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Abstract—We present ShorTor, a protocol for reducing latency
on the Tor network. ShorTor uses multi-hop overlay routing, a
technique typically employed by content delivery networks, to
influence the route Tor traffic takes across the internet. In this
way, ShorTor avoids slow paths and improves the experience
for end users by reducing the latency of their connections while
imposing minimal bandwidth overhead.

ShorTor functions as an overlay on top of onion routing—Tor’s
existing routing protocol—and is run by Tor relays, making it
independent of the path selection performed by Tor clients. As
such, ShorTor reduces latency while preserving Tor’s existing
security properties. Specifically, the routes taken in ShorTor are
in no way correlated to either the Tor user or their destination,
including the geographic location of either party. We analyze
the security of ShorTor using the AnoA framework, showing
that ShorTor maintains all of Tor’s anonymity guarantees. We
augment our theoretical claims with an empirical analysis.

To evaluate ShorTor’s performance, we collect a real-world
dataset of over 400,000 latency measurements between the 1,000
most popular Tor relays, which collectively see the vast majority
of Tor traffic. With this data, we identify pairs of relays that could
benefit from ShorTor: that is, two relays where introducing an
additional intermediate network hop results in lower latency than
the direct route between them. We use our measurement dataset
to simulate the impact on end users by applying ShorTor to two
million Tor circuits chosen according to Tor’s specification.

ShorTor reduces the latency for the 99th percentile of relay
pairs in Tor by 148 ms. Similarly, ShorTor reduces the latency of
Tor circuits by 122 ms at the 99th percentile. In practice, this
translates to ShorTor truncating tail latencies for Tor which
has a direct impact on page load times and, consequently, user
experience on the Tor browser.

I. INTRODUCTION

Tor is the foremost deployed system for anonymous commu-

nication. Millions of people around the world use Tor every day

to escape censorship and avoid surveillance of their browsing

habits [27,58]. This broad user base is a critical component

of Tor’s privacy guarantees. Tor users are anonymous only

amongst each other—not within the general internet population.

That is, an internet censor may be able to know that some Tor

user visited a blocked site, but not which Tor user. Because of

this, the degree of anonymity Tor provides in practice grows

with the total number of concurrent users on the network [25].

This relationship between the privacy of individual users and

the overall popularity of Tor makes user experience a major

concern for Tor. A poor experience relative to non-private

browsing results in lower adoption of Tor and, ultimately, limits

the degree of anonymity Tor is capable of providing. A major

factor contributing to positive user experience is latency. Inter-

net users are very sensitive to latency, and increased page load

times discourage user interaction [10,11,24]. Unfortunately,

anonymous communication incurs higher latency than typical

internet connections [8,31,53,54,56,65,83,84].

In Tor, much of this overhead is due to the underlying

structure of its connections [26,27]. Tor is a network composed

of ∼7,000 volunteer-run servers, or relays, used to route client

traffic. Rather than connecting directly to their destination, Tor

clients tunnel their traffic through a series of Tor relays in a

process known as onion routing. This drastically increases the

path length for Tor traffic, and, in turn, latency.

A substantial body of prior work aims to reduce latency

in Tor by changing the relay selection process [5,7,9,16,42,

74,79,87,90]. By default, Tor clients select relays for their

circuit at random, weighted by relay bandwidth, and do not

consider path length or circuit latency in the process. In contrast,

proposals that aim to reduce latency often prioritize selecting

circuits that have low latency between relays [5,9,16,42,74,79].

Unfortunately, preferentially choosing circuits in this way also
selects relays that are correlated with the identity of the user

or their destination [12,14,60]. Many attacks show how this

can be exploited to deanonymize Tor users, allowing a passive

observer to identify information about user locations [12,14,

36,60,61,74,85,86].

In this paper, we propose ShorTor, an entirely different

approach to reducing the latency of Tor traffic. Rather than

alter the circuit selection process, ShorTor exploits a technique

used by content delivery networks (CDNs) known as multi-hop
overlay routing [22,81]. Multi-hop overlay routing, like Tor,

functions by introducing intermediate hops into its connections,

but does so for the explicit purpose of reducing latency. In

the wild, CDNs use multi-hop overlay routing to influence the

path internet traffic takes. They do this by inserting their own

servers as intermediate points in client connections, avoiding

slow default routes by forcing traffic to travel through their

server, rather than directly to its destination. The success of

this technique is due to the existence of sub-optimal default

routes across the internet [28] and the distributed nature of

CDN-controlled nodes. The broad presence of CDN controlled
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servers gives them many possible routes to choose from, and

consequently, increases their odds of finding a faster route to

send traffic through. In practice, this allows CDNs to avoid

outages, congestion, or other delays along the default path.

With ShorTor, we ask:

Can multi-hop overlay routing reduce latency in Tor
without compromising anonymity?

While multi-hop overlay routing is widely successful for

CDNs (which share some similarities to the Tor network),

Tor is much smaller with ∼7,000 nodes [67] compared to the

∼300,000 operated by a CDN [3]. In addition to the difference

in scale, Tor relays are volunteer run and their placement is

not optimized for fast routing. ShorTor is the first proposal to

apply and analyze the impact of multi-hop overlay routing on

the Tor network, and is likely of independent interest to other

distributed communication systems.

A. ShorTor

To reduce the latency experienced by end users of Tor,

ShorTor uses multi-hop routing as an additional overlay layer

on top of Tor’s onion routing protocol. Crucially, ShorTor is

independent of Tor’s circuit selection algorithm and the client,

operating only between relays. ShorTor introduces additional

hops, which we call via relays, that tunnel traffic between

relays on a Tor circuit. Acting as a via is simply a role that

a normal Tor relay may take in addition to its usual function

on circuits. Via relays, unlike circuit relays, can be introduced

after circuit establishment in response to changing network

conditions without client involvement or any modification to

the circuit itself. While the basic idea of ShorTor is simple in

retrospect, multi-hop overlay routing has security implications

for anonymous communication that are not present in CDNs.

Security: We demonstrate that ShorTor can find faster

paths across Tor without the loss in anonymity experienced by

other approaches. ShorTor selects via relays based solely on

the adjacent circuit relays. This process ensures that malicious

vias cannot lie about their performance to artificially increase

their selection probability. Specifically, ShorTor operates as an

overlay routing layer, requiring no modification to Tor’s onion

routing or encryption, preserving Tor’s security guarantees. We

provide a formal security analysis of the impact ShorTor has

on Tor’s anonymity using the AnoA framework, which was

introduced by Backes et al. [12] to analyze the anonymity

guarantees of Tor [13,14]. Using AnoA, we show that ShorTor

has minimal impact on security when compared to baseline

Tor. However, we find that when used in conjunction with

alternative,1 location-aware path selection algorithms such as

LASTor [5], ShorTor can exacerbate the existing leakage. We

validate these claims through an empirical analysis on data

collected from the Tor network.

Latency Measurements: To quantify the benefits of

ShorTor, we conduct latency measurements between approxi-

mately 400,000 pairs of the 1,000 most popular Tor relays. We

1Tor’s only deployed path selection algorithm is independent of user location.

collect measurements ourselves, rather than use a general-

purpose source for internet measurements such as RIPE

Atlas [2], for two main reasons. (1) internet routing operates

at a scale and complexity that cannot easily be simulated [75]

and (2) ISPs often treat Tor packets differently from other

internet traffic [23]. Using our own pairwise latency dataset

we determine that, despite being much smaller than a typical

CDN, Tor can still benefit from multi-hop overlay routing.
Ethics: Our measurements were conducted on the live Tor

network, but did not involve any observations on Tor users or

their traffic. We underwent Tor’s security review process and

followed best practices to limit our impact on the Tor network.

Details can be found in Section IV-A5.
Practicality: While ShorTor does require modifications to

Tor relays, it does not rely on participation of all, or even

a majority of, relays and makes no assumptions about or

modifications to client behavior. Tor circuits can benefit from

multi-hop overlay routing as long as any two adjacent relays on

the path both support it. The majority of our evaluation assumes

that only the 1,000 most popular Tor relays participate, but we

find ShorTor is beneficial with even fewer relays participating.

ShorTor achieves a latency reduction of 178 ms at the 99.9th

percentile with only the 500 most popular relays supporting

the protocol. As such, ShorTor can be deployed incrementally

and still provide meaningful reductions of tail latency on Tor.
Limitations: Our dataset of pairwise latencies was col-

lected from the 1,000 most popular Tor relays. While these

relays do see the majority of traffic on Tor [39], they are not

representative of the full network. The less popular relays,

while not as likely to be included in circuits, may benefit

similarly from ShorTor, and could broaden the pool of available

via relays. A deployed version of ShorTor, however, would

naturally include all available relays regardless of popularity.

As such, the scale of our dataset is strictly a limitation of our

evaluation, not of ShorTor’s effectiveness in practice.

Using this data, we find that ShorTor primarily impacts tail
latencies on the Tor network. On average, ShorTor reduced the

RTT between a pair of relays from 42.6 ms to 23.5 ms, while at

the 99.9th percentile the RTT dropped much more substantially

from 487 ms to 125 ms. As a result, the speedups ShorTor

offers disproportionally benefit a relatively small fraction of

Tor users—approximately 20,000 out of two million daily users

select circuits that ShorTor can speed up by 120 ms or more.
Contributions: We propose ShorTor, the first protocol to

apply multi-hop overlay routing to an anonymous communica-

tion network. ShorTor is designed to improve performance

while preserving the security guarantees of baseline Tor,

preventing adversarial relays from gaining an advantage by

participating in ShorTor. We evaluate ShorTor using measured

latencies from the live Tor network and show that ShorTor can

significantly improve tail latencies on the Tor network with

minimal bandwidth overhead.

In summary, this paper contributes:

1) ShorTor: a protocol for multi-hop overlay routing on Tor

which reduces the latency experienced by Tor circuit traffic

by 122 ms in the 99th percentile.
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Fig. 1: A Tor circuit between a client and server: Tor relays are
represented by onions. The circuit is a series of connections between
three relays carrying onion-encrypted Tor cells.

2) An evaluation of ShorTor’s performance at various levels

of deployment based on measured latency between the

thousand most popular Tor relays.

3) A security analysis of ShorTor in the AnoA framework,

demonstrating minimal impact to user anonymity.

II. BACKGROUND

Here, we provide background on Tor and multi-hop overlay

routing, which we combine in Section III to design ShorTor.

A. Tor

The Onion Router (Tor) is a network for anonymous commu-

nication comprising approximately 7,000 [67] volunteer-run

relays that carry user traffic. We provide a brief overview of

Tor’s architecture and security guarantees. For more details on

Tor, see the Tor specification [26] or paper [27].

1) Onion Routing: Tor users send their traffic through the

Tor network using onion routing. Rather than communicating

directly with their destination, clients send their traffic through

“layers:” encrypted connections to three (or more) Tor relays

in sequence. These relays form a circuit and have fixed roles:

Guard relays connect directly to the client and serve as an

entry point into the Tor network,

Exit relays connect directly to the server and proxy communi-

cation on behalf of the client, and

Middle relays pass traffic between the Guard and Exit.

Figure 1 shows a single Tor circuit between a client and server

including the connections and layers of encryption involved in

Tor’s onion routing protocol. The traffic flowing over a circuit

is carried in fixed-size packets called cells which are onion

encrypted. That is, cells have a layer of encryption for each
relay on the circuit. Tor relays remove their layer of encryption

when forwarding cells in the client-to-server direction and add

their layer when returning the responses. This ensures that only

the Exit can remove the innermost onion layer, protecting the

client’s privacy without requiring destination servers to handle

onion encrypted data.

2) Path/Circuit Selection: Path—or circuit—selection is the

process by which Tor clients select the set of relays that will

form their circuit. This is a randomized process to ensure that

the selection of relays is neither predictable nor correlated with

Fig. 2: Multi-hop overlay routing as in a CDN: the client avoids a
slow BGP route to the blue server by addressing data to the red CDN
server, which then forwards the traffic.

the identities of either the client or server. It is, however, not

uniformly random as relays have highly variable capacities and

not every relay can support the same volume of traffic. As

such, path selection is weighted based on a relay’s available

bandwidth, along with security considerations.

3) Tor’s Adversarial Model: Tor is intended to provide

anonymity to its users. Specifically, no adversary should be

able to link the source and destination of any traffic stream

across Tor. Tor’s threat model considers adversaries in the

form of malicious relays as well as external observers such as

users’ internet service providers. Anonymity in Tor is provided

among all concurrent Tor users. While onion routing prevents

any individual relay or localized network observer from directly

linking a client to their destination, it does not hide the fact

that a client is connected to the Tor network in the first place.

Similarly, onion routing alone does not hide which servers are

the destination of Tor connections. As such, both the volume
and diversity of Tor users influence the degree of anonymity Tor

is able to provide. In a well-known example of this principle,

the sender of a 2013 Harvard bomb threat was identified despite

their use of Tor because they were the only client connecting

to Tor from Harvard’s campus at the time [21].

4) Traffic Analysis: Traffic analysis attacks are a type

of anonymity-compromising attack against Tor that identify

features of encrypted traffic stream, such as packet interarrival

times [57], to either: 1) recognize a previously observed

stream [38,47,50,62], linking it across Tor or, 2) observe a

pattern corresponding to a website fingerprint and infer the

destination of traffic [20,45,72,80,88]. Both styles give the

adversary an advantage in linking a client to their destination,

compromising Tor’s anonymity by making clients, servers, or

client-server pairs more identifiable. We give additional details

on the capabilities of such adversaries and their impact on Tor

in Section V.

B. Multi-hop Overlay Routing

Multi-hop overlay routing is a technique that introduces

intermediate waypoints into the connection between a client

and server for the purpose of altering the route their traffic

takes across the internet. There are many motivations for this

technique—Tor’s onion routing is itself an example of multi-
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hop overlay routing that provides anonymity by masking the

direct relationship between client and destination server. More

commonly, CDNs route their traffic over a multi-hop overlay in

order to reduce the latency of their connections as illustrated in

Figure 2 [22,81]. Two such examples are Cloudflare’s Argo [55]

and Akamai’s SureRoute [4]. Rather than relying solely on

the Border Gateway Protocol (BGP) to decide routes for their

traffic, both Argo and SureRoute instead establish intermediate

connections via their own servers. By routing their traffic via

these intermediate waypoints they are able to identify and use a

route which may be faster than the route selected by BGP. This

is possible because BGP is subject to routing policies based

on business relationships, not solely on shortest paths [77].

Importantly, this technique is an overlay—it runs on top

of standard BGP without modifying any of the underlying

protocols. This is achieved by establishing pairwise TCP

connections between each of the intermediate points on the

multi-hop overlay route rather than a single direct connection

between the client and server. As such, standard BGP handles

the route used between hops while the overlay protocol adjusts

the ultimate path between client and server via the placement
of its waypoints.

III. SHORTOR

We propose ShorTor, a protocol for reducing the latency

of connections over Tor. Like other such proposals, ShorTor

preferentially selects faster routes across the Tor network

for client circuits. In prior work, fast routes across Tor are

equivalent to fast Tor circuits—Tor clients simply optimize for

latency when selecting relays for their circuits.

Instead, ShorTor creates a multi-hop overlay on top of the

Tor protocol to improve latency as shown in Figure 3. Rather

than altering the circuit selection process to favor faster paths,

ShorTor changes the routing between relays on existing circuits.

It does this by offering circuit relays the option to route their

traffic through an additional Tor relay rather than directly to the

next hop. These intermediate hops, called via relays, are chosen

on-demand by the relays themselves instead of in advance by

clients. Via relays are not part of client circuits and do not

participate in onion routing or encryption.

By routing as an overlay rather than altering circuit composi-

tion, ShorTor avoids security pitfalls of prior works while still

providing a substantial reduction in latency on the Tor network.

Directly optimizing for faster circuits, as in past proposals, has

the unfortunate side effect of creating a correlation between

the relays a client chooses and the client’s location. Via relays

in ShorTor are chosen only based on the circuit relays and

inherit their relationship to the client—if circuits are chosen

independently, as in the default Tor circuit selection, then via

relay choices leak no information about the client. We discuss

the implications of running ShorTor with alternative circuit

selection techniques in Section V and Section VII.

ShorTor’s design gives it several advantages over proposals

that modify circuit selection:

1) Security: Routes in ShorTor are independent of the client

and destination.

Fig. 3: A Tor circuit routing using a via relay between the guard and
middle. A via relay will be used when the latency over the via (a+b
ms) is less than that of the direct connection (c ms). The via does
not participate in onion routing. For clarity, and because Shortor only
operates between Tor relays, the client and server are not shown.

2) Agility: ShorTor can modify its routes as needed, not just

during circuit construction.

3) Compatibility: ShorTor operates with any circuit selec-

tion algorithm, making it modular and compatible with

future changes to the Tor protocol.

While we describe ShorTor in Tor-specific terms, we note that

it applies to other distributed communication systems as well.

A. Security Model

ShorTor inherits Tor’s adversarial model, as described in

Section II-A3. It is designed to preserve the same anonymity

guarantees against an adversary identifying the sender or

recipient of a traffic stream which we define more formally

in Section V. In particular, ShorTor requires no modification

to Tor’s baseline circuit selection or encryption and preserves

independence between circuit choice and the identities of the

client and server. However, ShorTor does necessarily change the

number and distribution of relays that may see a given traffic

stream, which could potentially be exploited by an adversarial

Tor relay to deanonymize a larger share of Tor traffic. We

formally consider the anonymity impact of ShorTor in our

security analysis (Section V).

B. ShorTor Protocol

ShorTor introduces only one additional step into Tor’s routing

procedure. Rather than forwarding cells solely along previously

established circuits, relays establish transient alternate routes

between themselves and the next hop on their circuits. These

alternate routes forward traffic via an additional Tor relay rather

than sending it directly to the next relay on the circuit. As

such, we refer to the intermediate hops between circuit relays

as via relays, the connection between a circuit relay and a via

relay as a via connection, and the communications over this

connection as via traffic.

Note that the ‘circuit’ and ‘via’ modifiers denote different

roles a relay may play in ShorTor, but do not correspond to

different physical entities. A via relay is simply a regular Tor

relay that has been chosen as an intermediate hop for some

circuit rather than as part of the circuit itself. Any relay in Tor
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Protocol 1: ShorTor

CIRCUIT RELAY

// Circuit relays conduct data races to determine if a suitable via exists
// between themselves and the next relay on the circuit.
// Parameter: self, Tor ID for this relay.
// State: Routes, the routing table for each circuit.

• SHORTOR.CHOOSEVIA(circ, dst, candidates)
1: via ← RACE.RUN(candidates, circ, dst) // (Protocol 3).

2: if via = ⊥, then return. // no via faster than default route.

3: Routes[circ].via ← via.

• SHORTOR.HANDLETRAFFIC(cell)
1: if cell.cmd = VIA then return SHORTOR.HANDLEVIA(cell).
2: candidates ← LATENCIES.VIASFOR(cell.next). // (Protocol 2)

3: if Routes[cell.circ] = ⊥ then // no routing table entry.

3.1: SHORTOR.CHOOSEVIA(cell.circ, cell.next, candidates).

4: via ← Routes[cell.circ].via.

5: if via = ⊥ then proceed with default cell routing and return.

6: Set cell.cmd = VIA and cell.prev = self.
7: Send cell to relay via.

8: if no response from via then
8.1: candidates ← candidates \ {via}
8.2: SHORTOR.CHOOSEVIA(cell.circ, cell.next, candidates).
8.3: SHORTOR.HANDLETRAFFIC(cell)

VIA RELAY

// Via relays forward cells between circuit relays.
// Via relays do not perform onion decryption and only forward traffic
// if they have the available resources (i.e., bandwidth).

• SHORTOR.HANDLEVIA(cell)
1: route ← Routes[cell.circ]
2: if under heavy load or route = ⊥ then drop cell and return.

3: Forward cell to route.next.
4: Forward response from route.next to route.prev.

can act as both a circuit and a via relay simultaneously for

different traffic streams.

1) ShorTor Protocol Stages: The ShorTor protocol pro-

ceeds in several stages. On an ongoing basis, relays take

measurements of their round-trip latencies with other relays

(LATENCIES.UPDATE(), Protocol 2). Circuit relays use these

measurements to choose candidate via relays for outgoing

traffic (SHORTOR.CHOOSEVIA(), Protocol 1). They perform

a “data race” to choose the fastest path (RACE, Protocol 3).

If a route with a via relay is faster than the default path, the

circuit relay updates its routing table. In the steady state, the

circuit relay handles traffic for its circuits as usual, but directs

it to the via relay rather than to the next circuit hop.

Establishment: When establishing a connection for a given

circuit, relays on that circuit will run LATENCIES.VIAFOR()
(Protocol 2) to obtain a shortlist of potential vias. These vias

are those that have recently been observed to provide the largest

latency improvements over the default path between this relay

and the next hop on its circuit. The circuit relay then performs

a data race over each of the candidate vias (RACE.RUN(),
Protocol 3).

The finish line of this race is the next relay on the relevant

Fig. 4: Via Cell and Routing Table (fields added to baseline Tor
highlighted in grey): Via cells contain additional header fields with
routing info. This information is used by circuit relays to populate
the routing table with which via (if any) each circuit should be routed
through, while via relays use it to record where to forward cells from
a given circuit.

circuit which can report to the starting relay which of the data

race cells arrived first. We provide details on the selection of

candidate via relays in Section III-B2.

Routing: While establishing a via connection, both the

circuit and via relays must update their routing tables: circuit

relays note which via to send cells to, while vias record which

circuit relay should receive their forwarded traffic. To do this,

we simply introduce new fields in Tor cell headers and routing

tables, described in Figure 4. These allow relays to recognize

traffic streams and route them to the correct next hop.

Steady-State: Traffic over via connections that have

already been established is handled similarly to regular Tor

traffic. Via relays simply forward the received traffic stream

according to their routing table for the circuit. As via relays

are not part of client circuits, they do not perform onion

decryption/encryption prior to forwarding cells. Circuit relays

also function as in baseline Tor except in cases where their

routing table for a circuit contains a via relay. Then, the relay

will alter the header on cells for these circuits as shown in

Figure 4 and send the cells to the indicated via rather than to

the next relay on the circuit. Periodically, relays on a circuit

can repeat the data race to determine whether a given via is

still the fastest option based current network status.

2) Latency Measurements: ShorTor relies on two forms of

latency measurements (1) an up-to-date table of probable via

candidates for each relay pair (Protocol 2) and (2) the data

race that determines the fastest of the candidates (Protocol 3).

3) Pairwise Latency: ShorTor requires latency measurements

between Tor relays to narrow down the set of potential via relay

options for a circuit. In LATENCIES.UPDATE() (Protocol 2),

each Tor relay collects this latency information as needed,

distributing the involved storage, computation, and network

load across the Tor network. This is in contrast to the centralized

measurement methodology we use to evaluate ShorTor in

Section IV which, while useful for this work, would not meet

the performance needs of the live ShorTor protocol.

To participate in the distributed latency measurements of

Protocol 2, each relay maintains their estimated round-trip

latency to every other relay along with a list of “candidate” via

relays. The candidates are computed by each relay using the

round-trip latency tables for itself and for the destination relay

based on latencies provided by the destination. ShorTor uses

latencies reported from the destination for security reasons: an

honest destination will not recommend a dishonest via relay

51937



Protocol 2: LATENCIES

ALL RELAYS

// Parameter: �, how many routes to keep.
// Parameter: IDs of all n active Tor relays: Tor = {id1, . . . , idn}.
// State: table RTTs: ping times to each other relay.
// State: table NextHop: for each relay, the top � candidate vias (id, rtt).
• LATENCIES.UPDATE()

// Keep RTTs and NextHop tables up-to-date.
// Run periodically (once per day).

1: for id ∈ Tor:

1.1: Ping relay id to estimate round-trip time (RTT).

1.2: Set RTTs[ID] to estimated value.

1.3: Remove ( , rtt) ∈ NextHop[id] with rtt ≥ RTTs[id].
1.4: RTTsid ← LATENCIES.RTTS() (remote call to relay id).

1.5: for via ∈ Tor

1.5.1: rtt ← RTTs[via] + RTTsid[via].
1.5.2: if rtt ≥ RTTs[id] then continue // no speedup.

1.5.3: Add (via, rtt) to NextHop[id], keeping fastest � entries.

• LATENCIES.RTTS()

1: Output RTTs.

• LATENCIES.VIASFOR(id)
1: Output Routes[id]. // up to � candidate via relays.

disproportionately often, while a dishonest destination was

already on the circuit and gains nothing by lying. The list of

candidate vias is used to inform the data race which will select

the fastest via from the list at the time of the race.

4) Data Race: Directly choosing via connections based on

measured latencies has several potential drawbacks. First, the

measured latencies are round-trip, while network paths are

directional: the fastest path from relay A to relay B might

be different from the fastest path from relay B to relay A.

Timestamping at the destination halfway through the round

trip does not address this issue, as it becomes impossible to

distinguish between imperfect clock synchronization and path

asymmetry. Second, latencies change in real-time in response to

network conditions, like congestion at relays or on internet links.

Third, latencies might be inaccurate due to measurement errors

or even misreporting by malicious relays; we must take care

to prevent such relays from seeing disproportionate amounts

of traffic. As such, measured latencies alone are insufficient.

Instead circuit relays choose the fastest via using a “data

race:” sending packets along different routes to see which

arrives at the destination first (RACE.RUN(), Protocol 3). The

starting relay simultaneously sends a copy of a data race cell

to each prospective via relay, and one copy directly to the

destination. The destination relay, which is the next hop on

the circuit, responds only to the first of these cells to arrive.

Data races are directional—relays can identify the fastest

path in each direction separately. Additionally malicious via

relays cannot report lower latencies to artificially increase their

odds of being selected. Data race cells are not forgeable by the

via, so the via must wait to receive the cell from the source

circuit relay before delivering it to the destination relay. Thus,

the via cannot artificially reduce its perceived latency below

Protocol 3: RACE

CIRCUIT RELAY:
// Find the fastest via relay for reaching the destination relay.
// Parameter: myId, Tor ID of this relay.
// State: Seen, a set of circuit IDs for which this relay has seen data
race packets.

• RACE.RUN(vias, circ, dst)
Input: Candidate vias vias = {v1, . . . , v�}, destination relay dst
Output: Fastest via v if one exists; ⊥ otherwise.

1: Create data race cell cell with fields cmd = RACE, prev = self,
next = dst, and circ = circ.

2: for via ∈ vias: send cell to via.

3: Send data race cell directly to dst.
4: resp ← response from dst.
5: Output resp.via. // May be ⊥ if no via provides speedup.

• RACE.RESPOND(cell)
Input: Data race cell from source relay (sender).
1: if cell.circ ∈ Seen then drop cell and return.

2: Add cell.circ to Seen.

3: if cell.prev = sender then via ← ⊥
4: else via ← sender.
5: Send response resp to cell.prev with resp.via = via.

VIA RELAY:
// Via relays update their routing tables to forward traffic on a stream,
// provided sufficient resources are available to do so.
// State: Routes, the routing table for each circuit.

• RACE.VIAFORWARD(cell)
Input: Data race cell cell with cell.cmd = RACE.

1: if under heavy load then drop cell and return.

2: Add cell.prev and cell.next to Routes[cell.circ].
3: Forward the cell to relay cell.next.

the true time it takes to forward the cell.

5) Avoiding Traffic Loops: We define a loop to occur when

the same traffic stream passes through a relay more than once.

This is an issue as such relays could utilize traffic correlation to

identify the previously seen traffic stream, thus learning a larger

portion of its path through Tor than they should have been privy

to. Tor only builds circuits using distinct, unrelated relays to

ensure that circuits contain no loops. However, because ShorTor

selects via relays separately from the circuit selection process,

care must be taken to avoid loops.

In order to provide the same guarantee as Tor, we require

that ShorTor is applied only to circuits of length exactly three

(the default in Tor) and that only a single via is used between

any pair of relays. This ensures that the middle relay of a

circuit is capable of observing all vias on that circuit and

enforcing the same guarantees as for circuit relays. That is, in

either direction of a circuit, the middle relay will not choose to

use a via that is already in use for the prior hop or is related to

a relay on the circuit. We elaborate on security in Section V,

but note here that a malicious middle relay gains no advantage

by failing to enforce this guarantee, as it already knows the

identities of both the guard and exit relays and does not need

to correlate traffic across the via to get this information.

6) Stability: ShorTor’s distributed via selection protocol

must avoid oscillations where circuit relays swap back and
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forth between vias. As an example, without appropriate

precautions, a cycle could form where traffic streams dropped

from an overwhelmed via all divert to the same alternate via,

subsequently overwhelming that via and causing the streams

to revert to the original choice, and so on. We note that this

situation is not prohibitive: CDNs use a similar overlay routing

technique in practice, carrying substantial portions of internet

traffic, without such stability problems.

We mitigate the risk of this situation in ShorTor through

backoff and capacity parameters in the data race. We note that

races are an integral component of the ShorTor protocol and are

conducted to identify faster routes for traffic, not for stability

purposes. These backoff and capacity parameters simply ensure

that races avoid oscillations between vias.

Circuits never attempt to send traffic through a via without

first conducting a race (though they may fall back to their direct

path at any point). First, vias without available capacity will

drop data race cells, preventing them from being selected at the

small cost of processing a single packet. Second, upon being

dropped from a via path, circuit relays will apply randomized

exponential backoff and will not include that via in data

races again until a set period of time has passed. The exact

parameters for via capacity and backoff timing are network-

dependent and may evolve based on the current state of the Tor

network. However, because ShorTor is an optional performance-

enhancement, these values can initially be set conservatively

and then decreased adaptively.

C. Integration with Tor

While the ShorTor approach has potential applications to

other networks, we designed and evaluated ShorTor’s protocol

to integrate with Tor specifically. Maintaining Tor’s existing

security guarantees is one main focus of this design and

informed the structure of our data races and avoidance of

loops. However, successful integration with Tor also requires

that ShorTor be deployable. In this section, we discuss the

components of ShorTor that are most relevant Tor deployment,

including support for load balancing and fairness, required

modification to Tor relays, and incremental deployment.

1) Load Balancing & Fairness: Fairness to circuit traffic

and load balancing are both necessary to ensure that ShorTor

does not inadvertently increase latency for some circuits as

a consequence of reducing it on others. This could happen

if via traffic was allowed to consume more resources than a

relay had available to spare, resulting in increased processing

times or congestion at the relay. ShorTor provides both fairness

and load balancing through the same mechanism: prioritizing

circuit traffic over via traffic. Tor already recognizes different

traffic priorities—web browsing is prioritized over large file

downloads [26]. We extend this to ensure that relays will

preferentially schedule traffic from circuit queues over via

queues (Figure 5).

Circuits will select vias that have lower latency than the

default path, including the transit time through the via itself.

This is very important as relay congestion and the associated

queuing delays are a primary source of latency in Tor [43,44,46].

Fig. 5: Tor relay with circuit and via traffic (queuing architecture
unmodified from baseline Tor). 1© Via and circuit traffic are mul-
tiplexed on a TCP connection entering the Tor relay. 2© The TLS
layer is decrypted and circuit cells are onion encrypted/decrypted. 3©
Circuit and via cells are sent to their individual queues. 4© Cells are
scheduled for release to the output buffer based on priority order. 5©
The contents of the output buffer are encrypted using TLS, then sent
to the kernel for transit over a TCP connection to the next hop.

Congestion at a via will appear naturally during the data race

in the form of increased latency or could be indicated explicitly

by dropping race packets. In addition, vias are transitory and

can be dropped or swapped at will with minimal cost compared

to that of circuit construction/teardown.

As such, ShorTor ensures that: (1) circuit traffic on a relay

is never delayed by via traffic and (2) load from via traffic is

distributed only across relays with available capacity.

2) Tor Modifications: ShorTor’s primary modification to

Tor is the introduction of data races, all other components are

simple extensions of Tor’s existing mechanisms for routing and

prioritizing circuits. To support ShorTor, Tor relays (though not

clients) require additional protocol messages, a new data path

for via traffic, and state for managing via traffic. The protocol

requires new cell headers for data races, ping, and via traffic.

Specifically, via traffic needs a new priority level lower than

circuit traffic (optionally, this level can be higher than that of

bulk download traffic, such as torrenting, which is currently

of lower priority than circuit traffic) [26]. Incoming via traffic

needs a new data path that bypasses onion encryption and

decryption. Relays must also handle ping and data race traffic

as specified in Protocol 2 and Protocol 3. Finally, relays must

hold two additional pieces of state: first, a new field in the

routing table to indicate the via (if any) for each circuit; second,

the list of candidate via nodes for each possible next hop (see

Section III-B2 for details).

These modifications are relatively minor, do not touch Tor’s

onion encryption layer, and represent an optional overlay on

Tor’s routing. We discuss more details of required modifications

in Appendix B, but note here that the high up-front cost of

integrating and deploying modifications to the Tor protocol

was a large factor in the ultimate design of ShorTor. This

consideration motivated ShorTor’s construction as an extension

to Tor’s existing architecture that operates largely separately

from the baseline protocol.

Furthermore, ShorTor’s modifications are configurable, triv-

ially backwards compatible,2 and support incremental deploy-

2Relays lacking support for ShorTor simply route as usual without any vias.
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ment. This allows relay operators to choose whether to support

ShorTor and how much capacity to dedicate to the protocol. As

shown in Section IV-C3, ShorTor can substantially reduce tail

latencies even with relatively low support. This is important,

as it minimizes the risk of up front development efforts being

wasted due to slow deployment.

3) Incremental Deployment: Tor relays are volunteer run

and notoriously slow to update [58]. As such, any proposal

that requires support of all—or even a majority of—Tor relays

is unlikely to be effective. ShorTor is incrementally deployable

and improves the latency of any Tor circuits that meet the

following two requirements: (1) two adjacent circuit relays

support ShorTor and (2) some other relay supporting ShorTor

provides a faster path between the two circuit relays. Because

Tor does not select its relays with uniform probability, a small

set of popular relays could meet these conditions for many

circuits without support from the rest of the network. We

demonstrate this concretely in Section IV-C3.

Security is another important consideration—incremental

deployment inherently creates differences between Tor clients

or relays that have adopted a modification and those who

have not. This has been an issue for client side proposals as

anonymity in Tor relies on all clients behaving uniformly [12,

14,36,60,61,74,85].

ShorTor avoids this issue entirely as it is a fully server-side

protocol that does not require participation from, or modify

the behavior of, Tor clients in any way. So, while ShorTor is

an observable modification to the Tor protocol,3 it is in no

way correlated to client identity. As such, support for ShorTor

cannot be used to distinguish between clients. In fact, Tor

clients should not try to preferentially select relays with support

for ShorTor. While this would improve their latency, it would

also differentiate them from Tor clients following Tor’s baseline

circuit selection algorithm, reducing their anonymity.

IV. EVALUATION

We evaluate ShorTor using a dataset of approximately

400,000 latency measurements we collected from the live Tor

network over the course of 42 days during summer 2021. Our

measurements allow us to compare the direct latency between

relays to the latency when routing through an intermediate hop,

as in ShorTor.

Using measured latencies allows us to avoid relying on

simulated or approximate data. While simulations can be a

useful tool, prior work [75] has shown that routing protocols

are best evaluated using live internet paths rather than through

a simulation with, necessarily, reduced scale and complexity.

We evaluate the performance of ShorTor in terms of its direct

impact on the latency between pairs of Tor relays as well as

its ability to reduce the latency of Tor circuits. Evaluating on

circuits as well as pairs allows us to account for the relative

popularity of relays and more closely model the expected

reduction in latency ShorTor can provide to Tor’s end users.

3Both adversarial relays and network adversaries can likely detect when
traffic is routed using ShorTor as opposed to baseline Tor.

A. Measurement Methodology

1) Ting: For our measurements, we adapt the Ting method

of Cangialosi et al. [23] for estimating latencies between

Tor relays. Ting creates a set of three circuits involving

observers, which are Tor relays run solely for the purpose

of obtaining latency measurements. Specifically, to obtain the

latency between two Tor relays, RelayA and RelayB , we run

two observer relays Obs1 and Obs2 along with a measurement

client on the same physical machine. Once each circuit is

established, the measurement client “pings” itself through the

circuit to estimate round-trip latencies for the following circuits:

1) rttAB = RTT (Obs1 → RelayA → RelayB → Obs2)

2) rttA = RTT (Obs1 → RelayA → Obs2)

3) rttB = RTT (Obs1 → RelayB → Obs2)

With these, we estimate the round-trip time between RelayA
and RelayB as rttAB − 1

2 (rttA + rttB). This approximates

the RTT including the forwarding delay at both RelayA and

RelayB as forwarding is inherently a component of the latency

experienced by via traffic. We repeat this process in order to find

the minimum observed latency between RelayA and RelayB:

in our observations, after 10 iterations, 95.5 % of circuits are

within 5 % or 5 ms of the minimum observed in 100 samples.

2) Directional Latencies: The Ting protocol does not

account for directional latencies where the outgoing latency

between two nodes may not be equivalent to that of the

return trip. Specifically, the method for computing rttAB

described above assumes that latency (Obs1 → RelayX) ≈
latency (RelayX → Obs2). To detect asymmetry in our RTT

measurements we include a timestamp in our measurements

halfway through the round-trip “ping” (all timestamps are with

respect to the same clock). In our dataset (Section IV-A6), the

median asymmetry was 2.4 % and only 0.2 % of measurements

had an asymmetry of 2× or greater. Importantly, asymmetric

RTTs impact only our evaluation as, when deployed, ShorTor

naturally accounts for directional latencies using data races

(Section III-B4).

3) Infrastructure: To collect latency measurements at scale,

we adapted the Ting protocol to support parallel measurements

across multiple machines. Our larger scale also required

changes to respect a safe maximum load on the Tor network

(see Section IV-A5): we impose a global maximum limit on

concurrent measurements and spread measurements of individ-

ual relays across time. Our infrastructure also compensates for

the high churn in the Tor network (13 % of relays we observed

were online less than half the time) by enqueueing measurement

jobs based on the currently online relays, with automated retries.

We handled hardware and power failures using a fault-tolerant

system design: we separated data persistence, measurement

planning, and the measurements themselves.

We deployed to a private OpenStack [78] cloud, but provide

a Terraform [41] template supporting any provider. Our open-

source [1] measurement infrastructure is approximately 3,300

lines of code, consisting primarily of Python and shell scripts.

4) Geographic Location of Relays: We obtain country codes

for the relays in our dataset using the GeoIP database [59],
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Fig. 6: (a) Left: Round-trip times (RTTs) measured between Tor relays vs. RTTs of those same pairs when using ShorTor as a percentage of
all 406,074 pairs. We show an expanded view of the first 200 ms on the left. For readability, this figure omits 10 pairs with RTTs between
4,019 ms and 9,415 ms. (b) Right: Relative latency of each relay pair when routing via ShorTor vs. the default route. 25.4 % of pairs have a
latency reduction of at least 50 %, 9.4 % at least 75 %, and 1.2 % at least 90 %.

which is also used by Tor in practice. However, GeoIP locations

are not guaranteed to be 100 % accurate [37,51,66]. Indeed,

upon careful inspection, we observed a handful of relay pairs

with physically impossible RTTs for their purported locations.

All of these pairs involved the same twelve relays allegedly

located in the US. We determined that these twelve relays

have higher average RTTs inside the Americas than they do

to relays located in other regions. Because of this, all location-

related figures (Figure 6(b), Figure 9, Figure 10) exclude these

relays as, while we are confident that their reported location is

incorrect, we cannot accurately determine their true location.

5) Ethics and Safety: We designed our measurement process

to minimize impact on Tor users and relay operators and

to comply with security best practices for Tor. To this

end, we submitted a proposal to the Tor Research Safety

Board [69] for review prior to measurement and adhered to

their recommendations. We also received an IRB exemption

from each author’s institution for this work.

Collecting our data required us to run several live Tor relays.

These relays recorded only our measurement traffic—at no

point did we observe or record any information about any

traffic from Tor users. We also minimized the likelihood of a

user choosing our relays for their circuits by advertising the

minimum allowed bandwidth of 80 KiB/s [26].

Our measurement collection was spread over 42 days to

reduce concurrent load, including a limit on simultaneous

measurements (detailed in Section IV-A3). We also notified a

Tor relay operator mailing list and allowed operators to opt

out of our measurements; we excluded four such relays.

In light of recent work by Schnitzler et al. [76] on the

security implications of fine-grained latency measurements for

Tor circuits, we have not published our full latency dataset.

However, we will share this data with researchers upon request

and are in communication with our reviewers from the Tor

Research Safety Board about safely releasing it in the future.

6) Latency Dataset: In this work, we directly measure

pairwise latencies within Tor rather than relying on outside

estimates. We focus our measurements on the 1,000 most

popular Tor relays (by consensus weight) for two main reasons:

1) Measuring all 36,325,026 possible pairs of the 8,524 Tor

relays we observed was intractable for this work.

2) These popular relays are present on over 75 % of cir-

cuits [39] and thus can provide disproportionate utility.

Our dataset contains 406,074 measured latencies or 81.3 % of

all pairs of the 1,000 most popular relays.4

B. Applying ShorTor to Relay Pairs

We begin evaluating ShorTor by comparing the potential

latency between our set of relay pairs when routing via ShorTor

to our measured latencies observed using Tor’s default routing.

Figure 6(a) shows the relative frequency of RTTs experienced

by pairs of Tor relays using ShorTor and when routing normally

while Figure 6(b) focuses on the relationship between default

RTT and ShorTor RTT for each relay pair. Using ShorTor,

all of Tor’s high tail latencies were resolved: ShorTor sees a

maximum absolute RTT of 157 ms, while 0.09 % of pairs in

Tor had RTTs of over half a second. In other words, the 99.9th

percentile of relay pairs see a reduction in RTT from 487 ms in

Tor to 125 ms in ShorTor. Additionally, 25.4 % of relay pairs

cut their RTT in half (or more) using ShorTor.

Figure 6(b) also shows that ShorTor’s RTT values largely

correspond the physical distance between the endpoints: relay

pairs that are across an ocean necessarily experience a higher

latency than those in the same region.

C. ShorTor Circuits

We model the expected reduction in latency for end users by

applying ShorTor to Tor circuits. Due to Tor’s non-uniform relay

selection probabilities, our pairwise latency dataset does not

directly account for how probable any of the observed RTTs are.

As such, we include an evaluation of ShorTor on two million

Tor circuits built according to Tor’s default parameters. Because

4Missing measurements are largely due to churn in the Tor network causing
relay pairs to not be live simultaneously.
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Fig. 7: Reduction in Round Trip Time experienced by 2M Tor circuits
when routing with ShorTor. We show an expanded view of the first
150 ms on the left. The CDF line is reversed: for instance, 0.01 % of
circuits see a speedup of at least 1,000 ms.

Tor averages 2M daily users, this roughly approximates the

expected distribution of circuits over one day of use.

1) Circuit Selection: Using the Tor path selection simulator

(TorPS) [47], we choose two million circuits over all 8,524

relays we observed. Because we collect latency measurements

from only the 1,000 largest Tor relays by consensus weight,

many of these circuits have incomplete latency data. We select

circuits from the full set of relays, despite incomplete latency

data, to ensure that our distribution of circuits closely resembles

that of real Tor users. We handle the gaps in our data by

reporting on the reduction in latency provided by ShorTor rather

than absolute RTTs. All circuit legs with missing measurements

are reported as a speedup of 0 ms (equivalent to baseline

Tor). The speedups we observe can thus be thought of as the

minimum that our set of simulated circuits would experience

using ShorTor.

2) Latency of ShorTor Circuits: In this section, we evaluate

the performance of ShorTor on our set of 2M circuits. We only

indicate a speedup for a circuit if: (1) it contains two adjacent

relays that are present in both our measurement dataset and in

the set of relays supporting ShorTor and (2) some other relay

that supports ShorTor can provide a faster route between the

circuit relays. 68.0 % of circuits have no available measurement

data for either leg and are shown with the default speedup of

0 ms. Of the 32.0 % of circuits with a latency measurement

for at least one leg, 83.7 % see a speedup with ShorTor.

As shown in Figure 7, 1 % of the 2M circuits see a latency

improvement of 122 ms or greater and 0.012 % of circuits saw

a speedup of over a second. For details on the relationship

between RTTs and the page load times experienced by users,

see Section IV-E

3) Incremental Deployment: As previously described in

Section III-C3, ShorTor is designed to function at relatively

low levels of deployment. Our previous evaluation (Figure 7)

assumed that all 1,000 of the relays we measured supported

ShorTor. In Figure 8, we show that ShorTor is also capable

of reducing latency for Tor circuits even at substantially lower

levels of deployment. As before, we only apply ShorTor when

all relays involved support the protocol and assume that all

Fig. 8: Reversed CDF for incremental deployment speedups.

unmeasured pairs of relays have no speedup. We find that

circuits at the 99.9th percentile see latency reductions of 178 ms

even when only the top 500 relays support ShorTor.

D. Cost of ShorTor

ShorTor’s primary cost, aside from the one-time startup

cost of modifying the Tor protocol, is in terms of bandwidth

overhead from its longer paths. In the steady state, Tor circuits

will use extra bandwidth for each hop using a via relay: an

overhead of 1/3 above the original traffic. If we do this for

every hop with any speedup, no matter how small, this uses

10.9% extra bandwidth over Tor right now. However, if we

only use ShorTor when it offers a speedup above a certain

cutoff, this overhead quickly declines:

Cutoff 0 ms 10 ms 25 ms 50 ms 100 ms
Overhead 10.9% 6.6% 3.8% 2.3% 0.8%

Further, relays will only carry via traffic when they have

excess capacity. Tor reports consistently under 50% bandwidth

utilization across the network [67].

A more minor source of bandwidth overhead is control

information around routing tables and data races. First, re-

lays must keep their latency tables up to date following

LATENCIES.UPDATE() (Protocol 2 in Section III-B3). This

requires each relay send its latency table to every other relay

once per day. Using 16 bits per RTT estimate, each relay must

send about 100 MB per day5 in total—about 0.05% of the

minimum recommended relay bandwidth [68]. Second, they

must establish via connections using RACE.RUN() (Protocol 3

in Section III-B4), which sends a small, configurable number

of extra packets (e.g., 5), equivalent to about 2.5 kB6 of extra

data. Data races have tunable frequency and will only occur if

latency estimates indicate a speedup above the cutoff. Assuming

two million circuits per day with each circuit participating in

a data race at both hops, data races will consume 10 GB over

the course of the day across the entire network. Currently,

Tor advertises bandwidth of 600 GB/s and consumes less than

300 GB/s [58].

5Assuming 7000 concurrently active relays in the Tor network: 16 bits per
RTT × 7000 relays per table × 7000 relays sending their table each day.

6Tor cells are ≈ 0.5 kB each.
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Thus, ShorTor’s bandwidth overhead is dominated by the

longer path lengths and is parameterizable based on cutoffs for

latency reduction as shown above. This overhead may not be

distributed evenly among relays, but we note that participation

in ShorTor is fully optional (see discussion of incremental

deployment in Section III-C3), so resource constrained relays

may simply choose not to participate at any stage of ShorTor

or decide not to support the protocol entirely if overhead is a

concern.

E. Impact of ShorTor on User Experience

Perceived latency in the form of page load times (PLT)

has a demonstrable impact on users in anonymity systems. In

qualitative user experience research, Tor users specifically cite

latency as an issue keeping them from adopting Tor [33–35].

Köpsell [52] finds a linear relationship between latency and

number of users for an anonymous communication system.

In many cases, latency (not bandwidth) is the limiting factor

for page loads: increases in RTTs cause linear increases to

PLT, often with a 10× multiplier. Netravali et al. [63] find that

increasing RTT from 25 ms to 50 ms increases 95th-percentile

PLT across 350 popular sites from 1.5 s to 3.4 s, and increasing

to 100 ms raises the PLT to 6.1 s. Many factors contribute to this

multiplier, including TCP congestion control, TLS handshakes,

and complex web sites where an initial page fetch may spawn

additional requests [63,70,71].

To bridge the gap between our RTT-based evaluation of

ShorTor and the more intuitive usability metric of PLTs, we

simulate the impact of network delays on page load times

over Tor, finding that small increases in delays lead to large

increases in page load times. First, we measure the time it

takes to load the New York Times and Google homepages over

ten Tor circuits, chosen by the Tor path selection algorithm,

without modification or delay. We then model changes in RTT,

such as those from a link delay, by using the Linux tc utility

to introduce an artificial delay for each packet sent over the

same ten circuits.

To evaluate ShorTor, we selected delays that correspond to

speedups seen by ShorTor circuits in Section IV-C to obtain

an estimate for the potential difference in page load times

experienced by end users. Of the circuits in our measurement

dataset, 5.04 % experience a speedup of at least 50 ms, 1.66 %

of at least 100 ms, and 0.04 % of at least 500 ms.

We report the median change in PLT for fetching

google.com and nytimes.com over these ten circuits

when traffic is delayed by 50 ms, 100 ms, and 500 ms:

Network Delay

Website 50 ms 100 ms 500 ms

google.com ΔPLT: 0.98 s 1.96 s 10.40 s

nytimes.com ΔPLT: 1.66 s 2.34 s 15.80 s

We find that Tor follows the trend seen in prior work with

even 50 ms changes in RTT increasing PLTs by approximately

a second. In the context of ShorTor, 1 %, or 20k, of the 2M

circuits we evaluated saw a reduction in their RTT of at least

120 ms which corresponds to an expected two second drop in

PLT. As Tor sees approximately two million daily users, each

building at least one circuit, ShorTor’s impact on tail latencies

is likely to improve the experience of tens of thousands of Tor

users daily.

V. SECURITY ANALYSIS

In this section, we analyze the security of ShorTor. We

consider how ShorTor’s use of via relays might impact an

adversary’s ability to deanonymize Tor traffic in practice. To

do so, we examine the change in the adversary’s view of the

Tor network when using ShorTor as compared to the baseline

Tor protocol. While via relays never observe the sender or

recipient of Tor traffic directly, they are able to observe traffic

streams and other relays on the circuit, which could indirectly
deanonymize the sender or recipient. For this purpose, we

use the AnoA [12,60] framework for analyzing the anonymity

guarantees of anonymous communication protocols to help us

determine the potential anonymity impact of vias in ShorTor.

A. AnoA Analysis

Backes et al. [13, 14] apply the AnoA framework to analyze

the anonymity of the Tor network and the impact proposed

protocol modifications might have on Tor’s anonymity. AnoA

uses ideas from differential privacy [29] to determine an

adversary’s advantage in a challenge-response game, which

models the ability to distinguish between traffic streams. In

this game, the adversary statically corrupts a set of “traffic

observation points” (i.e., Tor relays) and attempts to distinguish

between two possible scenarios involving different senders

and recipients for each traffic stream. The adversary’s ability

to distinguish between these scenarios models the overall

anonymity of the Tor network.

Definition V.1 (Anonymity Notions [12]; simplified). Let A
be a passive network adversary consisting of a set of corrupted

relays and capable of observing a subset of network traffic

through these relays. The anonymity notions are:

Sender anonymity: the probability that A can distinguish

between two potential senders of a given traffic stream.

Recipient anonymity: the probability that A can distinguish

between two potential recipients of a given traffic stream.

Relationship anonymity: the probability that A is capable of

determining which sender is communicating with which

recipient. The anonymity game is defined for all pairs

of senders (Alice and Bob) and recipients (Charlie and

Diana); A wins by successfully linking a traffic stream

to the correct communicating pair.

Tor relays are not all created equal: stable, high bandwidth re-

lays see a larger fraction of Tor’s traffic, but are also more costly.

To accurately analyze an adversary’s impact on anonymity, it is

necessary to decide which subset of relays are most beneficial

to corrupt. Backes et al. [13, 14] develop MATOR [19] to

model different adversarial corruption strategies. Following

Backes et al. [13, 14], we consider four adversarial corruption

strategies: k-collusion, bandwidth, monetary, and geographic.
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With the k-collusion strategy, the adversary corrupts k relays

that provide it with the most advantageous view of Tor’s

network. With the other three strategies, the adversary has

a similarly fixed “budget” (e.g., cumulative bandwidth) which

constrains the optimal set of relays to corrupt. The MATOR

tool [19] optimizes each adversarial strategy based on the

allocated budget and anonymity notion to empirically compute

the worst-case anonymity bound under AnoA.

B. Differential Advantage
We define how we measure the theoretical impact of ShorTor

on anonymity in Tor in terms of the difference in an adversary’s

advantage in ShorTor vs. baseline Tor.
Notation: We write N for the set of all Tor relays

and C for the set of all Tor circuits (consisting of three

independent relays). We denote the path selection and via

selection algorithms by PS, and VS, respectively. We note that

VS is unique to ShorTor and is separate from the path selection

algorithm PS used in Tor. We use ⊥ for a “null” element.

Definition V.2 (Via Relay). Let C ∈ N × N × N be a Tor

circuit consisting of three circuit relays. A via relay v ∈ N
is a Tor relay routing packets between a pair of consecutive

circuit relays in C.

Remark 1. A via relay is semantically equivalent to a wire
connecting two consecutive Tor relays in the circuit. Via relays

only forward traffic and are not involved in circuit establishment

or any of Tor’s onion-encryption operations.

We first define adversary observations on the network. We

then use this to define the differential advantage—the impact

that ShorTor introduces relative to baseline Tor.

Definition V.3 (Adversary Observations). Let V ⊆ N be the

set of candidate via relays and let C be the set of all three-relay

circuits. Fix a set N ∗ ⊆ N of adversary-corrupted relays. We

define the function: ObsN∗ : C×V∪{⊥}×V∪{⊥} → O, which

takes as input a circuit and a pair of via relays (possibly ⊥),

and outputs the set of observation points (adversary-corrupted

circuit and via relays).

Definition V.3 captures the “view” of the adversary for a

given circuit. For example, an adversary corrupting the middle

relay on a single circuit sees the guard and exit relays on the

circuit, but not the sender or recipient.

Definition V.4 (Differential Advantage). Let V ⊆ N be the set

of candidate via relays. Let PS be a randomized path selection

algorithm and VS be a via relay selection algorithm for a circuit.

Fix N ∗ ⊆ N to be the set of adversary-corrupted relays and

let C be a set of all three-relay circuits output by PS. For a

circuit C ∈ C and (v1, v2) ∈ suppC∈C |VS(C)|, the adversary is

said to have a differential advantage when for

Otor ← ObsN∗(C,⊥,⊥) and Ovia ← ObsN∗(C, v1, v2),

the set Otor ⊂ Ovia, where Obs is as defined in Definition V.3.

In words, an adversary has a differential advantage in ShorTor

when new observations are gained as a result of introducing

via relays. We now examine scenarios in which the adversary

does gain differential advantage by corrupting via relays. We

formalize these scenarios in Lemma 1.

Lemma 1. Let V ⊆ N be the set of candidate via relays.
Fix N ∗ ⊆ N , the set of adversary-corrupted relays. For all
sets of observations Otor and Ovia for a circuit C ∈ C, as
in Definition V.4, Otor ⊂ Ovia if and only if there exists at least
one via relay in N ∗ between two consecutive non-corrupted
relays in C.

Proof. Let ra, rb ∈ C be any two consecutive circuit relays in

C (either {guard,middle} or {middle, exit}) with via relay

v connecting ra and rb. Corrupting either ra or rb provides

the adversary with a view of the wire, which is equivalent

to the view obtained from corrupting the via (see Remark 1).

For any circuit C ∈ C, the set of observation points gained

from corrupting v is a strict subset of the set of observation

points gained from corrupting either ra or rb individually.

Therefore, we have that the adversary only obtains an additional

observation (Otor ⊂ Ovia) if ra and rb are not corrupted while

the via relay v is corrupted. �

Claim 1. An adversary-corrupted via relay observes strictly

less than an adversary-corrupted circuit middle relay in Tor.

Proof. By Lemma 1, we have that the adversarial advantage

from corrupting a via relay is strictly less than corrupting

any middle relay. Via relays are positioned either between the

guard and middle relays or middle and exit relays. As such,

corrupting a middle relay in a circuit tightly upper bounds the

observation points gained from corrupting both vias. �

In Claim 2, we argue that ShorTor does not advantage the

adversary in any of the anonymity notions of Definition V.1

(we empirically confirm this result in Section V-C).

Claim 2. ShorTor applied to the baseline Tor network with

path selection algorithm PS : N → C which outputs circuits

independently of the sender and recipient (as is currently the

case in Tor [26,27]), does not impact the anonymity notions

of Definition V.1 of the AnoA framework.

Proof. Under the AnoA framework, corrupting the middle relay

does not change the adversary’s ability to deanonymize either

sender, recipient, or relationship anonymity when the circuit

is constructed independently of the sender and recipient (see

analysis of Backes et al. [14]). This is because each middle relay

is equally probable in all communication scenarios, giving the

adversary no advantage [14]. As a consequence, by leveraging

Claim 1, corrupting one or both via relays when ShorTor is

applied to Tor does not advantage the adversary in the AnoA

anonymity game of Definition V.1. �

Claim 2 shows that ShorTor does not impact anonymity

of Tor. However, when the middle relay is not chosen

independently of the sender or recipient (for example, when

using location-aware path selection proposals; see Section VI),

then ShorTor can exacerbate the negative impact on anonymity.
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Fig. 9: Anonymity impact of ShorTor, compared with baseline Tor
(client-independent) and LASTor (dependent on client location) path
selection. Each plot shows sender (SA), recipient (RA), and rela-
tionship (REL) anonymity (Definition V.1) for a different adversarial
relay corruption strategy. Shaded region represents the difference in
the MATOR-computed anonymity bounds with and without ShorTor.
“FVEY” refers to “Five Eyes” intelligence alliance member countries.
Under ANoA, ShorTor affects all anonymity notions for LASTor,
though not baseline Tor. Extended plots provided in Appendix A.

We quantify this advantage using MATOR by applying

ShorTor to LASTor [5], a location-biased path-selection pro-

posal. We emphasize that LASTor is not integrated in Tor and

has known security flaws [86]—we include it as an illustrative

example of a location-aware path selection scheme.

C. Quantifying Anonymity of ShorTor

We now turn to empirically computing the worst-case
anonymity impact under the AnoA framework when ShorTor is

applied to Tor and proposed modifications thereof. We modify

MATOR (our code is open-source [1]; written in C++ and

Python) to incorporate the use of via relays as described in

Section III-B. We report our quantitative results in Fig. 9.

ShorTor applied to Tor: We confirm the results of Claim 2

on the adversarial impact of ShorTor used with baseline Tor:

the worst-case anonymity bounds computed by MATOR for

baseline Tor and ShorTor are equal, as relays are selected

independently of both the sender and recipient.

ShorTor Applied to LASTor: We examine the impact of

ShorTor when combined with biased path selection algorithms

(e.g., path selection that takes client location into account).

We use the LASTor [5] proposal for this purpose. We find

that ShorTor applied to LASTor decreases anonymity under all

three anonymity notions of Definition V.1, as via relays offer

additional observations points for the skewed distribution of

guards and exits used by LASTor.

Fig. 10: Fraction of circuits seen by relays in Tor vs. ShorTor. Left
side considers incremental deployment (Section IV-C3). As more
relays begin to support ShorTor (x-axis), the average network share
goes down, though some outliers see more traffic. Right side looks at
regional network share, or the fraction of circuits seen by relays in
different regions.

D. Network Share and Traffic Analysis Attacks

A limitation of AnoA is that it does not take into account

traffic analysis attacks that can be conducted by a single point

of observation [60], such as a via relay. Most notably, this

includes website fingerprinting attacks [20,45,72,80,88].

To analyze the adversarial advantage in orchestrating such

attacks in ShorTor, we consider the relative network share
disparity between baseline Tor and ShorTor. By this we mean

the relative fraction of circuits seen by a relay when acting

as part of a circuit vs. as a via. Regional network share is

a concern for Tor users primarily due to varying policies

on surveillance in different jurisdictions [48]. Separately,

determining network share of individual relays at different

levels of deployment allows us to assess the potential security

impact of incrementally deploying ShorTor.

In Fig. 10, we plot the network share using the same

circuits as in Section IV-C2. We vary the deployment level of

ShorTor to measure the expected change in network share as

a function of relays supporting ShorTor (Section IV-C3). We

find that ShorTor increases the median network share (as traffic

traverses more nodes when using ShorTor). However, median

network share decreases with larger deployments. The worst-

case network share increases from about 0.4 % to about 0.8 %

for relays located in Germany (which is by far the country with

the most Tor relays). It is important to note that the overall

network shares remain low, indicating a small disparity in

expected network traffic observed.

Our analysis does not take into account adversarial place-

ment of relays with fast network connections to boost their via

selection probability. However, this is not unique to ShorTor:

relays in Tor already have a high disparity in their network

share based on bandwidth influencing their circuit selection

probability. As such, we believe that the impact of ShorTor on

traffic analysis attacks is modest and in-line with Tor’s existing

assumptions about adversarial placement of relays.
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VI. RELATED WORK

In this section, we outline past works that focus on reducing

latency in Tor though optimized routing decisions. We note

that all works here operate at the circuit layer and are proposed

modifications to Tor’s circuit selection protocol. There is addi-

tionally a large body of work that alters path selection in Tor

for purposes of security [13,15,30,40,48,64,73,82,89]. While

important, these works are orthogonal to ShorTor and often

result in substantially degraded performance [61,74] without

clear security advantages over Tor’s current protocol [36,85,86].

Traffic Splitting: Rather than selecting a single faster

circuit, Karaoglu et al. [49] and AlSabah et al. [7] split traffic

across multiple circuits. This distributes the load of the circuit

across a larger number of relays, improving latency by reducing

congestion on relays in the circuit. Conflux [7] can achieve an

average reduction in time-to-first-byte of 23 % over baseline Tor.

Splitting traffic across multiple circuits solves an orthogonal

problem to that addressed in ShorTor and combining both

protocols could be an interesting future direction.

Location-Aware Path Selection: Alternative path selection

proposals that reduce latency on Tor share a common theme:

they all, either directly or indirectly, account for the location

of the client or destination server when choosing a circuit [5,9,

16,42,74,79,87]. This makes intuitive sense, as fast paths are

likely to also be geographically short and, in particular, are

unlikely to contain multiple ocean crossings.

Imani et al. [42] propose to improve performance of Tor

circuits by having clients build multiple circuits, then prefer-

entially select from those according to a series of strategies

focusing on circuit length, RTT, and congestion. In addition

to latency, Sherr et al. [79] include measurements of jitter and

packet loss when selecting relays.

Wang et al. [87] opportunistically selects relays with low

latency to construct circuits that avoid congested relays.

NavigaTor [9] applies a similar strategy to Wang et al. [87]

and demonstrates improved performance by using latency

(specifically round-trip time) to discard slow Tor circuits.

PredicTor [16] avoids the overhead of constructing then

discarding multiple circuits by using a random forest classifier

trained on Tor performance data to predict the performance

of a circuit prior to building it. CLAPS (CLient Aware Path

Selection) [74] solves a weight-optimization problem to ensure

a strict bound on anonymity degradation when selecting

location-biased circuits.

There additionally exists a large body of work on the security

implications of location awareness in path selection as this can

make Tor clients more identifiable by creating a correlation

between their geographic location and the relays chosen for

their circuit [12,14,36,60,61,74,85,86]. As shown in Section V,

ShorTor does not share this problem and is able to reduce

latency for Tor clients without the security pitfalls of location-

aware circuit selection techniques.

VII. DISCUSSION

Other sources of delay in Tor: The type of overhead

that ShorTor addresses is not the largest source of delay

in Tor. Limited congestion control [6,32], under-optimized

multiplexing of circuits on TCP connections [17,18], and high

queuing delays [43,44,46] are likely larger contributors to

latency in Tor than suboptimal BGP routes. Despite this, we

believe ShorTor to be of interest. The source of delays addressed

by ShorTor and the techniques applied are both completely

independent of other delays in Tor. Because of this, the decrease

in latency provided by ShorTor will trivially stack with any

future improvements to congestion control, circuit multiplexing,

or queueing. As such, we believe ShorTor to be a valuable

contribution to improving the latency of Tor connections.

Compatibility with security-focused path selection:
ShorTor is also fully compatible with any modifications to

Tor’s path selection algorithm. Prior work has shown that

existing proposals, overviewed briefly in Section VI, suffer from

poor load balancing and non-uniform client behavior, hurting

performance and client anonymity [12,14,36,60,61,74,85,86].

However, this does not preclude some future path selection

proposal from improving upon Tor’s current algorithm. In

this case, ShorTor is again agnostic to the choice of the

path selection algorithm and would require no modification to

continue improving latency on top of the new algorithm.

Generality: While we apply multi-hop overlay routing to

Tor specifically, we note that it is a general purpose technique.

Evaluating its effectiveness for other relatively small scale,

distributed communication networks is an interesting direction

for future work. However, as shown by prior work [75] and

confirmed here for Tor, accurate evaluation of multi-hop overlay

routing cannot be done with general purpose latency data and

requires measurements from the specific network involved.

VIII. CONCLUSION

We presented ShorTor, an incrementally-deployable protocol

for improving the latency of Tor’s connections. We evaluated

the performance and security of ShorTor, demonstrating that

it provides substantial improvements to tail latencies on Tor

circuits, with minimal impact to security. As part of our

evaluation we collected a dataset of pairwise latencies between

the thousand most popular Tor relays. This dataset allowed

us to determine the reduction in latency ShorTor provides

to Tor circuits directly without relying on simulation or

approximated data. Finally, while we proposed and evaluated

ShorTor specifically for Tor, the protocol is general and has

foreseeable applications to other distributed communication

networks.

IX. ACKNOWLEDGEMENTS

We would like to thank Arthur Berger for invaluable

suggestions and discussion surrounding internet routing, Frank

Cangialosi for conversations about Ting and tips on measuring

the Tor network, and Anish Athalye for his ideas around

evaluating page load times and feedback on our security

analysis. We are also grateful to the Tor community for their

support of this project and, in particular, Roger Dingledine,

Georg Koppen, and Tariq Elahi for extensive advice related to

running our experiments.

141946



REFERENCES

[1] Source code for ShorTor measurement infrastructure and

MaTor security analysis. https://github.com/sachaservan/

ShorTor.

[2] RIPE Atlas. https://atlas.ripe.net/, 2021. Accessed

December 2021.

[3] Akamai. Content delivery networks — what is a

CDN? https://www.akamai.com/our-thinking/cdn/what-is-

a-cdn, 2021. Accessed December 2021.

[4] Akamai. SureRoute. https://developer.akamai.com/article/

sureroute, 2021. Accessed December 2021.

[5] Masoud Akhoondi, Curtis Yu, and Harsha V Madhyastha.

LASTor: A low-latency AS-aware Tor client. In 2012
IEEE Symposium on Security and Privacy, pages 476–490.

IEEE, 2012.

[6] Mashael AlSabah, Kevin Bauer, Ian Goldberg, Dirk Grun-

wald, Damon McCoy, Stefan Savage, and Geoffrey M.

Voelker. DefenestraTor: Throwing out windows in Tor.
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APPENDIX A

EXTENDED MATOR PLOTS

In this section we provide additional data from our MATOR

analysis described in Section V-C. We refer to Section V for

details of the analysis and results.

Fig. 11: Extended experiments for the anonymity impact of ShorTor.
Anonymity impact of ShorTor, compared with baseline Tor (client-
independent) and LASTor (dependent on client location) path selection.
Each plot shows sender (SA), recipient (RA), and relationship (REL)
anonymity (Definition V.1) for a different adversarial relay corruption
strategy. Shaded region represents the difference in the MATOR-
computed anonymity bounds with and without ShorTor. “FVEY”
refers to “Five Eyes” intelligence alliance member countries. Under
ANoA, ShorTor affects all anonymity notions for LASTor, though not
baseline Tor.

APPENDIX B

EXTENDED INTEGRATION WITH TOR

Section III-C covers the high-level design decisions we made

for ShorTor to support integration with Tor. Here, we provide

specific details on the necessary modifications and extensions

which are required to integrate ShorTor with Tor. ShorTor has

three primary components not present in baseline Tor: (1) on-

demand data races, (2) periodic sharing of latency information,

and (3) a separate data path for via traffic. We design these

components to be minimal extensions to Tor’s existing protocol.

A. Data Races

In ShorTor, data races represent the majority of required

modifications. To successfully conduct a data race for traffic on

a circuit, relays must: (1) recognize data race traffic as separate

from steady state traffic, (2) decide when a race should be

conducted while observing appropriate backoff parameters, (3)

interpret the new latency tables to discover potential vias, and

(4) update routing information to include vias.

We now describe how these four requirements can be

implemented into Tor relay logic.

(1) can be achieved using the existing CMD field in Tor’s cell

header (see Figure 4). By introducing a new CMD value

to indicate that traffic is part of a data race, both vias and

circuit relays can immediately recognize (and potentially

drop) race traffic with minimal processing. Importantly,

using the CMD field allows ShorTor to conduct data races

without altering the content of the cell. Because of this,

data race cells are simply normal cells from a client’s

traffic stream and clients will see no interruption or delay

while the race is run.

(2) is described in Section III-B and Section III-C. The only

additional detail is that this process will need to tie into the

queuing architecture shown in Figure 5 such that, when a

data race is to be conducted for a circuit, the next cell out

of its queue will be duplicated, have its header modified

according to Figure 4, and have the copy rerouted to each

of the vias in the race prior to reaching the output buffer.

This is due to the fact that, as the cells are now going

to different destinations, they will also be on different

TCP/TLS connections and must be sent to the appropriate

output buffer.

(3) is a simple matter of reading the latest latency table and

selecting the vias with the lowest recorded latencies to

participate in the race.

(4) is handled by a new field for the ViaID in Tor’s

routing table and the new header information in Tor cells

containing the IDs of the two adjacent circuit relays (see

Figure 4). This information allows the via relay and both

adjacent circuit relays to recognize which circuit a traffic

stream is from (and, consequently, where it should be

routed) even when the traffic stream arrives on a different

TCP/TLS connection than is usual for the circuit (i.e.,

arrives through a via, not from the previous circuit relay).
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B. Latency Tables
Maintaining and disseminating up to date latency information

is a simple process detailed in Protocol 2 presented in Section

III-B. Unlike data races, it can be run entirely independently

from the main Tor protocol and does not involve any circuit

traffic. As such, it requires no actual integration with the Tor

protocol, but is simply an entirely separate functionality run by

Tor relays. The table of latency information produced as part

of this process is accessed to inform the selection of candidate

vias for a data race, but is not otherwise involved and, in

particular, is not used during the steady-state of routing traffic

through vias.

C. Data Path for Via Traffic
The data path for via traffic is almost identical to that of

regular, non-via, Tor traffic and follows the queuing architecture

of baseline Tor as shown in Figure 5. The two differences

are that traffic is not onion encrypted/decrypted while being

forwarded by a via and that via traffic is considered lower

priority than circuit traffic. Via traffic, like data races, can

utilize the CMD field in the cell header to identify itself as soon

as the TLS layer has been decrpyted. This lets the via relay

know that it is not expected to operate on the onion encryption

layer (and does not have the keys necessary to do so) and that

it should send the cell directly to the appropriate queue instead.

Finally, while Tor already prioritizes browsing traffic over bulk

download traffic, ShorTor requires a new priority level for via

traffic that is below that of circuit traffic. This priority level is

applied when cells are dequeued to be scheduled to the output

buffers. Deprioritizing via traffic is necessary to ensure that it

never outcompetes circuit traffic sharing the same relay (see

paragraph in Section III-C on load balancing and fairness).
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