/-
command ack from the other side within a pre-defined time
period (usually tens of seconds; see Section V-B), i.e., a
timeout occurs, it will actively disconnect the TCP connection
and try to reconnect. If an attacker succeeds in performing
a TCP hijacking attack (see Section II-D) between an IoT
device/hub and a platform, he can establish a TCP connection
with each side, becoming a relay node in the middle. Although
the MITM attacker cannot decrypt TLS-protected messages, he
can delay forwarding the messages. Delaying messages cannot
be detected by the IoT protocol stack as long as it does not
trigger a timeout. An attacker can recognize IoT events and
commands from the encrypted packets through side-channel
analysis (Section II-B) and selectively delay a specific event
or command, which is referred to as two attack primitives:
selective event delaying and selective command delaying. Our
prior work [16] discussed the two attack primitives in detail.
In this paper, we use the two primitives as a building block.

D. Attack Model

Who Can Launch the Attacks? We are concerned with an
attacker who can eavesdrop and delay the encrypted traffic
between IoT devices/hubs and the IoT cloud/local platforms.
For example, he can compromise the WiFi router in the victim
home, or perform ARP spoofing attacks [33], [34] from a
local IoT device (e.g., compromised by Mirai attacks [35],
[36]). When the attacker and the victim share a WiFi (e.g.,
at a company, hospital, or facility campus), the attacker
can launch sniffing and ARP spoofing from his own device
conveniently. If an attacker has compromised an ISP router, he
can launch attacks at scale against many homes that use cloud-
based platforms. Through the attack, the attacker obtains two
capabilities: (1) passively analyzing traffic; and (2) actively
delaying events/commands.
Passive Observation. For this purpose, sniffing attacks are
sufficient (i.e., TCP hijacking is not needed). Specifically, the
attacker has access to headers of the data link, network and
transport layers (such as device MAC addresses, IP addresses
and ports), and the type and length of TLS records. The
attacker utilizes the techniques discussed in Section II-B to
obtain knowledge of the victim home and recognize events/-
commands from the traffic.
Active Delaying. The attacker selectively delays events/com-
mands transmitted over a hijacked TCP session. To evade
detection, the attacker does not discard any events/commands
or delay them for an excessive period. The delay range
(without being detected) depends on the type of IoT devices
and platforms (more details are given in Table IV).

III. EVENT/COMMAND DISORDER AND INCONSISTENCY

In a smart home where all IoT devices use the same TCP/IP
communication path to exchange events and commands with
a single platform, as shown in Fig. 3, two properties hold:

3287

Fig. 3: Single-platform single-path device connection.

Fig. 4: Single-platform multi-path device connection.

• Same Order. All events arrive at the IoT platform in the
same order as they arrived at the hub. This holds for all
events that are transmitted on the same TLS session (i.e.,
the hub-platform path), as each TLS record includes a
Message Authentication Code that checks data integrity and
the sequence number [37]. Likewise, a command sent earlier
by the platform arrives at the hub earlier.

• Consistency. The executions of all automation rules are
based on a consistent observation about the smart home,
because the same database maintained by the platform is
queried for data (e.g., device states, home mode, etc.).
Although existing research on CRI [38], [39], [6], [7], [8],

[26], [9], [40], [5] considers or implicitly assumes the single-
platform single-path (SPSP) deployment model, it does not
reflect the reality. Over time, users may purchase a variety
of IoT devices and connect them with multiple platforms.
Therefore, the following two deployment models are common
in reality: the single-platform multi-path (SPMP) model and
the multi-platform (MP) model. According to our online
survey (see Appendix A for details) including 85 realistic
smart homes, SPSP, SPMP and MP deployments account for
17.6%, 20.0% and 62.4%, respectively.

A. Single-Platform Multi-Path: Disorder

When IoT devices use multiple TCP/IP paths to exchange
messages with a platform, the same order property will not
hold true. Fig. 4 shows an example. Assuming that device A’s
transmission path (i.e., the TLS between device A and the
platform) is delayed, even if events from A are generated
earlier, its events may arrive at the platform later than those
of device B. We refer to this issue as a disorder. Note that this
issue could also happen to commands.

B. Multi-Platform: Disorder and Inconsistency

In multi-platform systems, there exist multiple TCP/IP paths
between IoT devices and platforms. Therefore, the disorder
issue certainly exists. Plus, when an IoT device is connected
to two or more platforms, the platforms may have different
observations on the same device’s state. This is because a
new event from the device may have different delays when
transmitted to the platforms (via different paths). As shown
in Fig. 5, a WeMo smart plug communicates with the WeMo
cloud (a.k.a., an endpoint cloud) through the Internet, and talks
in the local area network with a HomePod that hosts HomeKit
or with a SmartThings hub which forwards communication

Fig. 5: WeMo smart plug connected to three platforms: WeMo,
SmartThings, and HomeKit.

to the SmartThings cloud. Thus, the WeMo smart plug uses
three different paths to connect with the three platforms. The
transmission delays could create a time window, during which
platforms have inconsistent observations on the state of the
plug (i.e., ON/OFF). We refer to this issue as inconsistency.

In non-adversarial scenarios where the network delays are
usually small, e.g., less than one second, the disorder and
inconsistency issues are not severe. However, in the presence
of an attacker who intentionally delays events/commands, the
disorder and inconsistency issues may be manipulated by the
attacker to cause serious security and safety threats to a smart
home (e.g., leaving the front door unlocked when the owners
are not home), and this is discussed in Section IV.

IV. DELAY-BASED AUTOMATION INTERFERENCE ATTACKS

We consider an attacker who launches selective event/com-
mand delaying attacks to cause disorder and inconsistency
issues in order to interfere with home automation, leading
to incorrect, unexpected, and hazardous automation. These
attacks are collectively referred to as Delay-based Automation
Interference (DAI) attacks. Different from the well-studied
cross-rule interference problems (e.g., [5], [6], [7], [9]) due
to mis-programming or mis-configuration, DAI attacks ex-
ploit CRI problems in SPMP and MP systems that cannot
be detected by existing work. To systematically study and
categorize of DAI attacks, we use a formal approach process
calculus [41], [42] to model smart home deployments and
extend a notion of observation equivalence for identifying CRI
problems in a smart home. With the theoretic basis, we param-
eterize the configurations (including the message-transmission
delay) of a smart home system and enumerate the possible
configurations as well as the attacker’s strategies to find all
possible DAI attacks. Due to the page limits, we briefly present
the basic idea of the utilization of observation equivalence in
Section IV-A, and defer the complete formalization part to
Appendices B and C. The rest of this section is focused on
presenting the discovered attacks.

A. CRI Resistance Modeling

A smart home’s physical environment is denoted as E, and it
has two automation rules R1 and R2 that run on two platforms
L1 and L2, respectively (L1 and L2 may refer to the same or
different platforms). We use Sys = E◦(R1[D1▷L1] ∥R2[D2▷
L2]) to denote this smart home system, where D1 and D2

are the sets of devices involved in R1 and R2, respectively.
Communication paths between devices and platforms in Sys
suffer from delay attacks. Suppose a specification system

4288

Room RID Rule description (Format: When [trigger], if [condition], [action])

Garage

1 When the hall door is closed, if away mode, close garage door and set home mode. (arriving)
2 When the away button is pressed, set to away mode. (leaving)
3 When the hall door is closed, if home mode, open the garage door. (leaving)
4 When the car leaves, if away mode, close the garage door.
5 When the garage door is closed, if away mode, lock the front door and hall door.

Kitchen

6 When the user arrives, unlock the front door.
7 When the front door is unlocked, turn on the indoor camera.
8 When the front door is opened, if away mode, turn on all smart plugs.
9 When cook time (12pm, 7pm), if motion is active, turn on the heater in the kitchen.

10 When power high, if motion is inactive, turn off smart plug (that connects kettle, heater, etc.).
11 When door is unlocked, if the user is away, sound the alarm and call the police.

Living
Room

12 When motion is detected, turn on the humidifier and TV.
13 When the luminance drops below 20 lux, if motion is active, turn on the lights.
14 When the luminance exceeds 20 lux, if motion is inactive, turn off the lights.

Bedroom

15 When motion is detected, if user is at home, turn off camera.
16 When motion is detected, if user is away, ring alarm and send live video to security company.
17 When motion is detected, turn on the ceiling lamp.
18 When motion is detected, if luminance is below 20 lux, turn on the floor lamp.

Fig. 6: A smart home illustrating part of the deployed IoT devices and automation rules.

Sys∗ = E ◦ (R1[D1 ▷ L∗] ∥R2[D2 ▷ L∗]), where all devices
D1 ∪ D2 are connected to an oracle platform L∗, both rules
R1 and R2 run on L∗, and all its communication paths incur
identical delays. That is, Sys∗ runs the same rules and devices
in the same environment as Sys but suffers no DAI attacks.

Observation equivalence is a property that two or more
concurrent systems are indistinguishable regarding their ob-
servable implications (e.g., the states of sensors and actuators).
Therefore, if the real system Sys (with DAI attacks) and
specification system Sys∗ (without DAI attacks) are obser-
vationally equivalent while they evolve, i.e., the automation
results (resultant device states) are always the same no matter
how rules are triggered the same way in both systems, we say
that the two automation rules R1 and R2 in the deployment
Sys are CRI-resistant to DAI attacks. With this notion, we
not only can verify if rules are CRI-resistant after formalizing
a given smart home deployment, but also find all possible
types of DAI attacks by traversing different attack strategies
(i.e., which communication paths to delay). Due to the page
limit, we defer full details of the formal modeling, and the
methodology for observation equivalence analysis and DAI
attack categorization, to Appendices B and C, respectively.

B. An Example Smart Home
To help present DAI attacks, we first describe an example

smart home with multiple IoT devices and automation rules
deployed, as shown in Fig. 6. Regarding Rules 1-3, note
that whether a person enters or leaves, the resulting door
event sequence is the same (e.g., “unlocked → open →
closed → locked”), and therefore cannot be used to infer
whether the homeowner enters or leaves the home; to distin-
guish arriving/leaving behaviors, a mode with possible values,
such as home and away, can be set by the user manually
(like using a mobile companion app or an ADT system [43])
or automatically (based on a presence sensor or automation),
which then can be used to, e.g., open/close the garage door
correctly. The example will be used to present the new DAI
attacks in a more concrete fashion.

C. DAI Attacks
We summarize seven types of DAI attacks in Table I. For

each type, Table I lists the attack name, the section interpreting

Fig. 7: Condition overlapping attack. The conditions of Rules i and
j are satisfied when the device state is 0 and 1, respectively. Here, 0
and 1 broadly denote the values of a binary attribute, e.g., inactive
and active of a motion sensor.

Fig. 8: A scenario of condition overlapping attack (action conflict).

it, the rule pattern describing the attack, the message(s) that
should be delayed, the issue exploited and the consequence.

1) Condition Overlapping Attack: Existing works [6], [7],
[9], [10], [5], [11], [12], [13] assume that rules do not run
simultaneously if their conditions are exclusive, (e.g., “if
motion sensor is active” vs. “if motion sensor is inactive”). As
shown in Fig. 7, suppose the conditions of Rules i and j check
the state of a device, and this device has two possible states
0 and 1. When there are no attacks, the condition-satisfaction
period during which Rule i’s condition (e.g., “if the state is 0”)
is satisfied has no overlap with that of Rule j, (e.g., “if the state
is 1”). However, if Rules i and j run on two different platforms
A and B, respectively, by delaying the arrival of event 1 on
platform A and/or the arrival of event 0 on platform B (see
Fig. 7), the condition-satisfaction periods of the two rules will
have overlaps. As a result, if both rules are triggered during
the overlapping period, they will be executed during the same
period, violating the expectation that they are mutually ex-
clusive. We collectively define condition-overlapping attacks
(COA) as attacks that exploit inconsistency issues to cause
rules with exclusive conditions to run simultaneously. Under
this attack, rules that are considered interference-free by prior

5289

TABLE I: Summary of DAI attacks. The DAI attacks are derived from a systematic categorization show in Appendix C. The Rule Pattern
column shows the pattern of victim rules targeted by each DAI attack. Ri = (Ti, Ci, Ai), i = 1, 2 denotes two victim rules, where Ti,
Ci, Ai are the trigger, condition, and action, respectively. ⊥ denotes “mutually exclusive”; ∧ denotes “overlaps”; ¬ denotes that “mutually
contradictory”; ⇒ and ⇏ denotes “enables” and “disables”, respectively; <≈ denotes “is close but precedent to”; ⊣ denotes “requires”; ⊎
denotes “guarded by”.

Attack Section # Rule Pattern What to Delay?1 Issue Exploited Consequence

(1) Condition Overlapping Attack (COA) IV-C1
(1.1) COA - Action Conflict T1 = T2 , C1 ⊥ C2 , A1 = ¬A2 C1 → R2 (C2 → R1) Inconsistency Action A1 (A2) Nullified
(1.2) COA - Infinite Loop A1 ⇒ T2 , A2 ⇒ T1 , C1 ⊥ C2 C1 → R2 (C2 → R1) Inconsistency Infinite Loop
(1.3) COA - Chained Execution A1 ⇒ T2 , C1 ⊥ C2 C1 → R2 Inconsistency Chained Execution

(2) Trigger-Cond. Overlapping Attack IV-C2 A1 ⇒ T2 , T1 ⊥ C2 T1 → R2 Inconsistency Chained Execution
(3) Condition Diverging Attack (CDA) IV-C3

(3.1) CDA - Disabled Parallel Execution T1 = T2 , C1 = C2 C1 → R2 Inconsistency Action A2 Suppressed
(3.2) CDA - Disabled Chained Execution A1 ⇒ T2 , C1 = C2 C1 → R2 Inconsistency Action A2 Suppressed

(4) Action Disordering Attack IV-C4 T1 <≈ T2 , C1 ∧ C2 , A2 ⊣ A1 T1 → R1 and/or A1 Disorder Actions Disordered
(5) Condition Disabling Attack IV-C5 T1 = T2 , A1 ⇏ C2 T2 → R2 Disorder Action A2 Suppressed
(6) Condition Enabling Attack IV-C6 T1 = T2 , A1 ⇒ C2 T2 → R2 Disorder Unexpected Action A2

(7) Action Delaying Attack (ADA) IV-C7
(7.1) ADA - Delayed Parallel Execution T1 = T2 , C1 ∧ C2 , A1 ⊎ A2 T2 → R2 or A2 Delay Action A2 lags behind A1

(7.2) ADA - Delayed Chained Execution A1 ⇒ T2 , C1 ∧ C2 , A1 ⊎ A2 T2 → R2 or A2 Delay Action A2 lags behind A1

1 Delaying a trigger T(·) or condition C(·) to a destined rule R(·) is achieved by delaying the event, checked by T(·) or C(·), to the platform where R(·) runs. For instance,
C1 → R2 denotes that an event (e.g., motion active) which makes the condition C1 (e.g., “if the motion is detected”) true should be delayed when it is transmitted to the
platform hosting the rule R2. Delaying an action A(·) is realized by delaying the command issued by A(·) when the command is sent to the destined device.

work become problematic. Below, we present three sub-types
of the attack and use concrete examples to demonstrate how
they lead to incorrect automation results.
Action Conflict. Through the condition overlapping attack, an
attacker can cause an action conflict. Consider Rules 15 and
16 (in Fig. 6) which protect user’s privacy and detect burglary
respectively, based on the user’s presence when motion is
detected in the bedroom. As shown in Fig. 8, if they are
installed on different platforms A and B, the attacker can delay
the user-away event from a presence sensor to platform A.
Thus, when triggered by the motion-active event, Rules 15 and
16 have different observations on the user’s presence: “user is
at home” and “user is away”, from the databases of platforms
A and B, respectively, and perform conflicting actions. Con-
sequently, Rule 15 turns off the camera, preventing Rule 16
from recording live videos.
Infinite Loop. Rules 13 and 14 are configured to control
lights in the living room, based on luminance and user motion.
According to the recent research [6], [5], [9], the two rules
have no interference, since their conditions, “if motion is
active” and “if motion is inactive”, are mutually exclusive.
Specifically, when Rule 13 turns on the lights and brightens
the room (which means the motion is active), Rule 14 is
activated but its condition is not satisfied; thus, Rules 13
and 14 cannot trigger each other according to existing work.
However, when the rules run on two different platforms, the
condition overlapping attack can delay the most recent motion-
active event sent to the platform hosting Rule 14. As a result,
when Rule 13 turns on the lights, Rule 14 will be triggered
to turn them off, which triggers Rule 13 once again; during
the period the motion-active event is delayed, an infinite loop
will make the lights continuously flash on and off.
Chained Execution. Chained execution of rules [5] (also
referred to as interaction chain [40], rule chains [44], or feature
chaining [45]) is a well-studied CRI pattern, which occurs
when the action of one rule activates the trigger of another
rule. Let’s consider Rule 9 in Figure 6, which turns on an

Internet-connected space heater (such as [46]) during cooking
time (12pm and 7pm). For energy-saving and safety reasons,
Rule 10 turns off the smart plug when appliances connected to
it increase power consumption over a threshold if nobody is in
the kitchen. Rule 9 uses a condition, “if motion is active”, to
avoid chaining with Rule 10, whose condition is “if motion is
inactive”. Without attacks, the coexistence of Rules 9 and 10
will not cause chained execution. However, if Rules 9 and 10
run on different platforms, A and B, respectively, the attacker
can delay a motion-active event being sent to platform B,
causing Rule 10’s condition to be kept true. This way, when
Rule 9 is activated at cooking time, an unexpected chained
execution of Rule 10 occurs to turn off the smart plug.

2) Trigger-Condition Overlapping Attack: Some automa-
tion rules avoid chained execution by making the trigger of
one rule and the condition of another mutually exclusive.
However, the exclusiveness is broken by delaying a trigger
event. Consider Rules 6 and 11 in Fig. 6. Rule 6 unlocks the
front door when the user arrives home (detected by a presence
sensor); Rule 11 automatically sounds an alarm and call the
police when it detects a possible break-in: the front door is
unlocked while the user is not present. Rules 6 and 11 play
their own roles and do not chain when they have consistent
observations on the presence sensor. Suppose Rules 6 and 11
run on two platforms, A and B, respectively. If a user-present
event sent to platform B is delayed by the attacker, Rule 11
uses outdated information (i.e., the user is not present) to
evaluate its condition when it is triggered by the door-unlocked
event (caused by Rule 6’s action). As a result, it causes a false
burglar alarm.

3) Condition Diverging Attack: In contrast to the condition
overlapping attack, which causes rules with exclusive condi-
tions to interact, the condition diverging attack prevents rules
with overlapping rules from interacting. Although chained
execution is recognized as a CRI pattern, it is sometimes an
important feature for grouping rules for specific goals if it is
utilized properly. For example, Rules 4 and 5 use this feature to

6290

(a) By delaying trigger event

(b) By delaying command

Fig. 9: Action disordering attack.

close the garage door and lock the doors in a row, which do not
cause any problem if they run on the same platform. However,
the condition diverging attack can disable the desired chained
execution. Suppose Rules 4 and 5 run on different platforms,
A and B, respectively. The attack can desynchronize the mode
on platforms A and B by delaying the “away” message sent
to B. Thus, when the user drives away, Rule 4 is executed to
close the garage door, while Rule 5’s condition is not satisfied,
failing to lock the front and hall doors.

4) Action Disordering Attack: This attack changes the
arrival order of commands issued by different rules. Consider
Rules 8 and 12 in Fig. 6: Normally, a user first enters her
home through the door and then her motion in the living
room is detected; as a result, Rule 8 is first triggered by
the door-open event to turn on smart plugs, and then Rule
12 is triggered, which turns on the humidifier and TV. This
order is presumably ensured by the order of physical activities.
However, if the command due to Rule 8 is delayed by attacks,
Rule 12 will fail to turn on the humidifier and TV.

More generally, an action disordering attack can be achieved
by delaying the trigger event, command, or both. Assume that
Rule i is supposed to take its action before Rule j (assume
neither rule involves the use of timers). As shown in Fig. 9(a),
when Rule i’s trigger event is delayed for a sufficient period,
Rule i is executed after Rule j. Fig. 9(b) shows another
attack strategy: an attacker can delay the command of Rule
i and make it arrive at the destined device later than the
command of Rule j, even though Rule i executes before Rule
j. Alternatively, the attacker can delay both the trigger event
and command of Rule i to increase the total delay.

5) Condition Disabling Attack: If a rule’s action changes a
device’s state to a value that dissatisfies the condition of an-
other rule, it is called Condition Block [9] CRI. Prior work [5]
empirically demonstrates that, if the two rules subscribe to the
same trigger event and run on the same platform, Condition
Block is unlikely to happen. However, as shown in Fig. 10,
when the two rules are on different platforms, a condition
disabling attack becomes possible, because the attacker can
delay the trigger event sent to the platform hosting Rule i, such
that Rule j changes the device state (green), which disables

Fig. 10: Condition disabling attack.

the condition of Rule i.
Let’s consider Rules 17 and 18. When a user enters the

bedroom, Rule 17 on platform A turns on the ceiling lamp;
if the room is too dark, Rule 18 turns on the floor lamp as
well. If Rule 18 is also installed on platform A, the two
rules ensure that when the user enters the bedroom, either
(1) only the ceiling lamp is turned on if initially there is at
least 20 lux luminance, or (2) both lamps are turned on if
luminance is below 20 lux. However, as platform A (such
as Amazon Alexa) does not support defining rule conditions,
Rule 18 is installed on another platform B. The automation
now becomes vulnerable to the condition disabling attack. An
attacker can delay the motion-active event to platform B. Thus,
when motion is detected, Rule 17 first turns on the ceiling
lamp, increasing the measurement of the luminance sensor to
a higher value, say 22 lux. The new luminance value will then
be sent to platform B. When the delay attack ends, Platform B
receives the motion-active event and Rule 18 is triggered. As
Rule 18 now observes the new illuminance value, the condition
disabling attack disables Rule 18 to take its action.

6) Condition Enabling Attack: This attack materializes an-
other CRI pattern Condition Bypass which happens when Rule
j’s action changes a device’s state to one that satisfies Rule i’s
condition. Similar to Condition Block, Condition Bypass can
hardly happen when Rules i and j run the same platform, but
becomes possible if they are on different platforms.

For example, Rules 1 and 3 in Fig. 6, which are used for
controlling the garage door. Suppose the home mode is “away”
when both rules are triggered by the hall door-closed event.
If they run on the same platform, it is impossible for Rule 1’s
action (set to “home” mode) to have any impact on Rule 3’s
condition, since Rules 1 and 3 are triggered simultaneously.
However, if Rules 1 and 3 run on different platforms A and
B, respectively, the condition-enabling attack can be launched
by selectively delaying the door-closed event to the platform
B. When Rule 3 receives the delayed door-closed event, the
mode has been set to “home” on platform B. As a result, Rule
3 will pass its condition checking and leave the garage door
open, which causes safety issues.

7) Action Delaying Attack: Some rules are configured to
run together for certain purposes, i.e., they are usually trig-
gered in parallel by the same event, or in a row through a
chained execution, and one rule’s action can safeguard another.
For instance, a user installs Rule 6 (see Fig. 6) to unlock the
garage door when he arrives home. However, he is concerned
that this rule is unsafe because the presence sensor (based on
the location of a smartphone or specialized device) usually has
a low precision, i.e., Rule 6 may unlock the door even when
the user just passes by or is approaching but still far away

7291

from his home, leaving a chance for burglary. To secure Rule
6, Rule 7 is installed to monitor the door with a surveillance
camera when the door is unlocked. Rules 6 and 7 run one after
another because the action of Rule 6 triggers Rule 7. However,
the action delaying attack can delay the action of turning on
the camera in Rule 7 for a sufficiently-long period, such that
Rule 7 fails to secure Rule 6. Similar to an action disordering
attack, an action delaying attack can be realized by delaying
the target rule’s trigger event, command, or both.

D. Factors Affecting Attack Successes

Rules are vulnerable to a certain type of attack if they
satisfy the corresponding Rule Pattern and Deployment Model
(see Table I). An attacker launches attacks by delaying the
events/commands as shown in What to Delay? (in Table I).

Given a pair of vulnerable rules and the applicable attack
type, whether an attack can succeed depends on two factors:
(1) allowed message delay length, and (2) user behaviors. A
larger delay gives a wider time window for delaying a trigger
event/a command that enables or disables a rule condition.
The allowed delay length, denoted as ∆Tallowed, depends on
the IoT device and platform (see the Delay Range testing in
Section V-B1).

User behaviors affect the order and time interval the vulner-
able rules are triggered. Consider the action disordering attack
on Rules 8 and 12 in Section IV-C4 as an example. Rules 8 and
12 are triggered by two user activities: opening the front door
and entering the living room, which generate door-open and
motion-active events, respectively. The interval between the
two activities is denoted as ∆Tinterval. If the user approaches
the motion sensor in the living room within ∆Tallowed after
she opens the front door (i.e., ∆Tallowed > ∆Tinterval; note
that we have ignored the difference between the transmission
time for sending the two trigger events, as it is usually
negligible when there are no attacks), Rule 12 will be triggered
earlier than Rule 8 (i.e., the execution order is reversed),
leading to a successful attack. Otherwise, the attack fails.

While user behaviors change time by time, there usually
exists a pattern and the pattern can be learned from his-
torical events and commands, which can be inferred using
side channel attacks [27], [30], [31] (see Section II-B). If
the attacker finds that the user never goes to the living
room within ∆Tallowed after she opens the front door (i.e.,
∆Tallowed < ∆Tinterval), he chooses not to perform an action
disordering attack on Rules 8 and 12 since it will never
succeed. If ∆Tinterval is smaller than ∆Tallowed with a high
probability, then the attack success rate is also high. Note that
failed DAI attack attempts remain stealthy since the delay does
not trigger alarms at any layers of the IoT protocol stack.

V. EVALUATION

In Section V-A, we describe the deployment details of two
real-world smart home testbeds used for evaluating DAI. In
Section V-B, we validate DAI attacks in the two testbeds. In
Section V-C, we evaluate the attack opportunities and success
rates of DAI attacks on a daily life basis.

A. Smart Home Testbeds and Attack Implementation

There are no public datasets of smart homes (including
devices, rule sets, and configuration). Thus, like previous work
on IoT security research [8], [26], [47], we set up smart home
testbeds, denoted as T1 and T2, which are in two real homes
to evaluate the DAI attacks. We received the IRB approval
(see Appendix D for details). There are two persons (a male
graduate student and a female graduate student in their 30s
and 29s, respectively) living in testbed T1, and one person in
T2 (a 27-year-old male graduate student). None of the testbed
members are the authors. The smart home layouts and the
IoT devices in each smart home are given in Fig. 11 and
Table II, respectively. In total, 36 automation rules are installed
on 4 automation platforms to interact with 55 IoT devices. The
automation rules, which are listed in Table III, are chosen from
the official app stores [48] or open-source datasets [49], and
the final configurations are based on the discussion between
the researchers and the residents living in the testbeds. Each
testbed has a WiFi router, providing a WiFi access point and
a few Ethernet ports for the deployed IoT devices.

A Raspberry Pi 4 Model B with a 2GB RAM and a
32GB MicroSD card is placed in each testbed to simulate
a device compromised by the attacker. It is worth noting
that if the attacker and the victim share a WiFi (e.g., at
a factory, company, hospital, or university), or the attacker
has stolen the WiFi password, the attacker can launch the
attacks directly from his device. Plus, an attacker who has
compromised the smart home router or has physical contact
with the cable can also launch attacks without relying on ARP
spoofing. Note ARP spoofing is decades-old mature attacks
for hijacking traffic. A famous tool, IoT Inspector [50], has
demonstrated that ARP spoofing can hijack a large amount
of IoT traffic without causing network instability. We use the
ARP spoofing-based technique to turn the Raspberry Pi into a
relay node that can examine and delay the traffic between IoT
devices/hubs and the WiFi router, or between IoT devices and
hubs. By configuring the firewall rules through iptables,
all traffic forwarded by the Raspberry Pi is under the control
of our attack script. The attack script uses the approach
in [29] to recognize events/commands from encrypted traffic.
The approach [29] constructs packet-level signatures of IoT
events and commands based on source & destination IPs and
payload lengths in an offline phase, and then detects events
and commands with the signatures in runtime with an accuracy
over 97%. The attack script utilizes a DFA matching approach
[26] to infer automation rules from the event and command
logs of a couple of days (one week in our experiment),
achieving an accuracy of 94%. DAI attacks are performed
based on the inferred home configuration.

B. Validation of Attacks

We present the methodology and results for validating the
DAI attacks in the two testbeds.

1) Methodology: To ease the validation, we ask the testbed
members to assist in triggering the automation rules by behav-
ing in controlled patterns. The given instructions incorporate

8292

TABLE II: IoT devices and their connections to platforms in T1 and T2. d-ID: device ID. Acronyms: SmartThings (ST), Philips Hue (PH).

Testbed T1 Testbed T2

d-ID Device Connection Path to Platform1 d-ID Device Connection Path to Platform
– SmartThings hub • ⇌ST cloud – SmartThings hub • ⇌ST cloud

– Apple HomePod2 • ⇌iCloud – Philips Hue bridge • ⇌PH cloud

– Aqara hub • ⇌Aqara Cloud; • ⇌HomePod – Apple HomePod • ⇌iCloud

– Philips Hue bridge • ⇌PH cloud; • ⇌HomePod – Alexa Echo Flex • ⇌Alexa Cloud

– Alexa Echo Dot • ⇌Alexa Cloud 1 ST presence sensor4 • ⇌ST hub⇌ST cloud

1 Aqara Mini switch • ⇌Aqara hub⇌HomePod 2 Kwikset door lock • ⇌ST hub⇌ST cloud⇌Alexa cloud

2 First Alert smoke sensor • ⇌ST hub⇌ST cloud; • ⇌ST hub⇌Homebridge⇌HomePod 3 Arlo Essential camera • ⇌Arlo cloud⇌ST cloud

3 4 SmartThings outlet • ⇌ST hub⇌ST cloud 4 PH motion sensor • ⇌ST hub⇌ST Cloud

5 6 Wemo smart plug • ⇌WM cloud⇌Alexa cloud;
• ⇌ST hub⇌ST cloud 5 - 7 PH motion sensor • ⇌ST hub⇌ST Cloud;

• ⇌ST hub⇌Homebridge⇌HomePod

7 - 9 PH motion sensor • ⇌ST hub⇌ST Cloud; • ⇌ST hub⇌Homebridge⇌HomePod 8 PH motion sensor • ⇌PH bridge⇌HomePod

10 11 ST multipurpose sensor • ⇌ST hub⇌ST cloud 9 - 11 Philips Hue bulb • ⇌PH bridge⇌ST hub⇌ST Cloud;
• ⇌PH bridge⇌PH cloud⇌Alexa Cloud

12 13 Kwikset door lock • ⇌ST hub⇌ST cloud 12 WeMo smart plug • ⇌HomePod

14 VOCOlinc humidifier • ⇌HomePod 13 - 15 WeMo smart plug • ⇌ST hub⇌ST cloud; • ⇌HomePod

15 - 19 Philips Hue bulb • ⇌PH bridge⇌HomePod;
• ⇌PH bridge⇌ST hub⇌ST cloud⇌Alexa cloud 15 WeMo smart plug • ⇌ST hub⇌ST cloud⇌Alexa cloud

20 Eve Energy triple outlet3 • ⇌HomePod 16 VOCOlinc humidifier • ⇌HomePod

21 Garadget door opener • ⇌Garadget cloud⇌ST cloud;
• ⇌Garadget cloud⇌ST cloud⇌ST hub⇌Homebridge⇌HomePod 17 WeMo smart plug • ⇌ST Hub⇌ST cloud

22 ST water sensor • ⇌ST hub⇌ST cloud 18 First Alert smoke sensor • ⇌ST hub⇌ST cloud;
• ⇌ST hub⇌Homebridge⇌HomePod

23 WeMo smart plug • ⇌HomePod 19 WeMo smart plug • ⇌HomePod

24 WeMo smart plug • ⇌ST hub⇌ST cloud 20 ST motion sensor • ⇌ST hub⇌ST cloud

25 PH motion sensor • ⇌PH bridge⇌HomePod 21 ST multipurpose sensor • ⇌ST hub⇌ST cloud

1 • denotes the device itself. For simplicity, router is omitted in the connection path. 2 HomePod is the hub of HomeKit. HomeKit automations run on HomePod, not
on iCloud. 3 Connected by a smart heater switch 3 , a non-smart microwave and a non-smart oven. 4 Carried with a person.

(a) T1 (b) T2

Fig. 11: The floor plans and device placement in the two testbeds,
T1 and T2. For brevity, personal devices (e.g., smartphones, tablets,
laptops) and IoT hubs are not marked in the floor plans.

certain daily activities such as leaving/entering home through
the garage door, entering a specific room, etc. In particular,
when triggering Rules 14, 15 in T1 and Rules 8, 9 in T2, which
are triggered by smoke or water leaks, we ask the testbed
members to physically trigger the smoke and water sensors
in a safe manner. Also, due to the physical restrictions on
installing the water valve and sprinkler in the testbeds, we
use these rules to control smart switches instead of the real
water valve and sprinkler. Although the victim rules are being
triggered by the testbed members, our attack script runs to
attack the victim rules by delaying the actual device events
(e.g., smoke) or commands (see Table IV). To obtain the
ground truth for validating if the attacks are successful, we
repeat the above process for two days. On the first day, we
set the delay period to 0 for all events and commands, i.e.,
no attacks are conducted. On the second day, we perform
DAI attacks by setting some specific time periods to delay
the target event or command of the victim rules. We collect
the event and command logs for analyzing automation results.
The automation result on the first day is used as the ground
truth for comparison. We compare the automation result of
each pair of victim rules on the second day (with attack) with
those from the first day (without attack). If the results are the

same, the rules are not attacked on the second day. Otherwise,
the rules may be attacked. To confirm, we manually check
whether the automation result on the second day is consistent
with the expected attack result; if so, the attack is validated.

Device Logs. Device logs are needed to evaluate the
correctness of automation. Among the nine platforms
deployed in the testbeds, three of them (i.e., SmartThings,
HomeKit, and Alexa) are used as non-endpoint platforms
which have access to a broader range of device types.
Alexa does not provide a convenient logging tool. Therefore,
we choose to use the built-in logging functions on the
SmartThings mobile app and on a third-party mobile app,
Home+ 4, that can access and export the HomeKit data.
Since the Alexa devices in the two testbeds can be accessed
by SmartThings and/or HomeKit, all device events in the
testbeds can be collected by at least one of the two methods.
Note that we do not collect logs of hub devices since they are
not used in automation rules. For the convenience of analysis,
we convert the raw event logs from the SmartThings and
Home+ 4 apps, denoted as EST , EHK , to a uniform format.
Each element (event) in the reformatted logs is a tuple:
⟨TestbedID, DeviceID, Attribute, Value, Timestamp⟩,
where the combination of TestbedID, DeviceID,
Attribute and Value uniquely identifies an event type.
For example, a motion active event sent by device 7 in
testbed T1 can be denoted as ⟨1, 7 ,motion, active⟩. An event
type may have multiple instances at different Timestamps.
The new event log is sorted by Timestamp. Note that
the timestamps of events are the time instances when the
platforms receive the events, which may have been delayed
by an attack. This is the reason why we use events on the
first day, in the absence of attacks, as ground truth. Based on
the event logs EST and EHK on both days, we can easily
track the execution of rules as in existing work [26], [51].

9293

TABLE III: Installed rules in all testbeds. RID: rule ID.

Testbed RID Rule Description and Device Binding Platform

T1

1 When 6pm, if motion 7 is active in living room, turn on the ceiling light 16 . HomeKit
2 When 6pm, if no motion 7 in living room, toggle ceiling light 16 every 15 minutes to simulate occupancy. Press an app button to stop. SmartThings
3 When the hall door 11 is closed, if the home is in away mode, close garage door 21 , turn on outlets 4 5 6 and set to home mode. SmartThings
4 When the hall door 11 is closed, if the home is in home mode, open the garage door 21 . HomeKit
5 When the button 1 is pressed, set to away mode. HomeKit
6 When the user (smartphone as presence sensor) leaves, if the home is in away mode, close the garage door 21 . HomeKit
7 When the garage door 21 is closed, if the home is in away mode, lock the front door 12 and hall door 13 . SmartThings
8 When kitchen time (12pm, 7pm), if motion 9 is active in the kitchen, turn on the heater switch 3 . SmartThings
9 When power 20 exceeds 2500W, if motion 7 - 9 is inactive in all rooms, turn off the outlet 20 . HomeKit

10 When the front door 10 is opened, if the home is in away mode, turn on outlets 4 5 6 and set to home mode. SmartThings
11 When motion 7 is detected in living room, turn on the humidifier 14 , ceiling lamp 16 and floor lamp 15 . HomeKit
12 When motion 8 is detected in bedroom, if luminance 25 is below 15 lux, turn on the ceiling lamp 17 and floor lamp 18 . HomeKit
13 When motion 8 is detected in bedroom, turn on the ceiling lamp 17 . Philips Hue
14 When smoke 2 is detected in kitchen, if the user (smartphone as presence sensor) is off, turn on the sprinkler 24 . SmartThings
15 When water leak 22 is detected in kitchen, if no smoke 2 is detected, close the water valve 23 . HomeKit
16 When the user (smartphone as presence sensor) leaves, turn off the humidifier 14 , lights 15 16 17 18 19 , and plugs 4 5 6 . HomeKit
17 When 11pm, turn off the humidifier 14 . HomeKit
18 Say “Alexa, good morning” to turn on light 17 . Alexa
19 Say “Alexa, good night” to turn off the lights 15 16 17 18 19 . Alexa

T2

1 When user 1 arrives, unlock the front door lock 2 . SmartThings
2 When the door lock 2 is unlocked, turn on the surveillance camera 3 ; when the lock 2 is locked, turn off the camera 3 . SmartThings
3 When luminance 5 exceeds 20 lux, if motion 8 is inactive, turn off the living room light 9 . HomeKit
4 When luminance 5 drops below 20 lux, if the user 1 is at home, turn on the living room light 9 . SmartThings
5 When front door 21 is opened, if motion 4 is active, turn on outlets 13 14 . SmartThings
6 When motion 7 is detected in study room, turn on the humidifier 16 . HomeKit
7 When user 1 leaves, close the water valve 17 and lock the door 2 . SmartThings
8 When smoke 18 is detected, open the water valve 17 . SmartThings
9 When smoke 18 is detected, open the sprinkler 19 . HomeKit

10 When 6pm, turn on the heater switch 12 . HomeKit
11 When temperature 6 exceeds 75◦F , if the user 1 is at home, open the window 15 . SmartThings
12 When motion 20 is detected in bathroom, turn on the bathroom light 10 . SmartThings
13 When no motion 20 is detected in bathroom, turn off the bathroom light 10 . SmartThings
14 When the user leaves (smartphone as presence sensor), turn off the humidifier 16 and outlets 12 13 14 . HomeKit
15 Say “Hey Siri, turn off the heater” to turn off the heater outlet 12 . HomeKit
16 Say “Hey Siri, turn off the humidifier” to turn off the humidifier 16 . HomeKit
17 Say “Alexa, good night” to turn off the lights 9 10 11 and close the window 15 . Alexa

TABLE IV: A summary of the details for attacking the victim rules in the testbeds, including delayed devices and events/commands, the
channels which are utilized to realize the delay, and the delay range that have been tested. COA: Condition Overlapping Attack.

Testbed Victim Rules1 Attack Type Event/Command to Delay?2 Which Channel to Delay? Delay Range (seconds)

T1

1 & 2 COA (Action Conflict) motion active event from 7 SmartThings hub → router 16-47
3 & 4 Condition Enabling Attack door closed event from SmartThings Homebridge → HomePod 10-Unbounded3

6 & 7 Condition Diverging Attack away mode event from HomeKit Homebridge → SmartThings hub 10
8 & 9 COA (Chained Execution) motion active event from 9 Homebridge → HomePod 10–Unbounded

10 & 11 Action Disordering Attack door open event from 10 SmartThings hub → router 16-47
12 & 13 Condition Disabling Attack motion active event from 8 Philips Hue bridge → HomePod 10–Unbounded
14 & 15 Trigger-Condition Overlapping Attack smoke event from 2 Homebridge → HomePod 10–Unbounded

T2

1 & 2 Action Delaying Attack turn on command to 3 router → Arlo camera 120-600
3 & 4 COA (Infinite Loop) motion active event from 8 Philips Hue bridge → HomePod 10–Unbounded
5 & 6 Action Disordering Attack door open event from 21 SmartThings hub → router 16-47
8 & 9 Action Delaying Attack switch on event from 17 SmartThings hub → router 16-47

1 See Table III for the rules referred by the given RIDs. 2 See Table II for the devices referred by the given device IDs. 3 The upper bound is non-deterministic because
it depends on the HomePod’s dynamic behavior in runtime.

Delay Range. Although larger event/command delays usually
create larger time windows for performing DAI attacks, the al-
lowable delay length (without causing timeouts) is determined
by the implementation of the IoT devices and/or platforms.
Delaying the communication for too long will usually trigger
timeout behaviors from either the device or platform side.
We obtain the allowable delay range of device events and
commands by reviewing the specification [52] and analyzing
the traffic patterns on the target channels shown in Table IV.
We find that the allowable delay range is typically deter-
mined by three factors: (1) the interval of periodical messages
between an IoT device/hub and a platform, e.g., keep-alive
requests (a.k.a., heartbeat) or platform-initiated requests; (2)
the maximum allowable delay of keep-alive reply; (3) the
maximum allowable delay of event/command reply.

The SmartThings hub sends a keep-alive request to the
SmartThings cloud if it has not sent any keep-alive request
or device events to the cloud (i.e., the session is idle) for
31 seconds. Then, it sets a timer for 16 seconds and waits
for the keep-alive reply. If the hub does not receive a keep-
alive reply when the timer fires, it will trigger a timeout and
disconnect the TCP connection with the cloud. On the other
hand, the cloud also listens to the session. If the session is
idle for 31 seconds, it will also set a 16-second timer. The
cloud disconnects the TCP connection with the hub if it does
not receive any message from the hub when the timer fires.
The actual maximum delay of an event in runtime is dynamic
because it also depends on the timing of the event, i.e., the
temporal distance between the event and the last message on
the session. An attacker needs to release the event (as well as

10294

other messages in the message queue) if he finds that the hub
or cloud is about to trigger a timeout. Therefore, the delay
range is predictable (between 16-47 seconds) but the attacker
needs to dynamically adjust the actual delay length to avoid
causing timeout behaviors which may trigger alarms. Philips
Hue bridge/Homebridge and HomePod (hosting HomeKit) do
not exchange periodic keep-alive messages. Homepod only
occasionally initiates a request to query the states of devices
that are connected to the bridge and allows for 10-second delay
for the reply. According to the HomeKit Accessory Protocol
(HAP [52], used by HomeKit), devices, after sending an event
message, do not get a reply from HomeKit (on HomePod).
Thus, we can delay the events from a Philips Hue bridge or
Homebridge until HomeKit requests the device’s state (which
requires a reply within 10 seconds). Thus, the delay range
has a lower bound of 10 seconds and an unbounded upper
bound since the HomeKit-initiated request is unpredictable.
According to our tests, events can be delayed by more than
10 minutes. In similar ways, we obtain the delay range for
other channels. The results are presented in the last column of
Table IV.

2) Verifying Results: All attacks listed in Table IV are
successfully verified, as shown in Table V. The automation
results also show that successful attacks lead to annoyance,
inconvenience, and even severe safety threats to the smart
home owners. Aside from the verification of the testbeds, we
also verify the attack results in a controlled environment, by
observing the physical states of devices instead of the IoT
events/commands. All the cases in Table IV are physically
verified, except for Rules 10 and 11 in testbed T1 and Rules
5 and 6 in testbed T2. During the attack, the humidifiers and
lights are offline and cannot receive the turn-on command from
Rule 11 in T1 (or Rule 6 in T2) because their outlets are still in
OFF status. When the outlets are turned on, the humidifiers and
lights will not receive another turn-on command. As a result,
Rule 11 in T1 (or Rule 6 in T2) fails to work. The humidifiers
were indeed not turned on. Interestingly, we observe that the
lights (bulbs) are forced to turn on when the connecting outlets
turn on. Thus, the attack does not disable the bulbs from being
turned on, but only delays them for several seconds.

C. Attack Opportunities

As discussed in Section IV, some of the DAI attacks are
opportunistic and can only be successful when a homeowner
behaves in certain manners. To evaluate the possibility of DAI
attacks on smart homes, we run the two testbeds on a natural
daily basis for one week, without providing any guidelines
or restrictions on the daily activities to the testbed members.
Infrequent automation rules, i.e., Rules 14 & 15 in T1 and
Rules 8 & 9 in T2, are excluded in this experiment since
they are hardly ever triggered (the triggers are either smoke
or water leaks). With the experiment, we aim to answer this
question: “What are the opportunities an attacker has to attack
the victim rules and what is the success rate of the attack, when
the testbed members behave in a natural way?”

1) Methodology: We run both testbeds for one week and
collect the device events, without performing any attacks.
The collected event logs are transformed to a uniform format
⟨TestbedID, DeviceID, Attribute, Value, Timestamp⟩
(same format as in Section V-B). By traversing the
event logs, we are able to track the executions of each
automation rule. We record each execution instance as a
tuple ⟨TestbedID,RuleID,Timestamp⟩. By doing this,
we obtain the collection of execution tuples of every rule.
Generally speaking, DAI attacks can only be performed
when victim rules are triggered by users. To find out attack
opportunities in the week, we perform a case-by-case analysis
on the combination of the event log and the execution tuples
of every pair of victim rules (listed in Table IV). Consider
the victim rules 6 and 7 in testbed T1. For each execution
tuple of Rule 6 in testbed T1 (i.e., ⟨1, 6, t1⟩), we examine if
there is an execution tuple of Rule 7 (i.e., ⟨1, 7, t2⟩), such that
0 ≤ t2 − t1 ≤ 2 (in seconds), and if there is a door-closed
event of the garage door 21 (i.e., ⟨1, 21 , door,closed, t3⟩)
in the event log, such that t1 ≤ t3 ≤ t2. If true, it means
that Rule 6 closed the garage door, which in turn triggered
the execution of Rule 7, which is an interaction that can be
attacked by the DAI attacks; we mark the executions of both
rules as an attack opportunity.

As discussed in Section IV, to successfully launch an attack,
the attacker need to delay specific events by a sufficient period.
For Rules 6 and 7, we trace back the event logs to find the most
recent away mode event (denoted as ⟨1,N/A,mode, away, t4⟩).
If the time difference between t2 and t4 is smaller than a
threshold ∆T ′ (i.e., the maximum allowable delay of the away
mode event), i.e., t2− t4 < ∆T ′, Rules 6 & 7 can be attacked
successfully; otherwise, the attack fails. In this way, we obtain
the number of attack opportunities and successful attacks for
every victim rule pair.

Note that, in order to evaluate attack opportunities (i.e.,
number of successful attacks), we choose not to perform real
attacks on the testbeds, for two major reasons. First, real
attacks can cause severe safety issues to the testbed members.
Second, the attacks against different victim rule pairs may have
conflicts in delaying a specific channel.

2) Results: In Table VI, we present the number of attack
opportunities and successful attacks over a week. The victim
rule pairs are triggered between 3 to 12 times, creating suffi-
cient opportunities for the attacks. The numbers of successful
attacks that took place each day are also presented.

The average success rate of all attacks is 0.864. Most attacks
have a success rate of 1.00, i.e., they can successfully cause
CRI on the victim rules. The attacks on Rules 6 & 7, 8 & 9 in
testbed T1 and Rules 5 & 6 in T2 fail several times due to the
restriction of the allowed delay ∆Tallowed (see Section IV-D
about factors affecting attack successes). For example, an
attack attempts to change the execution order of Rules 5 & 6
in T2 by delaying the door-open event. Assuming the interval
between the time she opens the door and that she enters
the study room is ∆Tinterval, if ∆Tinterval > ∆Tallowed,
the attack fails, because it cannot delay the door-open event

11295

TABLE V: Results of attack validation. See Table II for the definition of device IDs.

Testbed Victim
Rules

Automation Result on Day 1
(without attack)

Automation Result on Day 2
(with attack)

Attack
Validated?

T1

1 & 2 Light 16 turns on once. Light 16 turns and off alternately about every 15 minutes. ✓

3 & 4 Garage door 16 is closed. Garage door 16 is closed and then opened. ✓

6 & 7 Locks 12 and 13 are locked. Locks 12 and 13 are NOT locked. ✓

8 & 9 Outlet 20 remains on when heater 3 turns on. Outlet 20 turns off 2 seconds after heater 3 turns on. ✓

10 & 11 Outlets 4 5 6 and then (humidifier 14 , lights 15 16) turn on. Only outlets 4 5 6 turn on. ✓

12 & 13 Both lights 17 18 turn on. Only 17 turns on. ✓

14 & 15 Sprinkler 24 turns on and water valve 23 remains opened. Water valve 23 is closed after Sprinkler 24 turns on. ✓

T2

1 & 2 Camera 3 turns on immediately after lock 2 is unlocked. Camera 3 turns on 538 seconds after lock 2 is unlocked. ✓

3 & 4 Light 9 turns on. Light 9 turns on and off alternately for 141 seconds. ✓

5 & 6 Outlets 13 14 turn on and then humidifier 16 turns on. Only outlets 13 14 turn on. ✓

8 & 9 Water valve 17 and Sprinkler 19 are turned on within 1 second. Water valve 17 turns on 58 seconds after sprinkler 19 turns on. ✓

TABLE VI: Results of attack opportunities and success rates during a week. No: the total number of attack opportunities over the week.
Ns: the total number of successful attacks over the week. COA: Condition Overlapping Attack.

Testbed Victim Rules Attack Type No Ns
Number of Successful Attacks on Each Day Success RateMon. Tue. Wed. Thu. Fri. Sat. Sun.

T1

1 & 2 COA (Action Conflict) 3 3 0 1 0 0 0 1 1 1.00
3 & 4 Condition Enabling Attack 6 6 1 1 1 1 1 0 1 1.00
6 & 7 Condition Diverging Attack 6 3 0 1 1 0 0 0 1 0.50
8 & 9 COA (Chained Execution) 7 4 0 1 1 0 0 2 0 0.57

10 & 11 Action Disordering Attack 2 2 0 0 0 0 1 0 1 1.00
12 & 13 Condition Disabling Attack 11 11 1 1 2 1 1 3 2 1.00

T2

1 & 2 Action Delaying Attack 9 9 1 1 1 2 1 1 2 1.00
3 & 4 COA (Infinite Loop) 12 12 2 2 1 1 1 2 3 1.00
5 & 6 Action Disordering Attack 7 5 0 1 0 1 1 1 1 0.71

TABLE VII: Results of applying jamming techniques to replicate
the attacks in Table IV.

Testbed Victim Rules Replicable? Victim Rules Replicable?

T1

1 & 2 ✓ 3 & 4 ✗

6 & 7 ✓ 8 & 9 ✓

10 & 11 ✗ 12 & 13 ✓

14 & 15 ✓

T2
1 & 2 ✗ 3 & 4 ✓

5 & 6 ✗ 8 & 9 ✗

(which triggers Rule 5) as much as until the user enters the
study room (which triggers Rule 6). Note that DAI attacks are
independent in general, unless two concurrent attacks require
different delays on the same event(s) or command(s). When an
attack fails, no TCP session is disconnected and the attacker
can make attempts to perform other attacks seamlessly.

In short, the results in Table VI show that the attacker has
sufficient opportunities to launch attacks, raising severe safety
and security concerns.

D. Comparison with Jamming Attacks

Jamming does not require the victim home’s WiFi password.
We thus evaluate whether jamming can be used to construct
DAI attacks. Two jamming techniques are investigated. The
first one is WiFi micro-jamming [53], which can slightly
delay the wireless communications by switching on and off
transmitting disruptive signals in high frequency. The test
result shows that the introduced delay (10 millisecond or so)
is too short to conduct effective attacks. Another technique
[54] jams wireless communication by cramming the wireless
medium with random frames. Following this technique, we use
an Alfa AWUS036NHA wireless adapter that is powered by the
open-source code [55] to jam WiFi frames. For each attack

listed in Table IV, we use jamming to discard (i.e., infinitely
delay) the events/commands listed in the Event/Command to
Delay? column and observe the consequences.

The results in Table VII show that jamming replicates some
of the attacks on the victim rule pairs (6 out of 11). This
indicates jamming, as a low-level attack method alternative
to TCP hijacking and ARP spoofing, can be used to attain
the same effect of some DAI attacks, which is alarming. The
differences of the two attack methods are as follows. First, the
TCP-hijacking based method only delays events/commands
but does not discard them, while jamming that discards
messages can only construct some of the attack types. For
example, if a trigger event is discarded (rather than delayed),
the subscribing rule will not be triggered. Second, general
jamming frequently causes TCP timeout and disconnection
alerts. We discuss reactive jamming that does not discard
messages or cause disconnection in Section VI-B.

VI. DISCUSSION

A. Countermeasures Against DAI Attacks

First, the smart home end users can raise the bar for
attackers to intrude into the IoT network by using strong WiFi
passwords and setting up an isolated sub-network for IoT if
they share a WiFi network with other people. Also, vendors of
IoT devices/hubs and WiFi routers should enhance the security
of their products. For example, we find that many IoT devices
and home routers are not resistant to ARP spoofing (also
verified in the IoT Inspector project [50]), although effective
defenses against ARP spoofing exist. One possible reason that
explains the wide feasibility of ARP spoofing is that TLS gives
the illusion of “sufficient” protection under traffic hijacking

12296

attacks, while our work illustrates the contrary. We estimate
there is a long way to go to eliminate ARP spoofing attacks.

Second, device vendors and platform providers can reduce
the intervals of TLS-protected heartbeat (a.k.a., keep-alive)
messages and enforce two-way liveness checking of event
and command messages, which can significantly reduce the
allowed delays. However, this requires IoT vendors to modify
their protocols and device firmware. Plus, more frequent
heartbeat messages lead to a higher overhead, which should
be considered carefully in the IoT design.

Third, there are known synchronization and recovery tech-
niques for handling inconsistency and disorder issues in dis-
tributed systems [56], [57], [58]. A challenge to deploy such
techniques in IoT is the lack of a central entity that has a global
view and control on heterogeneous IoT devices and multiple
proprietary IoT platforms, or a mechanism for distributed
platforms to collaboratively synchronize correct observations
on devices in the fragmented IoT ecosystem.

Fourth, researchers can design approaches to detecting
potential DAI attacks. Various techniques in the state-of-
the-art works [6], [47], [26], [5] can be utilized to extract
deployment information (such as devices, rules, and platforms)
from a given smart home system. After incorporating the
extracted information into our formal model, the observation
equivalence based technique (described in Section IV-A and
Appendix C) can be used to detect potential DAI attacks
by verifying whether any pair of rules are not CRI-resistant
in the presence of delay attacks. The detection result can
be presented to the user, who can then re-configure the
rules. An alternative mitigation strategy is to enforce security
properties/goals, which prevent devices from transitioning into
unsafe states [8].

B. Other Approaches to Introduce Delay

TCP hijacking and ARP spoofing are not the only way
to introduce delays. A more sophisticated jamming, reactive
jamming, is another promising approach. A reactive jammer
can recognize events or commands from encrypted IEEE
802.11 traffic [29] and jam selective events/commands in a
smart manner, although it requires specific hardware; that is,
by exploiting the retransmission mechanism of TCP protocol,
the jammer could block the first N − 1 retransmissions of a
target event/command and let the N -th retransmission pass,
such that TCP timeout is not triggered due to the failed
first N − 1 retransmissions but will be triggered if the N -
th retransmission also fails. Thus, a delay equal to the elapsed
time from the first to the N -th retransmission is injected to the
transmission process. Different from ARP spoofing, which can
be launched from an ordinary WiFi device, reactive jamming
needs dedicated hardware with high sensitivity and computa-
tion capability to recognize and jam the target event/command
before it is delivered to the receiver. We leave the reactive-
jamming based implementation as the future work.

VII. RELATED WORK

A. Synchronization in IoT

Synchronization is critical in smart home IoT systems since
IoT devices, platforms and mobile apps interact closely with
each other in smart homes. Zhou et al. [59] identify that the
working state transitions of devices, mobile apps, and clouds
are not properly safeguarded. By triggering and exploiting the
out-of-synchronization bugs, attackers can remotely harm the
system, including taking over devices and replacing them with
fake ones. This paper studies a different topic: delaying the
transmission of IoT events/commands and the exploitation.
OConnor et al. [60] utilize the design flaws in the telemetry of
IoT devices to block the delivery of sensor measurements to
IoT servers or commands to actuators, causing synchronization
problems between devices and clouds. In contrast to the
jamming or discarding-message based attacks [60], our work
exploits delays, and does not raise alarms at any layers of the
IoT protocol stack or rely on implementation bugs.

B. IoT Security and Privacy

IoT Security and privacy have been studied in various
aspects, such as platforms, apps, devices, and data. Fernandes
et al. [61] and Mi et al. [62] unveil the vulnerabilities on
prominent IoT platforms, SmartThings and IFTTT, respec-
tively. The IoT app-level security is intensively studied by
recent work [63], [38], [39], [64], [65]. Regarding IoT devices,
solutions are proposed to enhance the authentication [66], [67],
access control [68], [69], etc. Researchers also employ data-
driven techniques to detect device anomalies [70], [71], [72].
Fu et al. [72] design HAWatcher, which utilizes rich semantic
information to mine correlations in smart environments, and
achieves highly-accurate and explainable anomaly detection.
A number of approaches [73], [51], [74], [75] are designed
to protect privacy-sensitive IoT data. Chi et al. [51] propose
PFirewall, which enforces data-minimization policies to sig-
nificantly reduce the disclosure of IoT data and protect users’
privacy from IoT platforms, without changing IoT devices or
platforms. Despite the vast amount of work, little research
has been done to uncover the unique threats in multi-platform
systems. Yuan et al. [76] reported the flaws in IoT device
access delegation across multiple IoT clouds. We are the
first to study unique delay-derived security threats in multi-
platform systems.

C. Cross-Rule Interference Problems

Cross-Rule Interference (CRI) problems have attracted
much attention of IoT security researchers. A lot of works
are engaged to categorize [5], [9], understand [40] and de-
tect [5], [6], [7], [9], [77], [8], [10] the CRI problems. Our
prior work [4], [5] is the earliest one that comprehensively
categorizes and formally describes CRI threats. In these works,
CRI problems are caused by users who misconfigure the
automation rules for their own smart homes. However, all these
works only consider CRI in single-platform systems, implicitly
assuming consistent and order-preserving observations on the
device states. Although IoTGuard [8] and IoTIE [11] configure

13297

rules on two platforms, SmartThings and IFTTT, for evalua-
tion, they do not take multi-platform or its unique features into
consideration, while analyzing the CRI problems. Moreover,
both works convert IFTTT rules into equivalent SmartThings
apps, and use SmartThings to run all the rules; essentially, they
still make the same assumptions. Our work is the first that
studies CRI problems in more complex but realistic system
models, where multiple event/command transmission paths
and/or multiple platforms coexist. Our work is also the first
that introduces the delay factor into the investigation of the
CRI problem, and it reveals and demonstrates a family of new
attacks that are ignored by existing CRI detection solutions.

VIII. RESPONSIBLE DISCLOSURE

We have reported the event/command delay attacks and
possible exploits to IoT vendors: Google, SimpliSafe, Ap-
ple (HomeKit), Ring and SmartThings. Google, SimpliSafe
and Ring acknowledged the problem. Google and SimpliSafe
expressed they would conduct a bug/vulnerability fixing pro-
cedure with the product team. Ring said they had planned a
mitigation that make side channel attacks more difficult. Apple
regards the reported attacks as “expected behavior and working
as designed”, although Apple’s HomeKit allows the longest
delay window (tens of minutes or even longer).

IX. CONCLUSION

We studied unique cross-rule interference (CRI) problem
due to the inconsistency and disorder issues in single-platform
multi-path and multi-platform smart home systems. We un-
covered that selective messages delay attacks have detrimental
impacts on smart home automation, causing various CRI prob-
lems that cannot be detected by existing detectors. We revealed
seven categories of such attacks, referred to as Delay-based
Automation Interference (DAI) attacks, which were analyzed
and demonstrated using two smart homes. The evaluation
results show that DAI attacks of all the seven categories can
be launched, and an attacker can conduct DAI attacks with
a high success rate, without raising alerts in any layer of the
current IoT protocol stack.

ACKNOWLEDGEMENT

This work was supported in part by the US National
Science Foundation (NSF) under grants CNS-1828363, CNS-
2204785, CNS-2205868, CNS-1856380, CNS-2016415, and
CNS-2107093.

REFERENCES

[1] “Apple HomeKit,” https://www.apple.com/ios/home/, 2020.
[2] “SmartThings,” https://www.smartthings.com/, 2020.
[3] “Amazon Alexa,” https://developer.amazon.com/en-US/alexa/devices/

smart-home-devices, 2020.
[4] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference threats in

smart homes: Categorization, detection and handling,” arXiv preprint
arXiv:1808.02125, 2018.

[5] ——, “Cross-app interference threats in smart homes: Categorization,
detection and handling,” in 50th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), 2020.

[6] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in Usenix Security Symposium, 2018.

[7] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. Colbert,
and P. McDaniel, “Iotsan: fortifying the safety of iot systems,” in ACM
CoNEXT, 2018.

[8] Z. B. Celik, G. Tan, and P. McDaniel, “IoTGuard: Dynamic enforcement
of security and safety policy in commodity iot,” in NDSS, 2019.

[9] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in ACM
CCS, 2019.

[10] K.-H. Hsu, Y.-H. Chiang, and H.-C. Hsiao, “Safechain: Securing trigger-
action programming from attack chains,” IEEE Transactions on Infor-
mation Forensics and Security, 2019.

[11] Z. Chen, F. Zeng, T. Lu, and W. Shu, “Multi-platform application
interaction extraction for iot devices,” in IEEE International Conference
on Parallel and Distributed Systems (ICPADS), 2019.

[12] M. Balliu, M. Merro, and M. Pasqua, “Securing cross-app interactions
in iot platforms,” in IEEE CSF, 2019.

[13] M. Alhanahnah, C. Stevens, and H. Bagheri, “Scalable analysis of
interaction threats in iot systems,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020.

[14] “A comprehensive guide to smart home device compatibility,” https:
//www.adt.com/resources/smart-home-device-compatibility, 2021.

[15] “Fragmentation in IoT – one roadblock in IoT deployment,” https://www.
cleantech.com/fragmentation-in-iot-one-roadblock-in-iot-deployment/,
2017.

[16] C. Fu, Q. Zeng, H. Chi, X. Du, and S. L. Valluru, “Iot phantom-delay
attacks: Demystifying and exploiting iot timeout behaviors,” in Technical
Report, 2021.

[17] “AWS IoT,” https://docs.aws.amazon.com/iot/latest/developerguide/
what-is-aws-iot.html, 2021.

[18] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, “You are what you broadcast:
Identification of mobile and iot devices from (public) wifi,” in USENIX
Security Symposium, 2020.

[19] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for
security enforcement in iot,” in IEEE ICDCS, 2017.

[20] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray,
“Iotsense: Behavioral fingerprinting of iot devices,” arXiv preprint
arXiv:1804.03852, 2018.

[21] A. K. Dalai and S. K. Jena, “Wdtf: A technique for wireless device type
fingerprinting,” Wireless Personal Communications, vol. 97, no. 2, pp.
1911–1928, 2017.

[22] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer,
J. D. Guarnizo, and Y. Elovici, “Detection of unauthorized iot devices
using machine learning techniques,” arXiv preprint arXiv:1709.04647,
2017.

[23] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, “Iot devices recogni-
tion through network traffic analysis,” in IEEE International Conference
on Big Data (Big Data), 2018.

[24] K. Yang, Q. Li, and L. Sun, “Towards automatic fingerprinting of iot
devices in the cyberspace,” Computer Networks, vol. 148, pp. 318–327,
2019.

[25] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster, “Spying on the smart home: Privacy attacks and defenses on
encrypted iot traffic,” arXiv preprint arXiv:1708.05044, 2017.

[26] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “Homonit:
Monitoring smart home apps from encrypted traffic,” in ACM CCS, 2018.

[27] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your smart
home activities, even encrypted!” in ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 2020.

[28] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra,
“Iotgaze: Iot security enforcement via wireless context analysis,” in
IEEE INFOCOM, 2020.

[29] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-level signatures for smart home devices,” NDSS, 2020.

[30] T. Gu, Z. Fang, A. Abhishek, and P. Mohapatra, “Iotspy: Uncovering
human privacy leakage in iot networks via mining wireless context,” in
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 2020.

[31] A. Subahi and G. Theodorakopoulos, “Detecting iot user behavior and
sensitive information in encrypted iot-app traffic,” Sensors, vol. 19,
no. 21, p. 4777, 2019.

14298

[32] Y. Luo, L. Cheng, H. Hu, G. Peng, and D. Yao, “Context-rich privacy
leakage analysis through inferring apps in smart home iot,” IEEE
Internet of Things Journal, 2020.

[33] “ARP spoofing,” https://www.veracode.com/security/arp-spoofing, 2021.
[34] S. Whalen, “An introduction to arp spoofing,” Node99 [Online Docu-

ment], April, 2001.
[35] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in USENIX Security Symposium,
2017.

[36] “The Mirai IoT botnet holds strong in 2020,” https://searchsecurity.
techtarget.com/feature/The-Mirai-IoT-botnet-holds-strong-in-2020,
2020.

[37] “The Transport Layer Security (TLS) Protocol Version 1.3,” https://tools.
ietf.org/html/rfc8446, 2018.

[38] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “Contexiot: Towards providing contextual integrity to
appified iot platforms,” in NDSS, 2017.

[39] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the internet of things,” in Proceedings of The Network and Distributed
System Security Symposium, 2018.

[40] W. Ding and H. Hu, “On the safety of iot device physical interaction
control,” in ACM CCS, 2018.

[41] R. Lanotte and M. Merro, “A calculus of cyber-physical systems,” in
Springer International Conference on Language and Automata Theory
and Applications, 2017.

[42] M. Hennessy and T. Regan, “A process algebra for timed systems,”
Information and computation, vol. 117, no. 2, pp. 221–239, 1995.

[43] “ADT security systems,” https://www.adt.com/, 2021.
[44] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some

recipes can do more than spoil your appetite: Analyzing the security
and privacy risks of ifttt recipes,” in International Conference on World
Wide Web, 2017.

[45] M. Palekar, E. Fernandes, and F. Roesner, “Analysis of the susceptibility
of smart home programming interfaces to end user error,” in IEEE
Security and Privacy Workshops, 2019.

[46] “Atomi smart tower heater,” https://atomismart.com/product/
smart-black-tower-heater/, 2021.

[47] W. Ding, H. Hu, and L. Cheng, “IoTSafe: Enforcing safety and security
policy with real iot physical interaction discovery,” in NDSS, 2021.

[48] “Smartthings public github repository,” https://github.com/
SmartThingsCommunity/SmartThingsPublic, 2020.

[49] “IoTBench test suite,” https://github.com/IoTBench/IoTBench-test-suite,
2019.

[50] “IoT Inspector,” https://iotinspector.org/, 2021.
[51] H. Chi, Q. Zeng, X. Du, and L. Luo, “PFirewall: Semantics-aware

customizable data flow control for smart home privacy protection,” in
NDSS, 2021.

[52] “Homekit accessory protocol,” https://developer.apple.com/support/
homekit-accessory-protocol/, 2020.

[53] R. Ogen, K. Zvi, O. Shwartz, and Y. Oren, “Sensorless, permissionless
information exfiltration with wi-fi micro-jamming,” in 12th USENIX
Workshop on Offensive Technologies (WOOT), 2018.

[54] M. Vanhoef and F. Piessens, “Advanced wi-fi attacks using commodity
hardware,” in ACSAC, 2014.

[55] “Advanced wi-fi attacks using commodity hardware,” https://github.com/
vanhoefm/modwifi, 2020.

[56] D. P. Reed and R. K. Kanodia, “Synchronization with eventcounts and
sequencers,” Communications of the ACM, vol. 22, no. 2, pp. 115–123,
1979.

[57] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,”
ACM Transactions on Computer Systems (TOCS), vol. 3, no. 3, pp. 204–
226, 1985.

[58] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed
synchronization in wireless networks,” IEEE Signal Processing Maga-
zine, vol. 25, no. 5, pp. 81–97, 2008.

[59] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang,
“Discovering and understanding the security hazards in the interactions
between iot devices, mobile apps, and clouds on smart home platforms,”
in USENIX Security Symposium, 2019.

[60] T. OConnor, W. Enck, and B. Reaves, “Blinded and confused: uncov-
ering systemic flaws in device telemetry for smart-home internet of
things,” in ACM WiSec, 2019.

[61] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in IEEE Symposium on Security and Privacy
(SP), 2016.

[62] X. Mi, F. Qian, Y. Zhang, and X. Wang, “An empirical characterization
of ifttt: ecosystem, usage, and performance,” in Internet Measurement
Conference, 2017.

[63] L. Luo, Q. Zeng, B. Yang, F. Zuo, and J. Wang, “Westworld: Fuzzing-
assisted remote dynamic symbolic execution of smart apps on iot
cloud platforms,” in Annual Computer Security Applications Conference
(ACSAC), 2021.

[64] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?: Controlling
flows in iot apps,” in ACM CCS, 2018.

[65] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel,
and A. S. Uluagac, “Sensitive information tracking in commodity iot,”
in USENIX Security Symposium, 2018.

[66] X. Li, F. Yan, F. Zuo, Q. Zeng, and L. Luo, “Touch well before use:
Intuitive and secure authentication for iot devices,” in ACM MobiCom,
2019.

[67] X. Li, Q. Zeng, L. Luo, and T. Luo, “T2pair: Secure and usable pairing
for heterogeneous iot devices,” in ACM CCS, 2020.

[68] S. Lee, J. Choi, J. Kim, B. Cho, S. Lee, H. Kim, and J. Kim,
“Fact: Functionality-centric access control system for iot programming
frameworks,” in Proceedings of the 22nd ACM on Symposium on Access
Control Models and Technologies. ACM, 2017, pp. 43–54.

[69] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou,
and M. Grace, “Hanguard: Sdn-driven protection of smart home wifi
devices from malicious mobile apps,” in ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2017.

[70] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim,
“Detecting and identifying faulty iot devices in smart home with context
extraction,” in IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2018.

[71] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical event
verification in smart homes,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019.

[72] C. Fu, Q. Zeng, and X. Du, “HAWatcher: Semantics-aware anomaly
detection for appified smart homes,” in USENIX Security Symposium,
2021.

[73] R. Xu, Q. Zeng, L. Zhu, H. Chi, X. Du, and M. Guizani, “Privacy
leakage in smart homes and its mitigation: Ifttt as a case study,” IEEE
Access, vol. 7, pp. 63 457–63 471, 2019.

[74] X. Liu, Q. Zeng, X. Du, S. L. Valluru, C. Fu, X. Fu, and B. Luo,
“Sniffmislead: Non-intrusive privacy protection against wireless packet
sniffers in smart homes,” in 24th International Symposium on Research
in Attacks, Intrusions and Defenses, 2021, pp. 33–47.

[75] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “Flowfence: Practical data protection for emerging iot
application frameworks.” in USENIX Security Symposium, 2016, pp.
531–548.

[76] B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang, D. Zou, H. Jin, and
Y. Zhang, “Shattered chain of trust: Understanding security risks in
cross-cloud iot access delegation,” in USENIX Security Symposium,
2020.

[77] J. L. Newcomb, S. Chandra, J.-B. Jeannin, C. Schlesinger, and M. Srid-
haran, “IoTA: a calculus for internet of things automation,” in ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, 2017.

[78] R. Focardi and F. Martinelli, “A uniform approach for the definition
of security properties,” in Springer International Symposium on Formal
Methods, 1999.

[79] R. Milner, Communicating and mobile systems: the pi calculus. Cam-
bridge university press, 1999.

APPENDIX

A. Online Study on Statistics of Smart Home Deployments

We conduct an online user study on Amazon Mechanical
Turk to investigate the pervasiveness of different smart home
deployment categories in the wild, including single-platform
single-path (SPSP), single-platform multi-path (SPMP) and
multi-platform (MP) ones. In this study, we follow the ac-
ceptable use policy of Amazon Mechanical Turk.

15299

Methodology. We design a survey asking people who have
experience with IoT devices and automation to provide infor-
mation of their own deployments. Specifically, we ask them
to answer simple questions such as the number of devices
and mobile/web companion apps in their home, and more
complex questions by writing down the list of their devices,
companion apps, and automation rules. The survey questions
and responses are made publicly available at
https://github.com/HaotianChi/SH-survey.git

Results. We receive 85 responses from the survey participants.
Through a qualitative analysis on the collected information
of devices, companion apps and automation rules, we rebuild
the deployment of each participant’s home. The result shows
that the number of SPSP, SPMP and MP deployments are
15 (17.6%), 17 (20.0%) and 53 (62.4%), respectively. Among
the 53 MP deployments, 36 use two platforms, 11 use three,
5 use four and 1 uses five. A total of 82.4% deployments in
the survey are SPMP or MP deployments. The results show
that the testbed setup in Section V is realistic.

B. Formal Modeling of Smart Home Systems

We use the process calculus [41] to formally model multi-
path multi-platform smart home systems and delay-based at-
tacks. The process calculus extends the timed process calculus
[42] with two action prefixes: reading sensor values and
writing values to actuators.
Physical Environment. Let F̂ ⊂ F be a set of physical
features (e.g., temperature), Ŝ ⊂ S a set of sensors, Â ⊂ A
a set of actuators. Note that in this paper, each actuatable
device (e.g., a lock) is conceptually split into an actuator that
executes commands and a sensor that measures the device
state. For a set of names N , we define RN as the set
of functions that assign a real value (broadly, integers and
Booleans are replaceable with reals) to each name in N . A
physical environment E is a 5-tuple ⟨ξf , ξa, evol, ξs,meas⟩:
− ξf ∈ RF̂∪Â is the state (i.e., physical features or actuator

values) function that returns the value of the state;
− ξa ∈ RÂ is the actuator function that returns the current

value of an actuator;
− evol : RF̂∪Â × RÂ → RF̂∪Â is the evolution function,

which returns the next state function upon changes of
actuators;

− meas : RF̂∪Â → RŜ is the measurement function that
returns the reading of a sensor.

In addition to physical features, we include actuators in the
state function to model the dependence between actuators. For
example, a smart microwave, even turned on, cannot function
if its power cable is connected to a smart plug that is OFF. It
is not the focus of this paper to precisely model the physical
evolution laws. For the simplicity of analysis, we assume
that the evolution function evol only takes as input the state
function ξf and actuator function ξa to determine a new state
function.4 Also, we assume the sensors S measures physical

4In reality, a physical feature (i.e., temperature) may be influenced by other
factors (e.g., outdoor temperature, humidity) and has uncertainty.

features (i.e., the meas function) without errors. Local hub
devices are omitted since they only forward messages.

IoT Processes. Processes are defined in the following syntax:

P,Q ::= nil | idle.P | π.P | P\c | P ∥ Q |
π1.P + π2.Q | if (b) {P} else {Q} | H⟨w̃⟩

π, π1, π2 ::= snd c̄⟨v⟩ | rcv c(x) | read s(x) |
read a(x) | wrt ā(v) | τ

Terminated process is written as nil. The process idle.P
continues as P after sleeping for one time unit. Action prefixes
(ranged over π, π1, and π2) contain six actions: sending
values to channels (snd c̄⟨v⟩), receiving values from channels
(rcv c(x)), reading new sensor measurements (read s(x)),
reading new actuator states (read a(x)), and writing values
on actuators (wrt ā(v)) and unobservable action (τ). P\c
behaves as P but the channel name c is restricted to P and can
only be used for communications between components within
P . We use P{v/x} to denote the substitution of the variable
x with the value v in P . The process π1.P + π2.Q is called
summations (or sums) and can enact either π1.P or π2.Q. The
process P ∥Q denotes the parallel composition of concurrent
processes P and Q. The process if (b) {P} else {Q}
is a standard conditional statement. H⟨w1, · · · , wk⟩ denotes
a recursive process and can be considered as an invocation,
with actual parameters w1, · · · , wk, of the process definition
H(x1, · · · , xk) = P .

Each platform L has access to a subset of all sensors S̃ ⊂ Ŝ
and actuators Ã ⊂ Â. The database on the platform maintains
a function ξ′s ∈ RS̃ that returns the current state of each sensor.
For convenience, we define two database primitives: a function
value in db that returns the values of specified devices x̃ and
a meta-process update db that updates the value of a sensor:
− value in db(x̃) = {ξ′s(xi) : xi ∈ x̃};
− update db(x, v) → ξ′s(x) = v.

Example. We use an automation rule (when the homeowner
arrives, unlock the door) on platform A and another one (when
the user says “I am home”, if the door is unlocked, lock it)
on platform B as a running example to concretize a system.
A presence sensor PS and a smart lock LK connect with a
platform A that runs R1, and a smart speaker SP and the smart
lock LK connect with platform B running R2. For the sake
of brevity, we omit all components (e.g., IoT hubs, routers,
endpoint clouds) that only forward messages. Thus, the smart
home is Sys = E 1P where the physical environment E =
⟨ξf , ξa, evol, ξs,meas⟩ is defined as
− ξf ∈ R{presence,voice,LK}, ξ0f (presence) = FALSE, ξ0f (voice) =

EMPTY, ξ0f (LK) = LOCKED

− ξa ∈ R{LK}, ξ0a(LK) = LOCKED

− evol(ξif , ξ
i
a) = {ξ : ξ(LK) = ξia(LK)}

− meas(ξif) = {ξ : ξ(LK) = ξif (LK), ξ(PS) = (if ξif (presence) =

TRUE DETECTED else CLEAR), ξ(SP) = (if ξif (voice) =

“I am home” DETECTED else CLEAR)}. The timestamp i =
0 · · ·n denotes the discrete time clock

and the process P is the parallel composition of the following
sub-processes;

16300

− SenPS = readPS(val).snd eventA(PS, val).idle.SenPS
− SenSP = readSP(val).snd eventB(SP, val).idle.SenSP
− SenLK = readLK(val).snd eventA(LK, val).snd eventB(LK, val)

.idle.SenLK
− ActLK = rcv cmdA(LK, val).wrtLK(val).idle.ActLK

+ rcv cmdB(LK, val).wrtLK(val).idle.ActLK
− SrvPltA = rcv eventA(id, val).sndupdateA(id, val)

.snd triggerR1(id, val).idle.SrvPltA
+ rcv actionR1(id, val).snd cmdA(id, val).idle.SrvPltA

− SrvPltB = rcv eventB(id, val).sndupdateB(id, val)
.snd triggerR2(id, val).idle.SrvPltB
+ rcv actionR2(id, val).snd cmdB(id, val).idle.SrvPltB

− RuleR1 = rcv triggerR1(id, val).if (id, val = PS,DETECTED){
snd actionR1(LK,UNLOCKED).idle.RuleR1

}
else{

idle.RuleR1
}

− RuleR2 = rcv triggerR2(id, val).if (id, val = SP,DETECTED)
{

snd conditionR2(LK).τ.rcv resR2(value in db(LK)).
if (value in db(LK) = UNLOCKED) {snd actionR2(LK,LOCKED)
} else {idle.RuleR2}

}
else

{
idle.RuleR2

}
− DBA = rcvupdateA(id, val).update db(id, val).idle.DBA
− DBB = rcvupdateB(id, val).update db(id, val).idle.DBB

+ rcv conditionR2(id).τ.snd resR2(value in db(id)).idle.DB

Selective Event/Command Delaying Attack. As dis-
cussed in Section II-D, the attacker can hijack and se-
lectively delay specific events or commands on a chan-
nel. To model the attack, we write Delay (c, c′, id, val, t) =

rcv c(x, y).idlet.snd c̄′⟨x, y⟩.idle.Delay to denote a delay at-
tack process that delays the value-passing on channel c by t ∈
N time units. idlet.P is a shorthand for idle. · · · .idle.P
where idle appears t consecutive times. t is a positive integer
if the received data (x, y) from c is an event (command) which
is produced by (destined to) a device with identifier id and has
a value equal to val; otherwise, t is equal to 0. Thus, a smart
home system Sys = E 1P being attacked becomes Sys(t̃) =
E 1P (t̃), where P (t̃) = P (c̃ → c̃′) ∥Delay (c̃, c̃′, ĩd, ˜val, t̃).
Specifically, P (c̃ → c̃′) substitutes new channels c̃′ for ones
c̃ that are used by the rcv actions in P. The sub-processes
that read from the attacked channels c̃ are converted to ones
that read from the corresponding channels c̃′ maintained by
the delay attack processes.
Labelled Transition Semantics. A smart home system is
modelled as a labelled transition system (LTS) in the structural
operational semantics (SOS) style. The transitions are of kind
P

α−→ Q for actions (a.k.a., labels) ranged over by α in the set
{idle, τ, snd c⟨v⟩, rcv c(x), read s(x), read a(x), wrt ā⟨v⟩}.
The transition rules are shown in Table VIII. Most of them
are the same as the standard ones [41], [42], except that
we distinguish the transition rules for parallel compositions
under delay-absent and delay-present situations where
(NoDelayCom) and (DelayCom) are used, respectively. For
brevity, we sometimes use the original notations Sys = E 1P
to denote a system under delay attacks, without rewriting the
attacked channels.

C. Formal Verification and Categorization of DAI Attacks

We use a shorthand Sys = E◦ R̃[D̃ ▷ L̃] to denote a system
where each rule Rj ∈ R̃ run on a platform Lj ∈ L̃ and
reads/writes a set of devices Dj ∈ D̃. To make a practical
sense, we only consider well-formed systems where every

platform has access to all devices used by the rules running
on it, i.e., Dj ⊂ (S̃ ∪ Ã). E denotes the physical environment.
Consider an attack-present system Sys = E ◦ (R1[(D1 ▷
L1] ∥R2[(D2 ▷ L2]) where two automation rules R1 and R2
are installed on two platforms L1 and L2, respectively. L1

and L2 can be the same or different platforms. We define
a specification system which runs R1 and R2 on an oracle
platform L which accesses devices without any delays, i.e.,
Sys∗ = E ◦ (R1[(D1 ▷ L∗] ∥R2[(D2 ▷ L∗]). Sys and Sys∗

describe the real system and the mentally expected system by
users, respectively.

Verification in SPSP Systems. A recent work [12] adopts
Generalized Non Deducibility on Composition (GNDC) [78]
to define a CRI-free system: a rule R1 does not interfere with
another rule R2 if the compositional runtime behavior of R1
and R2 does not differ from the behavior of R2 when running
along. Formally, R1 does not interfere with R2 under a hiding
weak bisimulation notion:

E ◦ (R1[(D1 ▷ L] ∥R2[(D2 ▷ L]) ≈HR1 E ◦ R2[(D2 ⊢ L)] (1)

for HR1
def
= obserable(R1) denoting a set of hidden actions of

R1 that yield to observable results. Two rules R1 and R2 are
CRI-free when R1 and R2 do not interfere with each other.

However, this only considers an SPSP scenario where all
automation rules run on a platform equivalent to an oracle
platform L∗ and can only detect CRI rooted from mis-
programming or mis-configuration, subject to the same lim-
itations of other existing work [5], [6], [7], [9].

Verification in SPMP and MP Systems. In this paper, we
aim to model the uncovered CRI scenarios in a situation where
two rules automation rules R1 and R2 may run on different
platforms and the communication channels suffer from delays.
In this sense, R1 and R2 are CRI-free if in addition to the
hiding weak bisimulation, a standard weak bisimulation holds:

E ◦ (R1[D1 ▷ L1] ∥ R2[D2 ▷ L2]) ≈ E ◦ (R1[D1 ▷ L
∗
] ∥ R2[D2 ▷ L

∗
]) (2)

Formula 2 ensures that the interactions between R1 and
R2 in the real system and specification system are equivalent
at every time unit. However, it is a sufficient but not nec-
essary condition. It is too strict to say that the real system
has a significant CRI problem if it only deviates from the
specification system at a specific time unit. For example, if
the attacker delays all communications evenly by one time
unit, the real system will lag behind the specification system
but may still produce the correct automation result. Thus,
verifying CRI with Formula 2 usually causes false alarms.
To address this problem, we define an idle-insensitive weak

bisimulation ≈idle. Let ⇒idle
def
=

{τ,idle}−−−−−−→
∗

denote a sequence
of zero or more transitions each of which could be a τ or
idle transition. We replace the notion of an experiment e

=⇒
in the definition of standard weak bisimulation [41], [79] with
e
=⇒

idle

def
=⇒idle

α1−→⇒idle · · · ⇒idle
α1==⇒⇒idle. Thus, the

interaction between R1 and R2 are said to be CRI-resistant,
if it holds that

17301

TABLE VIII: LTS for processes. ⇒def
=→∗ denotes a sequence of zero or more τ transitions τ−→.

α1···αn
=====⇒def

=⇒ α1−−→⇒ · · · ⇒ α1==⇒⇒ denotes
interleaving a sequence of α transitions with any number of τ transitions.

(Out) –

snd c⟨v⟩.P
snd c⟨v⟩−−−−−→ P

(TimeNil) –

nil
idle−−−→ nil

(TimePar) P
idle−−−→ P ′ Q

idle−−−→ Q′ P ∥ Q
τ
−⧸−→

P ∥ Q
idle−−−→ P ′ ∥ Q′

(In) –

rcv c(x).P
rcv c(v)−−−−−→ P{v/x}

(WriteAct) –

wrt a⟨v⟩.P
wrt a⟨v⟩−−−−−−→ P

(ReadAct) –

read a(x).P
read a(v)−−−−−−→ P{v/x}

(Par) P
α−→ P ′ α ̸= idle

P ∥ Q
α−→ P ′ ∥ Q

(Sum) π1.P
α−→ P

π1.P + π2.Q
α−→ P

(ReadSen) –

read s(x).P
read s(v)−−−−−−→ P{v/x}

(Rec) P{w̃/x̃}
α−→ Q H(x̃) =P

H⟨w̃⟩
α−→ Q

(IfTrue) JbK = true P
α−→ P ′

if (b) {P} else {Q}
α−→ P ′

(NoDelayCom) P
snd c⟨v⟩−−−−−→ P ′ Q

rcv c(x)−−−−−→ Q′

P ∥ Q
τ−→ P ′ ∥ Q′{v/x}

(Elapse) –

idle.P
idle−−−→ P

(Else) JbK = false Q
α−→ Q′

if (b) {P} else {Q}
α−→ Q′

(DelayCom) P
snd c⟨v⟩−−−−−→ P ′ Q

rcv c(x)−−−−−→ Q′ Delay(c,c′,id,val,t)

P ∥ Q
idlet
====⇒ P ′ ∥ Q′{v/x}

E◦(R1[D1▷L1] ∥R2[D2▷L2]) ≈idle E◦(R1[D1▷L
∗] ∥R2[D2▷L

∗]) (3)

Provided a specific home deployment and attack strategy
(the target event/command), we can use Formula 3 to verify if
the system yields different automation results from a specifi-
cation system, or say if the real system has unique CRI issues
under the attack. We can easily prove that the two rules in the
running example always generate the correct result in SPSP
system even under delay attacks. However, when the two rules
run on different platforms, delaying the UNLOCKED value on
channel eventB results in a violation of Formula 3. Due to the
space limit, proofs are omitted.
Methodology for Systematic Categorization. To systemati-
cally and comprehensively discover possible DAI attacks that
cause CRI problems, we generalize a smart home deployment
and represent it as the smart home calculus parametric on
some enumerable factors (sensor measurements, automation
rules, attack strategies). We then enumerate these factors to
find violation scenarios of the CRI-free condition (Formula 3).
State explosion challenges exist since smart home deployments
are highly diverse and it is infeasible to enumerate all deploy-
ments and states. To address this challenge, we make several
assumptions or abstractions to reduce the complexity of smart
home deployments and the enumeration space.

First, we assume that the natural communication delays are
negligible compared to the injected delays by the attacker. We
omit the sub-processes that only forward messages, such as
hubs, endpoint clouds, routers, and add up the communication
delays on these channels (if any) to the end-to-end delay
between a device and a platform.

Second, we simplify the models of IoT devices and rules.
Note that automation rules follow a trigger-condition-action
paradigm. A rule’s trigger is actually a boolean expression
that checks a device value (e.g., when temperature exceeds
75◦F) and its condition is a set of such boolean expressions.
A rule action is not always binary (e.g., dim the light to 75%).
However, the interaction relation between a rule’s action and
another rule’s trigger, condition, or action is binary. For exam-
ple, one may ask if a rule R1’s action can control an actuator
(e.g., turn on lights) to a value that makes another rule R2’s
trigger (e.g., when the brightness is high) or condition (e.g., if
the lights are on) satisfied, or if the action is contradictory to

another rule R2’s action (i.e., turn off lights). Therefore, we
binarize the automation rules and device values. We consider
that each device has two values (0 and 1) and each rule deals
with binary values of devices. Without loss of generality, we
assume each rule condition only checks one device.

Third, we simplify the rule-device bindings. Without a
specific home deployment, one cannot know what devices
are bound to each rule. In our simplification, three devices
are granted to each rule for its trigger, condition and action,
respectively. Thus, two rules R1 and R2 choose from a set
of six devices D = {d1, d2, · · · , d6}. In practice, a rule’s
trigger and condition always check different devices. We
pick D1 = {d1, d2, dk|k ∈ {1, 2, 3}} for R1 and D2 =
{di, dj , dk|di, dj , dk ∈ D; i ̸= j;x < y if x > 3, y >
3, x ∈ {i, j}, y ∈ {j, k}} for R2. We only consider the
interactions between two automation rules R1 and R2 since
most, if not all, interactions among more than two rules contain
sub-interactions between two rules.

With the above abstractions, we enumerate the rules, rule-
device bindings, initial device states and the attacker’s target
events/commands and verify CRI in each configuration. In this
process, we observe that the attacks against some different
configurations essentially belong to the same category. There-
fore, we perform a manual qualitative analysis to combine the
similar attack scenarios and classify DAI attacks into seven
categories (see Section IV-B). Note that the above abstractions
are only for easing the exploration of possible attacks. Pro-
vided a specific deployment, our theoretic technique (calculus)
can verify CRI without the abstractions.

D. IRB Approval

We have received the approval from the Institutional Review
Boards (IRB) in the institution where all experiments are con-
ducted and all apartment residents (undergraduate and graduate
students) are affiliated with. The participants were recruited
following the IRB protocol and 500 USD was paid to the each
testbed. Devices and rules were furnished by the researchers.
Participants were informed of the possible outcomes caused
by the attacks and the experiments were monitored by the
researchers to avoid any hazards. The data collected from both
testbeds do not contain personally identifiable information and
are stored in a secure way. Only the researchers identified on
the IRB protocol have access to the data.

18302

