
Using Throughput-Centric Byzantine Broadcast
to Tolerate Malicious Majority in Blockchains

Ruomu Hou
National University of Singapore

houruomu@comp.nus.edu.sg

Haifeng Yu
National University of Singapore

haifeng@comp.nus.edu.sg

Prateek Saxena
National University of Singapore

prateeks@comp.nus.edu.sg

Abstract—Fault tolerance of a blockchain is often character-
ized by the fraction f of “adversarial power” that it can tolerate
in the system. Despite the fast progress in blockchain designs in
recent years, existing blockchain systems can still only tolerate f
below 0.5. Can practically usable blockchains tolerate a malicious
majority, i.e., f above 0.5?

This work presents a positive answer to this question. We first
note that the well-known impossibility of byzantine consensus
for f above 0.5 does not carry over to blockchains. To tolerate
f above 0.5, we use byzantine broadcast, instead of byzantine
consensus, as the core of the blockchain. A major obstacle in
doing so, however, is that the resulting blockchain may have
extremely low throughput. To overcome this central technical
challenge, we propose a novel byzantine broadcast protocol
OVERLAYBB, that can tolerate f above 0.5 while achieving
good throughput. Using OVERLAYBB as the core, we present
the design, implementation, and evaluation of a novel Proof-of-
Stake blockchain called BCUBE. BCUBE can tolerate a malicious
majority, while achieving practically usable transaction through-
put and confirmation latency in our experiments with 10000
nodes and under f = 0.7. To our knowledge, BCUBE is the first
blockchain that can achieve such properties.

I. INTRODUCTION

Fault tolerance is a property of central importance in
modern distributed systems such as blockchains. Fault toler-
ance is often characterized by the fraction f of “adversarial
power” that a system can tolerate. Here the “adversarial
power” may correspond to i) malicious nodes in permissioned
blockchains, ii) adversarially-controlled computational power
in Proof-of-Work-based permissionless blockchains, or iii)
adversarially-controlled stake in Proof-of-Stake-based permis-
sionless blockchains. Bitcoin’s consensus protocol, invented
over a decade ago, can tolerate f below 1

2 . While subsequent
blockchain systems (e.g., [1], [3], [7], [11], [16], [19], [21],
[33], [35]) have achieved significantly better performance than
Bitcoin, all of them still can only tolerate f below 1

2 , or
sometimes even lower. This is regardless of whether these
designs are for permissioned systems, or for permissionless
systems using Proof-of-Work/Proof-of-Stake.

There are growing desires, however, for blockchains to
tolerate f ≥ 1

2 . For example, there have been double-spending
attacks on public blockchains, where malicious actors tem-
porarily control more than half of the adversarial power in
the network [12], [24], [27], [28]. Similarly, it has been
highlighted that a few centralized miners control more than
half of the power in many Proof-of-Work and Proof-of-Stake
blockchains [20].

One reason why blockchains today cannot tolerate f ≥ 1
2 is

that they often build upon byzantine consensus [22]. Byzantine
consensus is a one-shot game — among other things, it
requires that if honest nodes all have the same proposal for the
next block, then they must all decide on that block, instead of
on some adversarially-chosen block. Such requirement1 makes
it impossible to tolerate f ≥ 1

2 . A blockchain, on the other
hand, is a continuous process where usually each block in
the distributed ledger is proposed by a random proposer. It
is acceptable for the block to be adversarially-chosen, if the
proposer happens to be malicious. Hence impossibility results
on byzantine consensus under f ≥ 1

2 do not necessarily carry
over to blockchains.

Byzantine broadcast. In our pursuit of blockchains that can
tolerate f ≥ 1

2 , we have revisited various classical primitives.
We eventually focus on one such primitive — byzantine broad-
cast [6], [8], [9], [14], [25], [31], [32]. In byzantine broadcast,
there is a single publicly known broadcaster that broadcasts
an object (e.g., a block in blockchain) to all nodes. Some
of the nodes, including the broadcaster, may be malicious. A
byzantine broadcast protocol guarantees:

• All honest (i.e., non-malicious) nodes eventually output
the same object (i.e., agreement). This object is allowed
to be a special null object.

• If the broadcaster is honest, all honest nodes must output
the object broadcast by the broadcaster.

Byzantine broadcast is closely related to byzantine consensus,
but crucially differs from it — in particular, byzantine broad-
cast is solvable in synchronous systems for all f < 1. Starting
from now on, this paper will only be concerned with byzantine
broadcast protocols that can tolerate f ≥ 1

2 .
While rarely mentioned in literature, byzantine broadcast

can be used [26] to build blockchains. In particular, if we
use a byzantine broadcast protocol that can tolerate f ≥ 1

2 ,
then the resulting blockchain will immediately be able to
tolerate f ≥ 1

2 as well. But at the same time, the resulting
blockchain’s throughput will also inherit from the throughput
of the byzantine broadcast protocol. This turns out to be the
major obstacle, because existing byzantine broadcast proto-
cols [6], [8], [9], [14], [25], [31], [32] seriously fall short of
providing acceptable throughput, as shown next.

1A similar requirement has led to the recent impossibility result in [10].

1263

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Ruomu Hou. Under license to IEEE.
DOI 10.1109/SP46214.2022.00002

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

17

Throughput of existing byzantine broadcast protocols. Let
us clearly define throughput. Imagine that each node has B
available bandwidth, as provided by the deployment environ-
ment. Under such a constraint, let x be the total number of bits
that a byzantine broadcast protocol can broadcast within a time
period y. We define the protocol’s throughput to be T = x/y,
and define the normalized throughput to be R = T/B. We
also call R as the throughput-to-bandwidth ratio or TTB
ratio. This ratio essentially serves to isolate the inherent
merit of the protocol from the goodness of the deployment
environment, since the throughput achievable by a protocol
naturally increases when deployed in a better environment
offering higher B. Obviously, R is always between 0 and 1,
and larger is better.

Existing byzantine broadcast protocols unfortunately have
rather low TTB ratios. This is perhaps not surprising, since
throughput or TTB ratio has not been explicitly considered
in prior research on byzantine broadcast.2 For example, the
Dolev-Strong protocol [8] and its variant [31] have R < 1

wfn
(see analysis in Section III), where n is the total number of
nodes and w is the degree of a node in the overlay network. For
n = 10000 and w = 40, the protocol has R < 3.6×10−6 when
f = 0.7. If every node has 20Mbps available bandwidth, then
the protocol’s throughput will be less than 0.072Kbps, even if
we ignore all other overheads in implementation. A blockchain
built upon such a protocol will also have a throughput of
less than 0.072Kbps, which is practically unusable. As an-
other example, in our experiments, the state-of-the-art design
recently proposed by Chan et al. [6] achieves a throughput of
only about 0.45Kbps under 20Mbps available bandwidth. See
Section III and IX for more discussions on existing protocols.

Our OVERLAYBB protocol. As the first contribution of
this paper, we propose a novel byzantine broadcast protocol
called OVERLAYBB. OVERLAYBB is particularly suitable for
large-scale systems where nodes communicate via a multi-
hop overlay. OVERLAYBB achieves R = Θ(1

w), by using
fragmentation, proper delay/compensation in fragment prop-
agation, and other techniques. Here w is the degree of the
nodes in the overlay. For example, if the overlay is a random
graph, then w can be just O(log n). This Θ(1

w) TTB ratio
is significantly better than existing protocols. (We show later
that OVERLAYBB achieves a throughput of roughly 163Kbps
under 20Mbps available bandwidth.)

From byzantine broadcast to blockchain. As the second
contribution of this paper, we present the design, implemen-
tation, and evaluation of a novel Proof-of-Stake blockchain
called BCUBE (i.e., Byzantine Broadcast-based Blockchain, or
B3). Using OVERLAYBB as its core, BCUBE can tolerate f ≥
1
2 , while achieving practically usable transaction throughput

2Prior works have considered communication complexity (CC), which is
the total number of bits sent by all honest nodes. But CC does not map to
throughput or TTB ratio. For example, some protocols [6], [8], [25] require a
node to send many bits in a few “busy” rounds, and nothing in other rounds.
(For a given node, the adversary decides which rounds are “busy” for that
node.) While such protocols may have low CC, the deployment environment
still needs to provision for the high bandwidth need of those “busy” rounds.

and confirmation latency. Specifically, we have implemented a
prototype of BCUBE, and evaluated its performance, with up
to 10000 nodes and under similar configurations as in prior
works [11], [33]. In our experiments with f = 0.7 and a
target error probability of ε ≤ 2−30, BCUBE achieves 163Kbps
throughput, with one 2MB block generated about every 98
seconds, and has a transaction confirmation latency of less
than 6 hours.

Such performance of BCUBE is certainly not on par with
blockchains that only tolerate f < 1

2 . But BCUBE’s throughput
and latency are nevertheless practically usable: As a reference
point, Bitcoin’s throughput is about 14Kbps, with one 1MB
block generated about every 600 seconds. Bitcoin entails a
confirmation latency of about 9.3 hours,3 based on the state-
of-the-art analysis [17], to achieve ε ≤ 2−30 under f = 0.25.

To our knowledge, BCUBE is the very first blockchain that
can tolerate f ≥ 1

2 , while achieving practically usable through-
put and latency. There are only a few prior approaches [6],
[26] for designing blockchains with f ≥ 1

2 , which are all
based on byzantine broadcast. The throughput achieved by
those approaches (i.e., no more than 0.45Kbps under same
setting as BCUBE) is far from practically usable. Furthermore,
all those prior works are purely theoretical, ignore various
practical issues, and provide no implementation.
Roadmap. The next section defines our system/attack model.
Section III provides some background. Section IV and V
describe the design of OVERLAYBB. Section VI presents the
design of BCUBE. Section VII gives the security analysis of
OVERLAYBB and BCUBE. Section VIII presents the imple-
mentation and evaluation of BCUBE.

II. SYSTEM MODEL AND ATTACK MODEL

We model hash functions as random oracles. We assume
that some initial trusted setup provides a genesis block, which
contains an unbiased random beacon to be used in the very
first epoch. This is a typical assumption in Proof-of-Stake
blockchains (e.g., [7], [11]).
Nodes and stakes/coins. We consider a permissionless set-
ting (i.e., similar to Algorand [11]), without PKI or initial
trusted setup for binding nodes to identities. Each node in
the system holds a locally-generated public-private key pair,
and the public key is viewed as the node’s id. Each node
can either be honest or malicious. The malicious nodes are
fully byzantine, and may deviate arbitrarily from the protocol.
They may also arbitrarily collude, and we view them as all
being controlled by the adversary. We allow the adversary
to be mildly-adaptive [7], [16], [35] — for example, it takes
multiple epochs for the adversary to adaptively corrupt a node.

We rely on Proof-of-Stake (PoS) [7], [11], [16] for Sybil
defense in our permissionless setting: We assume that there are

3Based on the formula from [17], to ensure that the probability of the
adversary (under all possible attack strategies) reverting a block is at most
2−30 in Bitcoin, the block needs to be at least 56 blocks deep in the
blockchain. Given Bitcoin’s 10-minute inter-block time, this translates to 9.3
hours. The well-known “6 blocks deep” rule of thumb in Bitcoin, and the
corresponding 1-hour confirmation latency, would only give ε ≈ 0.05 [17]
under f = 0.25.

21264

some stakes (or coins) in the system, where the total number
of coins may change over time. At any point of time, each coin
has an owner, which is the node holding that coin. Again, the
owner may change over time. Information regarding which
nodes hold which coins is stored in the blockchain itself, and
is publicly known. We assume that at any point of time, at
most f fraction of the stakes/coins in the system are owned
by malicious nodes, where f is some constant no larger than
0.99. (Our experiments mainly consider f = 0.7.) Sometimes
as a stepping stone, we also consider a simplified permissioned
setting with exactly n nodes, where we use f to denote the
fraction of malicious nodes.

To simplify periodic beacon generation, BCUBE further re-
lies on a weak Proof-of-Work (PoW) assumption: We assume
that the adversary’s computational power is at most 100 times
of the aggregate computational power of the honest nodes.
This assumption is separate from and independent of the
earlier f threshold. (If needed, this “100” value can be further
increased without impacting security, but at the cost of lower
performance.) Note that our assumption differs from PoW-
based blockchains, whose security depends on the adversary
having less computational power than the honest nodes.

Communication. We assume that all the honest nodes form a
connected overlay network — this is a typical assumption in
large-scale blockchain systems (e.g., [11]). Consider any two
neighboring honest nodes A and B in the overlay. It will be
convenient to view the undirected edge between A and B as
two directed edges in two directions. With respect to some δ1
value, we say that the directed edge from A to B is good if a
message sent by A can reach (with proper retries) B within δ1
time, as long as the message is relatively small (e.g, ≤ 10KB).
Otherwise the edge is bad. In general, under reasonably large
δ1 (e.g., δ1 = 10 seconds), one would expect that while some
edges may occasionally be bad, most edges among the honest
nodes will be good. Hence we assume the honest subgraph
(i.e., the subgraph containing all the honest nodes and all the
good edges) to be connected. We use d to denote an upper
bound on the diameter of this honest subgraph.

Partitioning attacks [2], [30] can cause our assumption to
be violated in general. But such attacks apply to many other
existing blockchains as well (e.g., [2], [16], [21], [23], [30],
[33]), despite that all these existing designs can only tolerate
f < 1

2 . How to defend against such partitioning attacks is an
active research topic by itself, and is beyond the scope of this
paper: Possible defenses include hiding the overlay network
structure [4], diversifying neighbors’ profile [13], or preserving
neighbors that provide fresher data [30].

We assume that nodes have loosely synchronized clocks, so
that the clock readings on any two nodes do not differ by more
than δ2 (e.g., δ2 = 2 second). We will describe a byzantine
broadcast execution as a sequence of rounds, and each node
uses its local clock to keep track of the beginning of this
execution as well as the current round number. We allow the
starting time of each round on different nodes to be somewhat
misaligned due to the δ2 clock error. Each round has a fixed

TABLE I: Key notations.

n total number of nodes (for permissioned setting)
m number of nodes (for permissioned setting) in the committee,

or number of coins (for PoS setting) held by committee members
f fraction of malicious nodes (for permissioned setting),

or fraction of coins (for PoS setting) held by malicious nodes
d upper bound on diameter of subgraph containing honest nodes/edges
w maximum number of neighbors (both honest neighbors

and malicious neighbors) that an honest node may have
ε error probability
δ round duration
l size of object to be broadcast in byzantine broadcast protocol
s total number of fragments (of the object to be broadcast)

duration δ = δ1 + δ2 (e.g., δ = 12 seconds). We assume that
CPU processing delay is negligible, as compared to δ. At the
beginning of each round, a node receives messages, processes
them, and then sends new messages. Since δ = δ1 + δ2, a
message sent in round i along a good edge is received by
the beginning of round i + 1 on the receiver, as long as the
message is relatively small (e.g, ≤ 10KB).

Problem definition. We aim to design a blockchain sys-
tem where each node maintains an append-only sequence of
blocks. (BCUBE has no forks, and all blocks in this sequence
are considered as “confirmed”.) Each block may contain, for
example, a list of transactions. The blockchain should achieve
standard safety and liveness guarantees, despite the byzantine
behavior of all the malicious nodes. Roughly speaking, safety
means that the sequences on all honest nodes are consistent
with each other, while liveness means that the sequence on
each honest node keeps growing over time. We defer the exact
definitions to Section VII.

Notations. Table I summarizes the notations so far, and also
defines several other notations.

III. BACKGROUND ON BYZANTINE BROADCAST

We review two existing byzantine broadcast protocols [6],
[8], which OVERLAYBB builds upon. To help understanding,
we describe them in a simple permissioned setting with n
nodes, out of which fn are malicious. We will first assume
a clique topology among the n nodes, and then generalize to
arbitrary multi-hop topology.

A. Dolev-Strong Protocol [8]

Clique topology. In round 0 of this protocol, the broadcaster
sends the object to all nodes, with its own signature attached.
Upon receiving an object in round t, if the object has less than
t signatures attached (including the broadcaster’s signature), a
node drops the object. Otherwise the node accepts this object,
and then adds its own signature to the object and forwards
the object to all other nodes. Once an object is accepted, a
node will not forward the object again in the future. A node
may accept more than one object, when the broadcaster is
malicious. At the end of round fn + 1, a node outputs the
special null object ⊥, if it has accepted more than one object
(implying a conflict) or if it has accepted none. Otherwise it
outputs the (single) object accepted.

31265

The key intuition in this protocol is the following: When a
node B is about to forward/send an object, node B can safely
accept the object if B knows that its send will cause all other
honest nodes to accept this object (if they have not already
done so). This ensures that either all or none honest nodes
accept that object. Specifically in this protocol, if B receives
and then immediately forwards an object in round t ≤ fn,
then B is sure that all other honest nodes must receive and
accept this object in round t+1 ≤ fn+1, which is before the
end of the protocol. On the other hand, if B sends an object
in round fn+ 1, then other nodes will not receive the object
before the end of the execution. But in such a case, B must
have seen at least fn + 1 signatures on the object. One of
these must be from some honest node A, and A must have
previously already forwarded the object to all honest nodes.
Namely, A has already done the job for B.

The protocol comes with a further optimization: Once a
node has accepted two objects, it no longer accepts/forwards
more objects. Hence a node only sends at most two messages
throughout the execution. Agreement is still preserved: If one
honest node A accepts two objects, then another honest node
B must also accept two objects (which may be different from
what A accepts). Hence all honest nodes will output ⊥.

Multi-hop topology. The protocol naturally generalizes [8],
[31] to multi-hop topologies. The only modifications needed
are: i) the protocol now runs for fn+d rounds, and ii) a node
now only forwards an object to its (up to w) neighbors.

TTB ratio. Consider any honest node A. In the above protocol,
there are some rounds (potentially chosen by the adversary)
during which A needs to forward objects to all its neighbors.
Recall from Table I that l is the object size. Hence in each
of those rounds, A needs to send at least lw bits total. Under
the given bandwidth constraint B, each node has the capacity
to send at most Bδ bits in each round, where δ is the round
duration. Hence the maximum l the protocol can manage is
Bδ
w . The protocol has total fn+ d rounds. Since the protocol
manages to broadcast an object of size l = Bδ

w using total
(fn + d)δ time, we have T = l

(fn+d)δ and R = T/B =
l

(fn+d)δB ≤
Bδ/w

(fn+d)δB <
1

wfn .

B. Chan et al.’s Protocol [6]

Clique topology. Recently, Chan et al. [6]4 have proposed an
elegant design to substantially reduce the number of rounds in
the Dolev-Strong protocol. Chan et al.’s protocol first selects
a random committee of m nodes. Now the m committee
members can do byzantine broadcast among themselves, using
the Dolev-Strong protocol [8] while taking at most m rounds.
But it is not immediately clear how the remaining non-
committee members can decide. In particular, since a majority
of the committee members can be malicious, voting will not
work.

4Chan et al.’s original protocol [6] allows a fully-adaptive adversary, but
can only broadcast messages containing a single-bit. The version we describe
here is for mildly-adaptive adversaries and can broadcast multi-bit messages.

Chan et al. [6] overcomes this problem in the following
way. Consider one round in the Dolev-Strong protocol, where
one committee member A sends a message (containing the
object and signatures) to all other committee members. Their
idea [6] is to replace this round with two rounds, so that A
sends the message to all the non-committee members first,
and then the non-committee members forward A’s message
(unchanged) to all the committee members. (Hence there
will be total 2m rounds.) This enables the non-committee
members to observe the communication originated from the
honest committee members. Before forwarding an object, a
non-committee member B can precisely predict (based on the
signatures on the object) whether the committee members,
upon receiving this object, will accept the object. If yes, B
accepts the object before forwarding it.
Multi-hop topology. Chan et al.’s protocol trivially generalizes
to a multi-hop topology, assuming that each node has sufficient
bandwidth to relay all messages. Specifically, whenever a node
needs to send messages to other nodes, it simply does a
multicast (i.e., flooding) on the multi-hop topology, taking d
rounds. Hence each of the 2m rounds in the clique setting
now becomes d rounds, and there are total 2dm rounds.

IV. DESIGN OF OVERLAYBB

Byzantine broadcast protocols are often not complex in
implementation, but their designs can be subtle. Because of
this, this section focuses on intuitions. We do not aim to
cover all possibilities, nor to rigorously argue for correctness
here. Later, Section V presents the complete pseudo-code of
OVERLAYBB, based on which Section VII provides formal
proof for correctness and analysis of the TTB ratio R. Such
an end-to-end proof is the only way to ultimately verify the
protocol’s correctness.

This section considers a multi-hop topology, but to help
understanding, we still assume the simple permissioned setting
with n nodes. Section V later generalizes to the PoS setting.

A. Avoid Relaying Unlimited Number of Objects

Chan et al.’s protocol [6] serves as a starting point of our
design. When used in multi-hop topologies, their protocol
relies on the implicit assumption that a node has sufficient
bandwidth to relay all possible multicast messages. This
section first shows that such an assumption can prevent the
protocol from guaranteeing agreement in practice, namely,
when B 6= ∞. We then propose a simple solution to fix this
problem. Section IV-B and IV-C later propose more techniques
to improve R, to eventually get OVERLAYBB.
Chan et al.’s protocol in multi-hop overlay. In a multi-hop
topology, each node in Chan et al.’s protocol simultaneously
plays two roles: First, a node is either a committee member or
a non-committee member. Second, a node is always a relaying
node in the overlay for the purpose of multicast, and it needs
to relay all multicast messages. Now a malicious broadcaster
can generate many objects, all with valid signatures from itself.
The malicious committee members can add further signatures
to these objects, and then multicast all these objects. Since

41266

there can be unlimited number of such objects, eventually
honest nodes will not have sufficient bandwidth to relay
all multicast messages. Some message x hence will not be
properly propagated to all nodes (in time). It is possible that
none of the other objects are eventually accepted by any honest
nodes, while the object in x is eventually accepted by some
honest nodes. Since the propagation of x was not properly
done, the object in x may not be accepted by other honest
nodes, which then violates agreement/correctness.

To gain deeper insight, it helps to see why this problem does
not exist when the protocol runs over a clique. In a clique, a
node only plays a single role of either a committee member or
a non-committee member. While a node also needs to forward
messages there, a node always first accepts an object before
it forwards the object. Throughout the execution, each node
accepts at most 2 objects, and hence sends/forwards at most 2
messages. This is regardless of how many objects are injected
by the malicious nodes. Now with multi-hop propagation, upon
receiving a certain object x, a relaying node B cannot tell
whether x will be accepted (despite B knowing an upper
bound d on the diameter of the network).5

Our observation. Our solution to the above problem will
be based on the following observation: When a node in the
overlay network relays an object, while it cannot predict
whether the object will be eventually accepted, the node can
nevertheless determine how “promising” it is for the object
to be accepted. Define a push to be the event of a node
sending/forwarding/relaying a certain object x, together with y
signatures on x, in a certain round t. Intuitively, smaller t and
larger y make it more likely for x to be later accepted. More
precisely, we assign each push a score of 2dy−t to summarize
how promising it is, based on the following intuition: Roughly
speaking, each signature gives the object an extra “lifespan”
of 2d rounds, and an object will be accepted as long as it
is received during its lifespan. The score 2dy − t is then the
residual “lifespan” when the push is done in round t. We call
a push with a higher score as a more promising push.

Now consider any node B, and all the pushes that B
has ever done. Conceptually, if all the other pushes in the
network are triggered either directly or indirectly by B’s
pushes, then we will have the following nice property: If an
object contained in a more promising push is eventually not
accepted, then no objects contained in less promising pushes
will ever be accepted. Similarly, two objects contained in two
pushes with the same score must have the same outcome:
They are either both accepted or both rejected. (Our proofs
later will formalize these properties, and also fully capture the
interactions among pushes done by different nodes.)

Our solution. With the above observation, let us proceed with
the design of OVERLAYBB. There may be many objects that

5The crux here is that B does not know whether x can reach all nodes in
time. One naive idea is for B to refuse relaying x when the “residual lifespan”
of x is less than d rounds. This does not work because other honest nodes will
do so as well, which in turn means that B needs to see a “residual lifespan”
of at least 2d rounds. This argument keeps going on without converging, from
requiring 2d to 3d, 4d, and so on.

a node B needs to forward in a certain round t. In our design,
node B simply chooses the 2 objects whose corresponding
pushes would be the most promising, and forwards those
2 objects (effectively “materializing” those 2 pushes). Tie-
breaking can be done arbitrarily. Note that since t is fixed
here, those will simply be the 2 objects with the most number
of signatures. (We nevertheless introduced the score of 2dy−t,
to facilitate later discussion.) If needed, to save storage space,
B can further discard all objects other than those 2 objects.

Some intuitions. Section VII will give formal correctness
proofs, but we provide some quick intuitions here. First, for-
warding 2 objects (instead of one) is necessary for correctness.
For example, consider the case where there would have been
2 objects eventually accepted, if every node had materialized
all possible pushes. Then forwarding only 1 object in each
round would lead to a wrong result. Second, forwarding 2
objects in each round is also sufficient for correctness. Namely,
not “materializing” the other less promising pushes will not
cause any problem: If at least one of these two objects are not
eventually accepted, then those less promising pushes would
not contribute to the acceptance of any additional objects
anyway. If both objects are accepted, recall from Section III-A
that we no longer care about other objects, since we already
have a conflict.

B. Fragmentation, Delay, and Compensation

Avoid forwarding in every round. The design in Sec-
tion IV-A requires a node to forward 2 objects potentially in
every round. For example, this may happen when a malicious
broadcaster injects 2 objects in each round, with objects in
later rounds being more promising. To further improve R, we
want to avoid forwarding objects in every round. We achieve
this by using two phases. The first phase uses the design
in Section IV-A to broadcast the hash of the object, where
a node forwards up to 2 hashes in every round (regardless
of how many hashes the adversary injects). At the end of
the first phase, the honest nodes will all agree on a certain
hash. The second phase uses the design in Section IV-A again
to broadcast the object itself. We will focus on improving
the second phase, since the bandwidth bottleneck will be in
the second phase. Given the agreed-upon hash, in the second
phase, each node now only needs to forward (once) a single
object that matches the hash, in one single round. We call that
single round as the “busy” round. Of course, each node may
still have many signatures (for the object) to forward. But we
leave that to Section IV-C.

Naive parallelism fails. We have explained that among the
2dm rounds in the second phase, each node has only one
“busy” round. Given this, a naive attempt to improve R is
to use simple parallelism. Namely, we break the l-size object
into 2dm fragments, build a Merkle tree with all the fragments
being the leaves, and add the Merkle proof to each fragment.
The first phase will now broadcast the Merkle root. The second
phase would then conceptually run 2dm parallel instances
of the protocol in Section IV-A, with one instance for each

51267

adversary
aligns busy

rounds

broadcast
instance

busy round

Fig. 1: Naive parallelism fails.

fragment. This seems to enable each node to fully utilize all
the bandwidth in the 2dm rounds, with one “busy” round from
each instance. Unfortunately, a malicious broadcaster controls
which round will be “busy” in each instance. It can thus align
all the “busy” rounds in all the instances, so that they all occur
at exactly the same time (Figure 1). This defeats this naive
design, regardless of how we arrange the 2dm instances.
Delay and compensation. Given that the adversary can choose
the “busy” round for each node, we might just as well start
all the parallel instances at the same time. Our first idea is
that if on any node A, the “busy” rounds of two instances
collide in round t, then A will send the fragment x1 in the
first instance in round t, and delay the sending of the fragment
x2 in the second instance to round t+ 1. When a neighbor B
processes x2, B should compensate, and process x2 as if x2

were received one round earlier. Intuitively, A is essentially
telling B that because A was busy sending x1 to B in round
t, the fragment x2 is late by one round and is only sent in
round t + 1. Since B sees that A indeed sent x1 in round t,
B should be willing to compensate.

If the overlay topology were a line topology, the above idea
would work. In a more general topology, however, things get
complicated. For example in Figure 2, node C1 sends x1 to A
in round t− 1, while C2 sends x1 and x2 to A in round t and
t+ 1, respectively. Then A will send x1 to B in round t, and
x2 to B in round t+ 2. Despite all nodes being honest in this
example, B sees a one-round “gap” between A’s forwarding of
x1 and forwarding of x2. Generalizing this example can make
this “gap” contain many rounds. In such a case, B cannot be
sure how much it should compensate — in fact, since A could
be maliciously and intentionally add the “gap”, B cannot even
decide whether to compensate at all.
A classic result and its intuition. Before presenting our solu-
tion, we revisit a classic result [29] on competing propagations
in networks. Let x1 through xs be the total s fragments of the
object. Let us focus on the instance for xs, while assuming
for now that all other instances already work. (Section IV-C
will show that the last instance is the key.) The propagation
of xs may get delayed due to competing fragments in other
instances.

The classic result in [29] tells us that xs can be delayed
by at most s− 1 rounds. In particular, this is not d× (s− 1)
rounds, and is regardless of how the nodes prioritize different
fragments during propagation. The intuition behind this result
is also important. The intuition is that if xs is delayed at
node A for y rounds, then A must have been busy sending
some other y fragments. Once A forwards those y fragments
before xs, downstream nodes will have y fewer remaining
opportunities to delay xs.

𝐶𝐶1

𝐶𝐶2
𝐴𝐴 𝐵𝐵

𝐶𝐶1

𝐶𝐶2
𝐴𝐴 𝐵𝐵

𝐶𝐶1

𝐶𝐶2
𝐴𝐴 𝐵𝐵

𝐶𝐶1

𝐶𝐶2
𝐴𝐴 𝐵𝐵

𝑥𝑥1

𝑥𝑥1

𝑥𝑥1

𝑥𝑥2

𝑥𝑥2

round 𝑡𝑡 − 1 round 𝑡𝑡 round 𝑡𝑡 + 1 round 𝑡𝑡 + 2

Fig. 2: B sees a gap (i.e., round t+1) between A’s forwardings.

Our solution. Guided by the above intuition, OVERLAYBB
does not have each node individually determine the amount of
compensation. Instead, we use a fixed amount of compensation
together with a forerunner rule during forwarding. Specifi-
cally, OVERLAYBB gives a fixed compensation of s−1 rounds
for xs: Whenever any node B is about to send xs in round t,
node B decides whether to accepted xs, as if xs were about to
be sent in round t− (s− 1). (If t− (s− 1) < 0, we view it as
0.) For example, if B is a committee member, then B checks
whether the number of signatures on xs is at least t−(s−1)

2d .
Next, OVERLAYBB requires nodes to follow a simple

forerunner rule during forwarding: Before a node sends xs, it
is required to have already sent all the other s− 1 fragments.
(Those s − 1 fragments can be sent in any ordering and in
any rounds, potentially with “gaps” among such forwardings.)
By the earlier intuition, doing so ensures that when xs is
sent and when the compensation of s − 1 is applied, all the
possible delays for xs have already occurred, and there will be
no further delays for xs during propagation. Note that since
an honest node needs to forward all fragments anyway, the
restriction from the forerunner rule has no negative effects on
honest nodes. If a malicious node sends xs to an honest node
A, without having sent all the other fragments in previous
rounds, then A simply ignores this message.

Quick summary. Section VII will give security analysis for
the above design. As a quick summary, the classic result from
[29] suggests that compensation of s−1 rounds will always be
sufficient. The intuition behind this classic result, together with
our forerunner rule, roughly suggests that if xs has already
experienced a delay of s − 1 round by the time that a node
B sends xs, then xs will not experience further delays in
downstream honest nodes. This ultimately implies that the key
invariant from the Dolev-Strong protocol [8] still holds: When
a node accepts xs, it knows that it can make all other nodes
accept xs within a 2d rounds.

C. Forwarding Signatures and Combining the Two Phases

Forwarding signatures. Section IV-B ignored the overhead
of sending the signatures. To minimize such overhead, OVER-
LAYBB only uses signatures on the last fragment xs. The
other fragments do not carry signatures, and there is no notion
of acceptance for each such fragment individually. The entire
object (i.e., all its s fragments) is accepted iff xs is accepted.
To intuitively see why this works, note that by our forerunner
rule, if xs is accepted, then the node must have previously
sent (and hence seen) all the other s− 1 fragments. Thus if a
node accepts xs, it must be able to reconstruct the object from
all the fragments. Furthermore, if all the honest nodes agree
on whether xs is accepted, they must also have agreement

61268

on whether the object is accepted. As a further optimization,
since xs is the only fragment carrying signatures, we want to
make xs as small as possible. To do so, the broadcaster simply
chooses a random nonce as xs, and the object is now split into
only s− 1 fragments.

Running the two phases in parallel. The design in Sec-
tion IV-B requires two sequential phases: the first phase for
the Merkle root and the second phase for the object itself. To
further improve performance, we next explain how to run these
two phases in parallel, using the following two modifications.

First, a node in the second phase needs to determine whether
a fragment is a leave of the Merkle tree with root r, where
r is agreed upon at the end of the first phase. When the two
phases run in parallel, such determination cannot be easily
made anymore. But recall from Section IV-A that every node
A assigns a score to every push that it has ever done. Such a
score captures how promising the push is. Now with the two
phases running concurrently, in the (concurrent) second phase,
node A simply uses the Merkle root rA contained in its most
promising push done so far in the first phase, as its current
guess for r. Our later proof will show that using such a guess
suffices to ensure the correctness of the protocol.

Second, let tA be the round during which A is about to
send the last fragment xs in the second phase. Previously in
Section IV-B, A would decide whether to accept xs based on
the value of tA. Now that the two phases run in parallel, we
need to adjust this part as well. Specifically, let tAroot be the
round during which A accepts r in the first phase, and define
tAfrag = max(tA, tAroot+s−1). When deciding whether to accept
xs, node A will make the decision as if xs were sent in round
tAfrag (instead of in round tA). The exact reasoning behind this
tAfrag term is slightly complex. For the lack of space, instead of
going through a lengthy example here, we directly prove the
correctness of such a design later.

V. COMPLETE PSEUDOCODE FOR OVERLAYBB

The PoS setting. Section IV assumed a permissioned setting.
The actual OVERLAYBB protocol is designed for a permis-
sionless PoS setting. With PoS, each node holds some coins
(i.e., stakes). For each OVERLAYBB invocation, Section VI
later will choose m random coins among all these coins. The
nodes holding those coins then become committee members
in OVERLAYBB. A node B may hold x ≥ 1 chosen coins. In
such a case, B’s signature will be viewed as being equivalent
to x signatures from x different committee members. We also
call x as the weight of B. Among the m chosen coins, the node
holding the first chosen coin will further be the broadcaster
in OVERLAYBB. The information regarding which coins are
chosen will be public — specifically, they are chosen by some
random beacon, which is periodically computed and released.
Hence all parties know the public keys (but not necessarily
IP addresses) of all the committee members, each time before
OVERLAYBB is invoked.6

6We will explain later that each epoch in BCUBE computes a beacon to
select the committees in the next epoch. Hence our design allows a mildly-

Signature aggregation. OVERLAYBB uses signature aggre-
gation to reduce signature size, as an optimization. One
suitable signature aggregation scheme is the MSP -pop scheme
using BLS381, which gives aggregate signatures of size only
96 bytes [5]. The MSP -pop scheme requires certain public
parameters, which can easily be published in the genesis block
of BCUBE. Each node can generate public keys independently
and non-interactively, as and when needed, based on these
public parameters. MSP -pop additionally requires a proof-of-
possession for each public key. In BCUBE, we simply require
a node to add a transaction containing this proof to the
blockchain, before it is allowed to be a committee member.
In each invocation of OVERLAYBB, the possible signers are
all the m committee members for that invocation. Hence for
each aggregate signature, an m-bit vector suffices to indicate
which of the m members are signers.

Consider any Merkle root x or fragment x. In our pseudo-
code, the set all sig keeps track of all the aggregate
signatures seen by a node so far. Note that all sig may
contain multiple aggregate signatures for x, since we do
not combine multiple aggregate signatures into one. We use
σ(x) to denote the aggregate signature for x whose signers
have the largest total weight, with arbitrary tie-breaking,
among all aggregate signatures in all sig. If there is no
aggregate signature for x in all sig, we define σ(x) = ∅.
We use |σ(x)| to denote the total weight of the signers in
σ(x). We use σ(x).add my sig() to denote the aggregate
signature obtained by adding the invoking node’s signature
to σ(x). If the invoking node is already a signer in σ(x), then
σ(x).add my sig() = σ(x).

Algorithm 1. Algorithm 1 is the main algorithm for OVER-
LAYBB, run by every node in the system. OVERLAYBB has
total 2dm+s rounds (Line 18 to 26). Here 2dm follows from
the discussion in Section III-B, while the s rounds comes from
the delay/compensation design in Section IV-B. Recall from
Section II that each node uses its local clock to keep track
of the beginning of the execution (not explicitly shown in the
pseudo-code) as well as the progress of each round (Line 25).

The two phases, one for the Merkle root and one for
the object itself, run in parallel by the design in Sec-
tion IV-C. In each round, a node first adds the various
received roots/fragments/signatures into the corresponding sets
(Line 19 to 23). Next Line 24 invokes ForwardMerkleRoot()
and ForwardFragment() to do the processing for the first and
second phase, respectively.

After all these 2dm + s rounds, a node outputs a non-⊥
object iff i) the first phase has accepted exactly one Merkle
root r, and ii) the second phase has accepted the last fragment
corresponding to this Merkle root r.

Algorithm 2. Algorithm 2 largely follows the design in
Section IV-A. In particular, Line 33 chooses two Merkle roots

adaptive adversary as in [7], [16], [35] — namely, if it takes multiple epochs
for the adversary to adaptively corrupt nodes, then the adversary will not be
able to cherry-pick the committee members to corrupt, after seeing the beacon
and before the committee members have done their work.

71269

Algorithm 1 OVERLAYBB (Parameters: m, d, s)

1: all root← ∅; // all received (Merkle) roots
2: all push← ∅; // all pushes done so far for roots
3: root accepted← ∅; // roots accepted so far
4: troot ←∞; // round number when first root accepted
5: all frag← ∅; // received fragments
6: frag accepted← false; // last fragment has been accepted?
7: all sig← ∅; // received signatures on roots and fragments
8:
9: if I am the broadcaster then

10: break the object (to be broadcast) into s− 1 fragments;
11: pick a random nonce as the last fragment (i.e., sth fragment);
12: let r be the Merkle root of all these s fragments;
13: add the Merkle proof into each fragment;
14: all root← all root ∪ {r};
15: all frag← all frag ∪ {the s fragments};
16: end if
17:
18: for t from 0 to 2dm+ s− 1 (both inclusive) do
19: receive messages from all neighbors;
20: discard those received Merkle roots whose aggregate signa-

tures do not contain the broascaster as a signer;
21: add received Merkle roots to all root;
22: add received fragments to all frag;
23: add received aggregate signatures to all sig;
24: ForwardMerkleRoot(); ForwardFragment();
25: wait until the current round t ends;
26: end for
27:
28: if (|root accepted| = 1) ∧ (frag accepted = true) then
29: return the object by combining the fragments (in all frag)

that correspond to the (single) Merkle root in root accepted;
// we will prove that there are exactly s such fragments

30: else return ⊥;
31: end if

Algorithm 2 ForwardMerkleRoot()
32: if |all root| ≤ 1 then top root← all root;
33: else top root← {r1, r2} such that |σ(r1)| ≥ |σ(r2)| ≥ |σ(r)|

for all r ∈ all root; // tie-breaking can be done arbitrarily
34: for each r ∈ top root do
35: if (I am in committee) and (2d|σ(r)| ≥ t) then
36: all sig← all sig ∪ {σ(r).add my sig()} ;
37: root accepted← root accepted ∪ {r};
38: troot ← min(troot, t);
39: end if
40: if (I am not in committee) and (2d|σ(r)| ≥ t+ d) then
41: root accepted← root accepted ∪ {r};
42: troot ← min(troot, t);
43: end if
44: send r and σ(r) to all my neighbors;
45: let p be the push corresponding to the above send;
46: p.score← 2d|σ(r)| − t;
47: all push← all push ∪ {p};
48: end for

with the largest total weight of signers, and Line 46 computes
the score of the push. At Line 35, a committee member accepts
a root r if the total weight of signers is at least d t2de. This
matches the intuition in Section III and IV-A, since each round
in Dolev-Strong protocol [8] corresponds to 2 rounds in Chan
et al.’s protocol [6] (under clique setting), which in turn map to
2d rounds in OverlayBB. Similarly, a non-committee member
accepts a root r if the total weight of signers is at least d t+d2d e

Algorithm 3 ForwardFragment()

49: if all push = ∅ then return;
50: let p ∈ all push be the push with largest p.score; // tie-

breaking can be done arbitrarily
51: let x1 through xs denote the s fragments corresponding to the

Merkle root in p; // I may or may not have received all of them
52:
53: if (there exists any i ∈ [1, s − 1] such that xi ∈ all frag and

I have not forwarded xi before) then
54: pick any such i and send xi to all my neighbors;
55: return;
56: end if
57:
58: if (xi ∈ all frag for all i ∈ [1, s]) then
59: tfrag ← max(t, troot + s− 1);
60: if (I am in committee) and (2d|σ(xs)| ≥ tfrag− (s−1)) then
61: all sig← all sig ∪ {σ(xs).add my sig()};
62: frag accepted← true;
63: end if
64: if (I am not in committee) and (2d|σ(xs)| ≥ tfrag−(s−1)+d)

then
65: frag accepted← true;
66: end if
67: send xs and σ(xs) to all my neighbors;
68: end if

— this simply means that within d rounds, the root r will
reach some committee member, and will be accepted by that
committee member.

Algorithm 3. Algorithm 3 corresponds to (one round of) the
second phase in Section IV-B. Section IV-B explained that
conceptually, the second phase uses one instance for each
fragment, with total s instances. But in each round, a node
only sends message for at most one instance. Algorithm 3
chooses that instance (implicitly) at Line 54 and 58, and then
processes only that single instance. Hence Algorithm 3 remains
single-threaded, despite that it actually implements s parallel
instances.

Line 50 follows the design in Section IV-C, and uses the
Merkle root contained in the most promising push as a guess
for the final accepted root. Line 53 to 56 follow the forerunner
rule in Section IV-B. Line 59 computes tfrag as discussed in
Section IV-C. Line 60 and 64 check whether to accept xs,
based on |σ(xs)|, tfrag, and the s−1 compensation as discussed
in Section IV-B. The actual decision rule is similar to Line 35
and Line 40.

VI. FROM BYZANTINE BROADCAST TO BLOCKCHAIN

So far we have presented our byzantine broadcast protocol,
OVERLAYBB. We now explain how to use OVERLAYBB to
build our blockchain, BCUBE.

Basic design. While largely neglected in the literature,
blockchains can be relatively easily built from byzantine
broadcast, in the following way. In a blockchain protocol,
every node aims to maintain an append-only sequence of
blocks, and all the sequences on all the honest nodes need to
be consistent with each other. For convenience, imagine that
there is a sequence of slots, which initially are all empty. The
nodes in the system invoke OVERLAYBB periodically (e.g.,

81270

every 98 seconds), and a node uses the return value from the
ith invocation of OVERLAYBB as the block for the ith slot.
For each invocation, the broadcaster is chosen randomly, who
assembles a block and then uses OVERLAYBB to disseminate
that block to all nodes. We say that a block/slot is confirmed
if its corresponding OVERLAYBB invocation has ended. Note
that since each OVERLAYBB invocation can take much longer
than 98 seconds, the (i + 1)th invocation will start before
the ith invocation ends. This effectively results in pipelined
invocations, and at any point of time, there can be many active
OVERLAYBB invocations. All these pipelined invocations can
be implemented efficiently: Our actual implementation will
simply use a single thread to loop through all the pipelined
invocations, and process them one by one. We also stagger the
round starting time of all these invocations, so that invocations
near the end of the processing loop start their rounds a bit later.

The above basic framework is already used in Pass and
Shi [26], which describes a theoretical design of a blockchain
using the Dolev-Strong protocol [8] (instead of OVERLAYBB).
BCUBE also follows this basic framework, but there are
several practical issues we need to overcome, as following.

Choosing broadcaster/committee. We use two independent
hash functions, hash1 and hash2, in BCUBE. The execution
of BCUBE is divided into epochs (e.g., 1 epoch = 1 day). In
each epoch i− 1, the nodes compute (explained later) a fresh
public random beacon, denoted as beaconi, to be used in
epoch i. Recall from Section II that the genesis block contains
an unbiased random beacon to be used in the very first epoch.
Hence the genesis block bootstraps this sequential process of
beacon generation.

We say that a slot/block is in an epoch if the starting time of
the corresponding OVERLAYBB invocation is in that epoch.
Note that the ending time may be in the next epoch. Let y
be the last block that has been confirmed by the beginning of
epoch i−1 (i.e., before the computation of beaconi starts). Let
the coin distribution D (i.e., which nodes hold which coins) be
the coin distribution immediately after block y (i.e., when we
apply all the transactions in blocks 1 through y). For the kth
slot in epoch i, every honest node uses hash1(k|beaconi) as
randomness to select m coins (with replacement) from D. The
holders (in D) of these coins then become the committee for
the OVERLAYBB invocation corresponding to that slot. The
holder of the first coin selected will be the broadcaster. Since
beaconi, k, and D are all public information in epoch i, all
honest nodes will select the same broadcaster/committee, if
their have the same sequences of blocks prior to epoch i.

Generating beacons: Overview. Beacon generation is a cen-
tral issue in PoS blockchains, and there have been a number
of prior approaches [7], [11], [16]. Some of these [11], [16]
do not work well under malicious majority. We build upon
the approach in [7]. Roughly speaking, they [7] observe that
the beacon is eventually only used to select a committee.
Assuming that a random oracle is used to select the com-
mittee based on the beacon, the committee will be bad (e.g.,
having no honest committee member) with only exponentially

slots

𝑇𝑇4𝑇𝑇3𝑇𝑇2 𝑇𝑇5𝑇𝑇1
9 × 60 min (6 × 60 − 2) min 2 min 9 × 60 min

combine
nonces to form

challenge

Compute the
beacon using
these blocks

solve weak
PoW in
[𝑇𝑇2,𝑇𝑇3]

flood PoW
solution in

[𝑇𝑇3,𝑇𝑇4]

Fig. 3: Generating the beacon in an epoch. The number of
slots in each portion is not to scale.

small probability. Hence a computationally-bounded adversary
simply will have a hard time finding a bad beacon, even if it
can choose any beacon it wants.

Directly adopting this idea in BCUBE does not lead to a
practical solution, since the number of beacons the adversary
can try is still huge. To make it work, we use a simple idea
of weak Proof-of-Work (weak PoW), so that generating a valid
beacon takes some computational effort. Recall that Section II
assumed that the adversary’s computational power is at most
100 times of the computational power of the honest nodes.

Generating beacons: Details. To facilitate beacon generation,
each block in BCUBE contains two additional fields: nonce
and candidate. The nonce field is just some uniformly
random bits locally generated by the broadcaster, who is also
the creator, of that block. A block is called an honest block if
its broadcaster/creator is an honest node.

Recall that the nodes generate beaconi during epoch i− 1.
Let T1 and T5 be the start and end time, respectively, of epoch
i− 1 (Figure 3). Let T2 be the time when the first τ slots in
epoch i − 1 have been confirmed. At time T2, all the nonce

values in these τ blocks are concatenated (not XOR-ed), and
used as the fresh challenge for the weak PoW in this epoch.
Here τ is chosen such that with high probability, there is at
least one honest block (and hence one honest nonce) among
those τ blocks. This ensures that the adversary cannot pre-
compute PoW solutions before the beginning of epoch i− 1.

The honest nodes will try solving the weak PoW, starting
from time T2 and until time T3, where T3 can be any value
no larger than T4 − dδ. Here T4 is the latest time such that
there are still τ slots (called candidate-holding slots) whose
OVERLAYBB invocations have not yet started at time T4, but
will end by time T5. To solve the weak PoW, a node needs to
find x such that hash2(challenge|x) has a certain number
of leading zeroes. We also call such x as a PoW solution.

At time T3, every node will flood/multicast whatever PoW
solution (if any) it has found. To avoid unnecessary bandwidth
consumption, each node only sends/relays the very first PoW
solution it finds/receives, and ignores all other PoW solutions.
Since all the honest nodes form a connected component, if
they collectively find at least one PoW solution by T3, then
every honest node B must see some PoW solution by T4. But
different honest nodes may see different PoW solutions.

The period from T4 to T5 serves to enable the honest nodes
to agree on one PoW solution. To achieve this, from time T4

to T5, whenever a node is chosen as the broadcaster, it sets the

91271

candidate field in its block to be the single PoW solution
that it previously sent/relayed, or null if it does not have
any. Finally, at time T5, a node examines all the τ candidate-
holding slots, and picks the first block with a candidate value
that is not null. It then uses hash2(challenge|candidate)
as beaconi. Note that most likely, this candidate is from
a malicious block and is set by the adversary. This is not a
problem — all we need is that i) the adversary do not have
too many candidates to choose from, and ii) the honest nodes
agree on this candidate.

If all the τ candidate-holding slots have candidate =
null, then a node will set beaconi to be beaconi−1, which
means that the system simply reuses the old beacon and the
corresponding old coin distribution D. Note that this can only
occur when either there is no honest block in the τ candidate-
holding slots (whose probability can be tuned by adjusting τ),
or the honest nodes have found no PoW solution. Our analysis
next will fully take into account all such possibilities.

VII. SECURITY ANALYSIS

This section analyses the security guarantees, or more
specifically, safety and liveness/throughput, of BCUBE.

A. Safety of BCUBE

Recall that in BCUBE, each node maintains an append-
only sequence of blocks. The ith block is simply the return
value from the ith invocation of OVERLAYBB. A node invokes
OVERLAYBB periodically (e.g., every 98 seconds), and each
invocation takes the same amount of time to complete. Hence
a node adds blocks, one by one, to the sequence.

Safety of BCUBE essentially means that for each i ≥ 1 and
after the ith invocation of OVERLAYBB returns, the ith block
on all honest nodes should always be the same. This is also
sometimes called the consistency or agreement property of
the blockchain. To eventually prove such safety guarantee of
BCUBE, the following lemma first summarizes the properties
of OVERLAYBB, whose proof is deferred to Appendix V:

Theorem 1. [guarantees of OVERLAYBB] In Algorithm 1, if
the committee has at least one honest member, then
• All honest nodes must return the same object.
• If the broadcaster is honest, then all honest nodes must

return the object broadcast by the broadcaster.
Finally, regardless of the committee, Algorithm 1 always
returns within 2dm+ s rounds.

Part of Theorem 1 requires the committee to contain some
honest member. Consider any slot in epoch i. Recall that the
committee for that slot is chosen using beaconi. This beaconi
is generated in epoch i−1, and may be biased and influenced
by the adversary: i) the adversary may find multiple PoW
solutions in epoch i− 1, and cherry-pick the one that it likes;
ii) if the τ broadcasters in the first τ slots of epoch i−1 are all
malicious, then the adversary can predict the PoW challenge
before time T1, and can pre-compute many PoW solutions;
iii) if the honest nodes fail to find any PoW solution in epoch
i−1 or if the τ broadcasters in the τ candidate-holding slots in

epoch i− 1 are all malicious, then beaconi−1 may be reused
as beaconi, and beaconi−1 may already be biased; iv) if the
committee for some slot in epoch i − 1 contains no honest
members, then the honest nodes may not even agree on the
PoW challenges and on what beaconi is.

We will later reason about the probabilities of various
random events, such as whether the committee in Theorem 1
contains some honest member. The adversary may influence
such probabilities, by for example, biasing the beacons as
explained above. The amount of such influence will depend
on what strategy the adversary uses. We will carefully ensure
that all our analyses (e.g., regarding the probabilities) hold,
even under the worst-case adversary that uses the optimal
strategy. In particular, our analyses will not make claims such
as Pr[X] = y, but only make claims such as Pr[X] ≤ y. This
just means that while Pr[X] may be different under different
strategies of the adversary, it can never be above y.

We now introduce some random variables. Consider all the
slots in the blockchain. Let ρ be the number of slots in each
epoch. For all integer j ∈ [1,∞) and all λ ≥ 1, let random
variable Zλ(j) denote the event that all of the following events
happen in the execution of BCUBE:
• For each slot j′ where 1 ≤ j′ ≤ j, the committee for that

slot contains at least one honest member.
• For each epoch i′ where 1 ≤ i′ ≤ d j+1

ρ e − 1, no more
than λ different PoW solutions are seen by honest nodes
in epoch i′.

For all λ ≥ 1, define Zλ(0) to be an event that always occurs.
Roughly speaking, Zλ(j) means that the execution is

“good” up to slot j. The first part in Zλ(j) corresponds to
the requirement in Theorem 1, and the second part serves to
facilitate later reasoning about Pr[Zλ(j)] via a recursion. In
this second part, the λ solutions “seen by honest nodes” can be
i) PoW solutions for epoch i′ found by honest nodes, ii) PoW
solutions for epoch i′ found by malicious nodes in epoch i′,
and iii) PoW solutions for epoch i′ found by malicious nodes
before epoch i′ started (if the PoW challenge is not fresh).

We now formally state the safety guarantee of BCUBE:

Theorem 2. [safety guaranteed in “good” execution] For
any given λ ≥ 1 and j ≥ 1, if Zλ(j) occurs, then for each
j′ where 1 ≤ j′ ≤ j, all honest nodes in BCUBE must
always have the same block in slot j′ once the OVERLAYBB
invocation for slot j′ has completed.

Proof. Consider any given j′ where 1 ≤ j′ ≤ j. Then Zλ(j)
occurring means that the committee for slot j′ has some honest
member. For any given node, the j′-th block in its blockchain
is simply the return value of the OVERLAYBB invocation on
that node for the j′-th slot. By Theorem 1, such return value
must be the same on all honest nodes.

Theorem 2 guarantees the safety of BCUBE in “good”
executions, but does not tell us the likelihood of the execution
being “good”. Theorem 3 next shows that conditioned upon the
execution being “good” up to slot j−1, with high probability,
it continues to be “good” up to slot j. Theorem 3 is based on

101272

the following parameterization of BCUBE: We set T1 through
T5 to match the respective durations in Figure 3, and we
set the weak PoW difficulty so that the honest nodes on
expectation obtain two PoW solutions from T2 to T3. Changing
these parameters will only affect the two constants “0.86”
and “807” in the theorem. Also, Theorem 3 assumes that the
adversary cannot adaptively corrupt honest nodes. Appendix I
will explain that the negative effect of adaptive corruption is
easily bounded, as long as the adaptivity is sufficiently “mild”.

Theorem 3. [“good” execution occurs w.h.p.] Consider any
constant f ≤ 0.99, and any positive integers λ and j. If
Pr[Zλ(j − 1)] > 0.9, then conditioned upon Zλ(j − 1), we
must have:7

Pr[Zλ(j)] ≥ 1− λfm

0.9(0.86−fτ) −
λfτ

0.9(0.86−fτ) −Pois(807, λ)

= 1− λe−Ω(m) − λe−Ω(τ) − e−Ω(λ)

Here Pois(807, λ) is defined to be Pr[X > λ], where X
follows a Poisson distribution with mean 807.

Proof. See Appendix I.

Asymptotically, the error probability in the above theorem is
exponentially small with respect to m, τ , and λ, which can all
be viewed as security parameters. As a concrete example, with
f = 0.7, λ = 1000, m ≥ 79, and τ ≥ 91, the above theorem
gives8 Pr[Zλ(j)] ≥ 1− 2−30. Hence we use a committee size
of m = 80 in our later experiments when f = 0.7.

B. Liveness and Throughput of BCUBE

For any given slot, liveness of BCUBE means that BCUBE
should always eventually confirm a block for that slot.
Throughput simply equals block size times the average number
of blocks confirmed per second. In some sense, throughput
captures the “rate of liveness”, in terms of the number of bits
confirmed per second. Note that each slot in BCUBE has a
corresponding OVERLAYBB invocation, which starts at a pre-
determined time. The following theorem shows that once the
invocation starts, within some well-defined time, we will have
a confirmed block in that slot:

Theorem 4. [liveness guaranteed] At most 2dm+ s rounds
(or (2dm + s)δ time with δ being the round duration) after
the start of the corresponding OVERLAYBB invocation for a
given slot in BCUBE, all honest nodes in BCUBE must have
a confirmed block in that slot.

Proof. Trivially follows from the fact that Algorithm 1 has
exactly 2dm+ s rounds.

Due to space constraint, we defer our throughput analysis
of BCUBE to Appendix II. Appendix II first derives an upper
bound on the total number of bits that each honest node
needs to send in each round. This upper bound will hold

7We use Poisson distribution to approximate binomial distributions here.
8Conceptually, Theorem 2 focuses on the error probability of a given

committee (i.e., for the jth slot) in BCUBE. This is consistent with other
analysis in the literature [18], [19], [21], [35]. If needed, one can easily
translate such guarantees to the entire execution.

under all possible strategies of the adversary and all possible
randomness outcomes. Using this upper bound, Appendix II
then shows that, under practical parameters, BCUBE has a
throughput of T ≈ B

2w = Θ(B
w) and a TTB ratio of R ≈ Θ(1

w).

VIII. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Implementation. We have implemented BCUBE in Go and
using TCP, except the following parts that have no effects
on our experimental results: Since beacon generation from
the weak PoW takes one epoch (e.g., one day), we did not
implement the weak PoW or propagate the PoW solutions.
(Propagating the PoW solutions has negligible cost, since
each node only sends/relays one 20-byte PoW solution in
each epoch.) We instead directly inject a random beacon. We
still properly determine various parameters, such as committee
size, based on our weak PoW design. We did not implement
transactions, and we fill each block with random bits. There
is no stake transfer, and each node always holds one stake
(coin). Finally, we will run up to 500 BCUBE nodes on
each physical machine. Due to CPU constraint, we did not
implement aggregate signature signing/validation, and also did
not implement secure hash function. We replace all of these
with dummy functions. Appendix III will show, via a careful
calculation, that regardless of the strategy of the adversary
and regardless of what messages the malicious nodes may
send to the honest nodes, under all settings in this section,
in every second each honest BCUBE node only needs to do
at most 152 aggregate signature signing/validation operations,
and at most 610 secure hashes (for Merkle proof verification).
Similarly, due to memory constraint, the 500 BCUBE nodes
on the same machine are implemented as separate threads in
one Go process, instead of as 500 separate Go processes. Of
course, these threads do not interact with each other via the
shared heap space.

Experimental settings. We run our experiments on 21 high-
end PCs, each with 10Gbps bandwidth, in a local-area net-
work. The first PC runs a single BCUBE node (with the maxi-
mum degree of 42 — see later). Each of the remaining 20 PCs
run 500 BCUBE nodes (with the last PC running 499 nodes),
so that each BCUBE node has about 20Mbps bandwidth.
Altogether, this gives us total 10000 BCUBE nodes. Running
one BCUBE node on the first PC allows us to directly measure
the total network traffic on the Ethernet interface of that PC
in every second, using the Linux bandwidth monitoring tool
bmon. Our measurement results in Appendix IV confirm that
a BCUBE node (even with the maximum degree of 42) indeed
never uses more than 20Mbps bandwidth.

We construct the overlay topology in a similar way as in
[11], [33]: Each node A keeps choosing random nodes to
establish (undirected) edges to, until it manages to establish
20 edges. To prevent A from forming edges to the other nodes
on the same machine as A and hence bypassing the network,
the random nodes are chosen from all the nodes on the other
machines. To avoid having too many neighbors, each node
stops accepting new edges after it has accepted 22 edges from

111273

162.8Kbps

5.87hours

0
2
4
6
8
10
12
14

0

50

100

150

200

250

300

la
te

nc
y

(h
ou

r)

th
ro

ug
hp

ut
 (

K
bp

s) throughput(Kbps) latency(hour)

f = 0.4 f = 0.5 f = 0.6 f = 0.7

Fig. 4: End-to-end performance of BCUBE.

other nodes. Hence the node degrees range from 20 to 42, with
the average being 40. We set δ1 = 10s, δ2 = 2s, and δ = 12s.
We assume that all edges are good in our experiments. While
we do not explicitly emulate wide-area message propagation
delay, we expect such delay to be typically well below our δ1
value of 10 seconds. (The messages in our experiments always
have size no larger than 10KB.) We observe that with the
above construction, the honest subgraph typically has diameter
of no more than 6 (even if we uniformly randomly choose 0.7
fraction of the nodes to be malicious). Hence we assume d = 6
in our experiments.

We consider f ranging from 0.4 to 0.7. Since BCUBE
focuses on malicious majority, we do not consider smaller f
values. Recall that larger s (i.e., number of fragments) gives
higher throughput but longer confirmation latency. To strike
a balance, our experiments always use s = 800. To achieve
an error probability ε ≤ 2−30, and following Theorem 3, we
use m = 35, 45, 55, and 80, for f = 0.4, 0.5, 0.6, and 0.7,
respectively. We use a block size of 2MB in BCUBE, and an
inter-block time of roughly 68, 74, 81, and 98 seconds for
f = 0.4, 0.5, 0.6, and 0.7, respectively. These parameters
are chosen such that based on the analysis in Appendix II,
each node consumes no more than about 90% of its 20Mbps
available bandwidth (even in the very worst-case). Note that
here we use the exact version of the analysis in Appendix II,
without applying any approximation such as Y ≈ wl

s .

End-to-end performance. Figure 4 plots BCUBE’s transac-
tion throughput and confirmation latency. As expected, the
confirmation latency increases with f , since larger f entails
a larger committee size (m) and in turn more rounds in
OVERLAYBB. Similarly, the transaction throughput decreases
with larger f since as each invocation of OVERLAYBB takes
longer to finish, we need to correspondingly increase the
inter-block time. This then decreases throughput. Nevertheless,
even when f = 0.7, BCUBE still achieves a throughput of
about 163Kbps and a confirmation latency of less than 6
hours. As explained in Section I where we used Bitcoin as
a reference point, such performance is already “practically
usable”: Bitcoin entails a confirmation latency of about 9.3
hours to achieve ε ≤ 2−30 under f = 0.25, and Bitcoin’s
throughput is about 14Kbps.

Compare with state-of-the-art design. There has been rather
limited amount of prior work on designing blockchains for
tolerating f ≥ 0.5. The current state-of-the-art approach is via

162.76Kbps

40.60
16.03 3.83 0.45Kbps

5.87hours

3.87 3.47 3.27 3.20hours

0

2

4

6

8

10

12

0

50

100

150

200

la
te

nc
y

(h
ou

r)

th
ro

ug
hp

ut
 (

K
bp

s) throughput(Kbps)
latency(hour)

Chan et.al’s
Protocols = 800

BCUBE
s = 200
BCUBE

s = 80
BCUBE

s = 20
BCUBE

Fig. 5: Comparison of our protocol BCUBE and the state-of-
the-art Chan et al.’s protocol [6].

Chan et al.’s protocol [6]. Strictly speaking, Chan et al.’s proto-
col is a byzantine broadcast protocol, instead of a blockchain.
But one could use Chan et al.’s protocol as the core to build
a blockchain, in the same way as we use OVERLAYBB to
build BCUBE. To enable a direct comparison, we take BCUBE,
and then replace OVERLAYBB with Chan et al.’s protocol (as
described in Section III), to obtain a blockchain based on their
protocol. We use our own implementation of their protocol,
since their work does not have implementation. Section IV-A
explained that when running on multi-hop topologies, Chan et
al.’s protocol would require infinite bandwidth if a malicious
broadcaster keeps injecting conflicting messages. Our experi-
ments for their protocol explicitly assume away this particular
adversarial behavior — doing so only makes the results for
their protocol better.

Due to space constraints, we only present our results on
Chan et al.’s protocol for f = 0.7. Specifically, we measure the
throughput/latency of Chan et al.’s protocol (i.e., the resulting
blockchain), under the same setting as our BCUBE, such as
12-second round duration, same topology, around 98-second
inter-block time, and a committee size of 80. We also use
pipelined invocations for Chan et al.’s protocol, in the same
way as we do in our protocol. We set the block size to be
such that in all cases (including all adversarial strategies and
randomness), the bandwidth consumed by each node is no
more than 90% of the 20Mbps available bandwidth, which
is the same constraint we imposed in the experiments of our
BCUBE. Under such a constraint, the maximum block size we
can use in the experiments for Chan et al.’s protocol is about
5.5KB.

Figure 5 compares the performance of our protocol and
Chan et al.’s protocol, as observed in our experiments. Chan
et al.’s protocol achieves a throughput of about 0.45Kbps,
while BCUBE achieves about 163Kbps, which is over 350
times higher. Such large improvement primarily comes from
the fact that BCUBE/OVERLAYBB breaks each block into
s − 1 = 799 fragments and can delay the forwarding of
individual fragments whenever needed, to avoid congestion
in any given round. With some over-simplification, Chan et
al.’s protocol can be viewed as having only a single fragment.
This is also why their protocol can only use 5.5KB block size,
while we can support 2MB block size.

Using many fragments in BCUBE does increase the latency:

121274

Chan et al.’s protocol has a latency of 3.20 hours, while ours
is 5.87 hours. To gain more insights, Figure 5 further presents
the performance of BCUBE when using fewer fragments, with
s = 200, s = 80, and s = 20. In particular, with s = 20
fragments, our latency is 3.27 hours, which is only 2.2% larger
than their latency. Yet with s = 20, we still achieve more than
850% of the throughput of their protocol, and can support
block size of about 47KB. Hence even if BCUBE is forced
to provide almost the same latency as Chan et al.’s protocol,
BCUBE still provides significantly higher throughput.

IX. RELATED WORKS

Byzantine broadcast. Being a classic distributed computing
problem, byzantine broadcast has been extensively studied. We
will only focus on byzantine broadcast protocols [6], [8], [9],
[14], [25], [31], [32] that can tolerate f ≥ 1

2 . Most of these are
actually theoretical designs without implementation. Section I
and III already discussed [6], [8], [31]. The protocols from [9],
[14], [25] all require direct point-to-point communication on
a clique, and hence does not work for multi-hop topologies.
Furthermore, these protocols are designed for a permissioned
setting with a fixed set of n nodes. The following neverthe-
less still reviews the techniques used in [9], [14], [25], and
characterizes their TTB ratios.

Hirt and Raykov’s protocol [14] breaks the object into n
fragments, each with l

n size, to optimize for communication
complexity. For each fragment and each node, they invoke
a smaller black-box byzantine broadcast protocol, resulting
in total n2 sequential invocations. Doing so enables later
invocations to benefit from information collected during earlier
invocations. The protocol takes total at least n2 rounds.
In some rounds, a node needs to send one fragment (i.e.,
l
n bits). Hence the maximum l the protocol can support,
given B available bandwidth, is l0 = Bδn. We thus have
T ≤ l0

n2δ = Bδn
n2δ = B

n and R = T/B ≤ 1
n . Ganesh and

Patra’s protocol [9] improves upon [14], and reduces the time
complexity to about n rounds. In [9], some rounds are used
for propagating the fragments. In each such round, a node may
need to send its fragment to up to n nodes, incurring n× l

n = l
bits of communication. Hence the maximum l the protocol can
support, given B available bandwidth, is l0 = Bδ. We thus
have T ≤ l0

nδ = B
n and R = T/B ≤ 1

n . In comparison to
[9], [14], OVERLAYBB also breaks an object into fragments,
but for a different purpose of improving throughput. Because
of this, most issues in OVERLAYBB such as delaying and
compensation are not relevant to [9], [14].

Nayak et al.’s protocol [25] further improves the communi-
cation complexity of [9]. In their protocol, instead of sending
the object to all other nodes directly, a node uses erasure
coding and sends one fragment to each of the n nodes. The
n nodes will then each forward its received fragment to all
other nodes. Each fragment has size at least l

n , and hence a
node needs to send at least n · ln = l bits in some rounds. The
maximum l the protocol can support is then l0 = Bδ. Their
protocol has total fn + 1 rounds. This leads to T ≤ l0

(fn+1)δ

and R = T/B < 1
fn . Their idea of using erasure coding is

largely orthogonal to the techniques in OVERLAYBB.
Finally, Wan et al. [32] recently propose a constant-round

byzantine broadcast protocol for tolerating f ≥ 1
2 . When

adapted to our multi-hop setting, their protocol takes at least
d rounds and in each round, a node may need to send the l-bit
object to its w neighbors. Hence the maximum l the protocol
can support is l0 = Bδ

w . In turn, R = T/B = l0
dδ/B = Θ(1

dw).
In comparison, our OVERLAYBB has R = Θ(1

w). More
importantly, their protocol further needs each node to send up
to n2 bits or more (for additional protocol information) to each
of its w neighbors. Hence their protocol achieves R = Θ(1

dw)
only when l reaches the order of wn2, which translates to
about 500MB under our experimental parameters. The block
size in blockchains is typically much smaller than 500MB.
Blockchains. Most existing blockchains (e.g., [1], [3], [7],
[11], [16], [19], [21], [33], [35]) today can only tolerate f < 1

2 .
By leveraging the “reputation” of the nodes, RepuCoin [34]
can tolerate temporary malicious majority — namely, tempo-
rary spikes in f (but not f ≥ 1

2 in general). While blockchains
can be built from byzantine broadcast, and hence tolerate
f ≥ 1

2 , this fact has been largely neglected in the literature.
Pass and Shi [26] mention the design of a blockchain based
on the Dolev-Strong protocol [8] for byzantine broadcast.
As explained in Section I, using the Dolev-Strong protocol
will result in rather low throughput (e.g., 0.072Kbps). Our
contribution is exactly to overcome this central issue. Note
that the main focus of [26] is not on tolerating f ≥ 1

2 , but on
providing fast transaction confirmation when a super majority
of the users are honest. In addition, their work is mainly
theoretical, with no implementation.

X. CONCLUSIONS

We have presented BCUBE, the very first blockchain that
can tolerate f ≥ 1

2 , while achieving practically usable transac-
tion throughput and latency. At the core of BCUBE is our novel
byzantine broadcast protocol OVERLAYBB, which can achieve
significantly better throughput than prior protocols. BCUBE
still leaves many questions unanswered. For example, can we
further improve its performance? Can we generalize beyond
Proof-of-Stake? Can we offer progressive confirmation, as in
Bitcoin, so that a transaction’s likelihood of being confirmed
grows with time, even before it is fully-confirmed? All these
are interesting open questions for future research.

ACKNOWLEDGMENT

We thank the anonymous IEEE Security & Privacy review-
ers for their detailed and helpful comments on this paper.

DISCLOSURE BY AUTHORS

Haifeng Yu is an Associate Professor in School of Comput-
ing, National University of Singapore (NUS). Haifeng is also
a Co-PI of NUS CRYSTAL Centre, which is a blockchain-
related research centre. Prateek Saxena is an Associate Pro-
fessor in School of Computing, NUS. Prateek is also a Co-
Director of NUS CRYSTAL Centre, and a co-founder of
Zilliqa Research, which is related to blockchains.

131275

REFERENCES

[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida:
A blockchain protocol based on reconfigurable byzantine consensus,” in
International Conference on Principles of Distributed Systems, 2017.

[2] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in IEEE Symposium on Security and
Privacy, 2017.

[3] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the Blockchain to Approach Physical Limits,” in CCS,
2019.

[4] S. Bojja Venkatakrishnan, G. Fanti, and P. Viswanath, “Dandelion:
Redesigning the bitcoin network for anonymity,” in Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 2017.

[5] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for
smaller blockchains,” in ASIACRYPT, 2018.

[6] T.-H. H. Chan, R. Pass, and E. Shi, “Sublinear-round byzantine agree-
ment under corrupt majority,” in IACR International Conference on
Public-Key Cryptography, 2020.

[7] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake,” in
International Conference on Financial Cryptography and Data Security,
2019.

[8] D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine
agreement,” SIAM Journal on Computing, vol. 12, no. 4, pp. 656–666,
1983.

[9] C. Ganesh and A. Patra, “Broadcast extensions with optimal communi-
cation and round complexity,” in PODC, 2016.

[10] J. Garay and A. Kiayias, “Sok: A consensus taxonomy in the blockchain
era,” in Cryptographers’ Track at the RSA Conference, 2020.

[11] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in SOSP, 2017.

[12] S. Haig, “Bitcoin cash could face 51% attack for $10,000 in
rented hashpower,” https://cointelegraph.com/news/bitcoin-cash-could-
face-51-attack-for-10-000-in-rented-hashpower, 2020.

[13] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in USENIX Security Symposium, 2015.

[14] M. Hirt and P. Raykov, “Multi-valued byzantine broadcast: The t < n
case,” in ASIACRYPT, 2014.

[15] R. Hou, H. Yu, and P. Saxena, “Using throughput-centric byzantine
broadcast to tolerate malicious majority in blockchains,” 2021, arxiv
preprint, arXiv:2108.01341.

[16] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in CRYPTO, 2017.

[17] L. Kiffer, R. Rajaraman, and abhi shelat, “A Better Method to Analyze
Blockchain Consistency,” in CCS, 2018.

[18] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in USENIX Security Symposium,
2016.

[19] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and B. Ford, “Om-
niLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding,” in
IEEE Symposium on Security and Privacy, 2018.

[20] Y. Kwon, J. Liu, M. Kim, D. Song, and Y. Kim, “Impossibility of full
decentralization in permissionless blockchains,” in ACM Conference on
Advances in Financial Technologies, 2019.

[21] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in CCS, 2016.

[22] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[23] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse attacks

on ethereum’s peer-to-peer network.” IACR Cryptol. ePrint Arch., 2018.
[24] J. Martin, “Bitcoin gold blockchain hit by 51% attack leading to $70k

double spend,” https://cointelegraph.com/news/bitcoin-gold-blockchain-
hit-by-51-attack-leading-to-70k-double-spend, 2020.

[25] K. Nayak, L. Ren, E. Shi, N. H. Vaidya, and Z. Xiang, “Improved
extension protocols for byzantine broadcast and agreement,” arXiv
preprint arXiv:2002.11321, 2020.

[26] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant
confirmation,” in EUROCRYPT, 2018.

[27] J. Redman, “Small ethereum clones getting attacked by mysteri-
ous ‘51 crew’,” https://news.bitcoin.com/ethereum-clones-susceptible-
51-attacks/, 2016.

[28] Rocky, “Krypton recovers from a new type of 51% network
attack,” https://cryptohustle.com/krypton-recovers-from-a-new-type-of-
51-network-attack/, 2016.

[29] D. Topkis, “Concurrent broadcast for information dissemination,” IEEE
Transactions on Software Engineering, vol. SE-11, no. 10, 1985.

[30] M. Tran, I. Choi, G. J. Moon, V.-A. Vu, and M. S. Kang., “A
stealthier partitioning attack against bitcoin peer-to-peer network,” in
IEEE Symposium on Security and Privacy, 2020.

[31] G. Tsimos, J. Loss, and C. Papamanthou, “Nearly quadratic broadcast
without trusted setup under dishonest majority,” IACR Cryptology ePrint
Archive, 2020.

[32] J. Wan, H. Xiao, E. Shi, and S. Devadas, “Expected constant round
byzantine broadcast under dishonest majority.” IACR Cryptology ePrint
Archive, 2020.

[33] H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: Blockchain Scaling
Made Simple,” in IEEE Symposium on Security and Privacy, 2020.

[34] J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo, “Repucoin:
Your reputation is your power,” IEEE Transactions on Computers,
vol. 68, no. 8, pp. 1225–1237, 2019.

[35] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
Blockchain via Full Sharding,” in CCS, 2018.

APPENDIX I: PROOF FOR THEOREM 3
Theorem 3 (Restated). [“good” execution occurs w.h.p.]
Consider any constant f ≤ 0.99, and any positive integers λ
and j. If Pr[Zλ(j−1)] > 0.9, then conditioned upon Zλ(j−1),
we must have:9

Pr[Zλ(j)] ≥ 1− λfm

0.9(0.86−fτ) −
λfτ

0.9(0.86−fτ) −Pois(807, λ)

= 1− λe−Ω(m) − λe−Ω(τ) − e−Ω(λ)

Here Pois(807, λ) is defined to be Pr[X > λ], where X
follows a Poisson distribution with mean 807.

Proof. All probabilities in this proof, unless otherwise men-
tioned, are conditioned upon Zλ(j − 1). We only prove the
harder case where j ≥ 2 and d jρe 6= d

j+1
ρ e. (In other cases,

the second part in Zλ(j) trivially follows from the second part
in Zλ(j − 1), and hence the proof is similar but easier.) Let
i = d j+1

ρ e − 1. We define several random events:
• W1: The committee for slot j contains at least one honest

member.
• W2: Among the first τ slots of epoch i, where each

slot has a corresponding committee and broadcaster, there
exists at least one slot whose broadcaster is honest.

• W3: From time T1 through T5 in epoch i, the honest
nodes and the adversary combined find no more than
λ PoW solutions. (This does not include PoW solutions
found by the adversary prior to T1, for example, when
the PoW challenge is not fresh.)

We will later prove that:

Pr[W1] ≥ 1− λfm

0.9× (0.86− fτ)
(1)

Pr[W2] ≥ 1− λfτ

0.9× (0.86− fτ)
(2)

Pr[W3] ≥ 1− Pois(807, λ) (3)

Hence with probability at least 1− λfm

0.9(0.86−fτ)−
λfτ

0.9(0.86−fτ)−
Pois(807, λ), all three events occur. Recall that the PoW
challenge in epoch i is the concatenation of all the nonces in

9We use Poisson distribution to approximate binomial distributions here.

141276

the first τ slots. By events Zλ(j−1),W1,W2, and Theorem 1,
we have that i) all honest nodes agree on the PoW challenge
in epoch i, and ii) the PoW challenge in epoch i is fresh in
the sense that the adversary does not see the challenge before
T1. Together with event W3, this means that no more than λ
PoW solutions are seen by honest nodes in epoch i, which we
define as event W4. Finally, Zλ(j) follows directly from W1,
W4, and Zλ(j − 1).

In the following, we analyze Pr[W1], Pr[W2], and Pr[W3].
We start with Pr[W1]. Consider any given i′ where 1 ≤ i′ ≤
i−1, and PoW solution x seen by some honest node in epoch
i′. Let y = hash2(challenge|x), where challenge is the
PoW challenge corresponding to x. Essentially, y is a potential
beacon value for epoch i′ + 1, and may potentially further be
reused later in epoch i. If we choose the committee by using
hash1(slot number|y) as randomness, then the probability of
the committee containing no honest member is at most fm.

Next, we upper bound the probability that y is used/reused
as the beacon in epoch i. Define Z1 = Zλ(i′ρ) and Z2 =
Zλ(j − 1). Conditioned upon Z1 only, define Ai′ to be the
random event where for every g ∈ [i′ + 1, i− 1], epoch g sat-
isfies at least one of the following two conditions: i) no honest
node finds any PoW solution in epoch g, or ii) if y were used
as the beacon in epoch g, then none of the τ broadcasters in the
τ candidate-holding blocks in epoch g would be honest. Note
that Ai′ is well-defined, even if Z2 does not happen, and even
if the honest nodes do not agree on the PoW challenge in epoch
g: In those cases, the first condition in Ai′ simply means that
no honest node solves the PoW, based on whatever each honest
node individually believes to be the PoW challenge. Define
p(i′) to be the probability of Ai′ happening, conditioned upon
Z1 only. Define q(i′) to be the probability of Ai′ happening,
conditioned upon Z2. With a Poisson approximation and since
the honest nodes on expectation find two PoW solutions in
each epoch, we have p(i′) ≤ (fτ + 0.14)i−i

′−1. In turn, by
Bayes’ formula and since Z2 implies Z1, we have q(i′) =
Pr[Ai′Z2]

Pr[Z2] = Pr[Ai′Z1Z2]
Pr[Z2] ≤ Pr[Ai′Z1]

Pr[Z2] = Pr[Ai′ |Z1] Pr[Z1]
Pr[Z2] ≤

Pr[Ai′ |Z1]
Pr[Z2] = p(i′)

Pr[Zλ(j−1)] ≤
(fτ+0.14)i−i

′−1

0.9 . Now conditioned
upon Zλ(j − 1), in order for y to be used as the beacon in
epoch i, the event Ai′ must happen. Hence the probability of y
being used as the beacon in epoch i is at most (fτ+0.14)i−i

′−1

0.9 .
The probability of y being used as the beacon in epoch i

and further causing the committee for slot j to not contain any
honest member is then at most fm × (fτ+0.14)i−i

′−1

0.9 . Finally,
there are at most λ different y values in each epoch i′ ∈
[1, i − 1], and we need to take a union bound over all those.

Hence we have Pr[W1] ≥ 1−
∑i−1
i′=1(λfm (fτ+0.14)i−i

′−1

0.9) ≥
1− λfm

0.9(0.86−fτ) .
We move on to Pr[W2]. Each of the first τ slots in

epoch i has a corresponding broadcaster. W2 essentially is
the event that at least one of these τ broadcasters is honest.
Following similar reasoning as above, we have Pr[W2] ≥
1−

∑i−1
i′=1(λfτ (fτ+0.14)i−i

′−1

0.9) ≥ 1− λfτ

0.9(0.86−fτ) .
Finally we consider Pr[W3]. Since the adversary has at most

100 times the computational power as honest nodes, and since
the honest nodes on expectation find 2 PoW solutions from T2

to T3, one can verify that on expectation the adversary finds
no more than 805 solutions from T1 to T5. Hence Pr[W3] ≥
1− Pois(2 + 805, λ) = 1− Pois(807, λ).

Remark. Theorem 3 assumes that the adversary cannot adap-
tively corrupt honest nodes. If adaptive corruption is possible,
then the adversary may corrupt the committee members after
seeing the beacon and before the committee has done its work.
Assume that the adversary takes at least x epochs to adaptively
corrupt nodes. Then for a given slot in epoch i and following
a similar reasoning as in the proof of Theorem 3, the prob-
ability of the adversary adaptively corrupting the committee
members in that slot is at most

∑i−x+1
i′=1 (λ (fτ+0.14)i−i

′−1

0.9) ≤
λ(fτ+0.14)x−2

0.9(0.86−fτ) ≈ λ · 0.14x−2, which drops exponentially with
x. If needed, the constant 0.14 can be further decreased as
well, by setting the PoW easier (and increasing m, τ , and λ
accordingly).

APPENDIX II: THROUGHPUT ANALYSIS OF BCUBE

This section analyzes the throughput of BCUBE. The
throughput of BCUBE follows from the throughput of all
the OVERLAYBB invocations. For any given OVERLAYBB
invocation, define Y to be the maximum number of bits that
an honest node needs to send in a round, with the maximum
taken across all honest nodes, all rounds, all possible strategies
of the adversary, and all possible randomness. Intuitively, Y
is the very worst-case number of bits a node needs to send in
a round. We derive Y first, and then derive throughput.

From the pseudo-code of Algorithm 1 through 3, one can
easily see that in each round, an honest node only sends
messages at Line 44, 54, and 67, regardless of the attack
strategy of the adversary and regardless of the randomness.
Furthermore, all these messages are always of fixed size. Let
lnonce, lhash, and lsig be the size of a nonce, a hash, and an
aggregate signature in Algorithm 1, respectively. Also recall
that each message is sent to all the neighbors of the node, and
each node has at most w neighbors. Straight-forward counting
shows that the total number of bits sent by each honest node
in each round in one OVERLAYBB invocation is at most
Y = w × (2 × (lhash + lsig + m) + max(d l

s−1e + (lhash +
1) · dlog2 se, lnonce + (lhash + 1) · dlog2 se+ lsig +m)), since:
• At Line 44, the total size of r and σ(r) is at most lhash +
lsig +m.

• At Line 54, the size of xi (including the Merkle proof
and the index i) is d l

s−1e+ (lhash + 1) · dlog2 se.
• At Line 67, the total size of xs and σ(xs) is at most
lnonce + (lhash + 1) · dlog2 se+ lsig +m.

Under practical settings, including our experimental settings
later, the term d l

s−1e is usually significantly (e.g., 10 times)
larger than the other terms, and the value s is usually not too
small (e.g., ≥ 20). In such cases, we simply have Y ≈ wl

s .
We now derive throughput. Let B be the available bandwidth

on each node. Recall that δ is the round duration, and let γ

151277

denote the number of pipelined invocations of OVERLAYBB
that each node has at any point of time. Let l = l0 be the
solution for the equation Y×γ = B×δ (namely, the bandwidth
needed in each round equals the bandwidth available). Each
OVERLAYBB invocation can thus confirm a block of size l0
every (2dm + s)δ time. The total throughput is then T =

γl0
(2dm+s)δ . Under the approximation of Y ≈ wl

s , we have l0 ≈
sBδ
wγ and T/B ≈ γsBδ

(2dm+s)δwγ /B = s
(2dm+s)w . Setting s = 2dm

gives R = T/B ≈ 1
2w = Θ(1

w) and T ≈ B
2w .

Note that the above final throughput and TTB ratio is inde-
pendent of γ, since eventually the γ term gets cancelled out.
Hence our final results hold regardless of whether pipelined
invocations are used (i.e., whether γ ≥ 2 or γ = 1). This
is expected: Using multiple pipelined invocations implies that
each invocation gets only a portion of the available bandwidth
and hence can only broadcast smaller-sized objects. These two
factors, multiple invocations and smaller objects, cancel out.
This is also consistent with the intuition that one cannot boost
throughput, simply by using pipelined invocations.

To summarize, our analysis in this section shows that
regardless of the attack strategy of the adversary, the total
throughput of all the OVERLAYBB invocations in BCUBE is
T ≈ B

2w = Θ(B
w), under the approximation of Y ≈ wl

s .

APPENDIX III: NUMBER OF AGGREGATE SIGNATURE
SIGNING/VALIDATION OPERATIONS AND SECURE HASH

COMPUTATIONS

Via a careful calculation, this section shows that under
all settings in Section VIII, regardless of the strategy of the
adversary and regardless of what messages the malicious
nodes may send to the honest nodes, in every second an honest
BCUBE node only needs to do:
• Adding a signer to a aggregate signature: at most 55 times
• Aggregate signature verification (where the signature

passes verification): at most 55 times
• Aggregate signature verification (where the signature fails

verification): at most 42 times
• Merkle proof verification (where the proof passes verifi-

cation): at most 19 times
• Merkle proof verification (where the proof fails verifica-

tion): at most 42 times
Under all settings in Section VIII, each Merkle proof verifi-
cation takes no more than 10 secure hashes. Hence in every
second, each honest BCUBE node only needs to do at most
55 + 55 + 42 = 152 aggregate signature signing/validation
operations, and at most (19 + 42) × 10 = 610 secure hash
computations for Merkle proof verification. Note that all these
numbers are worst-case numbers: The actual numbers can be
even smaller, for example, when there is no active attack on
BCUBE.

The following calculates the worst-case number of var-
ious operations. In any given round of OVERLAYBB, by
the pseudo-code in Section V, a node adds a signer to an
aggregate signature at most 3 times. Under all settings in
Section VIII, we have no more than 217 pipelined invocations

of OVERLAYBB at any given point of time. Since each round
has 12 seconds, this translates to at most 3 × 217/12 < 55
times/second.

For verifying aggregate signatures, we use lazy verification:
A node only verifies the signature on an item when it is about
to use that item, instead of immediately upon receiving that
item from its neighbors. For example in each round, a node
may receive many Merkle roots from all its neighbors, but
only picks the top two Merkle roots with the largest number
of weighted signers, and processes those. The node will then
simply verify the signatures (including the number of signers)
on those two Merkle roots. If the signature does not pass
verification, the node will pick again, until it gets two Merkle
roots with valid signatures. One can then confirm, based on
the pseudo-code in Section V, that in each round, a node does
at most 3 aggregate signature verifications where the signature
passes verification. Hence the rate of such verification is
again at most 55 times/second. By similar reasoning, one
can confirm, based on the pseudo-code, that a node does at
most 19 Merkle proof verifications (where the proof passes
verification) per second.

Finally, whenever an aggregate signature or Merkle proof
does not pass verification, the neighbor who sent the corre-
sponding item must be malicious. Hence a node blacklists such
a neighbor, and discards all previous/future messages from
that neighbor. With this simple trick, since each node has at
most 42 neighbors in all our experiments, a node does at most
42 aggregate signature verifications where the signature fails
verification, and at most 42 Merkle proof verifications where
the proof fails verification.

APPENDIX IV: SANITY CHECK ON THE BANDWIDTH
CONSUMPTION OF BCUBE NODE

This section provides a sanity check on the bandwidth
consumption of a BCUBE node in our experiments. Our goal is
to verify that each BCUBE node indeed never uses more than
20Mbps bandwidth. Note that this does not directly follow
from the 10Gbps aggregate available bandwidth across the
500 BCUBE nodes on one physical machine, since the 10Gbps
may not be shared evenly. To do this sanity check, we pick an
arbitrary node with the maximum degree of 42 (larger degree
leads to more bandwidth consumption), and allocate a PC to
run only that node. We then directly measure the total network
traffic on the Ethernet interface of that PCs in every second,
using the linux bandwidth monitoring tool bmon.

Figure 6(a)-(c) plot such measured bandwidth consumption
under f = 0.7, as a fraction of 20Mbps. Results under other f
values are similar. As expected, this fraction never exceeds 1.0,
confirming that the node indeed never uses more than 20Mbps
bandwidth. The zig-zag pattern in Figure 6(c) is also expected:
Recall that each OVERLAYBB invocation has 2dm+s = 1760
rounds. When there is no active attack, a node only needs to
send messages in the first 800 rounds. Also recall that in these
experiments, at any point of time, a node has many pipelined
OVERLAYBB invocations. Based on such parameters, Figure 7
plots the computed number of invocations that need to send

161278

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 1000 2000 3000 4000 5000 6000 7000

bw
 c

on
su

m
pt

io
n

second
(a) bandwidth consumption in every second

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 3600 3700 3800 3900
(b) zoomed in from above

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 3600 3650 3700
(c) zoomed in from above

Fig. 6: Bandwidth consumption of an BCUBE node as a
fraction of 20Mbps. As expected, this fraction never exceeds
1.0. Figure 6(a) is plotted using points, but those dense points
appear to be several curves. To make it clearer, we zoom
into smaller time windows, using points in Figure 6(b) and
linespoints in Figure 6(c).

 0

 5

 10

 15

 20

 25

 3600 3650 3700nu
m

be
r

of
 in

vo
ca

ti
on

s

second

Fig. 7: Computed number of invocations that send messages.

messages, in every 1-second window. Figure 7 shows a similar
zig-zag pattern as in Figure 6(c), which explains such a pattern.

APPENDIX V: PROOF FOR THEOREM 1

This section proves Theorem 1. All line numbers in this
section refer to lines in Algorithm 1 through 3. We say that
a node accepts a Merkle root r if the node adds r to its
root accepted at either Line 37 or Line 41. A node may
accept the same r multiple times. In the overlay network, we
call a path as an honest path if it (including the starting and
ending node) contains only honest nodes and good edges. The
honest distance between two honest nodes A and B is the
length of the shortest honest path between A and B. The
proofs will use superscript to indicate variables on a give node
— for example, top rootC refers to the top root in the
algorithm running on node C.

Roadmap. The following is a roadmap for the proofs. Ap-
pendix V-A presents several lemmas and then Theorem 8,
which shows that the first phase enables the honest nodes

to agree on the Merkle root. Appendix V-B eventually gives
Theorem 12, which captures the agreement property of the
second phase (for the fragments). Finally, Appendix V-C
proves Theorem 1, by using Theorem 8 and 12.

A. Agreement on the Merkle Root

The proofs of all the lemmas/theorem in this section are
deferred to [15]. Lemma 5 next roughly says that if an honest
committee member A accepts a certain Merkle root r0, then
all other honest nodes must also accept r0 within some rounds
after that, assuming the algorithm has not already terminated
by then. But there will be an exception — an honest node may
accept two different roots r1 and r2, without accepting r0.

Lemma 5. Consider any honest committee member A and
any honest node D, and let g ∈ [0, d] be the honest distance
between A and D. If A accepts r0 in round i and if i+ g ≤
2dm+ s− 1, then by round i+ g, node D must satisfy either
one or both of the following properties:

• D accepts r0.
• D accepts two different roots.

Lemma 6 and 7 next intend to eventually show that if an
honest non-committee member A accepts a certain Merkle root
r0, then all honest committee members must also accept r0

within some rounds after that. Same as in Lemma 5, there will
be an exception — namely, accepting two different roots r1

and r2 instead of r0.

Lemma 6. Consider any honest node A and any honest
committee member D, and let g ∈ [0, d] be the honest
distance between A and D. If at Line 44 of round i, node
A makes a push with a score of at least g, then we must have
i + g ≤ 2dm + s − 1, and furthermore node D must satisfy
either one or both of the following properties in round i+ g:

• D accepts r0, where r0 is the root contained in A’s push.
• D accepts two different roots.

Lemma 7. Consider any honest non-committee member A
and any honest committee member D, and let g ∈ [1, d] be
the honest distance between A and D. If A accepts r0 in round
i, then we must have i+g ≤ 2dm+s−1, and furthermore node
D must satisfy either one or both of the following properties
in round i+ g:

• D accepts r0.
• D accepts two different roots.

Intuitively, Theorem 8 next implies that exactly one of the
following cases must happen at Line 28:
• All honest nodes have the same singleton set as the value

for root accepted; or
• |root accepted| 6= 1 on all honest nodes. (In this case,

all honest nodes will eventually output ⊥.)

Theorem 8 (Agreement on Merkle Root). Consider any
execution of Algorithm 1, where at least one honest node has
|root accepted| = 1 at Line 28. Then in this execution, all

171279

honest nodes must have the same root accepted value at
Line 28.

B. Agreement on Fragments

The proofs of all the lemmas/theorem in this section are
deferred to [15]. Recall from Section IV-C that in the second
phase, a node B uses the Merkle root contained in its most
promising push done so far in the first phase, as B’s current
guess for the final accepted Merkle root. Lemma 9 below says
that under certain conditions, after an honest node A accepts
a Merkle root, within a certain number of rounds, the guesses
made by other honest nodes will become correct.

Lemma 9. Consider any given execution of Algorithm 1,
where |root accepted| = 1 at Line 28 on some honest node
A. Let round i be when A first accepts the sole element r0

in root acceptedA. Let B be any honest node (B can be
A itself), and let g ∈ [0, d] be the honest distance between A
and B. Then in round i + g and all later rounds, the push p
(i.e., the most promising push) chosen by node B at Line 50
must contain r0, if either of the following two conditions is
satisfied:
• A is a committee member.
• A is a non-committee member and there exists some

honest committee member D such that the honest distance
between B and D is no more than d− g.

Lemma 10 and 11 next reason about the agreement proper-
ties for the fragments, under certain conditions.

Lemma 10. Consider any given execution of Algorithm 1,
where at least one honest node has |root accepted| = 1 at
Line 28. If there exists some honest committee member having
frag accepted = true at Line 28, then all honest nodes
must have frag accepted being true at Line 28.

Lemma 11. Consider any given execution of Algorithm 1,
where at least one honest node has |root accepted| = 1 at
Line 28. If there exists some honest non-committee member
having frag accepted = true at Line 28, then all honest
committee members must have frag accepted being true at
Line 28.

Building upon Lemma 10 and 11, Theorem 12 next shows
that all honest nodes must agree on whether they accept the
fragements:

Theorem 12 (Agreement on Fragments). Consider any ex-
ecution of Algorithm 1, where at least one honest node has
|root accepted| = 1 at Line 28. Then in this execution, all
honest nodes must have the same frag accepted value at
Line 28.

C. Proving Theorem 1

Theorem 1 (Restated). [guarantees of OVERLAYBB] In
Algorithm 1, if the committee has at least one honest member,
then

• All honest nodes must return the same object.
• If the broadcaster is honest, then all honest nodes must

return the object broadcast by the broadcaster.
Finally, regardless of the committee, Algorithm 1 always
returns within 2dm+ s rounds.

Proof. We first prove that all honest nodes must return the
same object. If all honest nodes output ⊥, we are done.
Otherwise some honest node must satisfy Line 28 with
|root accepted| = {r0} and frag accpeted = true, for
some r0. Let A be any honest node. Then by Theorem 8 and
Theorem 12, node A must also have root acceptedA =
{r0} and frag acceptedA = true. Next, it suffices to prove
that all fragA contains all s fragments corresponding to r0.
Let t0 be the round during which A first set frag acceptedA

to be true. In round t0, since Line 60 or Line 64 must be
satisfied on A, we must have tAfrag 6= ∞ and tAroot 6= ∞. This
means that tAroot has already been assigned some value in or
before round t0. Since tAroot is never assigned a value larger
than the current round, we must have tAroot ≤ t0. Then by
Lemma 9, in round t0 the most promising push chosen by A at
Line 50 must contain r0. Since A later sets frag acceptedA

to be true in that round, by Line 58, all the s fragments
corresponding to r0 must already be in all fragA.

We next prove that if an honest broadcaster A broadcasts
an object O, then all honest nodes must return O. Given we
have already proved that all honest nodes must return the same
object, it suffices to show that A will return O. Let the Merkle
root for O be r0. By Line 20, no other Merkle roots will ever
be processed by any honest node, since they do not have a
signature from A. In round 0, node A must reach and satisfy
Line 35. Then A will add r0 to root accepted and set troot
to be 0. Since no other root will ever be processed by A, A
must have |root accepted| = 1 at Line 28. Next, one can
trivially follow the steps in Algorithm 3 and verify that during
round s− 1, node A must have troot = 0 and tfrag = s− 1 at
Line 60. Hence node A must later set frag accepted to be
true. Finally, one can trivially verify that at Line 28, node A
must have all s fragments corresponding to r0 in all frag.
Putting everything together, A must return O.

Finally, it is obvious from the pseudo-code that the algo-
rithm always returns within 2dm + s rounds, regardless of
whether the committee has any honest member.

181280

