
Publicly Accountable Robust
Multi-Party Computation

Marc Rivinius, Pascal Reisert, Daniel Rausch and Ralf Küsters
Institute of Information Security

University of Stuttgart

Stuttgart, Germany

{marc.rivinius, pascal.reisert, daniel.rausch, ralf.kuesters}@sec.uni-stuttgart.de

Abstract—In recent years, lattice-based secure multi-party
computation (MPC) has seen a rise in popularity and is used
more and more in large scale applications like privacy-preserving
cloud computing, electronic voting, or auctions. Many of these
applications come with the following high security requirements:
a computation result should be publicly verifiable, with everyone
being able to identify a malicious party and hold it accountable,
and a malicious party should not be able to corrupt the
computation, force a protocol restart, or block honest parties
or an honest third-party (client) that provided private inputs
from receiving a correct result. The protocol should guarantee
verifiability and accountability even if all protocol parties are
malicious. While some protocols address one or two of these often
essential security features, we present the first publicly verifiable
and accountable, and (up to a threshold) robust SPDZ-like MPC
protocol without restart. We propose protocols for accountable
and robust online, offline, and setup computations. We adapt and
partly extend the lattice-based commitment scheme by Baum
et al. (SCN 2018) as well as other primitives like ZKPs. For
the underlying commitment scheme and the underlying BGV
encryption scheme we determine ideal parameters. We give a
performance evaluation of our protocols and compare them
to state-of-the-art protocols both with and without our target
security features: public accountability, public verifiability and
robustness.

I. INTRODUCTION

In recent years, secure multi-party computation (MPC) has
evolved from a theoretical concept to a technology with
more and more industrial scale applications including, for
example, complex machine learning (ML) tasks [1]–[6]. One
major contribution to this success are efficient two-phase
protocols like SPDZ [7], [8] and “SPDZ-like” protocols [9]–
[16] which consist of an input-independent offline phase and a
highly efficient input-dependent online phase.1 Most of these
protocols provide security with abort (the output is correct or
the protocol aborts without output), often even with a dishonest
majority.

While in many situations this is sufficient, applications
following the client-server model generally require stronger
security properties. In client-server applications, servers are
responsible for running the MPC protocol and clients provide
inputs to and receive outputs from the servers such that
individual servers do not learn the inputs and, depending on
the application, also not the outputs. Many important real-
life applications follow this client-server model, e.g., auctions

1We use ”SPDZ-like” to refer to protocols that improve and/or extend the
SPDZ protocol.

[17], [18], e-voting protocols [19], [20], and cloud services
for privacy preserving computation [21]–[24] – including ML
tasks [1], [5], [25]–[27]. These client-server applications often
require publicly identifiable abort [11], [14], [28]: it must
be possible to verify whether the outputs of the servers
are correct2 and, if the result is not correct and hence the
protocol aborts, then one must be able to identify at least one
misbehaving server that can be held accountable for causing
the abort. Here “public” means that not just the servers running
the MPC protocol, but rather everyone, including clients and
external parties, can verify the results and hold misbehaving
servers accountable. This not only allows clients and external
parties to trust the final output (e.g., the result of an election or
an auction) but, when coupled with a financial or contractual
penalty [35], [36], serves as a strong incentive for malicious
servers to honestly follow the protocol instead of causing
aborts. Unlike in the traditional (non-client-server) setting,
where at least one honest MPC participant is assumed, publicly
identifiable abort should still hold true even if all servers are
malicious since clients might not trust any of the servers. In
what follows, we call a security notion strong if it holds even
in this setting. To the best of our knowledge, the SPDZ-like
protocol of Cunningham et al. [14] is the only efficient two-
phase protocol with strong publicly identifiable abort.

If only a certain (small) fraction of participants of an
MPC protocol is corrupted, then it is desirable to prevent
the malicious parties from causing an abort in the first place,
rather than merely blaming them after the fact (if too many
parties are corrupted, it is generally impossible to prevent an
abort [37]). This property is called robustness or guaranteed

output delivery [38], [39] which is a highly useful property
both in traditional and client-server applications. For example,
a single malicious server should not be able to prevent the
computation of the winner of an election or the result of
an auction. Since a number of misbehaving parties above
the threshold can still cause aborts even for robust protocols,
(strong) publicly identifiable abort still serves as a desirable
backup security mechanism. This mechanism can even be
strengthened as follows: In case of an abort, one should
identify not just a single but at least a number of malicious
parties that is needed to cause an abort, i.e., more than the
threshold. Also, even if a protocol did not abort, one might

2This property is called public/universal verifiability [10], [29]–[33] and is
implied by publicly identifiable abort [34].

2430

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Marc Rivinius. Under license to IEEE.
DOI 10.1109/SP46214.2022.00091

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

08

still be able to identify some misbehaving parties that tried
but failed to undermine robustness. In what follows, we use
the term (strong) public accountability [34] to refer to this
strengthened notion of (strong) publicly identifiable abort.

Clearly, both (strong) public accountability and robustness
are often highly desirable security properties. Yet the combi-
nation of both properties has not been considered for efficient
two-phase protocols so far (cf. Table I; note that SPDZ-
like protocols are only a subset of the two-phase protocols
we examined). The protocol that probably comes closest is
Cunningham et al. [14] which is a SPDZ-like protocol with
strong publicly identifiable abort. A straightforward method
to add robustness to such a protocol is to restart the whole
protocol without the previously misbehaving parties whenever
a result does not verify [13], [28], [40]. But this method
is actually insecure in certain application contexts such as
auctions, since an adversary can see the betting behavior of
other parties in previous (aborted) rounds and adapt their
strategy accordingly (cf. [13]). It seems however possible
to combine Cunningham et al.’s protocol securely with a
more advanced method of this iteration technique, namely
the so-called best-of-both-worlds (BoBW) protocols [41], [42].
These best-of-both-worlds protocols add robustness to an MPC
protocol with identifiable abort by iterating the MPC protocol,
while also adding another layer of secret-sharing to prevent the
security issues caused by the straightforward approach, i.e., the
adversary no longer learns the result of aborted runs. While
the BoBW protocols [41], [42] consider only non-publicly
identifiable abort in a traditional setting (non-client-server),
using the same approach should likely also preserve strong
publicly identifiable abort or even strong public accountability
(in the client-server setting) while adding robustness. However,
using such an iteration technique comes with serious down-
sides. Firstly, in the presence of misbehaving parties there is a
drastic loss of performance (runtime, network communication,
and communication rounds) by a factor of up to O(n) if one
malicious server is identified in each round, where n is the
number of participants/servers. Most importantly, since the
material generated in the offline phase of Cunningham et al.
depends on the set of participants and since this set changes
with each protocol iteration, also costly offline material has to
be re-generated multiple times during the online phase if an
abort happens there.3 Secondly, clients have to be involved in
each re-run of the protocol to provide new inputs, which is
unacceptable in many applications such as elections where a
rerun would erode trust into the election system.

In summary, while it seems possible to make MPC protocols
with (strong) publicly identifiable abort or even (strong) public
accountability robust by iterating/restarting the protocol, and
hence, combine identifiable abort and robustness, this comes
with severe performance penalties, and most importantly, is
simply unacceptable for several client-server applications.

Our Contribution. Our goal therefore is to obtain the first
efficient two-phase protocol that combines strong accountabil-
ity and robustness while avoiding the downsides of protocol

3Alternatively, one would have to generate offline material O(2n) times
during the offline phase to prepare for all possible subsets of parties.

TABLE I
SECURITY PROPERTIES OF RELATED TWO-PHASE PROTOCOLS

Protocol Publicly verifiablea Publicly id. aborta Robust

mostb − − −/+
[10], [43] + − −

[44] + − +
[11], [28] ◦ ◦ −

[14] + + −
[41] should work for and inherit properties of any

MPC protocol with identifiable abort
+

[42] +

ours + + +

a + indicates a strong property that holds even when all MPC partici-
pants/servers are corrupted, whereas ◦ holds only for partial corruption.

b Including, e.g., SPDZ [7], [8], most SPDZ-like protocols [12], [15],
protocols with (non-public) identifiable abort [13], [40], etc.

iteration. The protocol should provide efficiency comparable
to other efficient two-phase protocols and full support for
deployment in the client-server setting.

We propose the first MPC protocol that meets all of the
above goals and prove its security. Our protocol is SPDZ-
like and can therefore benefit from future improvements to
the components and primitives used in this class of protocols.
The protocol consists of three main subprotocols, namely a
setup, an offline, and an online protocol. We follow a holistic
approach where we design and analyze publicly accountable
and robust (sub-)protocols for all three components, unlike
many other works (e.g. [10], [11], [14], [28]) which often
consider the setup component to be out of scope and which
assume that the keys and other setup components are already
distributed at the start of the protocol. In doing so, we had to
adapt almost all (and even extend some) components used in
standard protocols like SPDZ [7] or the state-of-the-art lattice-
based commitment scheme by Baum et al. [45], to realize
an accountable and robust protocol, guarantee security in our
extended setup, and remain reasonably efficient.

The core idea of our protocol is to extend traditional SPDZ-
like protocols to support threshold secret-sharing and make
them compatible with a suitable homomorphic commitment
scheme. The commitments then allow external parties to verify
the correctness of the computations of every individual server
without learning any confidential information. The threshold
secret-sharing scheme allows us to obtain robustness without
iterating the protocol. Specifically, the threshold t determines
the number of parties that are needed to reconstruct shares,
and hence, if up to n− t parties are malicious, the remaining
set of parties can still reconstruct shares and continue the
MPC protocol. Note that there is a tradeoff between privacy
and robustness since t malicious parties could break privacy.
For instance, in an election4 a (small) subset of malicious
parties, say n − t = n/3, should (and with our protocol
will) not be able to abort the election and force a rerun.

4We note that there are also many other aspects and security properties
that have to be taken into account to obtain a secure e-voting system, such
as coercion resistance in high-stakes elections. Our MPC protocol therefore
does not serve as a ready to use election system on its own. It can, however,
be used, e.g., to instantiate the MPC component of Ordinos [20] to obtain an
end-to-end verifiable tally-hiding voting system for lower-stakes elections.

2431

Furthermore, as long as there are less than t = 2n/3 corrupted
parties,5 the privacy of the voters is guaranteed. Note that this
trade-off does not affect the necessity for public verifiability
or accountability: A voter or any external observer must be
confident that the result is correct in all cases, no matter how
many compute parties are corrupted.

A priori there are several homomorphic commitment
schemes that might be considered for building a suitable
protocol. Indeed, Cunningham et al. [14] achieve publicly
identifiable abort in a SPDZ-like protocol by using Pedersen
commitments. However, in this work we chose a lattice-based
commitment scheme since it offers better synergy with the
lattice-based BGV encryption scheme [46] used by SPDZ
in the offline phase (see Section VII) and offers additional
advantages for the offline phase and setup (Section V-B and
Appendix B). There is also the prospect of making our scheme
future-proof. Indeed, since we use lattice-based primitives
and avoid rewinding in our proofs, we expect our protocol
(possibly after small modifications) to be post-quantum secure;
we, however, leave a detailed analysis of this aspect to future
work.

While the general ideas of our protocol seem natural,
constructing a workable protocol that combines lattice-based
commitments with a robust secret-sharing scheme while re-
taining efficiency of the underlying SPDZ structure required
us to tackle a number of challenges and to avoid pitfalls
of straightforward approaches. Often, these direct approaches
cause a subtle loss of security or lead to increased parameter
sizes as well as a drastic loss in performance. Throughout the
paper, we highlight where and why a straightforward approach
either does not work or leads to a suboptimal protocol, thereby
providing insights also beyond our protocol. We then propose
solutions as well as optimizations that address these issues.
As part of this, we develop several new constructions and
techniques, some of which are interesting also in their own
right, e.g.: i) We propose a modification to the state-of-the-
art commitment scheme by Baum et al. [45] which allows
for improving its homomorphic properties without increasing
the underlying plaintext space (cf. Section VI). ii) By us-
ing the additional commitments we construct more efficient
zero-knowledge proofs for verified ciphertext multiplication,
key generation, and decryption (cf. Section V-B1 and Ap-
pendix B). iii) We design a computationally secure online
phase that significantly increases the performance compared
to a more straightforward information-theoretically hiding
approach (cf. Section V-A).

To demonstrate the efficiency of our protocol, we perform
a quantitative analysis of the parameters used in our pro-
tocol. As part of this analysis, we provide deeper insights
in the combination of BGV with classical Pedersen com-
mitments as compared to our lattice-based scheme, which
yields smaller BGV parameters. We analyze parameters for
a variant of zero-knowledge proof aggregation (combining
classical and rejection sampling methods) for non-interactive
zero-knowledge proofs (NIZKPs). To our knowledge, this is
the first concrete and detailed analysis of this technique in a

5Corrupted parties include malicious and honest-but-curious parties.

SPDZ-like setting which also provides new insights into other
existing protocols of this class. Based on our analysis, we
evaluate the concrete efficiency and practicality of our MPC
protocol. To our knowledge, this is the first time that concrete
bandwidths or benchmarks of a (SPDZ-like) protocol with
publicly identifiable abort have been computed. Our results
show that, with reasonably more communication, memory and
runtime compared to plain SPDZ, it is possible to also obtain
public accountability (and hence, publicly identifiable abort as
well as public verifiability) and robustness.

In summary, we make the following contributions:

- The first two-phase MPC protocol with strong public ac-
countability and robustness without restarts (cf. Sections III
to V). Our protocol has asymptotic and concrete complexity
comparable to other state-of-the-art SPDZ-like protocols
with weaker properties (cf. Sections VIII and IX).

- A quantitative analysis of secure parameters as well as
benchmarks for our protocol which illustrates the practi-
cality of our protocol and provides insights that might be
useful also for related SPDZ-like protocols (cf. Sections VII
and IX).

- We further propose improvements of primitives and subpro-
tocols which are of independent interest, e.g., a generalized
version of the lattice-based commitment scheme by Baum
et al. [45] (cf. Section VI), new ways to handle lattice-
based commitments efficiently (in a SPDZ-like context;
cf. Section V), and an accountable multiplication protocol
for BGV ciphertexts (cf. Section V-B1).

Full details are available in the full version of the paper [47].

II. NOTATION

Let p be an odd prime and Fp be the corresponding prime
field. As usual Zq is the ring of integers modulo q ∈ N≥2.
We use R := Z[X]/Φm(X) to denote integer polynomials
modulo the m-th cyclotomic polynomial Φm. To simplify
notation we restrict ourselves to m = 2N a power of 2 and
hence Φm(X) = XN + 1. Furthermore, we define Rp to be
R with coefficients modulo p

(

we use representatives from

{−(p − 1)/2, . . . , (p − 1)/2}
)

. Elements of R and Rp can
also be seen as N -tuples of Z and Zp, respectively. This also
induces the standard Lk-norm for k ∈ {1, 2, . . . ,∞} of R by
taking the respective norm of the coefficient vector.

We use lowercase bold and uppercase bold letters for vectors
and matrices, e.g. x,M. We write x[i] and M[i, j] to index the
i-th and (i, j)-th element of vectors and matrices, respectively,
where indices start from zero. The n×m zero-matrix will be
denoted by 0n×m; the n × n identity-matrix by In. We use
x←$ U(S) to say that x is sampled uniformly at random from
a set S. Dσ is used instead of U if x is sampled from a discrete
Gaussian distribution with standard deviation σ.

We use Pi ∈ P := {P1, . . . ,Pn} to identify a compute
party, i.e., a server in the client-server terminology. We use
C ⊆ P for the set of statically corrupted (compute) parties
and H := P \ C for the set of honest (compute) parties. Input
parties (which can be clients, servers, or a mixture of both)
are denoted with Ii ∈ I where we identify one input party
with one input. Input parties can also be statically corrupted;

2432

all of our results are independent of the exact set of corrupted
input parties.

An arithmetic circuit consists of addition and multiplication
gates, where inputs and outputs of gates are identified by
unique identifiers (“idx”). A valid circuit can be determin-
istically traversed such that every identifier is set only once
(as external input or the output of some gate) and, whenever
a circuit needs to be computed, then the identifiers used as
inputs are already defined.

We write [x]i to denote the share of party Pi (obtained
by secret-sharing the value x). We consider Shamir secret-
sharing where a share [x]i := fx(i) = x +

∑t−1
l=1 i

l · cl is the
evaluation of a polynomial fx with constant term x and the
remaining coefficients cl sampled uniformly at random. This is
a t-out-of-n secret-sharing scheme, i.e., t shares are sufficient
to reconstruct x. We also use full-threshold (or “additive”)
secret-sharing, which is defined as x =

∑n
i=1 xi for a secret

x and shares xi. We explicitly mention whenever we use this
n-out-of-n scheme; otherwise, we use Shamir secret-sharing.

As many SPDZ-like protocols, e.g., [7], [8], [15], [16], we
use the BGV encryption scheme [46]. Specifically, we use
an instantiation that is somewhat homomorphic, i.e., allows
for addition and up to one multiplication of (plaintexts in)
ciphertexts. We present details of BGV, as far as needed, while
describing the offline phase of our protocol (cf. Section V-B,
with more details in Appendix A-B). We refer to the commit-
ment scheme of Baum et al. [45] as BDLOP scheme in what
follows and give a detailed description in Section VI. Enck(x)
denotes a ciphertext of x constructed with randomness RE(x)
and Compar(x,RC(x))

(

or just Compar(x)
)

denotes a com-
mitment for x with randomness RC(x). Hence, (x,RC(x))
is the decommitment/opening for Com(x). Verifypar is the
corresponding verification algorithm. We omit the public key
k and the commitment parameters par if they are clear from
the context. To simplify notation, we define additions of
commitments and public (plaintext) values as Com(x) + c :=
Com(x) + Com(c, 0). Additionally, we define ⊤ to be an
“invalid” commitment for which every linear operation yields
⊤ (e.g., ⊤+ c = ⊤) and Verify(· , · ,⊤) = 0. Consequently,
we also define ZKPs (such as in Fig. 5, Line 12) to always
fail verification if statements for ⊤ are proven.

III. OVERVIEW

As mentioned in the introduction, our protocol builds on and
extends SPDZ. In particular, it also consists of an offline and
online phase, where the former computes correlated random-
ness for the latter. We present our protocol in such a way that
it can be understood without prior knowledge of SPDZ. How-
ever, a short summary of SPDZ is given in Appendix A-A. We
want the inputs of our protocol to be (BGV) ciphertexts, i.e.,
clients/input parties can simply encrypt their secret inputs and
then provide the resulting ciphertexts to the servers/compute
parties of our protocol. We think this provides great utility in
the client-server setting but other constructions are possible as
well, e.g., privately opening input masks to clients who then
use this to publish their masked inputs as in [10]. The servers
first transform the ciphertext into a secret-sharing and then
use SPDZ-like techniques to compute an arithmetic circuit on

those shares. Then they recombine shares to compute outputs.
For simplicity of presentation (but without loss of generality;
cf. Remark 1), we consider the case where outputs are public,
i.e., may be revealed to everyone. We use bulletin boards
to publish data just as almost all other protocols with public
verifiability/accountability, e.g., [10], [11], [14], [28]. While it
might be desirable to not handle all communication through
bulletin boards (to improve efficiency), bulletin boards seem
to be necessary so that communication is transparent for all
parties, importantly, including verifiers.

Online Phase: Like other SPDZ-like protocols, we can
compute any arithmetic circuit with a linear secret-sharing
scheme by utilizing Beaver’s technique [48] (we explain
this later in Section V-A). Our online phase becomes robust
by using a threshold secret-sharing scheme (with the men-
tioned tradeoff for privacy). To get accountability, we add
publicly known commitments for each party’s shares. With
this, everyone can check if the parties computed results and
intermediate results correctly by verifying the decommitments
on the bulletin board. We describe the resulting protocol for
the online phase in Section V-A.

There are two main hurdles in designing this online proto-
col: Firstly, we have to transform the initial ciphertexts into
shares, including commitments on those shares, in a publicly
accountable manner. Secondly, adding a lattice-based commit-
ment scheme to SPDZ introduces several new challenges (in
the security proofs and in practice). For example, it needs
to offer a sufficient homomorphic structure to support the
Beaver multiplication sub-step for circuits of practical sizes.
As it turns out, existing lattice-based schemes do not provide
all properties required by our protocol simultaneously. In
Section VI, we therefore modify the state-of-the-art BDLOP
scheme. Our modification improves the homomorphic prop-
erties of BDLOP (both to support larger arithmetic circuits
and to make multiplications with Beaver triples secure in the
first place), which is of independent interest. Additionally,
we show (in Section VII) that we can drastically reduce the
amount of data communicated in the online phase (for this and
similar commitment schemes) by replacing the information-
theoretically secure online phase with a computationally se-
cure one.

Offline Phase: The online phase relies on correctly gen-
erated correlated randomness from the offline phase, which
therefore also needs to be publicly accountable and robust.
We propose a protocol for the offline phase in Section V-B
that uses published NIZKPs to show correctness of the critical
steps. There are various hurdles we had to overcome in order
to develop this protocol, e.g., the protocol has to allow for a
simulation-based MPC security proof, requires NIZKPs that
also work for our modified commitment scheme, and needs to
retain a high efficiency even with several additional NIZKPs.
To achieve good efficiency, we employ state-of-the-art NIZKPs
utilizing commitments for verified ciphertext multiplication,
key generation and decryption. We construct our protocol in a
suitable way to keep (encryption and commitment) parameters
small and support additional features, e.g. robustness. Fur-
thermore, for certain other NIZKPs employed by our offline
protocol (e.g., the one for showing correct encryption), we use

2433

0

1

1 n

n−1

n

n/2

threshold parameter t

n
u
m
b
er

o
f
co

rr
u
p
te
d

p
a
rt
ie
s
|C
|

ARP

AR AP

A

Fig. 1. Security guarantees of our protocol. Public accountability is in-
dicated with “A” (recall that this also implies public verifiability), robust-
ness/guaranteed output delivery with “R”, and full privacy with “P”.

a variant of ZKP aggregation that combines classical aggre-
gation [49] and rejection sampling [50] to improve efficiency.
We evaluate and compare this technique in terms of resulting
parameter sizes in Section VII. As mentioned, this is the first
concrete analysis of this technique in a SPDZ-like protocol and
thereby provides insights that are also useful within this wider
class of protocols. We further propose a new multiplication
algorithm for BGV ciphertexts (cf. Section V-B1) which is
adapted to the specific constructions used in our protocols and
which can be used to bootstrap the distributed key generation
algorithm (see below) from the linear homomorphic version
of BGV. This accountable multiplication algorithm is likely to
prove useful as a component for protocols beyond ours.

Setup Components: The offline phase requires a distributed
key generation and a distributed decryption protocol. While
these components are often considered out of scope, in our
case it is crucial that they are also publicly accountable.
We therefore provide publicly accountable robust algorithms
for both components in the full version. A major challenge
was to find solutions which avoid the problems that can be
caused by the Shamir secret-sharing scheme. For example,
naive solutions might not achieve robust decryption or can
introduce a cubic factor in the runtime of decryption.

Security Properties: Fig. 1 summarizes the security prop-
erties that our protocol (including all of the above-mentioned
sub-protocols) achieves depending on the number of corrupted
compute parties/servers |C| ≤ n and the threshold 1 ≤ t ≤ n
of parties that can decrypt/recombine shares. These results
hold independently of the number of corrupted external input
parties, where by external we mean that the input party is not
a compute party/server, i.e., it is a pure client. The parameter t
can be fine tuned depending on the application to offer better
privacy or better robustness. We emphasize that even in those
cases where privacy and/or robustness no longer hold, our
protocol still provides public accountability and thereby public
verifiability, including the case that all compute parties/servers
are malicious.

Next, we first summarize our security model along with the
central security properties (Section IV) and then present our
protocol (Section V).

IV. SECURITY MODEL

In this section we define our security properties: robustness
in Definition 1 and public accountability in Definition 2.
We will prove the security of our protocols in the univer-

sal composability (UC) [51] setting, i.e., our protocols are
indistinguishable from idealized protocols (functionalities) that
naturally satisfy our security properties. We also use several
functionalities to model setup assumptions: All communica-
tion is handled through a bulletin board modelled by FBB and
FCRS,FRO,FPKI are used to model sampling from a common
reference string (CRS), a random oracle, and a public key
infrastructure, respectively.6

Our protocols should achieve strong public accountability
and robustness. That is, for such a protocol Π, we additionally
consider a judge J – a polynomial time algorithm with access
to a transcript of all public information (e.g., the bulletin board
communication and the CRS) – that has two outputs: A set of
parties that are blamed for misbehavior and an overall protocol
output, which can be ⊥ (i.e., “abort”) if a run cannot be
verified. This output is called a verdict. Using the judge, the
security properties are defined as follows:

Definition 1 (Robustness). Let 1 ≤ t ≤ n be a threshold

parameter. Let f be a circuit with inputs x. We call Π t-robust
if J outputs a correct result (in particular, no abort) with

overwhelming probability (over all protocols runs of Π, with

polynomially bounded environments E) whenever |P \ C| ≥ t.

Definition 2 (Public Accountability). Let f be a circuit with

inputs x. A t-robust protocol Π is called publicly accountable
if the following holds (except with negligible probability over

all protocols runs of Π, with polynomially bounded environ-

ments E): i) J outputs M ⊆ C ⊆ P (i.e., no honest party is

falsely blamed). ii) If J outputs y, it is correct, i.e., y = f(x).
iii) If J outputs abort, then |M| > n− t.

Since we are working in the UC setting, we specify three
ideal functionalities, one each for the setup, offline, and online
protocols, that meet both the standard properties such as
privacy as well as the additional ones from Definitions 1
and 2 by definition. Any real protocol that realizes such an
ideal functionality then has all of these properties as well. We
provide the ideal functionality for the online phase in Fig. 2
with the other ones available in Fig. 12 and in the full version.
The set of possible verdicts

V = {A ⊆ C, b ∈ B | (b = abort)⇒ |A| > n− t} (1)

with B = {ok,abort} is used to define the ideal functional-
ities. With this, the functionalities only accepts messages from
the adversary that identify enough malicious parties to justify
the abort of a t-robust protocol.

In our descriptions we add the modifier “(once)” to some
phases of functionalities and protocols to say that this phase
is run once and subsequent calls to it are ignored. Phases are
strictly ordered, i.e., in Fig. 4, the preprocessing comes before
the input phase, which comes before the compute phase.

Remark 1. Observe that the definitions of robustness and

public accountability cover a general setup, including SPDZ-

like protocols but also realizations with less phases or re-

alizations that further subdivide phases. Further extensions,

6For clarity we work with all four functionalities FBB,FCRS,FRO,FPKI.
We remark however that this set is not minimal, e.g., FCRS can be imple-
mented with a call to FRO. For more details, see the full version.

2434

1 Prepare (once): On input (prep) by each Pi ∈ P:

2 Send (prep) to adversary A and receive

(M, β) ∈ V (cf. Eq. (1)).

3 Input (once): On input (input, xj) by each Ij ∈ I
and input (input) by each Pi ∈ P:

4 Get xj for corrupted Ij from A.

5 Pack all xj into x.

6 if β = ok then

7 Send (input) to A. If |C| ≥ t, also send x.

8 Receive (M′, β′) ∈ V from A with M′ ⊇M
(overriding the previous values of M and β).

9 Compute (once): On input (comp, f) by each Pi ∈ P:

10 if β = ok then

11 Compute the result y := f(x).
12 Send (comp,y) to A.

13 Receive (M′′, β′′) ∈ V from A with M′′ ⊇M
(overriding the previous values of M and β).

14 if β = ok then reply M,y to Pi.

15 reply M,⊥ to Pi.

16 Audit: On input (audit,comp, f) by J :

17 if β = ok then reply M,y else reply M,⊥.

Fig. 2. Online functionality Fonline.

like the support for private outputs can be done by standard

techniques (the parties compute f ′(x, ri) = f(x) + ri where

party Pi has an additional input ri and is thus able to compute

f(x) while no other party can do so).

V. OUR ACCOUNTABLE ROBUST PROTOCOL

We now describe our accountable and robust MPC protocol
and prove its security. The focus in this section will be on
the online protocol (Section V-A) and the offline protocol
(Section V-B). We present the setup protocol in Appendix B.
All three protocols are accountable and robust. The respective
security proofs can be found in Section V-A and in Ap-
pendix D.

A. Accountable Robust Online Phase

The online phase of our protocol is depicted in Fig. 4. It
uses Foffline for the offline phase (main properties are discussed
later; we provide a realization in Section V-B). Additionally
FCRS is used to sample the commitment parameters par from
the common reference string (CRS), and FBB (bulletin board)
is used for all communication.

To perform efficient computations in the online phase,
the offline phase prepares correlated randomness in advance
following Beaver’s classical approach [48]. A view of a shared
value x is

〈x〉i := ([x]i,RC([x]i),Com([x]1), . . . ,Com([x]n))

for each party Pi with Compar([x]j ,RC([x]j)) = Com([x]j)
for all parties Pj , i.e., parties hold commitments to shares
of all parties and decommitments for their own share. The
shares are computed with a t-out-of-n secret-sharing scheme
(t parties are required to reconstruct the secret). We also define
a public view 〈x〉audit used by the judge J , consisting of only

the commitments. For linear secret-sharing schemes, linear
operations on views are done as in (2) to (4) (cf. Fig. 3).7

The offline phase has to produce views for random r,a, b
and c = a · b. As mentioned, the initial inputs are given in
the form of BGV ciphertexts, i.e., Enc(xi), Ii ∈ I, which
allows external clients to easily provide secret inputs to our
protocol. For more details on BGV encryption scheme see also
Appendix A-B.

We use an accountable and robust subroutine that we
developed for our offline protocol to (privately) compute a
vector of masked inputs m := x−r from the list of encrypted
inputs. This allows us to transform ciphertexts into secret-
sharings in an accountable manner, solving one of the main
tasks in designing the online protocol.

Now, let us explain Πonline. After invoking the offline phase
to get the initial views and after processing the inputs, the
input-independent views 〈r〉i can now be used to get views for
the inputs. One can compute these views as 〈x〉i := 〈r〉i+m.
Note that at this point, an initial set of malicious parties might
have already been identified by Foffline while computing the
initial views or while computing m from the inputs.

Similarly, the provided multiplication triples 〈a〉i, 〈b〉i, 〈c〉i
can be used in the online phase. They are used to multiply
with only linear operations as follows:

〈x · y〉i := 〈c〉i + u · 〈a〉i + v · 〈b〉i + u · v (5)

for values x and y that should be multiplied. u := x− b, v :=
y − a are opened values (described below). Further linear
operations (additions, subtractions, and multiplications with
publicly known constants) are done locally on views. Hence,
our lattice-based commitment scheme has to provide a level
of additive homomorphic structure that not only supports the
above multiplication but more generally is suitable for practi-
cal circuit sizes that contain large numbers of additions (and
multiplications). Note that the multiplicative depth of the cir-
cuit is not relevant for the commitment scheme but rather the
maximal amount of linear operations between multiplication.
This is because Beaver multiplication “resets” commitments
as can be seen in (5) (the commitments of 〈x · y〉i are a linear
combination of commitments of 〈a〉i, 〈b〉i, 〈c〉i, i.e., “fresh”
commitments from the preprocessing). The chosen BDLOP
scheme, which fits our (other) requirements best, does not
satisfy this requirement, since it loses its security properties
after just one Beaver multiplication. We discuss and solve this
issue by proposing a generalization of BDLOP in Section VI.

The only operation left for the online phase is opening

views, which is required for multiplications
(

u and v above

are results of the openings for 〈x− b〉i and 〈y − a〉i
)

and for
obtaining the final outputs of the circuit. To open a view, every
party Pi publishes the decommitment/opening contained in
their view and other parties Pj check if the decommitment
verifies w.r.t. the locally computed commitment for Pi in
Pj’s view. Shares for parties that could not provide valid
decommitments (or were identified by the offline phase as
malicious) are ignored in the reconstruction. Note that all

7With Shamir secret-sharing, addition of shares and public values is done by
adding the value to the share of each party. For the much-used full-threshold
secret-sharing, it should be only added to the share of a single party.

2435

〈x〉i + 〈y〉i := ([x]i + [y]i,RC([x]i) + RC([y]i),Com([x]1) + Com([y]1), . . .,Com([x]n) + Com([y]1)) (2)

〈x〉i + c := ([x]i + c, RC([x]i), Com([x]1) + c, . . ., Com([x]n) + c) (3)

c · 〈x〉i := (c · [x]i, c · RC([x]i), c · Com([x]1), . . ., c · Com([x]n)) (4)

Fig. 3. Linear operations on views (for public constant values c). Subtraction works analogously to addition.

1 Prepare (once): On input (prep) by each Pi ∈ P:

2 Parties setup commitment parameters par via FCRS.

3 Parties send (prep, par) to Foffline and get the (ini-

tial) set of malicious parties M, sufficient input

views 〈r〉i and triples 〈a〉i, 〈b〉i, 〈c〉i.
4 if Foffline outputs ⊥ then abort.

5 Input (once): On input (input, xj) by each Ij ∈ I
and input (input) by each Pi ∈ P:

6 The parties forward their inputs to Foffline and each

Pi gets M′ and masks m. M′ is added to Pi’s M.

7 if m = ⊥ then abort.

8 Input views are computed as 〈x〉i := 〈r〉i +m.

9 Compute (once): On input (comp, f) by each Pi ∈ P:

10 Assign the identifiers idx for inputs of f to 〈x〉i.
11 foreach gate g ∈ f in topological order do

12 case g is linear do

13 Compute g locally as in Fig. 3.

14 case (mul, idx, idy, idz) do

15 Get the next triple 〈a〉i, 〈b〉i, 〈c〉i.
16 〈u〉i := 〈x〉i − 〈b〉i and 〈v〉i := 〈y〉i − 〈a〉i.
17 Open 〈u〉i and 〈v〉i with Open (cf. Fig. 5).

18 〈z〉i := 〈c〉i + u · 〈a〉i + v · 〈b〉i + u · v.

19 case (output, l, idx) do

20 xl := OpenOutput(〈x〉i) (cf. Fig. 5).

21 Pack all outputs xl of output-gates into y.

22 reply M,y.

23 Audit: On input (audit,comp, f) by J :

24 Audit the Prepare and Input phases (of Foffline).

25 Perform the Compute phase on public data (compute

on 〈 · 〉audit-representation of views, only retrieve data

from FBB, and only verify NIZKPs).

Fig. 4. Online protocol Πonline.

operations in an arithmetic circuit become linear if we realize
multiplications as in (5). Hence the commitments for every
opening can be computed locally (from the view provided by
the offline functionality and the already opened and verified
intermediate results).

SPDZ-like protocols that already use commitments, like the
protocols of Baum et al. [10] or Cunningham et al. [14],
usually follow the straightforward approach of handling all
openings the same way, i.e., openings during multiplication
and openings of outputs are simply decommitted. We decided
to treat final outputs differently in order to achieve better per-
formance (see Section IX). In our protocol (see Fig. 5), parties
pick new commitments for their final shares and prove in zero-
knowledge that these and the (publicly known) commitments

in other parties’ views commit to the same share. Then, the
resulting new views with these commitments are opened. This
way, we do not require perfectly/statistically hiding commit-
ments and equivocation for commitments to prove security of
the online phase as in the related protocols [10], [14]. There,
equivocation is necessary for the simulation-based security
proof and the perfect/statistical hiding property is needed
so the simulator can equivocate to every possible plaintext.
Instead, we can use commitments that are computationally
hiding and computationally binding with tighter commitment
parameters (more in Sections VII and IX). No longer requiring
equivocation and statistically hiding commitments is the main
factor why our performance can be substantially better. To
illustrate this advantage, we can construct a protocol version
Πequiv that uses the same openings for multiplications and
outputs (and thus requires equivocation).8 The two versions
are then compared in Section IX. A security proof of Πequiv

is included in the full version.

Any (external) auditor J can recompute the above opera-
tions on commitments and openings (i.e., everything except for
operations directly performed on the individual secret shares
[x]i of each party, or the respective randomness). It blames
any party that did not provide a valid opening. This provides
accountability because malicious parties can alter the output
only by providing an incorrect share during an opening phase
(i.e., during multiplication or while opening the final output).
By the binding property of the commitment scheme or the
soundness of the ZKPs, this would be detected. Formally we
obtain:

Theorem 1. The protocol Πonline is a publicly account-

able t-robust MPC protocol for arithmetic circuit evaluation.

That is, Πonline UC-realizes the functionality Fonline in the

(Foffline,FCRS,FRO,FBB)-hybrid model under the assumption

that the used homomorphic commitment scheme is computa-

tionally binding and hiding.

Proof (Sketch). The proof can be split in two parts, depending
on the number of corrupted parties. If |C| ≥ t, the proof
is trivial as the simulator gets all necessary data from the
functionality. Note that accountability is still given, even if
all parties are corrupted, as the commitment parameters are
sampled from the CRS and an adversary is unable to break
the commitments or the ZKPs.

For |C| < t, the simulator sets up a local simulation
of the offline phase, samples commitment parameters and

8Πequiv is mostly equivalent to Πonline but Open is used instead of
OpenOutput for the outputs in Line 20 of Fig. 4. The parameters of
the commitment scheme, however, will be vastly different as discussed in
Section IX.

2436

1 macro Open(〈v〉i,M
′ = ∅):

2 Send [v]i and RC([v]i) to FBB.

3 Retrieve [v]j and RC([v]j) from other Pj ∈ P .

4 Add all Pj to M′ and to M for which

Verify([v]j ,RC([v]j),Com([v]j)) = 0.

5 if |P \M′| < t then abort.

6 Reconstruct v while ignoring shares of Pj ∈M
′.

7 return v.

8 macro OpenOutput(〈v〉i):
9 Commit to [v]i to get Com([w]i).

10 Prove in ZK that Com([v]i) and Com([w]i) contain

the same plaintext. Let the NIZKP be zi.
11 Send zi to FBB and retrieve zj from other Pj ∈ P .

12 Add all Pj to a new set M′ and to M where

verification of zj failed.

13 return Open(〈w〉i,M
′).

Fig. 5. Opening subprotocols for Πonline (cf. Fig. 4) at Pi ∈ P .

picks random data for all honest input parties. Controlling the
simulation allows it to extract data for corrupted parties.

Up until the final openings, the simulation and a real
protocol instance are indistinguishable because only random
data is communicated ((shares of) uniformly random masked
values and decommitments with randomness chosen as in the
protocol). For the final openings of the outputs, the simulator
first gets the outputs from the functionality. With knowledge
of the shares of corrupted parties (which can be computed
locally by the simulator), shares for the honest parties can
be chosen in a way that reconstructs the same outputs as
given by the functionality. Afterwards, the required ZKP can
be faked for honest parties utilizing the random oracle. The
final decommitments are then distributed equally to the ones
in the protocol as they are constructed in the same way
(fresh randomness and shares that reconstruct to the outputs).
Finally the simulator collects all corrupted parties for which
messages failed verification in M and sets β := abort if
the computation in the simulation aborted, or sets β := ok

otherwise. The simulator sends (M, β) to Fonline and Fonline

provides the final output. For the complete proof, see the full
version. There, we also show how one can guarantee security
of the straightforward construction Πequiv that utilizes statis-
tically hiding commitments and trapdoors for equivocation.
An added difficulty there (compared to [10], [14]) is that the
distribution of the final decommitments might reveal that we
are in a simulation since decommitments using a trapdoor and
the decommitments of linear combinations of views (as in the
protocol) have differently distributed randomness.

Remark 2. Our proof shows that every party in our protocol

that sends a message which cannot be verified is identified and

blamed by our judge J , and that corrupted parties can only

prevent a correct output by sending such a message. Hence,

in our protocol every corrupted party that tries to manipulate

the output is identified and blamed, even if the protocol does

not actually abort. This is a stronger security property than

formally required by Definition 2, which only requires that the

judge outputs a sufficiently large number of corrupted parties,

not everyone, and only if the protocol aborts. We note that

it does not seem possible to formalize this stronger security

property via a general ideal functionality. Such a functionality

is not aware of whether a corrupted party actually misbehaves

or still follows the protocol honestly since this is part of the

simulation within the simulator.

B. Accountable Robust Offline Phase

As described above, the offline protocol (see Fig. 6) has
to produce views of random values, views of Beaver triples,
and a masked input m, all in an accountable and robust
way. It uses FCRS to compute a second set of commitment
parameters par′ to commit to (components of) ciphertexts,
encryption randomness, and commitment randomness (of par-
commitments). Commitments and commitment randomness
w.r.t. par′ is denoted with Com

′(·) and R′
C(·), respectively.

Commitments with this second parameter set need different
properties than the ones that use par – they need to be statis-
tically binding (and computationally hiding) so the simulator
in our simulation-based proof can extract decommitments of
corrupted parties. Other papers [10], [14] accomplish this
by reuse of the BGV encryption scheme. In our situation,
however, certain values that we want to be able to extract, e.g.,
randomness for commitments, might be larger than the plain-
text space of BGV, so encryption might not correctly recover
these values. We address this by using the same commitment
scheme with different parameters par′ that has a sufficiently
large input space to commit to the above mentioned values.
We present the specific scheme in Section VI.

We obtain and leverage several synergy effects due to these
commitments (using both par and par′). Firstly, using lattice-
based commitments (with par) we can consistently associate
a ciphertext and a commitment to the same plaintext, to create
so-called “committing ciphertexts”, since both the encryption
scheme and the commitment scheme can be constructed on the
same plaintext space Rp. In contrast, a commitment scheme on
Fp will result in N commitments per ciphertext (at least if used
naively on the coefficients of the plaintext); generally schemes
on other plaintext spaces than BGV will need a suitable
transformation that would still have to guarantee our security
properties. These “committing ciphertexts” allow more natural
descriptions and ZKPs. The same can be said for commitments
with par′. Secondly, the use of par-commitments allows us to
choose BGV parameters that are independent of the parameters
of the commitment scheme (cf. Section VII). Lastly, we can
use the par′-commitments to make ZKPs more efficient (cf.
Section V-B1).

Another primitive used in the offline phase is the setup
component FPK for accountable threshold cryptography (in
particular, this is also robust; its realization is presented in
Appendix B), i.e., computing parties can compute a public
key k and can perform distributed decryption together. When
we say “decryption” in what follows, we mean this kind of
decryption where parties that misbehave during any decryption
are detected and the protocol aborts if too many parties mis-
behaved, considering the misbehavior during this decryption.

To get the necessary views, we have to generate shares
and commitments thereof. The commitments should be public,

2437

1 macro Decrypt(Enc(x)):
2 Decrypt with FPK to get the decryption x and M′

for this decryption. Add M′ to each Pi’s M.

3 if x = ⊥ then abort else return x.

4 Prepare (once): On input (prep, par) by each Pi ∈ P:

5 Parties setup commitment parameters par′ via FCRS.

6 Parties setup a key k via FPK and get a set M.

7 if k = ⊥ then abort.

8 Sample coefficients Wi ←
$ U(R

(I+3·M)×t
p) to (later)

construct shares and masks yi ←
$ U(RI+3·M

p).
9 Encrypt these value to get Enc(Wi),Enc(yi).

10 Commit to yi with RC(yi) to get Com(yi).
11 Commit to the decommitments yi,RC(yi) with par′

to get Com
′(yi),Com

′(RC(yi)).
12 Prove Line 9 to 11 in ZK. Let the NIZKP be zi.
13 Send zi to FBB and retrieve zj for other Pj ∈ P .

14 Add Pj to a new set M′ and to M where

verification of zj failed.

15 Use Com(yj) = ⊤ for Pj ∈M
′ and combine

coefficients to Enc(W) :=
∑

Pj∈P\M′ Enc(Wj).

16 foreach Pj ∈ P \M
′ do

17 Define the encrypted share of v = W[· , 0] as

Enc([v]j) :=
∑t−1

l=0 j
l · Enc(W)[· , l].

18 mj := Decrypt(Enc(yj)− Enc([v]j)).
19 Construct the view 〈v〉i := (yi −mi,RC(yi),

Com(y1)−m1, . . . ,Com(yn)−mn).
20 Split 〈v〉i and Enc(v) in parts of size I,M,M,M

to get views and ciphertexts for r,a, b, and d.

21 Compute Enc(c) with SHE or Multiply (Fig. 7).

22 〈c〉i := 〈d〉i + Decrypt(Enc(c)− Enc(d)).
23 reply M, 〈r〉i, 〈a〉i, 〈b〉i, 〈c〉i to Pi.

24 Input (once): On input (input, xj) by each Ij ∈ I
and input (input) by each Pi ∈ P:

25 Each Ij audits Foffline and FPK. Ij also gets key k.

26 if Foffline outputs ⊥ then abort.

27 Each Ij sends Enck(xj) to FBB.

28 Each Pi retrieves Enc(xj) from FBB.

29 Pack all Enc(xj) into Enc(x).
30 reply M,m := Decrypt(Enc(x)−Enc(r)) to Pi.

31 Audit: On input (audit,prep, par) by J :

32 Perform the Prepare phase on public data.

33 Audit: On input (audit,input) from J :

34 Perform the Prepare and Input phases on publ. data.

Fig. 6. Offline protocol Πoffline.

with decommitments known only to a single party. We achieve
this by using a (linear) homomorphic encryption scheme
to construct (ciphertexts of) shares. If enough parties are
honest (exactly when there are not enough corrupted parties
to decrypt ciphertexts on their own), the shared values will be
uniformly random values as honest parties contribute uniform
randomness. With each party producing its own “committing
ciphertext” (a ciphertext and a commitment for the same
plaintext), we can construct views from these ciphertext shares.
Note that each party needs to prove correctness for these

committing ciphertexts in order to safely construct the views.
More specifically, given a committing ciphertext, i.e.,

Enc(yj) and Com(yj) for plaintext yj of party Pj , and an
encrypted share Enc([v]j) (we describe below how this can
be obtained), we can get mj := yj − [v]j from decrypting
Enc(yj) − Enc([v]j). Then, we have Com(yj) − mj =
Com([v]j), while letting Pj compute [v]j := yj − mj . This
gets us views 〈v〉i for all Pi and is enough to generate the
required views for r,a, b (for the inputs and parts of the
triples). As this requires a well-formed commitment from party
Pj , we cannot use Com(yj) and thus Com([v]j) if the ZKP
for committing ciphertexts did not verify. We use ⊤ instead
for Pj , making sure that shares of this party are not used in
the online phase (as openings will always fail).

For the above to work, everyone (also external parties
who later verify the computation) has to know the encrypted
shares Enc([v]i). This requires a different construction in our
case with Shamir secret-sharing compared to the standard
case of full-threshold secret-sharing. We can utilize the linear
homomorphic property of the encryption scheme to first let
each party Pi construct a matrix Enc(Wi) of ciphertexts with
t columns. The number of rows corresponds to the number of
views we want to produce in the offline phase (we assume this
or an upper bound for this is known when the offline phase is
executed). Adding them up (for parties that could prove correct
encryption for their Enc(Wi)) to Enc(W) :=

∑

i Enc(Wi)
makes sure that we get ciphertexts for uniformly random
plaintexts, provided not too many parties are corrupted (or they
could decrypt alone, know the plaintexts of others, and adjust
their own ciphertexts accordingly). This matrix of ciphertexts
can be used to construct ciphertexts of shares in the following
way: Enc([v]i) :=

∑t−1
l=0 i

l · Enc(w)[· , l]. This is a share of
Enc(v) := Enc(W)[· , 0], which is known to everyone (by
having only communication through FBB).

Lattice-based cryptographic primitives like the BGV en-
cryption scheme (cf. Appendix A-B) use “noise” to hide the
content of a message. If the noise becomes too big then
the message can no longer be recovered. Moreover, BDLOP
commitments require “small” randomness for decommitments
(without a bound on the randomness, commitments are not
binding). In our protocols we use ZKPs to prove that com-
mitting ciphertext and (normal) ciphertexts were constructed
correctly and in particular, that their noise is acceptably small.
Since homomorphic operations usually increase the noise, a
small initial noise allows us to perform more homomorphic
operations on the instances that are proven correct. For lattice-
based primitives, this also means that the contained “noise”
is small (to allow for more homomorphic operations on the
instances that are proven correct). To increase efficiency, a
standard way to do these proofs is to use a classical aggrega-
tion technique [49] but this comes with an additional noise
growth (“slack”) from the ZKPs that is exponential in the
(statistical) security parameter η. Instead, we chose to combine
this with rejection sampling [50]9 which decreases the slack
by approximately a factor of 2η . While this does not solve the

9This possibility was already mentioned in [52], [53] but, to our knowledge,
was not used before. We show in Section VII that it can improve parameters
in certain settings and formalize the construction in the full version.

2438

problem of exponential slack, the potential decreases in noise
for both ciphertexts and commitments gives improvements
where other ZK techniques are not applicable (see Appendix E
for more details and Section VII for an evaluation).

Alternatively, one might consider using approximate ZKPs,
i.e., proofs where only approximate relations are proven (e.g.,
for BDLOP [45]). Approximate ZKPs usually come with a
comparably small slack. However, they have worse homo-
morphic properties than the exact ZKPs, which makes them
inapplicable in our setup.

One aspect of the offline phase is still open: generating the
final component of multiplication triples. Assuming we have
an additional view 〈d〉i and ciphertexts Enc(d),Enc(c) =
Enc(a · b), we can do something similar to the view generation
and compute 〈d〉i + e = 〈c〉i where e is the decryption of
Enc(c)−Enc(d). Getting the ciphertext Enc(c) can be done in
two ways for our protocol. First, as we already have ciphertexts
Enc(a),Enc(b) from generating the views for a and b, we
can get Enc(c) by using the somewhat homomorphic nature
of the encryption scheme. The second, more elaborate, way
is to use a special ciphertext multiplication protocol. We give
a new construction of such a protocol in Fig. 7 (described in
Section V-B1). This is useful if the encryption scheme does
not support ciphertext multiplications natively (if one wants
to adapt our protocol to other encryption schemes) or, more
importantly, to bootstrap our key generation. We describe this
in Appendix B. We note that our MPC protocol is currently
the only (efficient) accountable and robust MPC protocol that
can be used for bootstrapping key generation.

We finally note that, as described in Section V-A, we use
some subroutines of the offline protocol within the input phase
of the online protocol. This has the advantage that we can re-
use the encryption scheme from the offline phase for providing
encrypted inputs. To get the value m = x − r needed in
the online phase, we can simply compute it as the decryption
of Enc(x) − Enc(r) for a ciphertext Enc(x) of the inputs.
Supporting encrypted inputs is a feature that is very useful for
future deployment in a wide range of client-server settings,
e.g., in e-voting where voters/clients often provide their votes
in the form of ciphertexts. For the specific application of
e-voting, we describe several extensions of our protocol in
the full version. These allow us, e.g., to enforce additional
constraints on inputs and to reduce the number of inputs our
protocol has to process.

Theorem 2. The protocol Πoffline is a publicly account-

able and t-robust preprocessing protocol (w.r.t. Πonline).

That is, Πoffline UC-realizes the functionality Foffline in the

(FPK,FCRS,FRO,FBB)-hybrid model under the assumption

that the used homomorphic encryption scheme is CPA-secure

and that the homomorphic commitment schemes are binding

and hiding.10

1) Linear Ciphertext Multiplication: While the above con-
struction using somewhat homomorphic encryption (SHE) is
enough for an accountable and robust offline phase, we also

10Commitments using the commitment parameters par need to be binding
and hiding as for the online phase and commitments with par′ need to be
statistically binding and computationally hiding.

support an optional subprotocol for ciphertext multiplication
(and thus triple generation) that uses only the linearly homo-
morphic variant of the BGV scheme. The already mentioned
benefit of using this for the key generation is expanded
upon in Appendix B. The subprotocol (pictured in Fig. 7)
works in the spirit of Overdrive’s LowGear protocol [15] (or
BDOZ [9]): We construct the ciphertext for c by multiplying
shares of a with the ciphertext of b and add noise. However,
in our construction we can use the distributed decryption
and the homomorphic commitment scheme to make it more
efficient and accountable. We prove the correctness of our new
multiplication protocol.

As a first step, the protocol in Fig. 7 computes ciphertexts
for [a]i ·Enc(b)+Enck(0, r), i.e., multiplications of shares of
a with ciphertexts of b plus noise Enck(0, r) (with additional

randomness r = (v, e)
T
). We call this process re-encryption

since we get a new ciphertext for the plaintext [a]i · b. The
results of our re-encryption can then be combined with Rec
(the algorithm to reconstruct a secret from shares; recall, this
is a weighted sum of t ciphertexts with coefficients in Fp).
By the linear homomorphic properties of BGV (multiplying
[a]i with a ciphertext is a linear operation), we get that the
result is a ciphertext for c = a · b. Obviously, we should
only use ciphertexts that are constructed in such a way or the
result might be wrong. By only requiring t correctly multiplied
ciphertexts, we get robustness. To get accountability, we use
ZKPs again.

With this novel construction, we can utilize efficient ZKPs.
As most parts are already committed to (for the simulator in
the security proof), we only have to additionally commit to the
encryption randomness (and the re-encryption result that will
be decommitted immediately). Proving correct commitments
for the encryption randomness is done in an aggregated way
using the mentioned ZKP aggregation technique; it can be
done ahead-of-time for all multiplications. The efficient proofs
of linear relations [45], [54] for the commitment scheme
(discussed in Section VI) make sure that we can prove the
correctness of the whole multiplication and re-encryption
operation in a single one-shot proof. This improves on, e.g.,
BDOZ [9], where η proofs with one-bit challenges have to
be combined to get a soundness error that is negligible in
η. Selective failure attacks as in [9], [15] are not possible
as the ZKPs in our protocol make sure that the ciphertexts
that are actually used (and decrypted) later are in a valid
range. Additionally, only masked ciphertexts are decrypted,
so no extra randomness has to be added in the re-encryption,
and this is a public (distributed) decryption instead of letting
parties decrypt their own shares of c. See Section VII for more
details on the differences (w.r.t. parameter sizes) when using
this LHE multiplication or SHE BGV directly. The way we get
the key material to support these versions of BGV is discussed
in Appendix B.

VI. LATTICE-BASED COMMITMENTS

Our protocol requires a suitable homomorphic commit-
ment scheme. As we will see in Section VII, the Pedersen
commitment scheme that is used in related works [10], [14]
does not combine very well with BGV encryption, i.e., it

2439

1 macro Multiply: // to multiply BGV ciphertexts Enc(a) and Enc(b) using only LHE

2 Let y′
j ,m

′
j be the subset of yj ,mj used to construct 〈a〉j .

3 Set views with par′: [a]i := y′
i −m′

i, R′
C([a]i) := R′

C(y
′
i), and Com

′([a]j) := Com
′(y′

j)−m′
j for Pj ∈ P \M

′.

4 Generate re-encryption randomness (vi, ei)←
$ Dσv

(RM
q)×Dσe

(RM
q)2.

5 Compute re-encrypted share of product

Enc([c]i) := [a]i · Enc(b) + Enck(0, (vi, ei)
T
) =

(

[a]i · Enc(b)[0] + k[1] · vi + p · ei[0]
[a]i · Enc(b)[1] + k[0] · vi + p · ei[1]

)

.

6 Commit to vi, ei,Enc([c]i) with par′.

7 Let Com
′(vi),Com

′(ei),Com
′(Enc([c]i)) be the resulting commitments.

8 Prove Line 5 to 7 in ZK. Let the NIZKP be zi.
9 Send zi and the decommitment for Com

′(Enc([c]i)) to FBB. Retrieve zj and the decommitment for other Pj ∈ P .

10 Add Pj to M and M′ if verification of zj failed or Verifypar′(Enc([c]j),R
′
C(Enc([c]j)),Com

′(Enc([c]j)) = 0.

11 return Enc(c) := Rec(Enc([c]1), . . . ,Enc([c]n)) using Fp-coefficients while ignoring shares of Pj ∈M
′.

Fig. 7. Multiplication subprotocol for Πoffline (cf. Fig. 6) at Pi ∈ P .

requires increasing the modulus of the underlying plaintext
space and thereby negatively impacts performance. To address
this mismatch (and to get a fully lattice-based protocol), we
propose using lattice-based commitments instead.

There exists a wide variety of lattice-based commitment
schemes, e.g., [45], [55]–[58]. The overall best suited scheme
appears to be the BDLOP commitment scheme [45], which
offers efficient zero-knowledge proofs for our offline phase
and can be instantiated, using different parameters, to be
either statistically hiding or statistically binding as required
by our offline and online phases (cf. Section V). However,
we cannot use BDLOP directly since it offers only limited
homomorphic properties. In what follows, we first recall
BDLOP and then propose a modification that improves the
homomorphic property to be sufficient for our protocol while
keeping the modulus of the plaintext space small (as opposed
to Pedersen commitments).

The BDLOP scheme is based on the Module-Short Integer
Solution (M-SIS) and Module-Learning With Errors (M-LWE)
problems [46], [59]. The (public) commitment parameters con-
sist of two matrices A0 := (Id1 A′

0) and A1 := (01×d1
I1 A′

1)

where A′
0 ∈ R

d1×(1+d2)
p and A′

1 ∈ R1×d2

p are uniformly
random sub-matrices. With par := (A0,A1), we can define the
commitment procedure for x ∈ Rp with small randomness r
as

Compar(x, r) := c =

(

c[0]
c[1]

)

=

(

A0 · r
A1 · r + x

)

,

while verification Verify(x, r, c) checks if Com(x, r) = c and
‖r[i]‖ ≤ Br, 0 ≤ i < d2 + d1 + 1.11 Generally, Br should
not be too large as otherwise the underlying M-SIS problem
becomes easy and the scheme is no longer binding. This can be
prevented by increasing the modulus p and thereby increasing
the hardness of the M-SIS problem. Further information on
zero-knowledge proofs and the already mentioned approximate
commitments is provided in the full version.

Homomorphic operations increase the randomness/noise of
the resulting commitment. To allow for more operations, one

11In the computationally secure case, r is sampled uniformly at random
with L∞-norm at most Br . For statistically binding (and extractable) com-
mitments, r is sampled from Dσr (R

d2+d1+1). The latter also induces a

bound Br ≥ σr ·
√
2 ·N on the L2-norm of r[i].

can increase the bound Br. E.g., using 2 · Br allows for
decommitting to Com(x1, r1) + Com(x2, r2) with x1 + x2

and r1 + r2. However, using Beaver triples for multiplication
as in our protocol requires a homomorphic computation of
d := u · a+ v · b+ c for commitments a, b, c, d and uniformly
random u, v ∈ Rp. The multiplication with u, v introduces a
factor p into the noise of d, i.e., the noise of d is upper bounded
by at least Br ·(1+p) where Br is the bound for a, b, c (cf. [45]
for more details on the norm estimates). For practical choices
of Br (or σr), this bound allows trivially decommitting d to
arbitrary values, i.e., d is not binding. Increasing the modulus
p does not solve this problem since the upper bound of the
noise of d also linearly depends on p.

Intuitively, to solve the issue we have to use two inde-
pendent moduli for (the noise of) a, b, c, d and the (masked)
values u, v. This would allow us to increase the modulus of
the commitments without also increasing the noise bound of
d (which then only depends on the now independent modulus
of u, v) such that d can become binding. However, for Beaver
multiplication to hide the inputs of the commitments, we need
that the modulus used for the plaintexts in a, b, c, d is the same
as the modulus for u, v. We thus propose a modification of the
above scheme that uses two different moduli for commitments.
That is, for the randomness r and the first component c[0] we
use a modulus p′ that is an integer multiple of the prime p,
while all message-related components (i.e., c[1] = A1 · r+ x)
are modulo p.12 For the scheme with the above modifications,
we get the following theorem.

Theorem 3 (Generalization of BDLOP). The BDLOP com-

mitment scheme with the above generalization is binding and

hiding. The strength of the binding property (computationally

or statistically) is based on the hardness of M-SIS. The strength

of the hiding property (computationally or statistically) is

based on the hardness of M-LWE.

In the full version, we provide full details of our construc-
tion, show that security of our construction can still be reduced
to the M-SIS and M-LWE assumptions, and that only p′, but
not p, needs to be increased to improve the binding property.

12This idea is similar to [54], but [54] considers the case of two primes
with p′ < p. In contrast, we consider and argue security of the case p | p′.

2440

Hence, we can simply increase p′ to a level such that the
results d of our Beaver multiplication (with the verification
bound Br ·(1+p)) can be verified but are still binding. Observe
that the plaintexts in this construction indeed remain hidden
in Beaver multiplication since they use the same modulus p
as the masked plaintexts u, v.

Note that our construction is not only useful for Beaver
multiplications. More generally, it can be used to improve
the homomorphic properties of the commitment scheme by
changing p′ without changing/affecting the modulus p of the
plaintext space, which is unlike for the original commitment.
Hence, one can simply increase p′ to support a larger number
of homomorphic additions (e.g., to the level required by cir-
cuits for our MPC protocol) without affecting other primitives
that use the same plaintext space (such as the BGV scheme
in our protocol). Thus, our construction might also be useful
for other protocols and even in contexts outside of MPC.

To be suitable for simulation-based MPC security proofs,
the above commitment scheme additionally requires trapdoors
for the simulator to equivocate and extract messages from the
above commitment scheme. Note that, due to our construction
for opening outputs in the online phase, we only need the
second property, i.e., to be able to extract messages. However,
we will additionally provided a protocol Πequiv that uses
equivocation like some of the related work, e.g. [10], [14],
and compare the two approaches in Section IX. We add
such trapdoors by following and adapting the construction
of Damgård et al. [60] to the generalized variant of BDLOP
(see the full version for more details). In our protocol we
use our modification of BDLOP to commit to values in Rp

during the online phase. To commit to values from Rq in the
offline phase, where the modulus of the input space is already
much bigger and, in particular, no Beaver multiplications
are required, we can simply use the original scheme (with
trapdoors added as in [60], [61]).

VII. PARAMETERS

To illustrate and judge practicality of our protocol, here
we compute the necessary parameters for the BGV encryp-
tion scheme and the (generalized) commitment scheme of
Section VI. The asymptotic and concrete complexity of our
protocol is analyzed in Section VIII. Our methodology is
described in Appendix F and more detailed results are given
in the full version.

BGV Parameters: The main parameter that determines
practicality of the BGV scheme is the ciphertext modulus q.
We have computed the parameters for an LHE and an SHE
version of our protocol, with the results shown in Fig. 8.
As parameters for other efficient two-phase protocols with
(publicly) identifiable abort are not available, we instead use
the BGV parameters of LowGear [15] and TopGear [16]
(two recent very efficient protocols without identifiable abort)
in addition to classical SPDZ [7], [8] as a baseline for a
comparison of our parameters. As can be seen from this
comparison, the additional zero-knowledge proofs of correct
decryption used to obtain public accountability of our protocol
result in somewhat larger parameters. However, the parameters
are still in a practical range that is rather close to those highly

40 60 80 100 120
security parameter

200

300

400

500

600

700

lo
g

 q

ours (SHE)
ours (LHE)
agg. + rej.

TopGear
LowGear
SPDZ

40 60 80 100 120
security parameter

400

600

800

lo
g

 q
Fig. 8. Comparison of BGV parameters against TopGear, LowGear, and SPDZ
for log p = 64 (top) and log p = 128 (bottom). Parameters are essentially
independent of the choice of t and n, with the above values being for n =
t = 2. E.g., for η = 80 and log p = 64, increasing n = t from 2 to an
extreme value of 4096 increases log q only by relatively few bits from 529
to 584.

efficient protocols. Also, the parameters show a near identical
slope, suggesting that our protocol adds only a “constant”
overhead compared to current SPDZ-like protocols.

Recall that our offline phase combines zero-knowledge
proof aggregation [49] with rejection sampling [50]. To eval-
uate the benefits of this techniques also for other SPDZ-
like protocols, we have also computed the BGV parameters
of a theoretical version of our protocol without proofs of
correct decryption. The resulting protocol is denoted by “agg.
+ rej.”. Our evaluation allows for the first time to estimate
the advantage of this combined technique if employed in
other (non-accountable) SPDZ-like protocols. To summarize,
for the bigger plaintext space (log p = 128) the combined
aggregation technique yields slightly tighter parameters than
TopGear and classical SPDZ. We suspect that this is even
more pronounced for larger plaintext sizes, which might make
this technique worth considering also for other SPDZ-like
protocols that cannot use techniques employed in TopGear
(aggregating proofs over all parties; this prevents identifying
individual misbehaving parties) to decrease parameters.

We have also computed the BGV parameters necessary to
use our construction with Pedersen commitments (based on
elliptic curves or quadratic residues; as suggested by Cun-
ningham et al. [14]) instead of our lattice-based commitment
scheme, see Fig. 9. The comparison shows that the choice
of a lattice-based commitment scheme indeed synergizes with
the lattice-based BGV encryption scheme, leading to lower
parameters. Note that, due to our modification to the commit-
ment scheme (cf. Section VI), we can improve the binding

2441

75 100 125 150 175
commitment comp. security parameter '

1000

2000

3000

4000
lo

g
 q

ours (log p = 32)
ours (log p = 64)
ours (log p = ')
EC Pedersen
QR Pedersen

Fig. 9. Comparison of BGV parameters against Cunningham et al. [14] with
elliptic curve (EC) and quadratic residue (QR) Pedersen commitments.

TABLE II
COMMITMENT PARAMETERS FOR Rp AND Rq

for Rp with par for Rq with par′

log p η N log ha d2 d1 log p′ d2 d1 log q

32 40 16384 59 1 1 120 2 1 352
32 64 16384 59 1 1 134 2 2 416
32 80 16384 59 1 1 142 2 2 458
32 128 32768 60 1 1 170 1 1 589
64 40 16384 91 1 1 152 2 2 418
64 64 16384 91 1 1 166 2 2 480
64 80 32768 92 1 1 176 1 1 530
64 128 32768 92 1 1 202 1 1 653
128 40 32768 156 1 1 218 1 1 553
128 64 32768 156 1 1 232 1 1 616
128 80 32768 156 1 1 240 2 2 658
128 128 32768 156 1 1 266 2 2 780

a homomorphic factor, i.e., the longest chain of linear operations while
evaluating ResNet152 is equivalent to summing up h fresh commitments

property and the homomorphic properties of our scheme
without affecting the plaintext size. That is, we can actually
use a plaintext space with constant size independent of the
security parameter (blue and orange line), further improving
the resulting BGV parameters.

BDLOP Parameters: Since the commitment parameters
are not completely circuit independent (p′ depends on the
number of homomorphic operations required by the circuit as
illustrated in Section VI), we also had to estimate the number
of commitment operations in the online phase. For this, we
chose ResNet152 [62] as example of a non-trivial circuit.

To summarize Table II, we achieve small (or even minimal)
dimensional parameters d2, d1 for commitments. Furthermore,
the modulus p′ remains at practical sizes and increase only
moderately in η and p (N and q are the same as for, and thus
determined by, the BGV scheme). Notably, by our modifica-
tion to the commitment scheme (Section VI), the modulus
p′ used for commitments in the particularly critical online
phase can be chosen to be the product of multiple machine-
word-sized primes, which makes very efficient implementa-
tions possible [63]. We also computed parameters for the
generalized commitment scheme but with equivocation. The
results can be found in the full version and the impact on our
protocol’s performance is analyzed in Section IX. Altogether,
our analysis shows that our parameters are well within the
realm needed for complex applications.

TABLE III
COMPARISON OF MPC PROTOCOLS

ours [41], [42]a [14] [11] [28]

Pub. acc. + Π + + +
Strong prop. + Π + − −
Priv. thresh. t max{t, n− |M|}b n n n
Abort thresh. n− t+ 1 n− t+ 1 1 1 1
Online com.c n · |f | n ·Π n · |f | n2 · |f | n2 · |f |
Online cmp.d n · |f | n ·Π n · |f | n2 · |f | n2 · |f |
Online rnd. |f | n ·Π |f | |f | 1
Offline com.c n2 · |f | Πoff n · |f | n3 · |f | n2 · |f |
a Internally restart resp. run in parallel up to O(n) instances of another

protocol. Most properties depend on the underlying protocol, denoted by
the placeholder Π. Πoff denotes the offline phase of Π. For complexities,
Π denotes the combined complexity of both the online and the offline
phase. In case of [42], certain protocols allow for reducing the online
complexity from Π to Πon by performing (some) additional steps in the
offline phase. But this optimization is not applicable for [14].

b M is the set of parties that caused an abort and thus a restart.
c Number of broadcasts / stores on the bulletin board in O-notation; |f |

denotes the number of multiplication resp. AND gates in a circuit f .
d Operations per party in O-notation; |f | denotes the number of gates.

VIII. DISCUSSION AND COMPARISON

As already discussed in the introduction (cf. Table I), to the
best of our knowledge the combination of publicly identifiable
abort (or, more generally, public accountability) and robustness
has not been considered for efficient two-phase protocols. The
protocol that comes closest to this goal is a combination
of Cunningham et al.’s protocol [14], which is a SPDZ-
like protocol that offers strong publicly identifiable abort,
with a best-of-both-worlds protocol [41], [42] that provides
robustness. While not formally proven,13 this combination,
which we denote by BoBW[14], likely provides strong publicly
identifiable abort (and also strong public accountability) while
additionally being robust.

Table III provides an overview of the properties of our
protocol, BoBW protocols [41], [42], and Cunningham et al.’s
protocol [14], where the properties of BoBW[14] can be derived
from the combination of [41], [42] and [14]. The table shows
the number of corrupted parties that are needed to break
privacy and robustness. We also indicate whether the protocols
provide accountability (resp. publicly identifiable abort) and
whether this property is strong, i.e., still holds even if all
protocol participants/servers are malicious. We further give the
asymptotic complexity for the overall communication during
online and offline phases, for the number of communication
rounds during the online phase, and for the computations of
the online phase. In what follows, we discuss the differences
between our protocol and BoBW[14] in detail.

Comparison of Properties: The security properties and
thresholds of our protocol and BoBW[14] are mostly identical,
except that the privacy property of BoBW[14] can tolerate a
larger number of corrupted parties in certain cases, namely
if the set of parties M that have caused an abort is small
(observe that this is therefore not a static bound but rather
depends on a specific run). Note that, in situations where one

13[41], [42] consider and give proofs for the traditional non-client-server
setting where at least one participant is honest.

2442

expects only a very small number of parties to try to abort the
protocol (due to the deterrence factor of accountability coupled
with strong contractual or financial incentives), one generally
would choose a large threshold t, in which case there is only
a small potential difference.

The advantage in terms of privacy of BoBW[14] comes at
the cost of using protocol iteration, which not only negatively
impacts performance (see below) but also makes BoBW[14]

unsuitable for certain client-server applications. In contrast,
our protocol avoids protocol iteration entirely. It is therefore
the first and only efficient two-phase protocol with public
accountability and robustness that is suitable even for client-
server applications where clients cannot be expected to deal
with the downsides of protocol iteration.

Asymptotic Performance Comparison: In terms of asymp-
totic communication, computation, and round complexity, our
protocol outperforms BoBW[14] (at least) by a factor of O(n)
in all aspects except for offline communication, where we
require an additional factor of O(n). More specifically, we
achieve the same online complexity as Cunningham et al.
but manage to additionally provide robustness while avoiding
the iteration technique used by the best-of-both-world proto-
cols [41], [42]. Hence, in the optimal situation for BoBW[14]

where no malicious parties cause an abort and thus the
online phase of BoBW[14] requires just a single iteration of
Cunningham et al.’s protocol, both BoBW[14] and our protocol
have identical online complexity. However, the performance
of the online phase of BoBW[14] progressively deteriorates
with every abort. Notably, each rerun of [14] due to an abort
requires first rerunning the entire (expensive) offline phase
within the online phase of BoBW[14], which is impractical.14

In contrast, our protocol retains the same level of efficiency
independently of the number of malicious parties trying to
cause aborts and without rerunning its offline phase within
the online phase.

Above, we have compared our protocol with the only other
protocol that might provide both public accountability and
robustness. Next, we compare our protocol with other two-
phase protocols to show that our protocol achieves the desired
security while also retaining the advantages of the underlying
SPDZ-like structure.

Table III provides a comparison of our protocol with three
efficient two-phase protocols that offer public accountability
but no robustness [11], [14], [28]. Compared to these pro-
tocols, we achieve identical or better asymptotic complexity,
except for the online round complexity of Baum et al.’s
protocol [28] and, as mentioned, the offline communication
complexity of Cunningham et al.’s protocol [14], which are
better. Note that [11], [28] do not achieve strong publicly
identifiable abort (cf. Table I) and are based on primitives
whose security breaks down if all servers are corrupted (e.g.,
information theoretic signatures). So they cannot be adapted
to the fully corrupted case without redesigning the protocols.

More generally, even when compared to highly-efficient
SPDZ-like protocols without public accountability such as [7]–

14It might be possible to precompute the offline phase of [14] for all subsets
of parties, but this introduces an additional factor of O(2n) to the offline phase
of BoBW[14].

[9], [12], [15], [16], our protocol still manages to achieve
comparable asymptotic complexity. The main difference lies
in the concrete computational overhead introduced by the
commitments used for accountability, whereas the simple
field operations and information theoretic MACs used by
most SPDZ-like protocols are computationally less costly. We
discuss the concrete performance of our protocol next.

IX. CONCRETE EVALUATION

We compare the concrete performance of our protocol
to SPDZ, a state-of-the-art protocol without our additional
security properties, and Cunningham et al.’s protocol [14].
The comparison with [14] serves as an approximation of the
so far theoretical BoBW[14], discussed in Section VIII: The
online phase of [14] (without performing lazy verification of
commitments) is essentially the online phase of BoBW[14] in
an ideal case, i.e., without restarts. The combination of several
offline and online phases of [14] (including verification for
aborted online phases) corresponds to BoBW[14] with restarts.

We have experimentally evaluated the runtime of all pro-
tocols for a concrete setting, where a small neural network
(“network A” as in MP-SPDZ [64], [65], introduced by
Mohassel and Zhang [1]) is evaluated N times on a batch
of separate inputs. Such batch processing can fully utilize the
N slots available in BDLOP commitments. A discussion on
amortizing the cost of commitments if we do use batches of
size N can be found in the full version. The precise setting and
resulting benchmarks for all protocols are given in Fig. 10 with
more details available in Appendix G. These benchmarks were
obtained using our own implementations of all protocols to en-
sure a fair comparison. More specifically, for the online phase
we have implemented and benchmarked the circuit evaluation,
including verification for our protocol and [14]. For the offline
phase, we have implemented and performed microbenchmarks
that we then extrapolate to approximate the overall runtime.
We have validated these approximations by verifying that,
for SPDZ, they yield similar results as prior benchmarks
obtained for the widespread MP-SPDZ implementation. This
validation as well as full details of our experimental setup,
further benchmark results, and additional discussions of our
results can be found in the full version.

To summarize key findings, the overhead of the additional
security properties offered by our protocol compared to basic
SPDZ is a factor between 20 (0ms network delay) to 11
(100ms network delay) in the online phase. While the online
phase of [14] (i.e., BoBW[14] without restarts) is faster than
our protocol as long as no error occurs and hence no lazy
verification is performed, the online phase of [14] becomes
slower than ours if a misbehaving party needs to be identified
(cf. red dot in Fig. 10(a)). If [14] is then restarted after
such an error (i.e., BoBW[14]), which requires rerunning the
offline phase, then the difference is even more pronounced (cf.
Fig. 10(c) for one restart).

The concrete communication cost per multiplication gate
and party for our protocol, SPDZ, and [14] is given in
Table IV and Fig. 11. For the specific setting considered
in Fig. 10, this results in an amortized communication cost
per party and neural network evaluation in the online phase

2443

85.5
86.0
86.5 ours

SPDZ
[14]
[14] w. verif.

0 20 40 60 80 100
delay (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

tim
e

(s
)

(a) Amortized online runtime without restarts.

0 20 40 60 80 100
delay (ms)

0
200
400
600
800

1000
1200
1400
1600

ours
SPDZ
[14]tim

e
(s

)

(b) Amortized offline runtime without restarts.

0 20 40 60 80 100
delay (ms)

100

101

102

103

tim
e

(s
) ours

BoBW[14] without restart
BoBW[14] with 1 restart

(c) Amortized online runtime with restarts.

Fig. 10. Runtime for evaluating “network A” [1], [64] (118016 addition
and 118272 multiplication gates, with batch size b = N = 32768; see
Appendix G) in the online phase and runtime of the offline phase to prepare
the necessary Beaver triples. Timings are amortized for an evaluation in the
following setting: n = 3; t = 2; log p = 128; single-threaded computation
(AMD EPYC 7443 CPU); bandwidth limited to 1Gbit s−1; statistical and
computational security parameters are 40bit and 128bit, respectively.

TABLE IV
ONLINE COMMUNICATION COST (IN BITS) PER PARTY AND

MULTIPLICATION

log p η SPDZ ours Πequiv
a [14]

64 40 128 722 3020 1008
64 64 128 722 3128 1008

64 80 –b 728 3260 1008

64 128 –b 728 3476 1008
128 40 256 1240 4504 1008
128 64 256 1240 4600 1008
128 80 256 1240 4672 1008
128 128 256 1240 4888 1008

a with trapdoor for equivocation (cf. Section V-A)
b not secure with statistical security η as MAC error is 2/p

2 3 4 5 6 7 8 9 10
number of parties n

0
10
20
30
40
50
60

da
ta

 (K
iB

)

ours
SPDZ
[14]

Fig. 11. Offline communication cost per party and multiplication. The solid
line for our protocol is for t = n, the dashed line is for t = ⌊n/2⌋+ 1.

of 17.48MiB for our protocol, 3.61MiB for SPDZ, and
14.21MiB for [14]. For the corresponding offline phases
(to prepare a single evaluation of the neural network), the
amortized concrete communication cost is 2.58GiB, 897MiB,
and 3.48GiB, respectively. Additionally, we show the online
communication cost of Πequiv in Table IV—the variant of our
protocol that uses equivocal BDLOP commitments. Not only
is more communication required for this variant, initial tests
also indicate that this variant is about 4 times slower than our
protocol in the online phase, which is why we omit a full
runtime analysis. The NIZKPs added in the output phase of
our protocol to avoid equivocation account for less than 0.02%
of the overall online runtime shown in Fig. 10(a).

We note that we use the parameters from Section VII for the
BDLOP commitments, which were computed to be sufficient
for a much larger arithmetic circuit. While these parameters
could be decreased for the smaller “network A” to further
improve performance of our protocol, we nevertheless used
those parameters to show that the runtime overhead due to
parameter size is practical also for larger circuits. For [14],
we use Curve25519-based commitments to reach the same
computational security level of 128 bit. The statistical security
parameter is set to η = 40 for all protocols (as in, e.g., [7],
[15], [16]).

Altogether, our protocol performs significantly better than
(so-far theoretical) BoBW[14] in a malicious setting while
offering the same security guarantees and while being ap-
plicable even when restarts are not an option, e.g., because
inputs cannot be provided repeatedly. The additional security
properties of our protocol over basic SPDZ still come at a
cost, but the resulting performance remains practical relative
to other approaches (with weaker security properties).

ACKNOWLEDGMENT

We thank our anonymous reviewers and our shepherd for
their invaluable feedback. We also thank Andrés Bruhn and
Azin Jahedi from the Institute for Visualization and Interactive
Systems at the University of Stuttgart for providing the compu-
tational resources and assistance with running our experiments.

The research was supported by the DFG through grant
KU 1434/11-1 and by the CRYPTECS project which has
received funding from the German BMBF through grant
16KIS1441 and from the French ANR through grant ANR-
20-CYAL-0006.

2444

REFERENCES

[1] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” in SP 2017. IEEE Computer Society,
2017, pp. 19–38.

[2] D. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. Pagter,
N. Smart, and R. Wright, “From keys to databases—real-world applica-
tions of secure multi-party computation,” Comput. J., vol. 61, pp. 1749–
1771, 2018.

[3] V. Chen, V. Pastro, and M. Raykova, “Secure Computation for Machine
Learning With SPDZ,” CoRR, vol. abs/1901.00329, 2019.

[4] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, and
N. Volgushev, “New Primitives for Actively-Secure MPC over Rings
with Applications to Private Machine Learning,” in SP 2019. IEEE,
2019, pp. 1102–1120.

[5] A. P. K. Dalskov, D. Escudero, and M. Keller, “Secure Evaluation of
Quantized Neural Networks,” Proc. Priv. Enhancing Technol., vol. 2020,
no. 4, pp. 355–375, 2020.

[6] H. Chen, M. Kim, I. P. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh,
“Maliciously Secure Matrix Multiplication with Applications to Private
Deep Learning,” in ASIACRYPT 2020. Springer, 2020, pp. 31–59.

[7] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
Computation from Somewhat Homomorphic Encryption,” in CRYPTO
2012. Springer, 2012, pp. 643–662.

[8] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking
the SPDZ Limits,” in ESORICS 2013. Springer, 2013, pp. 1–18.

[9] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in EUROCRYPT
2011. Springer, 2011, pp. 169–188.

[10] C. Baum, I. Damgård, and C. Orlandi, “Publicly Auditable Secure Multi-
Party Computation,” in SCN 2014. Springer, 2014, pp. 175–196.

[11] C. Baum, E. Orsini, and P. Scholl, “Efficient Secure Multiparty Com-
putation with Identifiable Abort,” in TCC 2016-B, 2016, pp. 461–490.

[12] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster Malicious
Arithmetic Secure Computation with Oblivious Transfer,” in CCS 2016.
ACM, 2016, pp. 830–842.

[13] G. Spini and S. Fehr, “Cheater Detection in SPDZ Multiparty Compu-
tation,” in ICITS 2016, 2016, pp. 151–176.

[14] R. K. Cunningham, B. Fuller, and S. Yakoubov, “Catching MPC
Cheaters: Identification and Openability,” in ICITS 2017. Springer,
2017, pp. 110–134.

[15] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ Great
Again,” in EUROCRYPT 2018. Springer, 2018, pp. 158–189.

[16] C. Baum, D. Cozzo, and N. P. Smart, “Using TopGear in Overdrive: A
More Efficient ZKPoK for SPDZ,” in SAC 2019. Springer, 2019, pp.
274–302.

[17] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting Private Data on
Hyperledger Fabric with Secure Multiparty Computation,” in IC2E 2018.
IEEE, 2018, pp. 357–363.

[18] J. Cartlidge, N. P. Smart, and Y. T. Alaoui, “MPC Joins The Dark Side,”
in AsiaCCS 2019. ACM, 2019, pp. 148–159.

[19] B. Adida, “Helios: Web-based Open-Audit Voting,” in USENIX Security
’08, P. C. van Oorschot, Ed. USENIX Association, 2008, pp. 335–348.

[20] R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt, “Ordinos: A
Verifiable Tally-Hiding E-Voting System,” in EuroS&P 2020. IEEE,
2020, pp. 216–235.

[21] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft,
“Confidential Benchmarking Based on Multiparty Computation,” in FC
2016. Springer, 2016, pp. 169–187.

[22] A. Bestavros, A. Lapets, and M. Varia, “User-centric distributed solu-
tions for privacy-preserving analytics,” Commun. ACM, vol. 60, no. 2,
pp. 37–39, 2017.

[23] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I.
Pagter, N. P. Smart, and R. N. Wright, “From Keys to Databases - Real-
World Applications of Secure Multi-Party Computation,” Comput. J.,
vol. 61, no. 12, pp. 1749–1771, 2018.

[24] A. B. Alexandru, M. Morari, and G. J. Pappas, “Cloud-Based MPC with
Encrypted Data,” in CDC 2018. IEEE, 2018, pp. 5014–5019.

[25] P. Li, J. Li, Z. Huang, T. Li, C. Gao, S. Yiu, and K. Chen, “Multi-key
privacy-preserving deep learning in cloud computing,” Future Gener.
Comput. Syst., vol. 74, pp. 76–85, 2017.

[26] X. Liu, R. H. Deng, Y. Yang, N. H. Tran, and S. Zhong, “Hybrid privacy-
preserving clinical decision support system in fog-cloud computing,”
Future Gener. Comput. Syst., vol. 78, pp. 825–837, 2018.

[27] J. So, B. Güler, and A. S. Avestimehr, “CodedPrivateML: A Fast and
Privacy-Preserving Framework for Distributed Machine Learning,” IEEE
J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 441–451, 2021.

[28] C. Baum, E. Orsini, P. Scholl, and E. Soria-Vazquez, “Efficient
Constant-Round MPC with Identifiable Abort and Public Verifiability,”
in CRYPTO 2020. Springer, 2020, pp. 562–592.

[29] B. Schoenmakers and M. Veeningen, “Universally Verifiable Multiparty
Computation from Threshold Homomorphic Cryptosystems,” in ACNS
2015. Springer, 2015, pp. 3–22.

[30] G. Asharov and C. Orlandi, “Calling Out Cheaters: Covert Security with
Public Verifiability,” in ASIACRYPT 2012. Springer, 2012, pp. 681–698.

[31] I. Damgård, C. Orlandi, and M. Simkin, “Black-Box Transformations
from Passive to Covert Security with Public Verifiability,” in CRYPTO
2020. Springer, 2020, pp. 647–676.

[32] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser, “Generic Compiler for
Publicly Verifiable Covert Multi-Party Computation,” in EUROCRYPT
2021. Springer, 2021, pp. 782–811.

[33] P. Scholl, M. Simkin, and L. Siniscalchi, “Multiparty Computation with
Covert Security and Public Verifiability,” Cryptology ePrint Archive,
Tech. Rep. 2021/366, 2021.

[34] R. Küsters, T. Truderung, and A. Vogt, “Accountability: definition and
relationship to verifiability,” in CCS 2010. ACM, 2010, pp. 526–535.

[35] A. Kiayias, H. Zhou, and V. Zikas, “Fair and Robust Multi-party
Computation Using a Global Transaction Ledger,” in EUROCRYPT
2016. Springer, 2016, pp. 705–734.

[36] C. Baum, B. David, and R. Dowsley, “Insured MPC: Efficient Secure
Computation with Financial Penalties,” in FC 2020. Springer, 2020,
pp. 404–420.

[37] R. Cleve, “Limits on the Security of Coin Flips when Half the Processors
Are Faulty (Extended Abstract),” in STOC 1986. ACM, 1986, pp. 364–
369.

[38] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority,”
in STOC 1987. ACM, 1987, pp. 218–229.

[39] R. Cohen and Y. Lindell, “Fairness versus Guaranteed Output Delivery
in Secure Multiparty Computation,” in ASIACRYPT 2014. Springer,
2014, pp. 466–485.

[40] Y. Ishai, R. Ostrovsky, and V. Zikas, “Secure Multi-Party Computation
with Identifiable Abort,” in CRYPTO 2014. Springer, 2014, pp. 369–
386.

[41] M. Hirt, C. Lucas, and U. Maurer, “A Dynamic Tradeoff between
Active and Passive Corruptions in Secure Multi-Party Computation,”
in CRYPTO 2013. Springer, 2013, pp. 203–219.

[42] A. Patra and D. Ravi, “Beyond Honest Majority: The Round Complexity
of Fair and Robust Multi-party Computation,” in ASIACRYPT 2019.
Springer, 2019, pp. 456–487.

[43] F. Baldimtsi, A. Kiayias, T. Zacharias, and B. Zhang, “Crowd Verifiable
Zero-Knowledge and End-to-End Verifiable Multiparty Computation,”
in ASIACRYPT 2020. Springer, 2020, pp. 717–748.

[44] S. Kanjalkar, Y. Zhang, S. Gandlur, and A. Miller, “Publicly Auditable
MPC-as-a-Service with succinct verification and universal setup,” in
EuroS&P Workshops 2021. IEEE, 2021, pp. 386–411.

[45] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert,
“More Efficient Commitments from Structured Lattice Assumptions,” in
SCN 2018. Springer, 2018, pp. 368–385.

[46] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” in ITCS 2012. ACM,
2012, pp. 309–325.

[47] M. Rivinius, P. Reisert, D. Rausch, and R. Küsters, “Publicly Account-
able Robust Multi-Party Computation,” Cryptology ePrint Archive, Tech.
Rep. 2022/436, 2022.

[48] D. Beaver, “Efficient Multiparty Protocols Using Circuit Randomiza-
tion,” in CRYPTO ’91. Springer, 1991, pp. 420–432.

[49] R. Cramer and I. Damgård, “On the Amortized Complexity of Zero-
Knowledge Protocols,” in CRYPTO 2009. Springer, 2009, pp. 177–191.

[50] V. Lyubashevsky, “Lattice Signatures without Trapdoors,” in EURO-
CRYPT 2012. Springer, 2012, pp. 738–755.

[51] R. Canetti, “Universally Composable Security: A New Paradigm for
Cryptographic Protocols,” in FOCS 2001. IEEE Computer Society,
2001, pp. 136–145.

[52] C. Baum, I. Damgård, K. G. Larsen, and M. Nielsen, “How to Prove
Knowledge of Small Secrets,” in CRYPTO 2016. Springer, 2016, pp.
478–498.

[53] R. Cramer, I. Damgård, C. Xing, and C. Yuan, “Amortized Complex-
ity of Zero-Knowledge Proofs Revisited: Achieving Linear Soundness
Slack,” in EUROCRYPT 2017, 2017, pp. 479–500.

2445

[54] R. del Pino, V. Lyubashevsky, and G. Seiler, “Lattice-Based Group
Signatures and Zero-Knowledge Proofs of Automorphism Stability,” in
CCS 2018. ACM, 2018, pp. 574–591.

[55] A. Jain, S. Krenn, K. Pietrzak, and A. Tentes, “Commitments and
Efficient Zero-Knowledge Proofs from Learning Parity with Noise,” in
ASIACRYPT 2012. Springer, 2012, pp. 663–680.

[56] X. Xie, R. Xue, and M. Wang, “Zero Knowledge Proofs from Ring-
LWE,” in CANS 2013. Springer, 2013, pp. 57–73.

[57] F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Pietrzak, “Efficient
Zero-Knowledge Proofs for Commitments from Learning with Errors
over Rings,” in ESORICS 2015. Springer, 2015, pp. 305–325.

[58] C. Boschini, J. Camenisch, and G. Neven, “Relaxed Lattice-Based
Signatures with Short Zero-Knowledge Proofs,” in ISC 2018. Springer,
2018, pp. 3–22.

[59] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices,” Des. Codes Cryptogr., vol. 75, no. 3, pp. 565–599,
2015.

[60] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi, “Two-Round n-
out-of-n and Multi-signatures and Trapdoor Commitment from Lattices,”
in PKC 2021. Springer, 2021, pp. 99–130.

[61] D. Micciancio and C. Peikert, “Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller,” in EUROCRYPT 2012. Springer, 2012, pp. 700–718.

[62] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep
Residual Networks,” in ECCV 2016. Springer, 2016, pp. 630–645.

[63] V. Lyubashevsky, C. Peikert, and O. Regev, “A Toolkit for Ring-LWE
Cryptography,” in EUROCRYPT 2013. Springer, 2013, pp. 35–54.

[64] CSIRO Data61 Engineering & Design, “MP-SPDZ,” https://github.com/
data61/MP-SPDZ, 2022.

[65] M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Compu-
tation,” in CCS 2020. ACM, 2020, pp. 1575–1590.

[66] E. Orsini, “Efficient, Actively Secure MPC with a Dishonest Majority:
A Survey,” in WAIFI 2020. Springer, 2020, pp. 42–71.

[67] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan,
and D. Wichs, “Multiparty Computation with Low Communication,
Computation and Interaction via Threshold FHE,” in EUROCRYPT
2012. Springer, 2012, pp. 483–501.

[68] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, and A. Sahai, “Threshold Cryptosystems from Threshold
Fully Homomorphic Encryption,” in CRYPTO 2018. Springer, 2018,
pp. 565–596.

[69] T. Attema, V. Lyubashevsky, and G. Seiler, “Practical Product Proofs for
Lattice Commitments,” in CRYPTO 2020. Springer, 2020, pp. 470–499.

[70] D. Rotaru, N. P. Smart, T. Tanguy, F. Vercauteren, and T. Wood,
“Actively Secure Setup for SPDZ,” Cryptology ePrint Archive, Tech.
Rep. 2019/1300, 2019.

[71] D. Unruh, “Post-quantum Security of Fiat-Shamir,” in ASIACRYPT
2017. Springer, 2017, pp. 65–95.

[72] C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyuba-
shevsky, “Sub-linear Lattice-Based Zero-Knowledge Arguments for
Arithmetic Circuits,” in CRYPTO 2018. Springer, 2018, pp. 669–699.

[73] R. del Pino and V. Lyubashevsky, “Amortization with Fewer Equations
for Proving Knowledge of Small Secrets,” in CRYPTO 2017. Springer,
2017, pp. 365–394.

[74] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation of the
AES Circuit,” in CRYPTO 2012. Springer, 2012, pp. 850–867.

[75] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
Learning with Errors,” J. Math. Cryptol., vol. 9, no. 3, pp. 169–203,
2015.

[76] M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W.
Postlethwaite, F. Virdia, and T. Wunderer, “Estimate All the {LWE,
NTRU} Schemes!” in SCN 2018. Springer, 2018, pp. 351–367.

[77] D. Micciancio and O. Regev, Lattice-based Cryptography. Springer,
2009, pp. 147–191.

[78] M. Rückert and M. Schneider, “Estimating the Security of Lattice-based
Cryptosystems,” Cryptology ePrint Archive, Tech. Rep. 2010/137, 2010.

APPENDIX A
PRELIMINARIES

For completeness, we present the most important prelimi-
naries for our protocols in this section – including SPDZ and
the BGV encryption scheme. A description of the BDLOP
commitment scheme can be found in Section VI.

A. SPDZ

The SPDZ protocol by Damgård et al. [7] has given rise a to
a line of efficient MPC protocols in the dishonest majority set-
ting (see [66] for an overview). It computes arbitrary functions
that are representable as arithmetic circuits by separating the
secure computation in a very efficient online phase and a more
demanding but input-independent offline phase. The latter is
also function-independent in the sense that only the size of
the circuit (number of multiplications and inputs) has to be
known in the offline phase.

In most SPDZ-like protocols, the online phase uses a com-
bination of full-threshold secret-sharing and so-called informa-
tion theoretic MACs. This combination results in authenticated
shares JxKi = ([x]i, [α · x]i) for MAC key α. Linear opera-
tions on these authenticated shares can be computed locally
(without communication) and very efficiently as the used
secret-sharing scheme is linear. Multiplications of shares are
computed with Beaver’s technique [48] (analogously to (5)):
Jx · yKi := JcKi+u·JaKi+v ·JbKi+u·v is computed to multiply
JxKi and JyKi. This requires triples JaKi, JbKi, JcKi = Ja · bKi
and opened values u := x − b, v := y − a. For this and final
outputs, shares have to be opened, i.e., all parties get to know
x for JxKi. In the protocol, this means that all parties publish
their shares [x]i. The MACs [α · x]i can be used to verify all
opened shares in an aggregated way at the end of the online
phase [8].

To use Beaver’s technique, the above precomputed triples
JaKi, JbKi, JcKi. Ensuring that a and b are uniformly random,
makes Beaver’s technique perfectly private (as only Jx− bKi
and Jy − aKi are opened and this masks x and y perfectly).
The correlated randomness (c = a · b) implies correctness and
verifiability (as MACs allow us to verify openings of linear
combinations of authenticated shares and all operations are
now linear).

Several ways to compute these triples have been proposed,
e.g., MASCOT [12] uses an OT-based offline phase, Over-
drive [15] and TopGear [16] compute triples with the linear
homomorphic BGV encryption scheme (improving on original
use of BGV in SPDZ [7], [8]).

These building blocks (linear authenticated secret-sharing,
Beaver’s technique, and a secure way to compute triples)
allow for the evaluation of arbitrary arithmetic circuits in a
dishonest majority setting. Most of the computation and all
expensive cryptographic primitives are moved to the offline
phase, leaving only a very efficient linear online phase.

B. BGV

To better describe our protocol based on LHE BGV in
Section V-B1, we summarize the most important details of
the BGV encryption scheme [46] here. We use the version of
BGV without modulus switching. This is easier to present and
analyze. Additionally, Keller et al. [15] show little difference
when comparing parameter sizes for SPDZ without modulus
switching [7] and SPDZ with modulus switching [8]. However,
our analysis can be adjusted for other variants of BGV in a
straightforward way.

The public key k := (k[0], k[1]) = (k[0], k[0]·s+p·ǫ) ∈ R2
q

(for a different prime q > p) is constructed from a private

2446

key s ∈ Rq and small noise ǫ ∈ Rq sampled from Dσs
and

Dσǫ
, respectively, while k[0] is sampled uniformly at random.

Encryption of a plaintext x ∈ Rp is then defined as

Enck(x, (v, e)
T
) :=

(

k[1] · v + p · e[0] + x
k[0] · v + p · e[1]

)

with encryption randomness (v, e) ∈ Rq × R2
q sampled from

Dσv
and Dσe

, respectively.15 The second component k[1]
of the public key and both components of the ciphertext
(bar the addition of x) form Ring-LWE samples. Thus, the
private key stays hidden due to the hardness of Ring-LWE
and the plaintext x is hidden because we mask it with a value
from a distribution that is indistinguishable from random. By
construction we get that (Enc(x)[0] − s · Enc(x)[1]) mod p
recovers x.

The above description of BGV is linear homomorphic as we
can add up ciphertexts (component-wise) to get a ciphertext
that encrypts the sum of the plaintexts (of the summed up ci-
phertexts). BGV can also be used as a somewhat homomorphic
encryption (SHE) scheme. For this, we define a ciphertext to
be an element of R3

q instead of R2
q with encryption defined as

above but with the third component as zero. Two ciphertexts
with zero third components can be multiplied as

Enc(x) · Enc(y) = a · b :=

a[0] · b[0]
a[1] · b[0] + a[0] · b[1]

−a[1] · b[1]

 .

Decryption of Enc(x) = c is now (c[0]−s·c[1]−s2 ·c[2]) mod
p. For unmultiplied ciphertexts, this is exactly the decryption
of LHE BGV.

APPENDIX B
ACCOUNTABLE ROBUST SETUP PHASE

Our setup requires the generation of commitment param-
eters (for the online and offline phases) and a threshold
public key (PK) cryptosystem (for the offline phase). The
commitment keys can be produced by a standard CRS (or
random oracle) functionality (as in [10], [14]). For public
key cryptography, we present a robust and accountable pro-
tocol based on Asharov et al.’s work [67]—but again, we
benefit of the capabilities of current commitment schemes
(discussed in Section VI) and get a more efficient protocol.
We do this for the linear homomorphic version of the BGV
encryption scheme, while the extension to SHE BGV (and
related schemes) is straightforward.

The key generation and distributed decryption procedure
is described in the full version in more detail. For the lack
of space, we also provide the protocol and functionality
descriptions only there.

We note that the use of Shamir secret-sharing in combina-
tion with lattice cryptography comes with many potential pit-
falls in the setup phase, particularly for naive implementations.
For example, a main concern with lattice-based encryption is
the so-called noise that we want to keep small. Using standard
masking techniques for distributed decryption [7], [8], [15],

15There is an additional third zero-component of the encryption used for
SHE BGV; for LHE BGV, this can be omitted.

[16] introduces unpredictable noise increase and makes de-
cryption impossible. Techniques that avoid this unpredictable
behavior can still increase the decryption noise by a factor of
about O((n!)3) and would lead to a comparable increase of q
[68]. Natural alternative techniques (pre-agreeing on shares of
decryption masks) would instead increase the communication
complexity of each decryption to O(n2 · t). By building on
Asharov et al.’s protocol [67], we are able to avoid the above
issues. Additionally, our construction provides better efficiency
by utilizing commitments and better NIZKPs. We proceed with
a description of our construction in what follows.

The main idea of our construction is to have a full-
threshold sharing of the BGV private key, while each party
also has a sharing of the (full-threshold) key shares of all
other parties. This provides robustness and the efficiency
of the full-threshold variant. To get accountability, we use
commitments to all shares and ZKPs to make sure that values
were constructed in the right way. For linear homomorphic
BGV, one needs range proofs to make sure that the private
keys are short. We can do this by extending recent range proof
constructions [69] from Zq to Rq (see Appendix E for details).
This new alternative construction could be of independent
interest.

The other proofs (for the rest of the key generation and
distributed decryption) boil down to proving linear relations on
commitments. For somewhat homomorphic BGV, non-linear
components appear. A natural way to handle this is to run our
complete protocol (using LHE multiplication in Πoffline as in
Section V-B1) to get the data needed to run SHE BGV. This is
similar to the core idea of using MPC to generate BGV keys by
Rotaru et al. [70]. However, as we want a (strong) accountable
setup, our protocol is the only (efficient) protocol that can be
used for this purpose. This is because other protocols with
identifiable abort, such as [11], [14], [28], do not provide
strong public accountability and/or use SHE BGV themselves.
In sum, we get the following theorem.

Theorem 4. The protocol ΠPK is a publicly accountable and

t-robust protocol for BGV key generation and distributed de-

cryption. That is, ΠPK UC-realizes the functionality FPK in the

(FBB,FCRS,FRO,FPKI)-hybrid model under the assumption

that the used commitment scheme is statistically binding and

computationally hiding.

APPENDIX C
FUNCTIONALITIES AND PROTOCOLS

We provide the remaining protocols and functionalities
that were left out in the main part. This includes Fig. 12
for the functionality of the offline phase. The protocol and
functionality for key generation and distributed decryption are
available in the full version.

APPENDIX D
SECURITY PROOFS

A. Proof of Theorem 2

Here, we sketch the proof for Πoffline realizing Foffline.

Proof (Sketch). The main difference to [10], [14] is the way
shares are constructed, the used ZKPs, and that inputs play

2447

1 Prepare (once): On input (prep, par) by each Pi ∈ P:

2 Send par to the A and receive (M, β) ∈ V .

3 if β = abort then reply M,⊥ to Pi.

4 if |C| < t then

5 Pick r,a, b randomly and set c := a · b.

6 Pick shares [r]j , [a]j , [b]j , [c]j for all Pj .

7 Compute commitments for all honest shares.

8 Send shares for corrupted parties Pj and

commitments for honest parties to A.

9 else

10 Send (shares) to A.

11 Let the adversary pick r,a, b, and c := a · b.

12 Let A also pick shares for all parties.

13 Compute commitments for all honest shares.

14 Send commitments for honest parties to A.

15 Receive (M′, β′) ∈ V with M′ ⊇M (overriding the

previous values of M and β), commitments, and

decommitments for corrupted parties Pj .

16 Set the commitments of parties with invalid

decommitments to ⊤. Also add these parties to M
and M′.

17 if β = abort then reply M,⊥ to Pi.

18 else reply M, 〈r〉i, 〈a〉i, 〈b〉i, 〈c〉i to Pi.

19 Input (once): On input (input, xj) by each Ij ∈ I
and input (input) by each Pi ∈ P:

20 Get xj for corrupted Ij from A.

21 Pack all xj into x.

22 if β = ok then

23 if |C| ≥ t then Send (input,x) to A.

24 else Send (mask,m := x− r) to A.

25 Receive (M′′, β′′) ∈ V with M′′ ⊇M
(overriding the previous values of M and β).

26 if β = ok then reply M,m to Pj .

27 reply M,⊥ to Pj .

28 Audit: On input (audit,prep, par) by J :

29 if β′ 6= ok then reply M′,⊥.

30 else reply M′, 〈r〉audit, 〈a〉audit, 〈b〉audit, 〈c〉audit.

31 Audit: On input (audit,input) by J :

32 if β′′ = ok then reply M′′,m else reply M′′,⊥.

Fig. 12. Offline functionality Foffline.

a part in the offline phase. Correctly constructing shares
follows a similar approach by constructing ciphertexts of
shares. The relations that the ZKPs prove are chosen in a
way to get the necessary properties for the protocol to work.
Also, extracting the decommitments for corrupted parties from
(extractable) commitments instead of ciphertexts still works.
Involving the offline protocol in the input phase gives us
usability improvements for the clients (only a ciphertext has to
be published) while revealing no additional information (the
inputs are masked with values that are uniformly random by
construction; assuming not too many parties are corrupted, in
which case we do not have to hide the inputs at all). For the
complete proof, see the full version.

B. Proof of Theorem 4

Here, we sketch the proof for ΠPK realizing FPK.

Proof (Sketch). In the LHE case, the protocol is structured
similarly to Asharov et al. [67] but ZKPs are replaced by
efficient commitment-based variants. This does not influence
the security.

In the SHE case, we base the key generation on our MPC
protocol and thus get the required security properties. For
the decryption, only an additional term is added to the ZKPs
and thus the results of the LHE case can be reused. For the
complete proof, see the full version.

APPENDIX E
ZERO-KNOWLEDGE PROOFS

To make our offline phase secure, we use zero-knowledge
proofs. Σ-protocols are used with the Fiat-Shamir transform
to generate non-interactive zero-knowledge proofs (NIZKPs)
that everyone can verify. We furthermore refer to Unruh [71]
for a discussion of Σ-protocols in the post-quantum setting. To
prove the correctness of the encryption and the commitment
for the same plaintext we use a combination of rejection
sampling [50] and the aggregation technique of [49].

Additionally, zero-knowledge proofs that only involve com-
mitments can be made very efficient – without aggregation
techniques for the BDLOP scheme. We use this to prove
correct committing [45], as well as products [69] and linear
relations using commitments [45], [54]. The latter two are
combined to get range proofs in an accountable encryption
scheme key generation.

Zero-knowledge proofs are used in two settings that were
not described yet (how to prove plaintext-ciphertext multipli-
cations was discussed in Section V-B1 and the proofs used in
the online phase are straight adaptions of the ones for linear
relations [45]). The first is range proofs for the BGV key
generation. Secondly, we prove many committing ciphertexts

statements (and other aggregated proofs) in the offline phase.
Both are discussed in the next sections.

A. Range Proofs

To get range proofs for Rq , we combine the existing
NIZKPs [45], [54], [69] in the following way.

1) A value x ∈ Rq is split in its bits b, b[i] ∈ {0, 1}N . The
negated bits b̄ are computed.

2) A product proof [69] is used to prove b · b̄ = 0.
3) The generalized sum proof [54] (as a generalization of the

proof by Baum et al. [45]) is used to prove b+(b̄−1) =
0 ⇔ b̄ = 1 − b. The generalization allows us to prove
this sum for the extended commitments from the product
proof (the commitment key for the product proof has a
third matrix A2 similar to A1).

4) A proof of sum [45], [54] is used to prove x =
∑l−1

i=0 2
i ·

b[i]− 2l · b[k].

Note that we do not try to prove the length of a single integer
and pack it in the coefficients of an Rq element as in [69].
Instead, we want to prove a bound on ‖x‖∞. As in [69], the
steps 2 and 3 prove that b[i] has binary coefficients. Step 4 then
implies ‖x‖∞ ≤ 2l. We do not want to introduce any slack

2448

in these range proofs to give a key generation protocol that
can also be used in applications where tighter parameters are
needed. As the key generation is done only once in the offline
phase, we opted for this kind of construction. Non-power-of-
two bounds could be supported by adding more terms.

B. Aggregated Proofs

The adapted zero-knowledge proofs we use are based on
rejection sampling [50] and classical aggregation [49]. Details
on this can be found in the full version. We do not get proofs
that have a slack as small as the one obtained by Baum
et al. [72], but their proof also does not prove exact relations
but one that is off by a factor of two (i.e., for the ring case,
it proves As = 2t instead of As = t).

Other techniques are possible as well – and give a smaller
slack than our approach – but they also have some downsides.
The approach of [52] uses a cut-and-choose technique which
we want to avoid as this was identified to be impractical by
Keller et al. [15]. Cramer et al. [53] need to amortize over
many instances (η2 or η3/2) to be efficient. The work by del
Pino and Lyubashevsky [73] builds upon [52], [53] to reduce
the large number of instances required by Cramer et al. [53]
but it is still a cut-and-choose proof. Another reason why
we opted for the classical aggregation technique [49] is its
simplicity and use in other protocols. This should make it
straightforward to implement our adaptions to it if our MPC
protocol is to be implemented.

We do not claim that our approach is a new idea – in
fact, it was mentioned in [52], [53] that one can construct
a zero-knowledge proof in such a way – but it was not
formalized, to our knowledge. Additionally, we get reasonably
good parameters, even with the exponential slack (as seen in
Section VII).

Also note that the operations for the combination of re-
jection sampling and classical aggregation are the same. The
runtime can increase as parts of the proof have to be repeated
but also the aggregation in SPDZ [7] has a probability of
repeating the proof: With probability 1/32 the proof has to
be discarded.

APPENDIX F
PARAMETERS (CONTINUED)

We use a statistical security of 40 bit and a computational
security level of 128 bit in our parameter search in Section VII,
unless stated otherwise. Also, if we do not give results for
both, we consider the variant of our protocol with somewhat
homomorphic encryption (and not with linear homomorphic
encryption).

For getting the BGV parameters, we use a technique to
assess the security level of various parameter sizes that is
similar to [8], [74] but we consider the worst-case bounds
for elements that are distributed w.r.t. Gaussian distributions
(instead of average-case bounds).

We chose the parameters for BDLOP scheme by searching
for the combination that achieves a required security level (we
fixed the computational security, while varying the statistical
security parameter η, e.g., used for zero-knowledge proofs)

in
p
u
t

(b, 784)

(b, 128)

d
en

se

(b, 128)

p
o
w
(
·,

2
)

(b, 128)

d
en

se

(b, 128)

p
o
w
(
·,

2
)

o
u
tp

u
t

(b, 10)

d
en

se

Fig. 13. Architecture of “network A” [1], [64]. The shape of the input and
(intermediate) feature tensors is given above each tensor. b represents the batch
size. Dashed boxes represent the network layers (dense layers, nonlinearities).

while minimizing the total size of a plaintext-randomness-
commitment tuple. By optimizing for the size of this combined
tuple, we avoid favoring one aspect over others. To obtain
our results for commitment parameters, which are given in
Table II, we used the LWE Estimator [75] with cost models
from [76] to estimate the hardness of M-LWE. Additionally,
we used results from the literature [75], [77], [78] to estimate
the hardness of M-SIS. We also made sure that the constraints
for the trapdoors are met (see the full version for more details).
Extra parameters (for example for the commitments in Πequiv)
can also be found in the full version.

APPENDIX G
BENCHMARKS

To compare the runtime of our protocol to SPDZ and
BoBW[14], we implemented a benchmark that emulates the
online and offline phase. For the offline phase, we run all parts
of the triple generation (except sacrificing for SPDZ, i.e., we
assume that sacrificing is free; additionally, preparation for
inputs is not considered here) and the core operations in the
online phase (we leave out the input phase for all protocols
but the output phase is implemented for our protocol’s online
phase, where this entails NIZKPs unlike in the other protocols;
MAC checks for the other protocols are considered to be free,
i.e., not implemented). The runtime of the benchmarks for the
offline phase are then extrapolated to get as many triples as
multiplications needed for the circuit we consider in the online
phase. The results of this are shown in Fig. 10(b). Further parts
where our benchmark differs from a full implementation is
that we use broadcast channels instead of a bulletin board and
sampling of randomness was changed to uniformly random
sampling to simplify the implementation. The latter does
not effect the runtime behavior of the protocols we want to
compare. For the online phase, we evaluate the arithmetic core
of “network A” (see Fig. 13). The final argmax layer is left out
as the operations there are not purely arithmetic. Additional
details on our experiments, as well as an extended discussion,
can be found in the full version.

We ran our benchmark on a single server (AMD EPYC
7443 CPU, 24 cores, 2.85GHz, 512GB RAM) to get the
presented results. All experiments were done on a single
machine running the code for all parties. We emulate the
network behavior with the netem functionality.

2449

