
HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images
Fabio Gritti†, Fabio Pagani†, Ilya Grishchenko†, Lukas Dresel†, Nilo Redini‡�, Christopher Kruegel†, Giovanni Vigna†

† University of California, Santa Barbara, ‡ Qualcomm Technologies Inc.

{degrigis, pagani, grishchenko, lukasdresel, chris, vigna}@ucsb.edu, nredini@qti.qualcomm.com

Abstract—Dynamic memory allocators are critical components of
modern systems, and developers strive to find a balance between their
performance and their security. Unfortunately, vulnerable allocators
are routinely abused as building blocks in complex exploitation chains.
Most of the research regarding memory allocators focuses on popular
and standardized heap libraries, generally used by high-end devices
such as desktop systems and servers. However, dynamic memory
allocators are also extensively used in embedded systems but they
have not received much scrutiny from the security community.

In embedded systems, a raw firmware image is often the only
available piece of information, and finding heap vulnerabilities is
a manual and tedious process. First of all, recognizing a memory
allocator library among thousands of stripped firmware functions
can quickly become a daunting task. Moreover, emulating firmware
functions to test for heap vulnerabilities comes with its own set of
challenges, related, but not limited, to the re-hosting problem.

To fill this gap, in this paper we present HEAPSTER, a system
that automatically identifies the heap library used by a monolithic
firmware image, and tests its security with symbolic execution and
bounded model checking. We evaluate HEAPSTER on a dataset of 20
synthetic monolithic firmware images — used as ground truth for our
analyses — and also on a dataset of 799 monolithic firmware images
collected in the wild and used in real-world devices. Across these
datasets, our tool identified 11 different heap management library
(HML) families containing a total of 48 different variations. The
security testing performed by HEAPSTER found that all the identified
variants are vulnerable to at least one critical heap vulnerability. The
results presented in this paper show a clear pattern of poor security
standards, and raise some concerns over the security of dynamic
memory allocators employed by IoT devices.

Index Terms—Computer Security, Firmware Analysis,
Vulnerability Research.

� The author contributed before joining Qualcomm Technologies Inc.

I. INTRODUCTION

Dynamic memory allocators are procedures responsible for

reserving appropriately sized chunks of memory whenever a running

program requires them. The number of chunks or, the amount of

memory a program needs depends on a multitude of factors that are

usually unknown at compilation time. For example, a browser needs

to allocate some memory when the user opens a web page, and in

general, any non-trivial program can make thousands of memory

requests during its execution. Dynamic allocators are ubiquitous in

modern systems, and they are present on different devices, ranging

from Internet of Things (IoT) devices to high-performance servers.

The development of memory management libraries must take into

consideration different aspects. On the one hand, dynamic allocators

need to be designed with performance in mind; on the other hand,

they need to be secure to avoid increasing the attack surface of a

system. In fact, when maliciously manipulated, memory allocators

can provide attackers with powerful exploitation primitives [53].

Software developers strive to find the optimal balance between

security and performance, and, sometimes, they decide to trade

the former for the latter. For example, security patches have

been recently rejected – even if they were meant to remove

practical attack vectors – to avoid any impact on the overall

system’s performance [17]. In another case, the introduction of new

performance-tailored data structures in a heap library compromised

its security, undermining years of security hardening [23]. Finally,

some developers tend to favor performance because they consider

heap protections as post-attack mitigations, and argue that the

root cause for an attack should be addressed in the vulnerable

application, rather than in the heap library itself [46]. While this

is a possible point of view, we argue that heap libraries are a critical

building block for many applications, and hence, should protect

against cases where a simple programming mistake (i.e., a one-byte

overflow) leads to a complete application compromise.

The balance between performance and security is an even more

important issue for embedded systems, such as IoT devices. In

fact, dynamic memory allocators for embedded systems usually

need to operate with limited resources, sometimes under strict time

constraints, and, in addition, might be deployed in industrial control

systems, where their security becomes critical.

Unfortunately, evaluating dynamic memory allocators for embed-

ded systems is challenging. While the previous statement is true for

both Linux-based and monolithic firmware images (from now on,

also referred to as firmware blobs or blobs), analyzing the latter is

particularly cumbersome. First, the only information at hand when

analyzing a monolithic firmware image extracted from a device is a

raw binary (i.e., no source code or debugging symbols are available).

Second, monolithic firmware images are not built on top of a

traditional general-purpose OS, and the boundary between the appli-

cation and the libraries’ code is difficult to locate – if it exists at all.

Finally, as different IoT devices might have different requirements,

embedded developers might decide to implement custom allocators,

rather than using popular and security-vetted heap implementations.

In the past few years, researchers from both industry and

academia have proposed different approaches to assess the security

of heap implementations. For example, Eckert et al. presented

HeapHopper [24], a system that leverages symbolic execution and

Bounded Model Checking (BMC) to test the security of a dynamic

allocator. In a similar vein, Insu et al. [63] used fuzzing techniques to

explore the attack surface of different heap library implementations,

eventually detecting novel security violations. Researchers have

also proposed multiple patches and refactoring of existing heap li-

braries [27], and re-engineered the heap management approaches, in-

troducing strong security foundations [6], [39], [45], [48], [55], [56].

However, all the aforementioned approaches have been tailored

to heap implementations used for “classic” systems, while little

has been done to study the security of dynamic allocators used

in embedded systems. Traditionally, the use of dynamic memory

allocators in embedded systems has been considered a bad

1082

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Fabio Gritti. Under license to IEEE.
DOI 10.1109/SP46214.2022.00130

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

10

practice, only to be limited to those cases where an allocator

was absolutely necessary [12], [25]. However, advancements

in Real-time Operating System’s (RTOS) technologies and the

increase of on-board computing resources, are driving embedded

developers to leverage dynamic allocators more often than before,

potentially exposing IoT devices to more complex types of exploits.

To shed some light on this issue, we developed HEAPSTER, a

framework to recognize, categorize, and test the security of the Heap

Management Library (from now on referred to as HML) used by a

monolithic firmware image. HEAPSTER identifies the functions that

are part of the dynamic allocator interface (i.e., malloc and free)

by studying how pointers are generated (and used) inside a firmware

blob, and by dynamically executing these functions to monitor

their run-time behavior. Then, HEAPSTER identifies the prototypes

of both the allocator and the de-allocator, and understands how

to initialize and call these functions with appropriate arguments.

Finally, HEAPSTER performs a bounded model checking analysis

to check for the presence of common classes of heap vulnerabilities,

and, when one is found, it generates a proof-of-vulnerability (PoV)

that can be used to reproduce the security violation. To perform

this task, we leverage a custom version of HeapHopper [24],

which we adapted to support the analysis of monolithic firmware

images. To evaluate the techniques we present in this paper, we

use two different datasets. The first dataset contains 20 different

monolithic firmware images collected from previous work [21],

[29], [33] for which debugging symbols are available. We use

this dataset (ground-truth) to evaluate HEAPSTER performance,

and easily confirm its results employing the debug symbols of the

firmware images. The second dataset contains 799 blobs collected

from the wild (wild dataset). Given its significant heterogeneity

in representing a multitude of different IoT devices [52], [59], we

use these firmware samples to gain more insight into the state of

memory allocators in the embedded world. Our results show that (1),

across all the firmware samples analyzed by HEAPSTER there are 11
different HML families combining a total of 48 different variations

(i.e., versions, customizations, or, simple configuration differences),

and (2), for all the HMLs it is possible to generate a PoV for at
least one class of heap vulnerability. This result highlights how

the security of the heap management for embedded systems is far

behind the standards expected from modern allocators.

In summary, we make the following contributions:

• We advance the state of program analysis over monolithic

firmware images by proposing different techniques to reason

about pointer creation and firmware function emulation, and

we scale them to test a total of 819 firmware blobs. While

these techniques are used to recover the HML from a blob,

they can be leveraged for other analyses and applications.

• We present HEAPSTER, the first system able to automatically

identify a heap management library inside a monolithic

firmware image, and test its security.

• We implement the heap security testing by modifying

HeapHopper to apply symbolic execution and BMC tech-

niques over target functions in monolithic firmware images.

• We demonstrate a general pattern of poor security standards

in the HMLs recovered from a heterogeneous set of firmware

blobs. Specifically, in all of the 48 identified library variants,

we find at least one critical heap vulnerability class.

All the artifacts are made available at github.com/ucsb-
seclab/heapster.

II. CHALLENGES AND GOALS

In this section, we discuss the main challenges that we must

overcome to successfully test the security of the heap management

library of a monolithic firmware image.

Firmware Loading. Monolithic firmware images can have custom

formats (e.g., a custom base address, a custom entry point, and a

custom memory layout), and are often built for the specific hardware

configuration of a given device. Moreover, when the instruction set

architecture (ISA) of a firmware sample is not supported by the anal-

ysis tool, even basic emulation tasks can become challenging [35].

To simplify the problem, in this paper we focus on the ARM

CortexM architecture, the most popular solution for consumer

IoT devices [29], [37]. Therefore, we assume the required firmware

metadata to be either architecturally known (e.g., the memory layout,

including the boundaries of the heap memory region and the MMIO

region [7]), or recoverable with state-of-the-art techniques [59].

Once the target firmware image is loaded in memory we need to

identify the boundaries of the functions defined in it. This problem,

exacerbated by the intrinsic nature of a monolithic firmware image,

is well-known in literature [3], [11], [36], [38], [41], [58], and we

consider it orthogonal to our research. Therefore, in this paper, we

simply rely on state-of-the-art tools to retrieve this information.

HML Identification. Monolithic firmware images can contain

hundreds of different functions, belonging either to the main

application or to the supporting libraries (e.g., hardware abstraction

libraries, or RTOS libraries). In this scenario, manually identifying

the functions related to the heap management is a daunting task,

and automated approaches become necessary. While previous work

on automated identification of allocator code exists [19], it focuses

on “classic” systems (e.g., personal computers and servers) and it

relies on the dynamic execution of the entire program under analysis,

which is particularly challenging — if possible at all — when dealing

with monolithic firmware. The usage of dynamic allocators in em-

bedded devices has been the center of multiple discussions through

the years [12], [25]. In particular, the main concerns raised by

embedded developers are related to memory fragmentation and non-

determinism of the firmware’s code. In fact, when numerous cycles

of memory allocation and de-allocation are performed without re-

booting the system (a very common situation for embedded devices),

the memory can become heavily fragmented and the allocator might

be unable to service further allocation requests. Overcoming this

situation requires implementing a ”graceful degrade” mechanism,

which developers argue to be extremely challenging when an HML

is being used as part of the application code. For these reasons, the

usage of heap libraries has often been discouraged for real-time

embedded systems, in particular when deployed in safety-critical

environments. Despite this, HMLs are frequently used by embedded

systems developers, as we will show in Section V.

HML Identification Scope. In this paper, we focus on the

identification of low-level dynamic memory allocators that (1)

1083

Load
Firmware

Basic
Functions

Identification

Pointer
Sources

Identification

Allocator
Identification

Deallocator
Identification

HML
Prototype

Identification

Hotspots
Detection

HML
Properties

Identification

Validate
PoV

Heap
Functions
Hooking

Security
Violation
Detector

PoC
Concretizer

1 2

3 4

5 6

7 8

12

Heap
Transitions

M
F

UAF

A = malloc()
free(A)

read(A, 100)

PoC Generation

Symbolic Execution

11

HeapHopper

Firmware + Metadata Firmware + Initialized Memory

Malloc: X
Free: Y
Hooks:

Prototypes
...

9

10

PoV

HEAPSTER

Fig. 1: HEAPSTER Overview. The analysis pipeline follows the order of the circled numbers.

have at least two primitives (one to allocate, and one to de-allocate

chunks), (2) serve every request “on-the-fly” by calculating the

next chunk to be returned at every invocation of the allocator, (3)

implement a memory management strategy where chunks are

reused for future allocations, (4) receive the requested allocation

size by argument (allocator), and the requested chunk-to-free by

argument (deallocator), and, (5), pass the allocated memory address

to a caller as a return value inside a register.

Firmware Initialization. HML functions do not live in a vacuum,

but instead use in-memory data structures and global variables to

keep track of freed memory chunks or to determine the heap base

address. Many of these heap-related constants and data structures

are either unpacked during the boot process or defined by auxiliary

functions that initialize the heap (known as heap initializers).
Therefore, before our system can start testing the security of a heap

library, it also needs to identify and execute any initializer function,

to bring the firmware memory into a consistent and initialized state.

Firmware Re-hosting. Our system leverages dynamic execution

of targeted firmware functions rather than leveraging full emulation

of the firmware blob. However, these targeted functions are still

executed inside an emulator rather than the hardware for which the

firmware was designed. Therefore, multiple details related to periph-

erals models and the original execution environment are missing,

and this can potentially hinder our analyses. This problem is known

in the firmware community as firmware re-hosting [28], [60]. Even

if recent efforts proposed different solutions [15], [22], [26], [42],

[51], [65], monolithic firmware re-hosting remains a challenge when

scaled on a heterogeneous set of blobs [60]. Since in this paper we

focus on the emulation of a limited number of functions, we use care-

fully configured execution models (detailed in Appendix A) to re-

solve the common pitfalls related to a partial execution environment.

Symbolic Execution Scalability. Our system uses symbolic execu-

tion and bounded model checking to discover classes of heap vulner-

abilities in the heap library of a firmware image. However, symbolic

analysis is afflicted by scalability issues related to path explosion and

related to the overhead of constraint solving [14]. Therefore, even

testing a single malloc implementation with an unconstrained

symbolic size argument might require an unrealistic amount of com-

putational resources. For this reason, when performing the symbolic

analysis, we define boundaries to contain the scope of the analysis.

III. APPROACH

In this section, we present HEAPSTER, our automated approach

for identifying the HML used by a monolithic firmware image and

for testing its security. An overview of the HEAPSTER architecture

is illustrated in Figure 1.

Our system starts from a firmware blob along with related

metadata, and uses this information to load the firmware in an

emulator 1 . Then, HEAPSTER identifies the basic functions: a

set of functions that receive memory addresses as arguments, and

perform simple memory operations over them (e.g., memcpy) 2 .

Once the basic functions are identified, HEAPSTER leverages an

inter-procedural source-sink analysis to detect the pointer sources:
functions whose return values flow inside an argument of a basic
function 3 . Intuitively, a pointer source is potentially “generating”

a memory pointer used by a basic function. Then, HEAPSTER emu-

lates the pointer sources one by one, and monitors their behavior to

decide whether the function is a memory allocator or not 4 . Given a

list of potential allocators, HEAPSTER tries to find the correspondent

de-allocator. Practically, HEAPSTER leverages syntactic features to

first filter the functions in the firmware blob to a set of candidate

de-allocator functions, and after that, it executes every allocator

paired with every candidate de-allocator, in an attempt to observe

chunks being re-used as explained in Section II 5 . When a working

allocator/de-allocator pair (i.e., the HML) is identified, HEAPSTER

collects more information regarding their prototypes 6 , and about

their implementation 7 - 8 . This information includes: the detection

of any hotspot that would hinder the symbolic execution, the

HML properties (such as the heap base address, the heap growing

1084

1 last = 0x0
2 void mem_init(){
3 last = 0x2000C000;
4 }
5

6 int malloc(x){
7 chunk = last
8 last = last + x
9 return chunk;

10 }
11

12 int baz(){
13 void *x = 0x2000;
14 return x;
15 }
16

17 void bar(x,y){
18 if(y==0)
19 v1 = baz();
20 else
21 v1 = malloc(y);
22 foo(v1);
23 }
24

25 void foo(a){
26 int b[10];
27 memcmp(a, b, 10);
28 }

1 malloc:
2 mov r0, <arg_0>
3 ldr r1, [last]
4 add r0, r0, last
5 str r0, [last]
6 mov r0, r1
7 ret

,
7 ret ;[O4]
8

9 baz:
10 mov r0, 0x2000
11 ret

,
11 ret ;[O3]
12

13 bar:
14 mov r0, <arg0>
15 mov r1, <arg1>
16 cmp r1, 0
17 bne tag
18 call baz
19 b return
20 tag:
21 call malloc
22 return:
23 call foo223 call foo ;[O2]
24 ret
25

26 foo:
27 mov r0, <arg0>
28 mov r1, var_b
29 mov r2, 0x10
30 call memcmp

,
30 call memcmp ;[O1]
31 ret

Fig. 2: Running example of the pointer sources identification analysis. On the left, the C code from which the assembly on the right is gen-

erated. We highlight the assembly lines where we start the backward slice. Ds represent register definitions, Os represent observation points.

direction), and finally, the presence of inline heap metadata [24]

(i.e., control information data commonly used by HML to manage

the memory chunks, and stored alongside user data).

To test the security of the HML, HEAPSTER provides the

firmware image along with all the information collected in the

previous steps 9 to a custom version of HeapHopper [24] modified

to support the analysis of firmware blobs (we discuss the main

differences with respect to the original work in Section III-I). In

particular, HeapHopper automatically generates Proof-of-Concept
programs (PoCs) that interact with the discovered HML 10 with

benign transitions — i.e., malloc and free — and malicious

ones – e.g., use-after-free (UAF). Then, by using bounded model

checking and symbolic execution, HeapHopper traces the execution

of the generated PoCs and produces a Proof-of-Vulnerability (PoV)

when a security violation is detected 11 . Finally, to filter any false

positives, HEAPSTER validates the generated PoVs by re-executing

them inside the emulator 12 .

A. Firmware Loading

To correctly load the firmware image inside the emulator and

start its analysis, HEAPSTER needs four pieces of information: (1)

the base address, (2) the entry point, (3) the memory range covered

by the dynamic memory (heap memory region), and (4) the memory

range where peripherals are mapped (i.e., the MMIO range). To

extract the first two pieces of information from a target firmware

blob, we implemented and integrated into our system, the technique

presented by Wen [59]. The memory ranges are instead standardized

by the CPU architecture [7], and we therefore safely assume the heap

and MMIO memory ranges to be mapped according to the official

specification. Finally, we extract the initial value of the firmware’s

stack pointer by reading the first DWORD of the firmware image [7].

B. Firmware Functions Classification

Basic Functions Identification. To identify the basic functions, we

use a technique similar to the one implemented in Sibyl [16], which

is based on the idea that basic functions have a predictable behavior

(e.g., memcpy accepts a source buffer, a size, and a destination

buffer, then copies the former into the latter). For instance, by

calling a function with a set of arguments that comply with the

prototype of memcpy, i.e., void *memcpy(void *dest,
const void *src, size_t n), we expect that, when the

function terminates, the memory at the address in dest contains

exactly n bytes from the address in src, while the buffer at src
is left unmodified. HEAPSTER tests every function contained in the

firmware image and matches their behaviors against nine different

models, including two variants of memcpy and memset, one

for memcmp, and four string-related functions (namely, strlen,

strcat, strncat, and strncpy). Whenever a match is found,

we tag the function accordingly and save the inferred prototype.

Pointer Source Identification. To identify the pointer sources,
HEAPSTER starts from the call sites of the basic functions and

applies a Reaching Definitions (from now on referred to as RD)

data-flow analysis to understand how the arguments of the basic
functions are generated. When applied to a function, RD builds

a directed graph where nodes are register definitions and edges

represent definition dependencies. Every node in the definition

graph contains the name of the register being defined and the code

location of the definition. Additionally, certain nodes also contain

the value that the register holds at the code location — when it

can be statically determined — and, optionally, a tag that includes

metadata regarding the current definition. In particular, we leverage

the tags to understand whether the definition is inter-procedural:

RetVal and Arg. The former indicates that the definition

1085

originates from the return value of a function call, while the latter

indicates that the definition is provided by the callers of the current

function via an argument. With this information, given a location

in a function and a register of interest (i.e., an observation point),
HEAPSTER finds the corresponding node in the definition graph and

computes the backward slice for the definition in question. When the

exploration reaches a node with an inter-procedural tag, the analysis

continues leveraging the information contained in the tag itself.

In particular, to handle nodes tagged as Arg, the analysis

searches for every caller of the current function (F), builds their

definition graphs, and resumes the backward slice from the

definition of the target register argument at F’s call site. To handle

nodes tagged as RetVal, the analysis enters the called function,

builds its definition graph, and resumes the backward slice from

the return locations of the function, using the register holding the

return value (i.e., r0) as the observation point. This exploration

strategy provides our analysis an inter-procedural view of node

dependencies and, more importantly, the ability to identify which

functions are involved in a node’s definition.

Figure 2 shows an example of the analysis when applied to the

assembly code in the left part of the figure1. In this example, our

analysis starts by setting an observation point (O1) at line 30 for

register r0 (i.e., the register that represents the first memcmp’s

argument). By looking at the dependency graph of foo, HEAPSTER

discovers that the definition of r0 depends on D1. Since D1 is

tagged as Arg, HEAPSTER generates the dependency graph for all

the callers of foo (in this example only bar at Line 22 in the C

code), and resumes the backward slice starting from all the call sites

to foo. In our example, the computation resumes from observation

point O2 (assembly line 23), targeting the register r0. At this point,

the analysis discovers that the definition of r0 is derived either from

the return value of malloc (D3) or from the return value of baz
(D2). As D2 and D3 are tagged as RetVal, the analysis recovers

the callees (i.e., baz and malloc), generates their definition

graphs, and resumes the backward slice at observation point O3
and O4, targeting the register r0 (i.e., the return value of baz and

malloc). On one side, HEAPSTER discovers thatD4 has a constant

value and terminates the exploration. On the other side, HEAPSTER

detects that the definition of r0 is coming from D5, which again

has a constant value, and therefore, terminates the exploration.

During the computation of backward slice, we label every

function whose return value is used to define a target register in

the explored definitions chain as a pointer source. In our example,

the return values of baz and malloc respectively define r0 at

line 18, and r0 at line 21, therefore, both functions are labeled as

pointer sources.
The termination of the analysis is guaranteed by the monotonicity

property of reaching definitions when creating the dependency

graphs. Moreover, we terminate any recursive behavior by not

exploring the same portion of a dependency graph more than

once across the entire analysis, since this would not add any new

information regarding pointer sources discovery.

1For space constraints, the assembly code is simplified and the graphs only
contain the nodes relevant to this example.

C. Allocator Identification

Not every identified pointer source is a memory allocator. For

instance, in the running example described in Figure 2, the function

baz is merely returning a constant value, but it is labeled as pointer
source by the analysis. Similarly, functions that wrapmalloc (such

as calloc or realloc), are also be labeled as pointer source, de-

spite not being in scope of the security testing. Therefore, we need to

reason about the extracted pointer sources and their dynamic behav-

ior to filter false positives. We label a pointer source as an allocator

if, after executing the function several times, we observe different

memory addresses being returned that are all contained within the

heap memory region. The intuition behind this definition is that a dy-

namic memory allocator should serve every request with a different

memory chunk within the heap region. In our example, this property

would not be respected by baz, while it is true for malloc.

Pointer Sources Execution. To classify a pointer source as an

allocator, we need to be able to call it with the proper arguments.

To simplify the analysis at this step, we statically collect the

arguments’ values from the call sites of a pointer source. Based on

the assumption that the correct malloc receives as an argument an

integer value representing the requested size, we expect to extract

at least one valid value across the call sites. If this is not true, we

use a placeholder integer value for each argument.

Pointer Sources & Heap Initializers. As previously mentioned in

Section II, a successful emulation of a pointer source can depend

on the initial values of specific global variables. For instance, in the

example in Figure 2, malloc uses a global variable named last
(Line 7 in the C source code). However, the global variables are

often unpacked during the bootstrap of the firmware on the hardware

device, and, therefore, are not always statically available beforehand.

Therefore, we need to initialize every global variable used by a

pointer source function before its emulation. At this step, we focus

on heap global variables as they are the ones necessary to success-

fully execute the pointer source representing malloc. In particular,

heap global variables can be (1) unpacked by the firmware’s entry

point by compiler-injected stubs (i.e., loops that initialize specific

memory regions), (2) written by custom auxiliary heap procedures

of the employed heap library (i.e., simple procedures that write

constant values at specific addresses), and, in some cases, even

by a combination of both strategies. Additionally, sometimes the

heap global variables initialization can be performed by the pointer
source itself as these cases are trivially handled when emulating the

pointer source. To solve this issue, we first dynamically execute

the firmware’s entry point (i.e., the ResetHandler). Then, if we

still detect missing heap global variables during a pointer source
execution, we select a set of functions as possible initializers using

intuitive syntactic heuristics (e.g., they should accept zero arguments)

and execute them one by one right before the execution of the pointer
source. In case none of the selected functions initialize the heap

global variables used by a target pointer source, we discard the

pointer source. On the contrary, if the values returned by the pointer
source respect the allocator definition, we save the memory state

associated with the heap initializer execution (“Initialized Memory”

at the top-right corner in Figure 1), and label the pointer source as an

allocator. To execute the ResetHandler and heap initializers we

1086

use the execution model described in Appendix A. In our example,

the function malloc is labeled as an allocator after we execute its

heap initializer mem_init.

D. De-allocator Identification

Given an identified allocator, HEAPSTER tries to find the

corresponding de-allocator routine. To achieve this goal, HEAPSTER

first statically identifies a set of possible de-allocator candidate

functions by pre-filtering all the firmware blob’s functions (e.g.,

by not considering the pointer sources, or the basic functions),
which results in the de-allocator candidate set. Then, HEAPSTER

leverages dynamic execution to analyze the behavior of these

procedures when paired with the target allocator. When executing

a de-allocator candidate, we assume that the heap has already been

initialized during the identification of the correspondent allocator.

Deallocator Candidate Test. As we discussed in Section II, in

this paper we target dynamic allocators that re-use freed memory

chunks. With this insight in mind, given the allocator A, for any

candidate de-allocator D in the deallocator candidate set, we

perform the following test:

1) call A for X times and collect the return values a1, a2, ..., aX;

2) call D for X times passing a1, a2, ..., aX as arguments;

3) call A one more time and verify the new return value aX+1
is equal to one of a1, a2, ..., aX.

Specifically, in our configuration we set X to a value of three2.

When this test is successful, we consider the pair (A, D) to be the

blob’s HML.

Deallocator Candidate Execution. De-allocators consume values

dynamically generated bymalloc, and therefore, we cannot simply

collect their arguments from the call sites as we do when executing

pointer sources. However, as we are always testing a de-allocator

candidate together with a target allocator, we set the de-allocator’s ar-

guments to the value previously returned by a call to the allocator. In

our experiments, this is always enough to observe the de-allocation

behavior without compromising the execution of the primitive.

HML Pairs Filtering. Wrappers around the real allocator and

de-allocator (i.e., functions that merely call the HML primitives

and forward their results) can still be mistaken for a valid HML.

Since the target of our analysis is the low-level interface of the

main allocator of the firmware blob, we need to further filter the

identified (A, D) pairs to remove false positives. To do this, we

analyze the callgraph of each allocator in an HML pair, and we

recursively remove the ones that call other allocators in another

HML pair. We repeat the same analysis for the de-allocators to

eventually identify the final HML pair.

E. HML Analysis

Once HEAPSTER detects a valid HML pair for a firmware image

(i.e., malloc and free), it needs to collect more information to

support the HML’s security testing. In this section, we discuss how

HEAPSTER recovers the prototypes of the heap functions, how it

identifies hotspots that might impact the symbolic exploration, and

2We chose X=3 to allow for different allocator chunk management policies. We did
not observe any difference in de-allocators identification when using bigger values.

how it collects additional properties of the HML to configure the

bounded model checking.

Prototype Recovery. To be able to support diverse implementations

of malloc and free, we can not assume that the HML primitives

always follow the standard prototypes (i.e., malloc(size), and

free(*ptr)). For instance, we observed firmware images in

our dataset using an extra argument to store error codes in case

an HML primitive happens to fail. In the previous analyses, when

executing malloc and free, we were simply re-using a valid

set of arguments collected at the respective call sites, without any

additional information about their semantics (e.g., which argument is

the requested size). However, HeapHopper’s security testing requires

semantic information for the arguments to create the programs (i.e.,

PoC) that interact with the identified HML. Therefore, in presence

of multiple arguments, we need to understand which argument

represents the size in malloc, and which one represents the

pointer to be freed in free. To extract this information, we execute

the primitive with symbolic arguments constrained to concrete

values3, and, then, we select the argument with the highest number

of observable constraints. This technique is based on the intuition

that the requested size and the pointer to be freed generally go

through several different checks, and therefore, multiple constraints

are set over the symbolic variables. For example, it is very common

that the requested size value falls inside a specific integer range as

it is used later to select an appropriately sized memory chunk.

Hotspot Detection. During the execution of HML functions – in

particular when erroneous conditions are met – the code might call

functions that put the firmware in a stalling state (e.g., an infinite

loop or a sleeping procedure). These procedures are generally

meant to protect the device from damage, and usually require an

external intervention to be solved (i.e., a reboot). However, these

behaviors are problematic when scaling symbolic execution because

the analysis can be stuck analyzing redundant code, with little to no

progress. To detect these “problematic” functions, we profile several

runs ofmalloc andfree by supplying both legitimate and invalid

parameters (e.g., we set the free argument to an invalid pointer).

Whenever the emulation reaches a configured timeout, we identify

the sub-function in which the exploration spent the most time, and

we mark it to be skipped when future executions reach its address.

This process is repeated until malloc and free can be entirely

emulated within the configured timeout. The list of problematic

functions is saved, and used when performing the security testing

to inform the symbolic engine to skip these functions.

However, skipping functions that may be responsible for heap

state changes could interfere with the results of the security

evaluation, and introduce false positives/negatives. During our

evaluation, we confirmed that the functions marked as “problematic”

always bring the firmware code in a stalling state and never return.

This means that the code marked to be skipped does not change the

heap state, reducing the possibility of false negatives. For this reason,

we focus our efforts on removing false positives by re-executing

the generated PoV programs without skipping any function.

HML Properties. To configure the symbolic testing and identify

security violations in an HML, we need to extract some of its

3These arguments are the ones found at the call sites, or valid placeholders.

1087

implementation details. In particular: the heap base address, the

heap growth direction (i.e., if it grows toward higher or lower

memory addresses), and the size of inline metadata [24]. Extracting

the first two proprieties is straightforward: since we can execute the

malloc function, the base address corresponds to the first value

returned by the allocator, while the growth direction is inferred

by comparing the result of two subsequent malloc allocations.

To detect the presence of inline metadata, we place memory

breakpoints in the surrounding of a previously allocated chunk, and

then we invoke free over it. Whenever one of these breakpoints

is triggered during free’s execution, we tag the corresponding

memory location as containing heap metadata.

F. HML Model Definition
The core component behind the security testing of the identified

HML is a custom version of HeapHopper [24] that we adapted to

test monolithic firmware images.

Heap Transitions. HeapHopper models the heap as a state machine

where nodes represent heap states, and edges represent transitions
between states. These heap transitions can be benign operations

— i.e., calls to malloc (M) and free (F) — or malicious

exploitation primitives. In particular, HeapHopper implements the

following heap exploitation primitives:

Double-free (DF) Calling free on a memory chunk that was

already been freed, and not re-allocated.

Fake-free (FF) Calling free with a memory address that points

to an invalid or manipulated heap chunk.

Use-after-free (UAF) Writing data to a memory chunk that has

been freed, and has not been re-allocated yet.

Heap overflow (O) Writing data beyond the size of a target chunk.

Heap Vulnerabilities. If the HML does not have defenses against

the exploitation primitives, the data structures holding the state

of the heap can contain erroneous information. This can lead to

a vulnerable state, which, in turn, can serve as a focal point in an

attack against the system. In this paper, we focus on the following

heap vulnerabilities:

Overlapping Chunks (OC) Allocation of a memory chunk that

overlaps with other allocated chunks.

Non-Heap Allocation (NHA) Allocation of a memory chunk

outside the heap region.

Arbitrary Write (AW) A memory write where the attacker can

control the destination address and the content.

Restricted Write (RW) A memory write with restricted capabil-

ities over the destination address or the content being written.

G. HML Bounded Model Checking

HeapHopper Analysis. Given the heap modeling described in the

previous section, we leverage HeapHopper to perform the security

analysis of a heap library using bounded model checking and sym-

bolic execution. HeapHopper generates proof of concept programs

(PoCs) that contain permutations of different benign heap transitions

(i.e., legitimate calls to malloc and free) and malicious transi-

tions (i.e., the exploitation primitives), and while symbolically exe-

cuting them, it checks if any state becomes vulnerable to one of the

heap vulnerability classes defined in Section III-F. When a vulnera-

bility is detected, all the symbolic values in memory are concretized

to obtain a fully concrete Proof-of-Vulnerability (PoV), which we

used later to confirm the finding. To keep the analysis tractable

during exploration, HeapHopper bounds the symbolic values inside

a PoC using specific domain knowledge (e.g., by limiting the mal-
loc requested size parameter to a list of few integer values). We dis-

cuss the main HeapHopper configuration parameters in Appendix G.

HeapHopper Setup. To test the identified HML, we first load a

PoC inside HeapHopper, and, then, we side-load the monolithic

firmware image as the PoC’s library. Finally, we hook any call to

malloc and free executed by the PoC so that they are redirected

to the respective HML functions identified in the firmware blob.

H. PoV Validation

As acknowledged by Eckert et al. [24], and more recently by

Yun et al. [63], HeapHopper can produce false positives. In other

words, a PoC might trigger a heap vulnerability during the symbolic

tracing, which is not confirmed when re-executing the PoV. To

mitigate this issue, HEAPSTER always checks that a PoV generated

by HeapHopper actually triggers the heap vulnerability. To do this,

we re-emulate the concrete PoV without skipping any identified

“problematic” functions (as explained in Section III-E), and we

check whether the execution effectively triggers the discovered

heap vulnerability. Otherwise, we discard the PoV.

I. HeapHopper Modifications

In this work, we build upon the implementation of HeapHop-

per [24], in particular, we modified parts of it to support the analysis

of monolithic firmware images based on ARM CortexM CPUs.

PoC Generation. We changed how HeapHopper generates the

PoCs to: (1) generate ARM binaries, and (2) support the generation

of programs with custom prototypes for malloc and free (as

explained in Section III-E).

PoC Loading. We modified how HeapHopper loads the binaries

under testing inside the underlying emulator. In particular, since

a stand-alone binary HML is not available (e.g., in the original

version of HeapHopper this binary was represented by the GNU

libc [32]), we instruct HeapHopper to use the monolithic firmware

image as a library, which is side-loaded with the PoC under testing

inside the emulator.

Arbitrary Write Model. The original HeapHopper categorized

attacker-controlled writes in Arbitrary Write and Arbitrary Write

Constrained. A vulnerability is classified as an Arbitrary Write

when we can control the destination address and the content to be

written. Arbitrary Write Constrained refers to an attacker-controlled

write that can be redirected only to memory locations where specific

content is present. In our version, we decided to replace Arbitrary

Write Constrained with Restricted Write. We use the Restricted

Write to indicate attacker-controlled write with limited capabilities

over the destination address or the content.

IV. IMPLEMENTATION

We implemented HEAPSTER in Python on top of the binary

analysis framework angr [54].

Firmware Preparation. A mandatory requirement to analyze

a monolithic firmware is to know both its entry point and base

address. This information can be either provided as input to our

1088

system, or extracted with the analysis proposed in FirmXRay [59].

To identify the functions in the firmware image, we extract the entry

point from the Interrupt Vector Table stored in the blob [8], and we

leverage angr’s recursive traversal disassembly to build its Control

Flow Graph (CFG). After recovering the firmware’s CFG, we also

use angr’s CallingConvention analysis to determine the number

of arguments and possible return values of every identified function.

Static Analyses. To implement the backward slice analysis

presented in Section III-B, we leverage angr’s ReachingDefinition
engine. This analysis enables HEAPSTER to apply the classic RD

dataflow analysis on binaries and to reason about register definitions

and, in a limited way, memory definitions.

Functions Emulation. To dynamically execute the functions of the

firmware blob (symbolically and concretely), we leverage the VEX

execution engine provided by the angr framework. In particular,

the binary code is lifted into the VEX Intermediate Representation

(IR) [44]. Later, the IR instructions are executed to mimic the effect

of the real assembly instructions over the state of the program. The

VEX engine supports both symbolic execution and fully concrete

execution (i.e., no symbolic variables in the program’s state). When

using symbolic execution, we leverage a Depth-First-Search (DFS)

exploration strategy. We discuss the different execution models that

HEAPSTER uses to emulate the functions in the firmware image

in Appendix A. In particular, these execution models have been

implemented by combining together different angr’s Exploration
Techniques, and by instrumenting memory access operations

triggered during the functions’ emulation.

V. EVALUATION

We run the first (small-scale) evaluation on a dataset created by

consolidating 20 images from previous research on firmware re-

hosting and firmware security [22], [29], [33], [43]. We refer to this

dataset as the ground-truth dataset because, for each firmware image,

we are provided with the stripped binary image, and the ELF file

with debug symbols. Consequently, since we have labels for every

function in the firmware, we can confirm whether HEAPSTER is

able to correctly locate the basic functions and the HML primitives.
Our second (large-scale) evaluation is instead conducted on a

collection of monolithic firmware images shared by previous re-

search [59] and extracted from popular fitness devices [52]. We refer

to this collection as the wild dataset. This dataset comprises a total of

799 monolithic firmware images, none of which is accompanied by

debug symbols. To study the distribution of the heap libraries used

by monolithic firmware in the wild, and to avoid wasting resources

to test the security of identical HML implementations, we leverage

BinDiff [66] to calculate the similarity between the allocator func-

tions and to cluster them. For each dataset, we split the evaluation

into four parts: (1) HML identification in each firmware blob, (2)

coarse-grained HML clustering, (3) fine-grained HML clustering,

and (4) security analysis with the modified version of HeapHopper

(discussed in Section III-I) for each fine-grained cluster.

HML Identification. We run the HML identification analysis, as

discussed in Section III, on every firmware blob in both datasets with

a time limit of 72 hours, and a memory limit of 70GB per firmware.

Coarse-grained Clustering. The goal of this analysis is the

identification of allocators belonging to the same heap library im-

plementation. For this clustering, we run the similarity analysis only
considering the bodies of the functions identified as malloc. We

consider two implementations part of the same cluster when BinDiff

reports similarity and confidence scores� 0.7. We empirically chose

the threshold of 0.7 with the help of our ground-truth dataset: this

value resulted in the lowest number of misclassifications. Never-

theless, since BinDiff uses several heuristics for its analysis [31],

we compensate for misclassifications with additional manual refine-

ments. In particular, we look for clusters containing a single or few

HMLs, since these cases can either represent scarcely used heap im-

plementations or BinDiff imprecisions. When we detect a potential

misclassification of this kind, we manually compare the outliers with

other HMLs and include them inside the correct cluster. Finally, we

look for situations where two clusters are connected by a few HMLs

with a low similarity score, and we manually adjust the clusters after

confirming that they represent two different heap libraries. In total,

we had to manually correct the classification of only 18 blobs.

Fine-grained Clustering. The goal of this analysis is the

identification of identical HMLs. In particular, since identical

HML implementations are affected by the same vulnerabilities, this

clustering reduces the number of security evaluations performed

with HeapHopper. The fine-grained clustering is based on the

similarity analysis over the body of the malloc’s function and

additionally all of its callees up to a depth level of two4. Whenever

the similarity score reported from BinDiff is equal to 1.0 for all
of these functions, we reported the two HMLs to be in the same

fine-grained cluster. Intuitively, the fine-grained clustering defines

sub-clusters inside the coarse-grained clusters identified in the

previous step. Throughout the rest of the evaluation, we use the

notation AN to indicate an HML belonging to the fine-grained

cluster N within the coarse-grained cluster A. In other words, we

refer to AN as an HML “variant”, since it represents a different

version of the library corresponding to coarse cluster A, or a

customization of the library itself due to developer choices, or,

differences introduced by tool-chains/software development kits.

Security Evaluation. When testing a target HML, we leverage

HeapHopper to generate a PoC that is compliant with the

recovered prototype (as explained in Section III-E). Given an

exploitation primitive (e.g., double-free), we generate all the

possible permutations of meaningful transitions up to a maximum

depth of 7 actions (i.e., δ=7). This value was chosen empirically, as

it was enough to discover vulnerabilities in all heap implementations

tested in our evaluation, maintaining the scalability of our analysis

across all the samples within the heterogeneous firmware datasets.

For every depth δ, we use a single malicious heap transition, and

δ−1 legitimate calls to malloc and free. During the symbolic

tracing, whenever HeapHopper produces a PoV, we filter any false

positive using the re-tracing methodology presented in Section III-H.

A. Ground-Truth Dataset

To evaluate HEAPSTER on the ground-truth dataset, we use the

stripped binary images with no debug symbols. These samples are

compiled for different microcontroller units (MCU) and implement

4Since the boundaries between the allocator and other libraries code can not be
easily identified, we need a heuristic to limit the callees depth.

1089

a heterogeneous set of different applications. The average size of a

firmware image in the ground-truth dataset is 66KB (median 45KB)

with, on average, ∼20 thousand (median ∼15 thousand) opcodes.

HML Identification. We parallelized the HML identification anal-

ysis and completed it on all 20 firmware images in 48 hours. We re-

port detailed statistics about memory consumption and time required

for each analysis step in Table V of Appendix D. The biggest average

memory consumption was 3.5GB (median 3GB) during the 3

Pointer Source Identification stage, while the biggest average time

of 3.5 hours (median 1.9 hours) was spent during the 5 Deallocator

Identification stage. Using the debugging symbols we can confirm

that HEAPSTER was able to identify the correct HML (i.e., malloc
and free functions) for every firmware image in this dataset. In

Section III-B, we show that the basic functions are starting points

for pointer sources identification, ultimately providing allocator

candidates. In this evaluation, for 18 samples memcpy successfully

marked the final allocator as a possible pointer source, followed

by 9 samples when considering memset, and 1 using strncpy.

Note that, in a given blob, several basic functions can mark the final

allocator as a pointer source. As detailed in Section III-E, when

malloc or free has more than one parameter in their prototypes,

we use a constraint counting heuristic to differentiate the parameter

representing the size or the pointer to free. This analysis reports

that the size parameter has 2.6 more constraints on average than its

closest competitor (median of 2), while the parameter containing the

pointer to free has, on average, 4.1 more constraints (median 6). In

all 20 blobs, memory and time limits were never triggered, the heap

was growing towards higher addresses, and we always found uses of

heap global variables. We report the results of this analysis in Table I.

Coarse-grained Clustering. The coarse clustering divided the

identified HMLs into three groups: 8 belong to A, 9 are in B, and 3 in

C. We confirm, using the debugging symbols of the related firmware

blobs, that these implementations correspond to nano_malloc
[2], newlib’s malloc [1] and lwip_malloc [49], respectively.

Fine-grained Clustering. The fine-grained clustering identified 8

different sub-clusters in cluster A, 6 in cluster B, and 2 in cluster

C, for an overall total of 16 implementation variants. In particular,

Table I shows that none of the HMLs in cluster A are reported to be

identical, while 2 HMLs belong to cluster B1, and 3 to cluster B2.

Finally, 2 HMLs in C are reported to be identical (C1). We manually

verified the coarse-grained and fine-grained clusters identified in

the ground truth and confirmed the results of this analysis.

HML Security Evaluation. For the ground-truth dataset, we tested

all 20 HMLs with HeapHopper (i.e., even when they are part of

the same fine-grained cluster), analyzing an average of 2k PoCs

per HML, with a maximum analysis time of 10 minutes per PoC.

The complete analysis of a single HML took, in the worst case, a

maximum of 3 hours. Overall, the evaluation time for the entire

ground-truth dataset took 27 hours. Table II summarizes the results.

Results Discussion. The security analysis reported that all heap

libraries in clusters A and B are vulnerable to Overlapping Chunks,

Non-Heap-Allocation, and Restricted Writes using most of the

available exploitation primitives. HeapHopper reported also

Arbitrary Write vulnerabilities for clusters A3, A4, and all the

HMLs in cluster B. Notably, our results show that the HMLs in

cluster C are vulnerable only to Overlapping Chunks.

TABLE I: Evaluation results for the ground-truth dataset with

Size in KB for each sample. Functions reports the total number of

functions of the firmware, the number of identified basic functions
and the number of pointer sources. Cluster shows the HMLs’

categorization results. Patched indicates if any allocator’s functions

had to be patched to avoid symbolic execution roadblocks.

Sample Functions HML

Name Ref.
Size
(KB)

Total Basic
Pointer
Sources

Cluster Patched

p2im controllino slave [29] 24 280 1 3 A1 �
p2im console [29] 30 256 4 8 A2 �
p2im gateway [29] 44 425 4 8 A3 �
p2im drone [29] 31 190 3 3 A4 �
p2im car controller [29] 20 266 3 6 A5 �
expat panda [43] 94 422 4 48 A6 �
atmel 6lowpan udp tx [22] 70 515 3 49 A7 �
samr 21 http [22] 154 311 5 16 A8 �
csaw esc19 csa [57] 49 204 4 13 B1 �
csaw esc19 csb [57] 51 212 6 13 B1 �
stm32 tcp echo server [22] 115 452 4 25 B2 �
stm32 tcp echo client [22] 121 451 4 26 B2 �
stm32 udp echo server [22] 112 437 3 23 B2 �
st-plc [22] 167 795 4 25 B3 �
rf door lock [33] 41 247 4 16 B4 �
thermostat [33] 40 226 4 17 B5 �
nucleo blink led [33] 33 159 4 14 B6 �
nxp lwip tcpecho [22] 39 243 3 9 C1 �
nxp lwip udpecho [22] 36 227 3 8 C1 �
nxp lwip http [22] 74 360 3 12 C2 �

B. Wild Dataset

We built the wild dataset by using firmware images collected

in the wild by previous research on monolithic firmware images. In

particular, we use the collection built by Wen et al. [59] by crawling

the Google Play Store and searching for Android applications

containing firmware images for IoT devices (e.g., a smart watch

with a companion app on a mobile phone). This set contains

a total of 794 unique ARM monolithic firmware images: 769

from Nordicsemi (Nordic), and 25 from Texas Instruments (TI).

Furthermore, we use 5 more firmware images related to Fitbit [30]

fitness devices [52], for a total of 799 monolithic firmware images.

Overall, the firmware images we use in this experiment represent

an extremely heterogeneous set of different real-world applications,

as also shown in the categorization presented in Table III of the

Appendix B. The average and median size of a firmware in the

wild dataset are bigger than the ones reported for the ground-truth
dataset, 101KB and 76KB, respectively. Moreover, these firmware

samples have a bigger number of opcodes, both average ∼29

thousand and median ∼27 thousand (cf. Table V in Appendix D).

HML Identification. Developers are generally discouraged to

use HML in embedded systems code (as mentioned in Section II).

However, we find that 340 of the 799 firmware images (42%) in

the wild dataset actually include such a library. Out of these 340

samples, 253 (75%) were automatically identified by HEAPSTER,

while the remaining ones were identified by our clustering analysis.

When considering the 253 blobs identified by HEAPSTER,

we find the distribution of the basic functions (found in all but 7

1090

TABLE II: Security evaluation of HMLs found in the ground-truth
and wild datasets. This table includes all the blobs for which we

identified an HML leveraging both HEAPSTER and the similarity

analysis with BinDiff. We group by sub-clusters of HML types

that are affected by the same set of heap vulnerability classes.

Num represents the cumulative number of firmware samples

in the grouped sub-clusters. OC/NHA/RW/AW represent the

heap vulnerability classes, while DF/FF/O/UAF the exploitation

primitives (as presented in Section III-G). The values represent the

total number of heap transitions that must be executed (including

the single exploitation primitive) to trigger the vulnerability.

OC NHA RW AW

HML Num DF FF O UAF FF O UAF FF O UAF FF O UAF

A1,A5 2 7 5 7 2 5 6 2 4 6
A2,A6 2 7 5 5 2 5 4 2 4 4
A3 1 7 5 7 2 5 6 2 4 6 4 5 6
A4 1 7 5 5 2 5 4 2 4 4 4 5 6
A7,A8 2 7 5 7 2 5 7 2 4 6
B1,B2,B3,B4 7 7 5 6 2 7 7 2 4 5 5
B5,B6 2 7 5 6 2 7 2 4 5 5
C1 2 6 7

G
ro

un
d

Tr
ut

h
D

at
as

et

C2 1 6 6

Total 20

D0-2,M0 117 7 6 5 5 5 5 5
E0-1,E4-8,E10 70 7 5 7 2 5 6 2 4 6
E2-3,E9 21 7 3 5 7 2 5 6 2 4 6
E11 2 7 5 7 3 5 6 2 4 6
F0 51 6 6 5 5
G0 19 6 6 2 6 7
G1 7 7 6 2 6 7
H0-2 19 4 6
I0 7 5 6 5 6 5 5
I1 5 6 6 5 6 5 5
I2 4 6 6 5 7 5 5
I3 2 5 6 5 6 6 6
J0 3 7 5 6 2 7 7 2 4 5 5
J1-2 3 7 5 6 2 6 2 4 5 5
K0 3 7 6 6 5 6 5 5
K1 2 7 6 6 6 6 5 6

W
ild

D
at

as
et

L0 5 7 6 6 7 6

Total 340

samples) used to correctly identify malloc as a pointer source
to be quite similar to the ones found in the ground-truth dataset. In

particular, the memcpy basic function marked the final allocator

as a pointer source in 237 blobs, memset — in 80, memcpy and

strlen — in 3 each, and strncpy — in 2. During our HML

analysis, the 4 Allocator Identification step took the most average

and median memory, 4.5GB and 2.2GB, respectively. This is also

the step where HEAPSTER spent the most time: 2.4 hours average

and 1 hour median. It is worth noting that the analysis of only 17

samples was terminated because of a timeout was reached, i.e., non-

terminating steps 6 and 7 , as discussed in Section V-C, but the

memory limit was never exhausted. Although the firmware images

in the wild dataset have larger average sizes than the ones in ground-
truth dataset, HEAPSTER performed better (considering average

and median numbers) on the wild dataset, as the detailed statistics

reported in Appendix D, Table V. Finally, in the wild dataset, the

malloc parameter and the pointer to free have both on average

2.3 (median of 2) more constraints than the closest competitor.

As was reported for the ground-truth dataset, we also identified

that every firmware image uses packed heap global variables. Finally,

in all but 5 samples the heap grows towards higher addresses.

To understand if HMLs are predominant for specific applications,

we classify our firmware images using the categories described by

Wen et al. [59]. The results of this classification are presented in

Appendix B, Table III. This classification shows that HMLs are used

in numerous firmware images that span across different categories:

from Wearable (83 blobs) and Sensors (24), to Medical Devices (22).

Coarse-grained Clustering. The coarse clustering analysis of the

identified HMLs yielded 10 different implementations, which we

label as clusters D to M. According to our results, the most used

HML is D, which is embedded in 115 firmware blobs, followed by

E with 93 samples, and F with 51 (all the cluster sizes are reported

in Appendix C, Figure 4). After considering the similarity across

datasets, we observed that cluster E represents the same HML as

A, while J is the same as B. Therefore, the wild dataset contains

8 new HML implementations. The graph in Appendix F shows a

visualization of the identified coarse-grained clusters.

Fine-grained Clustering. When searching for identical implemen-

tations with the fine-grained clustering, we discovered a total of 32
HML variants. Interestingly, E seems to have the biggest number of

reported variants (12), which might suggest that this implementation

is popular among different tool-chains (we break down the number

of variants identified in each coarse-grained cluster in Appendix C,

Figure 4). Moreover, as we previously identified that E and J match

libraries A and B respectively, we checked for identical variants

in E-A and J-B and found no overlaps between them.

HML Security Evaluation. To reduce the number of analyses

performed by HeapHopper, we test one HML per identified variant,

for a total of 32 HMLs. To select these samples, which are reported

in Table IV of Appendix C, we randomly chose a representative

firmware for every HML variant. For this experiment, we tested

on average 2k PoCs per HML, with a time constraint of 10 minutes

each. Every single HML has been analyzed by HeapHopper in less

than 3 hours, with a total analysis time of 36 hours to analyze all the

selected firmware images. All the PoVs produced by HeapHopper

are checked using the approach presented in Section III-H with a

time limit of 5 minutes per PoV re-execution. If the PoV execution

does not trigger the reported heap vulnerability, or does not respect

the configured time limit, we consider it a false positive and

continue the analysis to find another PoV. Table II summarizes the

results of the security evaluation across the 32 HML variants.

Results Discussion. Similar to the ground-truth dataset, the security

analysis results show that all tested HMLs variants are vulnerable

to at least Overlapping Chunks and Restricted Write. This means

that all the 340 firmware blobs that are using these libraries can

be exploited by a heap attack if the right exploitation primitive is

found in the application’s code. In particular, as all of the analyzed

HMLs leverage heap inline metadata (discussed in Section III-E),

without implementing any safety measure to protect them, heap
overflow primitives are always very effective in giving an attacker

the possibility to manipulate the heap, opening the door for a

complete takeover of the application.

1091

C. HML Identification: False Negatives

In this subsection, we discuss the false negatives of our HML iden-

tification on the wild dataset as well as the ways we mitigate them.

Similarity Match. We use the coarse-grained clustering algorithm

on the wild dataset, leveraging the 253 HMLs detected by

HEAPSTER as a target library of known HML functions. Thanks

to the binary similarity algorithm used by BinDiff, we detected 85

additional blobs that contain an HML but that were not detected

by the initial HML identification analysis. When investigating these

new 85 blobs, we discover that 69 of them perfectly match HMLs

in a known fine-grained cluster, while 16 need further attention.

Imperfect Match. We manually investigated the 16 firmware

images that were included in the graph presented in Appendix F,

but we could not assign them to a fine-grained cluster (i.e., no

perfect match with any other HML was reported by BinDiff, and

HEAPSTER did not identify a working allocator). After a manual

investigation, we discovered that these blobs actually did belong

to existing fine-grained clusters, and the reason for the imperfect

match was related to imprecision in the disassembler employed

by BinDiff when analyzing the target functions. Therefore, we

proceeded to include these blobs into the correspondent fine-grained

cluster.It is worth noting that adding a blob to a fine-grained cluster

means that there exists a firmware image with the exact same HML

that we were able to test with HeapHopper. This increased the

number of firmware images with an HML to a total of 338.

Package Name. Using the metadata information released by Wen

et al. [59], we group firmware images depending on the Android

packages’ names of the application containing the firmware blob.

By leveraging this information, we identify groups where only a

subset of blobs was reported containing an HML by HEAPSTER.

Then, we pinpoint the samples for which we could not identify an

HML (40 firmware images) and performed a manual investigation

over them. We discovered that, on the one hand, 17 cases were

indeed false negatives, but they did not affect our results as they

were included in a fine-grained cluster (i.e., their HML has already

been evaluated by using the fine-grain cluster representative). On

the other hand, for the remaining 23, we confirmed that there was

indeed no HML within the firmware (i.e., they are true negatives).

Random Sampling. Finally, we randomly selected an additional

50 firmware images that were not part of any cluster nor were they

part of the set of blobs that we check during the package name

investigation. Out of the 50 firmware images, we confirmed 46

samples to be true negative (i.e., no HML is apparently used by the

blob), 2 contain an allocator not in scope as discussed in Section II,

and 2 are confirmed to be false negatives. We investigated the latter

false negatives by running a more relaxed coarse-grained function

binary similarity (we use a similarity score of 0.6) as explained in

V-B. As a result, BinDiff reported a similarity score of 0.63 with

0.71 confidence with one of the blobs in cluster L. We confirmed

this by manually comparing the HML implementations used by the

binaries and eventually added these two blobs to the fine-grained

cluster L0. After this investigation, we ended up with a total of 340

firmware images containing an HML.

False Negatives Reasons. The main source of false negatives for

our system is related to the failure to identify allocator functions

(40 blobs). This means that either HEAPSTER was not able to

find the correspondent heap initializer, or it could not find a

connection from a pointer source to a basic function, preventing

the analysis discussed in III-E to identify the correct function. The

second most common reason is the failure to detect a working

allocator-deallocator pair (29 blobs). This can occur when free
is not correctly identified, or when the HML execution does not

respect our criteria (as discussed in Section II). Finally, steps 6

and 7 did not terminate for 8 and 9 firmware images, respectively.

However, as we explained in the previous paragraphs, none of these

false negatives affected our final results, as we always managed to

identify the correct HML with the help of our clustering approach.

D. Security Impact of Vulnerabilities in HML for Applications

Threat Model for Applications. We assume that an attacker has

control over the input data that a firmware image receives via its

peripherals. This usually corresponds to data received over any

kind of network interface (e.g., Bluetooth or WiFi), serial interface,

or from sensors. For our evaluation, we consider all MMIO

read functions as possible entry-points and threat vectors for the

firmware. In particular, we focus our attention on identifying paths

within the firmware code that connect a data read from an MMIO

function to a malloc or free. This is because such a path might

allow an attacker to allocate and de-allocate memory on demand,

and potentially, manipulate a vulnerable HML to exploit a device.

Automated Vulnerable Candidate Selection. Our attack model

requires us to find vulnerabilities that are dependent on malicious

user input, and that can affect the state of the system during its exe-

cution. Unfortunately, we are faced with the challenge of performing

our analysis without access to a real execution environment for the

firmware images (as we do not have the actual devices), and without

reliable information about the true sources of external user input. To

address this challenge, we developed an automated static technique,

based on reaching definitions, that identifies whether an MMIO

function has a static path to a call to mallocwith a variable size or

a call to free. Furthermore, in case of malloc, we check whether

the definition it produces is used by a basic function (e.g., memset
or memcpy) with variable size writing capabilities. This analysis

aims to select blobs that are most accessible for further manual

investigation. This approach identified 54 blobs (among all samples)

that we used as the starting point for further manual analysis.

Manual Investigation. We carried out a best-effort manual search

for vulnerabilities in the 54 blobs. This task required a week of

work from two senior security researchers. During our manual

investigation, we identified four firmware images that can be

affected by an integer overflow bug. In particular, this vulnerability

could lead to a small heap allocation being overflown by a

subsequent memcpy (i.e., heap overflow). The discovery of these

heap exploitation primitives makes the respective firmware images

meet all the conditions we need for our threat model. However,

while the discovery of these vulnerabilities provides some indication

that the firmware image could be exploited in practice, a full

re-hosting solution would be necessary to confirm our findings. For

this reason, in the next section, we demonstrate how we confirmed

vulnerabilities discovered by HEAPSTER on a real device.

1092

Hardware Example. To validate HEAPSTER in a real-world

scenario, we use an STM32-NucleoF401RE board expanded with

an X-NUCLEO-IDW01M1 Wi-Fi Module, as shown in Figure 5 of

Appendix E. This hardware satisfies the prerequisites of our threat

model, since an attacker can interact with the firmware code via the

Wi-Fi module. We flashed on the board a firmware application that

sends and receives packets over WiFi. To implement the application,

we used the Mbed Studio IDE [10], which automatically selects the

HML implemented in the mbed library version 172 [9]. We then run

HEAPSTER on the resulting firmware image. The system correctly

identified the generic HML chosen by the IDE in the blob. Moreover,

it determined that the HML is vulnerable to OC, NHA, RW. We

implemented an end-to-end exploit for the hardware device itself

and confirmed the HML to be vulnerable to all discovered attacks.

VI. DISCUSSION AND LIMITATIONS

Loading Firmware. The results of our analyses depend on the

precision of several data structures recovered from the firmware

image (i.e., CFG, function boundaries, and the callgraph). In

particular, function boundaries and the callgraph are heavily

dependent on the quality of the CFG analysis. To extract this

information we rely on the algorithms implemented in the angr
framework. However, building precise CFGs for firmware blobs is a

hard problem that presents numerous engineering challenges [4], [5].

Firmware Emulation. Inspired by previous work in monolithic

firmware analyses [22], [29], [33] our approach internally uses

an emulator to lift the assembly into an IR, to eventually execute

the code. Consequently, the quality of our results depends on the

precision and correctness of the emulator mimicking the concrete

semantics of the program execution on a bare-metal device.

Basic Function Identification. During our large-scale evaluation,

we found at least one basic function in 762 monolithic firmware

images. However, basic functions can be inlined, not present at all,

or not identifiable. To mitigate this issue, we could define addresses

of instructions that perform memory writes as starting points of

our pointer sources identification. Indeed, this would increase the

opportunities to detect new pointer sources, and therefore, malloc.

However, this would also directly largely affect the performance of

the pointer sources identification analysis, thus we limit our starting

points to registers supplied as arguments to basic functions.
Pointer Source Identification. As described in Subsection III-B

the pointer sources identification analysis uses angr’s reaching

definitions (RD) framework. However, RD has no support for stores

done in memory locations where the address is not known statically

(i.e., dynamic memory locations). Therefore, when the value

returned by malloc is stored at a dynamic location, RD cannot

keep track of the definition of that memory. Hence, when the pointer

is later used in a basic function, we will miss this dependency.

Heap Initialization. When our approach to initialize the firmware

memory fails (i.e., not all the memory is correctly initialized), we

potentially end up with uninitialized heap global variables being

accessed during the execution of malloc and free. To address

this issue, we attempt to initialize the uninitialized memory with

zero. If this is not fatal, andmalloc is returning valid heap memory

addresses, we proceed with our analyses. However, this can lead to

false positives and false negatives that cannot be easily resolved au-

tomatically by HEAPSTER, but require either a test on the real hard-

ware or a manual check of the generated PoV by a human analyst.

Exploitation Evaluation. When evaluating the 54 blobs selected

by our analysis in Section V-D, we consider all the functions

that access MMIO data as possible entry points for the attacker.

However, if an MMIO function is not reading data from a peripheral

that is receiving inputs from users, this analysis can generate false

positives. Moreover, the mere presence of a static path cannot say

anything regarding the feasibility of this path (that connects an

MMIO function to a malloc/free callsite) during runtime. Thus,

our manual review can only provide limited guarantees about the

discovered threats. We consider building a robust system to detect

heap exploitation primitives in applications as future work.

VII. RELATED WORK

A. Heapster vs. Membrush

The HML identification analyses implemented in this paper share

withMembrush [19] the goal of detecting custom allocators in bina-

ries. Membrush leverages binary instrumentation and full program

execution to identify the allocator embedded in a desktop binary.

In a nutshell, Membrush runs a target program on a native system

— using as input the test cases of the target — and leverages Intel

Pin [40] to instrument the program and analyze its dynamic behavior.

The key difference between HEAPSTER and Membrush, is that

our tool focuses on monolithic firmware images, while Membrush
targets desktop binaries. While at first glance this difference might

seem simple to overcome, the implications are far-reaching. First of

all, since HEAPSTER is working with monolithic firmware images, it

cannot rely on test cases to execute the firmware code, because they

are rarely, if ever, available. A solution to this problem could be to

automatically generate the inputs leveraging a fuzzer, but this would

also require additional research to understand how to inject the inputs

without a clear I/O interface defined in the firmware. Additionally,

this would require generating good test cases that cover enough code

to eventually identify the allocator. Finally, full firmware code exe-

cution would also require a complete re-hosting solution, which not

only would add engineering complexity to the system, but is still an

open problem when trying to analyze a large collection of blobs [28].

B. Heap Management Library Security

Different approaches have been proposed to analyze the security

of heap allocators. In this paper, we leveraged and modified the

work done by Eckert et al. [24] to symbolically execute the heap

primitives identified inside a firmware blob. In particular, we

use the same bounded model checking technique to discover

whether a memory allocator is vulnerable to a class of known

heap vulnerabilities. Recently, Yun et al. [63] proposed a system

to discover new heap exploitation techniques that leveraged a

fuzzer to bring the heap into new corrupted states. Heelan et al.

proposed Gollum [34], a system that can perform automatic heap

layout manipulation and exploitation of interpreter programs. In

a similar vein, Zhao et al. [64] proposed an automatic framework

to guide the exploitation of heap vulnerabilities. Finally, more

recently, Wang et al. proposed Maze [62], a system that leverages

symbolic execution and Linear Diophantine Equations to re-create

1093

the heap layout required to exploit a heap vulnerability. Researchers

have also focused on the automatic exploitation of the kernel heap.

In particular, FUZE [61] provides a system to facilitate exploits

generation for kernel use-after-free vulnerabilities, while Slake [20]

facilitates the manipulation of a kernel-specific allocator (i.e., the

slab allocator [13]) to eventually exploit vulnerabilities in the Linux

kernel. However, the state-of-the-art research about the security of

dynamic memory allocators has focused on traditional systems (i.e.,

desktop computers and servers). To the best of our knowledge, this is

the first work to identify, and test, the security of memory allocators

in the embedded world, and, in particular, in monolithic firmware.

C. IoT Vulnerabilities

The security testing of IoT devices and their firmware (Linux-

based and not), has been the target of numerous research works in

the past few years. Muench et al. [43] elaborated on the challenges in-

troduced by firmware when applying traditional fuzzing techniques

to this domain. In particular, the authors demonstrated that the side

effects of a memory corruption inside a firmware sample are differ-

ent from the ones observed over classic binaries, and, therefore, the

effectiveness of classic tools is drastically reduced. Chen et al. [18]

proposed IoTFuzzer, a fuzzing methodology aimed at discovering

memory corruption bugs using the companion android app of IoT

devices. Similarly, Redini et al. proposed Diane [47], a system to gen-

erate under-constrained inputs for embedded devices that consume

data from companion applications. More recently, Wen et al. pro-

posed FirmXRay [59], a system that uses static analysis to discover

Bluetooth link layer vulnerabilities in a large number of monolithic

firmware images. Ruge et al. [50] have also focused on Bluetooth

devices, and proposed a fuzzing system based on firmware emula-

tion of a specific Bluetooth board to uncover memory corruption

vulnerabilities in the Bluetooth stack. Finally, Feng et al. proposed

P2IM [29], a hardware-independent firmware testing framework

that uses an external fuzzer to provide inputs inside the target. The

aforementioned systems cover specific kinds of bug classes, but none

of them focus on understanding the weaknesses that affect heap

management libraries employed by monolithic firmware images.

D. Re-hosting solutions

The analyses presented in this paper rely on emulating and

symbolically exploring parts of the firmware code. While

HEAPSTER does not need a full re-hosting system as it performs

targeted execution of selected functions, a re-hosting solution would

have certainly benefited our analyses, and removed the necessity

of execution models based on empirical configurations. However,

re-hosting and precise code execution of firmware code is still an

open problem [60]. Gustafson et al. [33], proposed a system to

perform automatic re-hosting of monolithic firmware by using

information recovered from real interactions between the firmware

and the peripherals. Muench et al. proposed Avatar2 [42], a system

that leverages “hardware in the loop” to forward I/O interactions

with unsupported peripherals to the real device. More recently,

Clements et al. [22] proposed a re-hosting solution based on

replacing the functions in the high-level hardware abstraction layer

(HAL) with generic implementations inside a full-system emulator.

To tackle the problem of peripheral interactions, Cao et al.

proposed Laelaps [15], an MCU agnostic system that leverages

concolic execution to execute firmware code. Similarly, a recent

work proposed Jetset [26], a system based on symbolic execution

that infers what behavior firmware expects from a target device, and

synthesizes peripherals models that can later be imported into an

emulator. Zhou et al. proposed μEmu [65], a system that leverages

symbolic execution to infer how to respond to unknown peripheral

accesses at individual access points. Finally, Fuzzware [51] proposes

a fine-grained MMIO modeling approach that leverages a coverage-

guided fuzzer to test unmodified firmware in a scalable way.

VIII. CONCLUSIONS

In this paper, we present HEAPSTER, a system that automatically

identifies heap management libraries (HMLs) contained in mono-

lithic firmware images and tests their security. This work represents

the first attempt at analyzing the security of dynamic memory alloca-

tors used in monolithic firmware. We show that identifying the heap

management library inside a firmware blob — with no symbols and

limited support for dynamic execution — is a very challenging task.

In particular, we leverage different heuristics and domain-specific

intuitions to address the immense heterogeneity of the firmware

domain. Our evaluation demonstrates that it is possible to identify

the heap management primitives and to precisely execute them to test

for the presence of critical heap vulnerabilities. We use HEAPSTER

to identify the HML inside 819 real-world monolithic firmware

images (considering both the ground-truth and the wild datasets). To

the best of our knowledge, this is the biggest evaluation of a technical

work that uses a combination of static and dynamic program analysis

techniques to analyze monolithic firmware images. In particular,

inside the 340 blobs for which we detected a dynamic memory

allocator, we discovered 11 different heap implementation families,

and a total of 48 different heap implementation variations. To test

the security of the identified HMLs, we leverage a modified version

of HeapHopper, and we show that these libraries are all affected

by multiple classes of heap vulnerabilities. Our work sheds some

light on the state of the security of embedded allocators, which has

been largely ignored by the security community, and shows a quite

worrisome picture. As IoT becomes increasingly ubiquitous, and

firmware analysis tools are getting more powerful, we hope vendors

and embedded system developers will start to provide guidelines,

and security-vetted libraries, to bring safer products into our society.

IX. ACKNOWLEDGEMENTS

This material is based upon work supported all or in part by

Office of Naval Research (ONR) under awards N00014-17-1-

2011, N00014-20-1-2632, N00014-17-1-2897, by DHS award

FA8750-19-2-0005, and by DARPA award HR001118C0060.

The U.S. Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright

notation thereon. Any opinions, findings, and conclusions or

recommendations expressed in this publication are those of

the authors and do not necessarily reflect the views of the US

Government. We would like to thank the anonymous reviewers

for their valuable feedback, and Haohuang Wen for the support

regarding the dataset collected in FirmXRay [59].

1094

REFERENCES

[1] 32bitmicro. libc malloc. https://github.com/32bitmicro/newlib-nano-1.0/blob
/master/newlib/libc/sys/linux/malloc.c#L2815, 2012.

[2] 32bitmicro. nanomalloc. https://github.com/32bitmicro/newlib-nano-1.0/blob
/master/newlib/libc/stdlib/mallocr.c#L192, 2012.

[3] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In
25th USENIX Security Symposium, pages 583–600, 2016.

[4] angr. The Great ARM CFG Challenge 1. https://github.com/angr/angr/pul
l/1668, 2020.

[5] angr. The Great ARM CFG Challenge 2. https://github.com/angr/angr/pul
l/2075, 2020.

[6] Orlando Arias, Dean Sullivan, and Yier Jin. Ha2lloc: Hardware-assisted secure
allocator. In Proceedings of the Hardware and Architectural Support for
Security and Privacy, pages 1–7. 2017.

[7] ARM. Cortex-m3 embedded software development. https://www.eecs.umi
ch.edu/courses/eecs373/readings/ARM Cortex AppNote179.pdf, 2007.

[8] ARM. Cortex-m3 vector table. https://developer.arm.com/documentation/
dui0552/latest/the-cortex-m3-processor/exception-model/vector-table, 2007.

[9] ARM. Default hml used by mbed ide. https://os.mbed.com/users/mbed o
fficial/code/mbed//rev/65be27845400/, 2021.

[10] ARM. mbed ide. ide.mbed.com, 2021.

[11] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David
Brumley. BYTEWEIGHT: Learning to recognize functions in binary code. In
23rd USENIX Security Symposium USENIX Security 14), pages 845–860, 2014.

[12] Michael Barr. Firmware-specific bug #5: Heap fragmentation. https://embedded
gurus.com/barr-code/2010/03/firmware-specific-bug-5-heap-fragmentation/,
2010.

[13] Jeff Bonwick et al. The slab allocator: An object-caching kernel memory
allocator. In USENIX summer, volume 16. Boston, MA, USA, 1994.

[14] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Communications of the ACM, 56(2):82–90, 2013.

[15] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-agnostic firmware
execution is possible: A concolic execution approach for peripheral emulation.
In Annual Computer Security Applications Conference, pages 746–759, 2020.

[16] CEA IT Security (IT Security at the French Alternative Energies and
Atomic Energy Commission). Sibyl: A miasm2 based function divination.
https://github.com/cea-sec/Sibyl, 2019.

[17] Check Point. Safe-linking - eliminating a 20 year-old malloc() exploit primitive.
https://research.checkpoint.com/2020/safe-linking-eliminating-a-20-year-
old-malloc-exploit-primitive/, 2020.

[18] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and
Kehuan Zhang. Iotfuzzer: Discovering memory corruptions in iot through
app-based fuzzing. In NDSS, 2018.

[19] Xi Chen, Asia Slowinska, and Herbert Bos. Membrush: A practical tool
to detect custom memory allocators in c binaries. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages 477–478. IEEE, 2013.

[20] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pages
1707–1722, 2019.

[21] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen,
David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and
Mathias Payer. Halucinator: Firmware re-hosting through abstraction layer
emulation. In 29th USENIX Security Symposium USENIX Security 20), pages
1201–1218, 2020.

[22] Clements, Abraham and Gustafson, Eric and Scharnowski, Tobias and Grosen,
Paul and Fritz, David and Kruegel, Christopher and Vigna, Giovanni and
Bagchi, Saurabh and Payer, Mathias. HALucinator: Firmware Re-hosting
through Abstraction Layer Emulation. In USENIX Security Symposium, 2020.

[23] Moritz Eckert. Security implications of tcache. https://sourceware.org/leg
acy-ml/libc-alpha/2018-02/msg00298.html, 2018.

[24] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Heaphopper: Bringing bounded model checking
to heap implementation security. In 27th USENIX Security Symposium
USENIX Security 18), pages 99–116, 2018.

[25] Embeddedinsights. Question of the week: Do you use or allow dynamic
memory allocation in your embedded design? http://www.embeddedinsigh
ts.com/channels/2010/03/24/question-of-the-week-do-you-use-or-allow-
dynamic-memory-allocation-in-your-embedded-design/, 2012.

[26] Johnson Evan, Bland Maxwell, Zhu YiFei, Mason Joshua, Checkoway
Stephen, Savage Stefan, and Levchenko Kirill. Jetset: Targeted firmware
rehosting for embedded systems. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2021.

[27] Chris Evans. glibc patch. https://sourceware.org/git/?p=glibc.git;a=comm
it;h=17f487b7afa7cd6c316040f3e6c86dc96b2eec30, 2017.

[28] Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexander
Bulekov, Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francillon, Long
Lu, Nick Gregory, et al. Sok: Enabling security analyses of embedded systems
via rehosting. In ACM ASIA Conference on Computer and Communications
Security (ASIACCS), 2021.

[29] Bo Feng, Alejandro Mera, and Long Lu. P 2 im: Scalable and hardware-
independent firmware testing via automatic peripheral interface modeling. In
Proceedings of the 29th USENIX Security Symposium, 2020.

[30] Fitbit. Fitbit. https://www.fitbit.com/global/us/home, 2022.

[31] Zynamics GmbH. Bindiff manual. https://www.zynamics.com/bindiff/man
ual/#chapUnderstanding, 2020.

[32] GNU.org. The gnu c library (glibc). https://www.gnu.org/software/libc/, 2021.

[33] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry,
Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, et al. Toward the analysis of embedded firmware through
automated re-hosting. In 22nd International Symposium on Research in
Attacks, Intrusions and Defenses ({RAID} 2019), pages 135–150, 2019.

[34] Sean Heelan, Tom Melham, and Daniel Kroening. Gollum: Modular and
greybox exploit generation for heap overflows in interpreters. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1689–1706, 2019.

[35] Grant Hernandez, Farhaan Fowze, Dave Jing Tang, Tuba Yavuz, Patrick
Traynor, and Kevin RB Butler. Toward automated firmware analysis in the
iot era. IEEE Security & Privacy, 17(5):38–46, 2019.

[36] Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren.
An empirical study on arm disassembly tools. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages
401–414, 2020.

[37] Joseph, Yiu and Andrew, Frame. Cortex-M Processors and the Internet of
Things (IoT). https://community.arm.com/cfs-file/ key/communityserver
-blogs-components-weblogfiles/00-00-00-21-42/White-Paper 2D00 Cor
tex 2D00 M-Processors- 2600 -the-IoT.pdf, 2013.

[38] M Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. Speculative
disassembly of binary code. In 2016 International Conference on Compliers,
Architectures, and Sythesis of Embedded Systems (CASES), pages 1–10. IEEE,
2016.

[39] Beichen Liu, Pierre Olivier, and Binoy Ravindran. Slimguard: A secure and
memory-efficient heap allocator. In Proceedings of the 20th International
Middleware Conference, pages 1–13, 2019.

[40] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation.
Acm sigplan notices, 40(6):190–200, 2005.

[41] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. Probabilistic disassembly. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1187–1198. IEEE, 2019.

[42] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti.
Avatar2: A multi-target orchestration platform. In Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.), volume 18, pages 1–11, 2018.

[43] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In NDSS, 2018.

[44] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[45] Gene Novark and Emery D Berger. Dieharder: securing the heap. In
Proceedings of the 17th ACM conference on Computer and communications
security, pages 573–584, 2010.

[46] Carlos OD́onell. Security implications of tcache. h t t p s :
//sourceware.org/legacy-ml/libc-alpha/2018-02/msg00313.html, 2018.

[47] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah
Spahn, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and
Giovanni Vigna. Diane: Identifying fuzzing triggers in apps to generate
under-constrained inputs for iot devices. In In Proceedings of the IEEE
Symposium on Security & Privacy (S&P), May 2021.

[48] Chris Rohlf. Isoalloc. https://struct.github.io/iso alloc.html, 2020.

[49] RT-Thread. lwip malloc. https://download.savannah.nongnu.org/releases/
lwip/lwip-1.4.0.zip, 2013.

1095

[50] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. Franken-
stein: Advanced wireless fuzzing to exploit new bluetooth escalation targets. In
29th USENIX Security Symposium USENIX Security 20), pages 19–36, 2020.

[51] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Marius
Muench, Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and Ali Abbasi.
Fuzzware: Using precise mmio modeling for effective firmware fuzzing.

[52] Secure Mobile Networking Lab (Seemoo-lab). Collection of fitness firmware.
https://github.com/seemoo-lab/fitness-firmware/tree/master/firmwares, 2021.

[53] Shellphish. Educational heap exploitation. https://github.com/shellphish/ho
w2heap, 2020.

[54] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser,
Christopher Kruegel, et al. Sok:(state of) the art of war: Offensive techniques
in binary analysis. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 138–157. IEEE, 2016.

[55] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping
Liu. Freeguard: A faster secure heap allocator. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages
2389–2403, 2017.

[56] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu.
Guarder: A tunable secure allocator. In 27th USENIX Security Symposium
USENIX Security 18), pages 117–133, 2018.

[57] TrustworthyComputing. CSAW Embedded Security Challenge.
https://github.com/TrustworthyComputing/csaw esc 2019, 2019.

[58] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and
Bhavani Thuraisingham. Differentiating code from data in x86 binaries. In
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 522–536. Springer, 2011.

[59] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Firmxray: Detecting
bluetooth link layer vulnerabilities from bare-metal firmware. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 167–180, 2020.

[60] Christopher Wright, William A Moeglein, Saurabh Bagchi, Milind Kulkarni,
and Abraham A Clements. Challenges in firmware re-hosting, emulation, and
analysis. ACM Computing Surveys (CSUR), 54(1):1–36, 2021.

[61] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou.
FUZE: Towards facilitating exploit generation for kernel use-after-free
vulnerabilities. In 27th USENIX Security Symposium USENIX Security 18),
pages 781–797, 2018.

[62] Wang Yan, Zhang Chao, Zhao Zixuan, Zhang Bolun, Gong Xiaorui, Zou Wei,
and Levchenko Kirill. MAZE: Towards automated heap feng shui. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association,
August 2021.

[63] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic techniques to
systematically discover new heap exploitation primitives. In 29th USENIX
Security Symposium USENIX Security 20), 2020.

[64] Zixuan Zhao, Yan Wang, and Xiaorui Gong. Haepg: An automatic multi-hop
exploitation generation framework. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 89–109.
Springer, 2020.

[65] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Automatic firmware
emulation through invalidity-guided knowledge inference. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 2021.

[66] Zynamics. Zynamics bindiff. https://www.zynamics.com/software.html, 2020.

APPENDIX

A. Function Execution Models

In this Appendix, we provide technical details about the execution

models used to emulate different functions in the firmware image.

Basic Function. When looking for basic functions (as explained

in Section III-B), we simply setup the arguments of the procedure

with values compatible with the prototype of the basic function we

are trying to identify. After that, we simply run the function with

a timeout of 10 seconds.

ResetHandler. When executing the ResetHandler, we focus

the execution to target the loops responsible for the unpacking of

the firmware’s global variables (as discussed in Section III-C). In

particular:

1) We terminate every loop with a symbolic guard. This is based

on the intuition that any loop depending on symbolic data

(during the firmware bootstrap), must depend on peripherals

data, and, therefore, does not implement a compiler-injected

stub responsible for unpacking firmware’s global variables.

2) We stop the execution whenever an angr’s unsupported

ARM SuperVisor Call instruction (SVC) is being executed.

3) We force a return to the caller whenever the RIP register con-

tains an address out of the main binary’s ROM address space.

4) We do not follow any function call during the execution of

the ResetHandler.

5) We stop the execution whenever we hit the first basic block

of a potentially infinite loop detected by purely static analysis

in angr.

6) We return a fresh symbolic variable every time an access to the

MMIO region is detected. This is necessary to overcome issues

related to time-dependent memory locations. More specifically,

as shown in Figure 3, the content of the memory location at

0x40064006 is expected to change during the peripherals

initialization. When returning a fresh symbolic variable at

every access, angr has the opportunity to concretize its value

to the one necessary to break out of the loop, and therefore

to advance the execution.

7) We stop the execution when leaving the ResetHandler
function with a callout (i.e., a jump to another function

that never returns to the caller). In fact, we assume for

simplicity that a callout corresponds to the transition from the

ResetHandler to the firmware’s main function.

1 while ((MEMORY[0x40064006] & 2) == 0);
2 while ((MEMORY[0x40064006] & 0x10) != 0);
3 while ((MEMORY[0x40064006] & 0xC) != 8);

Fig. 3: Time-dependent memory location.

Heap Initializers. Even if heap initializers are commonly very

simple functions per se, they can sometimes be part of a bigger

library initialization procedure, which, in turn, can call multiple

other functions before reaching the code responsible for writing

the heap global variables. For this reason, we need to use a less

strict execution model that forces the execution to make progress,

without terminating it prior to the heap initialization. In particular, to

execute the heap initializers we follow strategy steps 1)-5) defined

for ResetHandler, plus:

6) We stop the execution whenever we reach the address of a

pointer source because we assume that when calling a pointer
source the heap has already been initialized.

7) We follow function calls only if the arguments are concrete.

8) We expect heap initializers to only write concrete data in mem-

ory, and to be executed at the bootstrap of the firmware. There-

fore, we do not execute functions with symbolic arguments.

9) We stop the execution whenever we detect a read/write

memory operation over a symbolic address.

10) We timeout the execution of a function after 30 minutes.

Pointer Sources & De-allocator Candidate Execution. During

the analyses presented in Sections III-C and III-D, we execute the

1096

functions using steps 1)-3) of the ResetHandler’s execution model,

and:

4) We limit concrete loops iterations to 100.

5) We stop the execution of a function after 15 seconds. In fact,

we expect the execution of HML functions to be very quick

as these procedures must have high performances.

B. Firmware HML Usage Categorization

Table III presents the distribution of firmware images in our

dataset across different categories. For each category, we also

report how many images contain an HML library according to our

evaluation in Section V. The main observation is that HMLs are

rather widespread and used in all identified categories.

Category Blobs with heap Tot. Blobs

Wearable 83 209
Generic Upgrade Tool 50 51
Others 34 53
Sensor 24 67
Medical Devices 22 41
Bike Accessory 19 40
Smart Eyeglasses 19 19
Tracker 16 58
Switch 14 20
Car Accessory 9 25
Robot 9 41
Smart Lock 7 15
Smart Light 7 21
Battery 6 9
Smart Home 5 20
Game Accessory 4 9
Agricultural Equipment 3 10
Thermometer 2 16
Beacon 2 12
Firearm Accessory 2 11
Headphone 2 2
Alarm 1 2
Total 340 799

TABLE III: Categories breakdown for firmware blobs used in the

evaluation.

C. Wild Dataset Reports

For each of the blobs from the wild dataset discussed in

Subsection V-B, Table 4 presents their (sub)cluster, total number

of functions, number of basic functions and pointer sources. Also,

we report whether the HML required patching. Figure 4 reports

the number of blobs and variants per coarse cluster. Interestingly,

we observe a big representation for clusters D, E, and F with a

rather small variance. Most likely, this indicates that these blobs

use standardized HML coming from vendors/IDEs.

D. Resource Usage Statistics during HML Identification

In Table V we report the average memory consumption and

median memory consumption in Megabytes (MB) for each stage

of the analysis detailed in Section III. Reported metrics were

consistently bound by 4.5GB across diffident analysis stages and

datasets allowing our HML analysis to be performed either on

a general-purpose machine or on an upscale one with several

instances run in parallel. Also, we present the average and median

time (in seconds) spent in each analysis step in Table V. The

Sample # Functions HML

Name
Size
(KB)

Tot. B S C P

AC603 0101 V0.9.18 191114 1131.bin@2d2b 101 843 3 11 D0 �
BSW20204006.bin@be06 184 1385 4 14 D1 �
AC603 VIITA BT GS V058 180414 1610.bin@a851 87 715 3 8 D2 �
Exakt Pedal Radio Firmware.bin@33d1 83 681 4 3 E0 �
BSRLWK h10 s9 20191124.bin@caa9 121 520 5 17 E1 �
nrf52832 xxaa.bin@000d 90 454 4 10 E10 �
app fw RELEASE.bin@a4fa 53 439 3 7 E11 �
BME-100.bin@57a8 119 621 4 35 E2 �
bsafebeacon-S110.bin@e348 47 267 4 4 E3 �
ICP NRF52.bin@6b7c 117 1065 6 12 E4 �
BP application.bin@1175 100 645 6 8 E5 �
Hoot release pca10040.bin@87ce 121 560 6 11 E6 �
nrf52832 xxaa s132.bin@7370 117 382 4 20 E7 �
dddock app dock.bin@d2f5 63 490 5 14 E8 �
BLERemote.bin@c7bb 43 464 5 14 E9 �
trigno update v040.024 T014.bin@12f3 283 903 3 2 F0 �
plugin .bin@e6f4 125 1172 4 22 G0 �
LRIP nRF52 release.bin@9c15 167 1470 5 12 G1 �
qtBrainoad Car Release oad.bin 46 406 5 3 H0 �
ble5 project zero cc13x2r1lp a 167 1170 5 22 H1 �
new bin.bin 42 480 3 9 H2 �
nrf52832 xxaa.bin@c376 168 1437 6 44 I0 �
w-qcpr-sensor-mk3 release 0.45.1.69.bin@eece 385 2203 12 25 I1 �
sma10b firmware.bin@4e84 284 1437 5 63 I2 �
pavlok 2 2008 0930.bin@739e 98 1037 4 6 I3 �
nrf52832 xxaa.bin@589c 173 829 4 38 J0 �
Exakt Pedal Radio Firmware.bin@3dd4 90 673 3 12 J1 �
plot.bin@1050 81 574 4 14 J2 �
Bond Gen2.bin@5ff8 52 790 4 2 K0 �
LinOn Pro RC18.bin@94ee 68 907 5 7 K1 �
bicult ble sdk15 sd 132v6.bin@8e6c 112 1047 5 21 L0 �
tag-firmware.bin@4acb 135 1062 5 11 M0 �

TABLE IV: Firmware blobs in the wild dataset that have been

tested with HeapHopper. Column Tot. show the total number of

functions, B the number of identified basic functions, S the number

of pointer sources, C identified cluster, and P whether is the HML

needed to be patched or not.

average stage execution time topped at 3 hours 50 minutes, median

at 2 hours, which demonstrates that our analysis required less than

2 hours for more than half of the samples in both datasets. Although

both numbers (2 and 4 hours) constitute significant computation

time, we argue that the HML needs to be identified only once per

each sample, facilitating any subsequent (security) analysis.

E. Attacks on Example Board

As discussed in Subsection V-D, to exemplify how one

can use HEAPSTER to discover attacks on a real device, we

leveraged the STM32-NucleoF401RE board expanded with an

X-NUCLEO-IDW01M1 Wi-Fi Module, as depicted in Figure 5

and used HEAPSTER to find, first, the HML and, next, 3 possible

attacks against the HML that successfully trigger Overlapping

Chunks and Non-Heap Allocation. After that, we run the attacks

on the real board, confirming all of them.

F. Firmware Clustering

Figure 6 depicts the results of our clustering algorithm discussed

in Section V applied to both ground-truth and wild datasets. These

results allowed us to establish a relationship between the two

datasets in our evaluation, perform a deeper investigation of false

negatives presence among the blobs with unidentified HML, and,

re-use HML identification and security evaluation results for the

new firmware samples if they can be assigned to an existing cluster.

1097

Fig. 4: In blue, number of blobs in each identified coarse-grained

cluster in the wild-dataset. In orange, number of variants (i.e.,

sub-clusters) per identified coarse-grained cluster in the wild-dataset.

Stage AT(sec.) MT(sec.) AM(MB) MM(MB)

1 13 10 219 207

2 766 675 1482 1277

3 2333 1928 3497 3031

4 3526 3717 2206 2020

5 12565 7233 1751 1555

6 1858 405 2380 2412

G
ro

un
d

Tr
ut

h
D

at
as

et

8 105 94 1456 1257

1 21 19 263 247

2 2479 2003 2155 1719

3 999 141 2873 1823

4 8679 3627 4474 2224

5 5808 136 2045 1602

6 2999 89 2307 1629

7 145 118 2186 1741

W
ild

D
at

as
et

8 121 95 2146 1555

TABLE V: Statistics for the HML identification. Stage corresponds

to each analysis part number as described in Section III. AT/AM
report average time/memory. MT/MM report median time/memory

required for each stage.

G. Bounded Model Checking Configuration

When tracing a PoC with HeapHopper (as explained in

Sections III-F and III-G), we use different parameters to bound

the analysis. Without these limits, the analysis would quickly incur

in state explosion, and, therefore, would not be able to provide

any result. These are the main parameters used to configure the

symbolic execution of the PoC:

Malloc sizes We use a limited number of default values (i.e., 8, 10,

20) as requested sizes when calling malloc.

Overflow sizes When modeling a heap overflow exploitation

primitive, we specify the maximum amount of bytes that can

be overflown. In our configuration, we use a value of 8 bytes.

Chunk header size This parameter is extracted by the analysis

discussed in Section III-E. Practically, this indicates how many

Fig. 5: The STM32-NucleoF401RE board (expanded with an

X-NUCLEO-IDW01M1 Wi-Fi Module) used in our experiments.

bytes of inline metadata are associated with each heap chunk.

Write target size When symbolically exploring the PoC, we

handle attacker-controlled symbolic writes by concretizing

addresses within a specific memory region we called “write

target”. The larger the memory area dedicated to the “write

target” is, the more opportunities we have to concretize the val-

ues useful to trigger a heap vulnerability. However, the “write

target” size increases together with the complexity (and num-

ber) of path constraints, drastically impacting the performance

of the analysis. For our analysis, we use a value of 32 bytes.

Fake free chunk size When using fake-free as exploitation

primitive, we execute free on a memory region filled with a

configurable number of unconstrained symbolic variables. The

bigger this memory region is, the more flexibility HeapHopper

has to manipulate memory to trigger a vulnerability. However,

similarly to the write target size case, this drastically impacts

the scalability of the analysis. For this reason, in our evaluation,

we limit the size of this memory region to 64 bytes.

Loop iterations When symbolically tracing a PoC, we set a limit

on the number of iterations performed by every concrete loop.

For our security evaluation, we set this value to 1000.

HML extra arguments As discussed in Section III-E, the proto-

types of malloc and free may have extra arguments. In

these cases, we constrain the arguments that are representing

neither the requested size nor the pointer to free, to a list of

possible concrete values. This effectively avoids the generation

of false positives related to an unconstrained argument, but also

ensures a precise execution of the allocator/de-allocator code.

Concretization strategies limits Numbers of possible solutions

used when the HeapHopper’s analysis concretizes a symbolic

memory operation. We set this value to a maximum of 100.

Timeout We use this parameter to stop a symbolic analysis that

becomes too expensive to trace. We set this value to 10

minutes per PoC.

1098

Fig. 6: Graph representing the similarity between the allocators discovered inside firmware samples in ground-truth and wild dataset.

We show an edge between nodes only if the BinDiff similarity and confidence scores between the bodies of the respective malloc
have values ≥0.7. Yellow nodes represent firmware of the ground-truth dataset. Nodes with labels represent the firmware blobs we tested

with HeapHopper for the security evaluation (20 from the ground-truth dataset and 32 from the wild dataset).

1099

