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Abstract—Embedded devices are becoming increasingly per-
vasive in safety-critical systems of the emerging cyber-physical
world. While trusted execution environments (TEEs), such as
ARM TrustZone, have been widely deployed in mobile platforms,
little attention has been given to deployment on real-time cyber-
physical systems, which present a different set of challenges com-
pared to mobile applications. For safety-critical cyber-physical
systems, such as autonomous drones or automobiles, the current
TEE deployment paradigm, which focuses only on confidentiality
and integrity, is insufficient. Computation in these systems also
needs to be completed in a timely manner (e.g., before the car hits
a pedestrian), putting a much stronger emphasis on availability.

To bridge this gap, we present RT-TEE, a real-time trusted
execution environment. There are three key research challenges.
First, RT-TEE bootstraps the ability to ensure availability using
a minimal set of hardware primitives on commodity embed-
ded platforms. Second, to balance real-time performance and
scheduler complexity, we designed a policy-based event-driven
hierarchical scheduler. Third, to mitigate the risks of having
device drivers in the secure environment, we designed an I/O
reference monitor that leverages software sandboxing and driver
debloating to provide fine-grained access control on peripherals
while minimizing the trusted computing base (TCB).

We implemented prototypes on both ARMv8-A and ARMv8-M
platforms. The system is tested on both synthetic tasks and real-
life CPS applications. We evaluated rover and plane in simulation
and quadcopter both in simulation and with a real drone.

I. INTRODUCTION

The software of modern cyber-physical systems (CPSs) is
often highly complex. For example, the code in a modern
automobile such as the Chevy Volt is as complex as the total
flight software of the Boeing 787 airplane [1]. Under the
pressure to include more features and to save on production
cost, weight, and testing, CPS system designers are consoli-
dating more and more functionalities on a single system-on-
chip (SoC) [2], [3]. Numerous software vulnerabilities have
been discovered on modern cyber-physical systems such as
drones [4], [5] and automobiles [6]. While some of these
vulnerabilities are only nuisances [7], others allow attackers
to escalate into system privilege [7], [8], [4], [9] and can have
life or death implications [6].

Lack of availability protection in existing defenses: Rec-
ognizing the importance of embedded system security, there
has been significant interest in hardening the software using
security mechanisms, such as control-flow integrity, privilege
minimization, specialized reference monitor, etc. [10], [11],
[12], [13]. Common to all software approaches is the reliance
on a trusted OS. However, many existing embedded systems,
microcontrollers in particular, have a large amount of code in

the privilege mode [14] for convenience of development or
performance.

Trusted Execution Environment [15], [16], [17], [18] is a
complementary approach that provides a powerful abstraction
of a trusted machine even if the system software is compro-
mised. TEE technologies, such as TrustZone, are now a de
facto solution for mobile device security [19], [20], [21], [22],
[23], [24], [25], [26]. However, similar to all existing software
solutions, when the attackers can escalate their privilege into
the OS, current TEE software stacks offer little assurance
for system availability. Since the current TEE design only
protects computation confidentiality [19] and integrity [20],
management of resources, including process scheduling, is
left to the non-secure OS. Recently, there has been increasing
interest in enabling availability protection using new hardware
designs [27], [28], [29], [30]. However, the application of such
hardware primitives in real-time cyber-physical systems, such
as autonomous drones, remains an open question.

Importance of availability in CPS: A defining characteristic
of real-time CPSs is their continuous interaction with the
physical world. Therefore, it is crucial that system resources
are made available to safety-critical tasks in a timely manner.
For example, the pedestrian detection algorithm on a self-
driving car is a real-time task with a direct connection to
the physical world process. A delay in the execution of this
workload by the attacker can render the result utterly useless,
since a catastrophic accident may have already happened, as
recently demonstrated in [31], [32]. To further motivate the
problem, we have also developed a new attack called time
warping attack, which exploits access to Dynamic Voltage
and Frequency Scaling (DVFS) to tamper with the timing
characteristics of critical control components protected with
TEE, leading to control destabilization crashing the robot.

Real-Time Trusted Execution Environment: In this paper,
we assume a strong adversary that can exploit vulnerabilities
in CPS firmware [5], [4], [6] to take control of the OS, and
we address the research question of how to use security prim-
itives on commodity embedded hardware to provide system
availability assurance for real-world CPSs.

Our main contribution is the design, implementation, and
evaluation of RT-TEE, a real-time trusted execution environ-
ment that protects system availability using hardware-assisted
system resource partitioning on embedded platforms, such as
ARM TrustZone. Availability entails the guarantee of timely
access to system resources, including both computation (con-
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trol) and I/O (sensing and actuation). However, moving the
critical processes and resource management into the TEE not
only significantly increases the system trusted computing base
(TCB), but also degrades the performance. There are three key
research challenges:

Challenge 1) Minimal hardware abstraction for availability
guarantee in CPS: To provide availability guarantee, the TCB
has to assert complete mediation over resources needed by the
safety/security critical tasks for availability. However, resource
management is commonly implemented by the untrusted OS
in existing TEE designs. Building on the concept of control
loops, we formulate the requirements on the minimal set of
capabilities the hardware has to provide and show how they
can be met using primitives from the TEE. This allows us to
construct the rest of the design using a minimized hardware
abstraction. From a high level, to ensure availability for CPS,
RT-TEE relies on the secure timer to trap execution back
to TCB to provide computational availability for the control.
It also relies on a secure I/O reference monitor to enforce
isolation and protection for sensing and actuation.

Challenge 2) Real-time computation availability: Due to the
strong temporal affinities of CPS, computation resources not
only have to be available, but also have to be in real-time.
Contrary to the popular belief that real-time processes have to
finish in a very short time, the key requirement is on meeting
the deadlines from the perspective of real-time computing [33],
[34]. This is typically accomplished using a trusted real-time
scheduler. A naive approach is to directly implement such
a scheduler inside the TCB for all secure and non-secure
processes, but it significantly increases the TCB complexity.
Another approach is to always complete the secure tasks
first, also known as idle scheduling. However, this design
can lead to unnecessary starvation of non-secure tasks, which
hurts overall system performance since critical/secure tasks
may not need to be executed immediately; they just need to
be completed before the deadlines. For example, the battery
checking task is secure safety-critical but doesn’t have to be
executed immediately, while the video streaming application
on the drone is not safety-critical but should be accommodated
to the extent that secure tasks do not miss their deadlines.

To minimize the penalty on performance without signifi-
cantly increasing the complexity of the secure scheduler, we
propose a policy-based event-driven hierarchical scheduler.
Our hierarchical scheduler has two layers. Only the top-
level scheduler has to be added to the TCB to guarantee
secure processes have the resources to meet the deadlines.
This is because the theoretical guarantee on the completion of
secure tasks by compositional schedulability analysis makes
no assumption on the behavior of the non-secure environment.

Challenge 3) Fine-grained peripheral availability: Naive use
of TEE to protect I/O resources is neither sufficient nor
effective for two reasons. It is insufficient because device level
protection may not be universally available on all peripherals.
Using SPI bus as an example, the access control is coarse
grained, only specifying if a security domain has access to the

bus or not. It is also not effective because migrating device
drivers into the TCB will significantly increase its complexity.

To enable fine-grained access control on the peripherals, we
designed and implemented an I/O reference monitor on top of
TEE to remove the assumption on trusted drivers. To minimize
the impact on the TCB, we leveraged the unique characteristics
of cyber-physical systems, where each control loop performs
the same set of I/O actions, to allow for significant driver de-
bloating, where only a subset of the driver functionality is
maintained for sensing and actuation. To enable feature-rich
drivers without increasing the TCB, we proposed to sandbox
the driver in conjunction with the I/O reference monitor to
prevent compromised drivers from harming the system.

Prototype and Contribution: We have implemented a pro-
totype on both ARMv8-A and ARMv8-M architecture, using
Raspberry Pi and NXP LPC 55S69 development board, respec-
tively. Using Raspberry Pi as the controller running ArduPilot,
we assembled a quadcopter to test the impact of security
protection on both real-time properties and control variation.
To show how the environment can be used, we presented
two concrete use cases on autonomous drones, protecting
the entire flight controller or just the fail-safe controller for
emergency recovery of the autonomous aerial vehicle. To
evaluate the performance and understand the limitation of our
proposed approach, we conducted a series of experiments on
both synthetic workloads and real-life applications on both
simulator and real-world systems. We found that our RT-TEE
introduces a small overhead in task execution time on real-
world drone applications.

In Summary, we have made the following contributions,

• We designed and implemented a real-time trusted execu-
tion environment, RT-TEE, capable of ensuring real-time
availability on both CPU and I/O for commodity embed-
ded processors in the presence of a compromised OS,
addressing a key requirement for safety-critical CPS/IoT.

• To balance real-time responsiveness and TCB minimiza-
tion, we designed and developed a policy-based event-
driven hierarchical scheduler. To minimize the attack
surface of device drivers in the TCB, we developed an
I/O reference monitor on top of driver debloating and
sandboxing to ensure the real-time I/O availability.

• We implemented a prototype on both ARMv8-A and
ARMv8-M processors1. We tested our system on both
synthetic tasks as well as real-world applications, cov-
ering three CPS platforms, quadcopter, plane, and rover,
in simulation. We also deployed RT-TEE on a real-life
quadcopter to validate the feasibility.

II. BACKGROUND AND MOTIVATION

Lack of Availability in Existing TEE Deployment Model:
ARM processor families, which power more than 60% of
embedded devices, have a long history of building a trusted

1The prototype source code and emulation environment is available at
https://github.com/WUSTL-CSPL/RT-TEE
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execution environment called ARM TrustZone into both low-
end Cortex-M and high-end Cortex-A series. Similar to ARM,
many commodity [16], [35], [15] and customized proces-
sor [18], [36], [17] offerings enable hardware-enforced re-
source isolation between the secure and non-secure environ-
ment, which are also referred to as the secure world and non-
secure/normal world in ARM. Using such isolation, TEE offers
a secure environment for secure processing even if the non-
secure OS is compromised. However, based on the design
principle of TCB minimization, most existing deployment
models of powerful TEE hardware rely on the non-secure
OS for resource orchestration. Using the current most widely
deployed embedded TEE, TrustZone, as a case study, we
surveyed all existing TEE software stacks, including nVidia
TLK, Linaro OP-TEE, Trustonic TEE, Huawei iTrustee, An-
droid Trusty, and Qualcomm TEE. All of them rely on the
non-secure OS for resource management, including process
scheduling. The detailed survey can be found in Appendix J.

Real-Time System Background: Contrary to the popular
belief that real-time systems need to complete individual tasks
quickly, the expectation in the real-time system community is
that a task shall finish before its deadline [37]. A task is usually
implemented as a thread in an OS. Real-time (RT) tasks are
tasks with certain timing constraints. Periodic tasks are the
most common model in real-time scheduling, because they
map well to cyber-physical processes, where a task releases
jobs periodically. The interval between two consecutive job
releases is referred to as the period. Each job needs to be
executed and completed before its deadline. A deadline can
be explicit (specified) or implicit (at the end of a period).
A hard real-time job must be completed before the deadline;
completion past the deadline does not provide any utility and
may lead to serious consequences. To facilitate scheduling, a
priority is assigned to a task. The priority can be fixed (i.e.,
determined before run-time) or dynamic (i.e., changing based
on the current tasks running in the system).

Security Implication of Real-time Property: The timing
critical nature of CPS changes the landscape of attack vectors
when the non-secure OS is compromised. Resources not only
need to be made available, but also have to be available in a
timely manner such that the computation can finish on time.
To motivate the necessity of real-time scheduling for security,
we developed a concrete attack called time warping attack that
exploits DVFS and can destabilize the system even when the
controller for the CPS is bug-free and protected by TEE.

Time Warping Attack: Dynamic Voltage and Frequency
Scaling is a ubiquitous energy management technique that
enables a trade-off between processor speed and energy con-
sumption. During the schedulability test, the worst-case exe-
cution time is calculated based on the assumption of specific
processor frequency. When it is changed, the original allocated
budget for secure/critical tasks will no longer suffice. Since
the frequency scaling attack can occur anytime during the
execution of the secure environment by launching the attack on
a different core occupied by the untrusted non-secure OS, the

Launch Time 
Warping Attack

(a) Localization Trajectories

Launch Time Warping Attack

(b) Absolute Pose Error

Fig. 1: Trajectory under Frequency Scaling Attack in Open-loop Testing.

secure environment also faces the challenge of time-of-check
vs time-of-use (ToCToU). This frequency reduction leads to
a misconception of time elapsing in the secure environment,
and results in control destabilization.

To visualize the potential impact, we launched the attack
against the control program of the drone, which is using
VINS-Fusion [38] for localization. The testing environment
is the EuroC drone dataset recorded in the ETH machine
hall. Our attack lowered the frequency of the processor by
half. As shown in Fig. 1a and Fig. 1b, the trajectory under
Timing Warping Attack deviates significantly even in open-
loop testing. Fig. 1b shows the deviations quantitatively with
respect to time. At a certain range along the trajectory, the
deviation is more than 3 meters, which would lead to the drone
crashing into the machinery in the factory in the real world.

III. THREAT MODEL AND SECURITY GOAL

Threat Model: We aim to tackle a strong adversary who can
exploit software vulnerabilities to execute arbitrary code in the
non-secure OS. The attacker’s goal is to launch a denial of
service attack (DoS) to destabilize the cyber-physical system,
causing adverse kinetic effect. Among all the possible attack
vectors, an adversary may attempt to disable an I/O device
to prevent sensing or actuation. He/she may also attempt to
prevent the controller from running by denying access to
processor/memory or by directly tampering with the controller
memory. For example, an attacker may also attempt to delay
pedestrian detection on self-driving vehicles. In a time warping
attack, the processor frequency is maliciously modified to deny
localization process access to computing, leading to the drone
crashing. However, we leave the defense against side-channel
attacks and hardware attacks for future work.

Assumptions: We assume the hardware platform supports a
trusted execution environment that provides strong isolation on
processor, memory, and peripherals. Isolation is a key design
principle of TEE among both the commodity TEEs [35], [15],
[39], [16] and customized TEEs [36], [30], [28]. We also
assume that there is a time source capable of accounting for
physical world time. We also assume all the hardware com-
ponents can be trusted, including processor, sensor/actuator
peripherals, and bus masters.

Security Goal: The goal of RT-TEE is to provide a real-
time trusted execution environment on embedded CPSs. In
the presence of an untrusted OS, RT-TEE has the following
goals besides existing conventional TEE protection:
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Fig. 2: System Overview for Trusted CPS Framework

R1. Access to Computation and I/O Resources. Cyber-
physical control loops often involve sensing, computation, and
actuation. To provide a minimalist execution environment for
the cyber-physical system controller, the secure safety-critical
process shall have access to both computation resources (for
control) and I/O resources (for interaction with physical world
with sensing and actuation).
R2. Access to Physical Passage of Time. A trustworthy
source of the physical passage of time is crucial because the
computing system is trying to control a physical world process.
Inducing an actuation at the wrong time can easily destabilize
the control system.
R3. Real-time Availability. Many safety-critical CPS con-
trollers are real-time in nature. Results from processes such
as pedestrian detection or collision avoidance have little to no
value if they exceed the deadlines. Therefore, the resources
shall be available to the protected workload in real-time.
R4. Prevention of DoS by Shutdown or Peripheral Damage.
While DoS attacks often pose little risk to safety in IT
computing environments, they can be catastrophic in CPSs.
As a result, RT-TEE shall be able to prevent a non-secure OS
from denying access to resources (processor and peripherals)
by shutting down the computing system or putting sensors/ac-
tuators in non-recoverable states.
R5. Minimal Impact on TCB. Complete mediation of access
to system resources is necessary for availability assurance.
Even when only critical resources are mediated, there is a
significant increase in the size of TCB, e.g., from the inclusion
of device drivers. RT-TEE shall maintain a small TCB.

IV. RT-TEE DESIGN

RT-TEE aims to provide real-time system availability in
the presence of a non-secure operating system. As shown
in Fig. 2, RT-TEE leverages hardware primitives to isolate
resources between the secure environment and the non-secure
environment. There are three key design elements in RT-TEE,
bootstrapping availability, real-time processor availability, and
real-time I/O availability. For the rest of the discussion, we will
use ARM as a reference architecture. However, we believe the
design philosophy can also benefit other platforms.

A. Minimal Abstraction for Resource Availability

The first challenge is to identify the minimal set of re-
quirements to bootstrap resource availability such that the
rest of the design can build on top of a hardware abstrac-
tion layer. While TEEs such as TrustZone are designed to
provide resource isolation, separation alone does not provide
availability, especially when the software component (OS) that
is responsible for resource management is not in the TCB.
Recognizing that trustworthy resource management is not
possible, we then ask what the essential components of CPS
are and what type of availability guarantee should be provided.
A foundational design for many CPSs is the control loop,
which consists of sensing, control, and actuation. Deriving
from this requirement, RT-TEE has to ensure the integrity and
availability of computation for control computation and I/O
for sensing and actuation.
Primitive for Bootstrapping Computation Availability:
There are two requirements. First, the TCB has to be able
to regain control of the processor from the non-secure OS
to perform computation. This requires a secure timer which
is not modifiable by the non-secure OS and traps the pro-
cessor directly into the secure environment. Secure timer is
also instrumental for real-time responsiveness, since it allows
the secure environment to obtain processor resources in a
timely and deterministic manner. Due to the importance of
such features, secure timer is widely available in commodity
embedded TEE platforms. According to our survey, secure
timer is available in 19 out of 21 processors that support
ARM TrustZone. More details can be found in Appendix A.
Furthermore, research prototypes such as AION [28] and
others [30], [40], [18], [17], [41] also provide secure timer
as a primitive. Second, the secure environment also needs
to maintain access to the processor to finish the necessary
computation. Therefore it is important for the TCB to have the
ability to prevent interruptions from the non-secure OS. Using
the ability to regain control and prevent further interruptions,
the TCB can bootstrap the computational availability.
Primitive for Boostrapping I/O Availability: Recognizing
the importance of peripheral access in embedded systems,
many existing embedded TEEs provide primitives for the TCB
to obtain exclusive access to individual I/O devices [35], [15],
[42], [28]. For example, different from SGX, which is widely
deployed in server platforms, both ARM TrustZone and the
customized TEE SoC proposed in [30] have primitives to
enable exclusive I/O access. Once the secure environment
has exclusive access, it can leverage software to mediate all
the requests to the peripheral devices to ensure prioritization,
bootstrapping the I/O availability.
Primitive for Obtaining Physical Passage of Time: CPS has
to sense and actuate at the right time to ensure safety during
its interaction with the physical world [31], [33]. As a result,
accurate accounting of time passage in the physical world is
essential. The secure physical world clock primitive can be
realized using a SoC-provided non-mutable clock or software-
based time keeping on top of a secure physical timer.
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B. Real-time Availability for Computation

Building on top of the bootstrapped computation availabil-
ity, a key research question is how to ensure the real-time
property of computation availability. In safety-critical real-time
cyber-physical systems, security, criticality, and timeliness are
often the most important attributes of individual real-time
tasks (processes). Security often describes the ability to main-
tain confidentiality and integrity against adversarial attacks.
Existing TEEs are designed to protect these two properties.
Criticality reflects the importance of the task for the correct
functioning of the cyber-physical system. Security and criti-
cality are often aligned; critical tasks also need to be secure.
Timeliness captures the need to complete a particular task in a
timely manner, i.e., completing before the deadline. To ensure
timeliness, system designers have to perform schedulability
analysis [43], [33] at design time. The analysis takes in a set of
real-time task characteristics (periods, deadlines, budgets) and
produces a set of scheduling parameters that can guarantee that
all tasks will have the computation resources to finish before
the deadlines, regardless of how the tasks are using the allo-
cated resources. However, direct adaption of secure scheduling
cannot provide an effective trade-off between security (TCB
complexity) and performance (meeting deadlines).

Challenges in Secure Scheduler Design that Balances Real-
Time Performance and TCB Minimization: One naive
scheduler design is static allocation without coordination, with
the non-secure OS and the secure environment occupying
completely different cores; however, this hurts overall system
performance. An alternative design is to maximize perfor-
mance by having a single scheduler for both secure and non-
secure environments. Most of the current TEEs adopt this
paradigm and have a global scheduler in the non-secure OS.
However, if we move the global scheduler into the secure
environment to offer availability, the secure scheduler has to
understand the semantic and maintain run-time information
for all the non-secure tasks running in the general purpose

OS as well. This will significantly increase the complexity
of the scheduler, leading to a large expansion of the TCB. To
make such coordination more challenging, the secure TCB also
has to assume all schedule-related inputs from the non-secure
environment are malicious. As a result, interaction between
the two environments on scheduling has to be minimized.

One scheduling method that minimizes interactions is to
always prioritize secure critical tasks. This approach is called
idle scheduling and has been adopted in previous works [44],
[45]. However, while security and criticality are often aligned,
secure critical tasks may not necessarily require the shortest re-
sponse time. For example, it is better for the system to process
the video streaming workload first, as long as the control tasks
meet their deadline and are capable of maintaining control
of the vehicle frame. As a result, idle scheduling can lead
to degraded overall system performance while gaining little
advantage in control performance. These design trade-offs are
often observed in mixed-criticality systems (MCSs), a concept
that originally came from avionics. Due to increasing pressure
to reduce space, weight, and power (SWaP), most modern
CPSs consolidate functionality on single physical processors,
often making them MCSs [34], [33].

Our Solution – Policy-based Event-driven Hierarchical
Scheduling for Real-time Computation Availability: To
decouple task security/criticality from timeliness/task priority,
and to enable better overall system performance without
increasing the complexity of the secure scheduler, we make
use of hierarchical scheduling [46] to harmonize security/-
criticality and timeliness. Hierarchical scheduling is a layered
approach where the scheduler at each layer is only responsible
for subsystems in that layer. Using composition scheduling
analysis, it is possible to produce a system specification that
will satisfy all the real-time constraints of all the tasks. In
other words, as long as the scheduler strictly follows the spec-
ification/policy produced by the analysis, all tasks (secure and
non-secure) are guaranteed to have the computation resources
to finish before the deadlines. RT-TEE employs a two-layer
hierarchical scheduling design to decouple real-time prop-
erties (priority) with security properties (security/criticality),
enabling more effective resource coordination between secure
and non-secure environments with minimized interaction.

However, direct application of conventional hierarchical
scheduling in RT-TEE has several significant drawbacks. First,
a conventional scheduling system often makes use of timer
to interrupt at fixed intervals, usually single jiffy, to provide
time tracking. While this overhead is tolerable without the
security architecture, frequent timer interrupts are prohibitively
expensive in RT-TEE due to the expensive context switching.
To tackle this challenge, our scheduler leverages the prop-
erty that tasks are predictable in cyber-physical systems to
only interrupt based on scheduling events, such as budget
replenishment and task completions. The event-driven schedul-
ing system significantly reduces the interrupt overhead in
the scheduling system. Furthermore, different from existing
scheduling systems where I/O events can interrupt the running
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process, RT-TEE needs to take into consideration the security
properties of the I/O devices and the nature of the interrupt
since a compromised non-secure OS can program a peripheral
to continuously raise interrupts to launch a DoS attack. While
it is possible to completely disable interrupts from non-
secure peripherals or assign all the peripherals to the secure
environments, neither of these approaches is ideal. To provide
better I/O response time to the non-secure environment, it
might be possible to enable non-secure interrupt for a limited
number of times over a short duration, based on the security
policy. This, however, changes the schedulability analysis due
to lack of time accounting in interrupt context, which the
non-secure OS can exploit to perform denial of service. To
enable schedulability analysis on this mechanism, we propose
to create a synthetic non-secure I/O serving task to capture its
impact on real-time scheduling.

The resulting design is a policy-based event-driven two-
layer hierarchical scheduler as shown in Fig. 3. The first
layer is the world scheduler, responsible for scheduling the
individual execution environment. The second layer is the OS
scheduler inside the individual execution environment.

At design time, the system designer has to first determine
the real-time task models for both the secure and non-secure
environment. She will also need to determine the non-secure
interrupt profiles based on the security policies, which will also
be translated into a real-time non-secure task for scheduling.
The synthetic interrupt task and the original task models are
then passed to the compositional scheduling analysis engine,
which will produce a solution on the concrete scheduling
parameters used by the world scheduler.

At runtime, when a secure timer interrupt is triggered, the
execution will be redirected to the world scheduler, which
will resume either the secure environment or the non-secure
environment based on the scheduling policy. When an indi-
vidual environment is resumed, the OS will execute under
the abstraction that it owns the entire system. Since the
scheduler is event-driven, before resuming a world, it has
to anticipate the next scheduling event, such as job release
from higher priority jobs or budget replenishment, to set
the timer appropriately to minimize overhead. From the real-
time availability perspective, in real-time systems, the budget
replenishment server algorithm is the mechanism to ensure
timing resource isolation since it assigns a portion of the
bandwidth (cycles) of the CPU to different tasks. Together with
the scheduling system that ensures priority, the replenishment
process enforces the timing policy of the system. RT-TEE is
designed to support different types of scheduling algorithms.

C. Fine-grained I/O Access Control for Peripheral Availability

Limitations of Direct Application of TEE: While TEEs, such
as TrustZone, are designed to support resource isolation, there
are several drawbacks with naive adaption of the primitive.
1) Existing implementation of TEE often provides exclusive
access to a peripheral unit on the SoC. However, when the
peripheral device is a bus controller (especially the simpler
serial buses such as SPI or I2C), the access control provided
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Fig. 4: RT-TEE Secure I/O Architecture

by hardware is coarse-grained in that they can only be granted
at the bus level. Even if only one connected sensor is security-
critical, every device access via that bus has to go through the
secure TCB. In the context of CPS, most sensors are connected
to the processor via either SPI or I2C [47], [48], presenting
realistic challenges. 2) When I/O devices are assigned to
the secure environment, the device drivers will need to be
included in the secure kernel, resulting in a significantly
larger TCB. Furthermore, a malicious command from either
a compromised driver or a confused deputy can put sensors
or actuators into a non-reversible state, affecting availability.
For example, overcharging the servo motor may damage the
mechanical components to the extent that it won’t restart
anymore. Given the number of driver vulnerabilities disclosed
daily, it is very difficult to ensure all drivers are bug-free.

I/O Protection Goals: To address the aforementioned limita-
tions, we propose to remove the assumption of trusted drivers.
Therefore, in the presence of compromised drivers executing
in secure privilege mode, RT-TEE has to provide the following
properties. 1) IO R1: TCB for secure I/O shall be minimized.
2) IO R2: Policy-driven fine-grained access control on I/O
devices – The interactions between processes (mainly the non-
secure OS) and devices shall follow the security policy. 3)
IO R3: I/O availability – Access to secure devices shall not
be impacted by the non-secure environment. 4) IO R4: Real-
time I/O availability – Access to peripherals has to be timely.

I/O Solution Overview: An overview of our solution is shown
in Fig. 4, there are two key components.
TCB minimization – We adapt two instances of drivers for each
peripheral. One instance offers rich functionality, but cannot
be trusted and is sandboxed. The other one provides minimal
functionality but is instead trusted. For the trusted minimal
instance, we leverage the predictable nature of CPS to debloat
the drivers via templatized transformation, which essentially
replays known hardware commands and therefore only incurs a
small overhead on the TCB. I/O operations are transactionized
to ensure that the peripheral hardware can be shared. Using the
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bus controller as an example, one solution is to have the secure
and safety-critical devices on the bus driven by the debloated
driver, while the non-secure ones are driven by the sandboxed
feature-rich driver.

I/O reference monitor – It is responsible for peripheral access
control and therefore is responsible for availability. There are
two key dimensions of access control, spatial, and temporal.
The spatial aspect of the I/O reference monitor mediates what
peripherals a process can access and how it can interact
with the device. The temporal aspect of the I/O reference
monitor mediates over when a process can interact with a
peripheral and for how long. Together they ensure the real-
time availability of the system.

TCB Minimization by Debloating Trusted I/O Drivers: In
order for a secure process to make use of the secure peripher-
als, there has to be a driver. The key research challenge is how
to provide such functionality without including the complex
and buggy drivers in the TCB. The debloating technique we
proposed is based on the observation that CPSs are highly
predictable by design. Such predictability also translates to
its interaction with sensors and actuators, where most of the
device interactions are exactly the same. Therefore, there is an
opportunity to convert complex hardware interactions to sim-
ple replay of the fixed I/O interactions, trading expressiveness
for reduced attack surface, minimizing the code size.

There are two opportunities to debloat the driver, pruning
and transformation. Pruning refers to elimination of function-
ality. For most of the peripheral devices in CPSs, there are
primarily two stages, initializing and utilization of the device.
Based on the assumption that the system has secure boot, de-
vice initializations are executed in the non-secure environment
as part of the secure boot. Immediately after the initialization,
access to the devices from the non-secure environment is
blocked. This insight allows for significant reduction in the
code base. For example, in the Navio2 platform, there are more
than 30 I/O request types during initialization for bus probing
and device initialization, but only half a dozen message types
for sensor and actuation interactions.

The second opportunity is transformation. An overview
of our approach is shown in Fig. 5 where code that drives
hardware interactions (such as sensor reads) is converted to
data recording templates capturing the interaction patterns
(what content was written to which MMIO register in what
order). A driver replayer then repeats the template to drive
the peripheral. More specifically, we record all the MMIO
register reads and writes, and repeat these data recordings
to drive the peripheral. However, though predictable, the
interactions may not always stay the same. One of challenges
is understanding the semantic of the message and recognizing
what is always fixed (such as TA bit in the control register)
and what is constantly changing (such as motor speed). For
peripherals on the SoC, the driver often resides within the
kernel. However, for sensors and actuators connected via a bus
such as SPI and I2C, there are both the kernel space driver
and the user space driver. As a result, the recording captures
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Fig. 5: Debloated Driver

the logic of both the user space driver and the kernel space
driver for the peripheral. To facilitate template generation, we
apply taint analysis to understand how the control program
is driving device interactions. In the user space, we tracked
what information is control-supplied in the buffer passed to
the kernel, often via IOCTL. In the kernel space, we tracked
how user space inputs are used in the MMIO interactions, and
therefore were able to mark the variable offsets in the data
recording to create an interaction template. At runtime, all
the I/O addresses will be statically mapped, and all the DMA
memory is statically allocated. The replayer will fill in the
template with the appropriate values from the request after
verification by the I/O reference monitor. At the minimum,
the replayer has to be able to repeat MMIO reads and writes.
However, to improve performance, support IRQ and DMA,
and support real-time availability, we also added support for
schedule timeout. To provide the I/O reference monitor with
the ability to mediate access, we also added an operation type
in the template to trap the replayer in the reference monitor.

TCB Minimization by Sandboxing Untrusted Drivers:
While the debloated drivers are sufficient to support inter-
actions with safety-critical sensors and actuators, it requires
predictability and a well-formatted template. For non-critical
functions in the peripheral or non-secure devices on the bus, it
may not require the same level of security protection or may
not even have as predictable patterns as those used for CPS
controls. To enable these feature-rich drivers for non-secure
devices, we propose to sandbox them using software instru-
mentation. However, software-fault-isolation (SFI) techniques
only prevent the untrusted driver from accessing the rest of the
secure environment; there are several additional challenges.

First, drivers have to access the MMIO registers to interact
with the hardware. For bus controllers, these same sets of
MMIO registers also allow for interaction with the secure
safety-critical peripherals. For example, the sandboxed driver
could change the chip select bits to send messages to the secure
actuator instead. To prevent the driver from tampering with se-
cure devices, all MMIO register reads/writes are instrumented
to trap into the I/O reference monitor to enforce the access
control policy. Furthermore, besides adding CFI, all the other
memory reads/writes will be masked to confine the driver,
preventing data-only attacks on MMIO registers.

Second, device drivers often use many kernel helper func-
tions, migrating a full-feature driver into the secure environ-
ment where the kernel is intentionally minimized is likely not
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possible without increasing the size of TCB. To address this,
we adopted a split driver design where most kernel/applica-
tion facing functionalities are implemented in the non-secure
environment, while the hardware interacting code resides in
the sandboxed secure environment. On one extreme, almost
the entire device driver can reside in the non-secure OS,
while each register’s reads/writes are redirected to the secure
environment split. However, for performance consideration,
the balance often lies in putting the functions with large
numbers of register operations into the secure split.

Availability via Spatial I/O Reference Monitor: The I/O
reference monitor that mediates all the secure I/O devices’
access is the component that ensures availability. There are two
main attack vectors an adversary can use to deny secure task
access to a peripheral, corrupting peripheral state (e.g., sending
random bytes to secure devices on the bus or to the tx-fifo of
bus controller) or physically damaging the peripheral (e.g.,
overcharging the motor). For peripherals directly connected to
the SoC without a bus, it is either a secure device or a non-
secure one. To ensure its availability, the I/O reference monitor
can simply make sure that only secure processes have access to
the device. However, most sensors and actuators are connected
via a serial bus. For devices on the bus, availability assurance
presents additional challenges.

To prevent the untrusted driver in the sandbox from tamper-
ing with secure devices on the same bus, each MMIO access
will be checked to ensure that the driver has access rights to
the device, particularly by monitoring the chip select line or
chip select bits in the control register. An adversary may also
attempt to corrupt the bus controller by leaving contents in
the tx-fifo before handing the access to the secure debloated
driver such that the driver may send existing contents to the
secure devices. To prevent this, the I/O reference monitor will
ensure that the controller state is reset upon switching between
the secure debloated and non-secure sandboxed instances of
the drivers. To prevent physical damage to the sensor, the I/O
reference monitor can verify the values in commands sent to
sensors and actuators are within validated range. Since our
reference monitor has the ability to introspect every single
MMIO access, the policy can be as rich as is demanded by
the mission. For example, sensor access control can even be
done on the sensor command level instead of the device level.

The I/O reference monitor also protects the system from full
system shutdown and time warping attacks. The DVFS-based
attack presented in TimeWarp earlier and system shutdown
relies on interactions with the power management (PM) and
clock management (CM) on the SoC. The I/O reference
monitor can prevent malicious use of these peripheral features.
While it may still be possible to offer limited access to
the power/clock management features, such as shutdown, the
impact on availability requires careful considerations. For
example, allowing access to DVFS would require the secure
scheduler to switch to a task profile to ensure availability.

Real-time I/O Availability via Temporal I/O Reference
Monitor: Once I/O device availability is established, achiev-
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Fig. 6: RT-TEE Implementation

ing real-time availability means that ensuring I/O requests are
processed according to real-time scheduling policy such that
secure tasks can access the necessary resource in a timely
manner. A key challenge in this is priority inversion, in which
higher priority tasks are waiting for a lower priority task on a
shared resource. However, priority inversion is often inevitable
since marginal gain from interrupting the lowest level I/O
operation, such as transmitting a single message, is often very
small. As a result, the main approach to achieve real-time I/O
operation is reducing priority inversion time [49], [50]. In RT-
TEE, individual I/O request will be placed in different priority
queues based on the inherited priority from the requesting
process. However, processing of individual I/O requests on the
same peripheral device is not preemptible, thereby creating a
priority inversion. To ensure real-time responsiveness, the I/O
reference monitor will bound the I/O request processing time
by enforcing a time limit on an I/O job, therefore bounding
the priority inversion time and the worst case execution time
(WCET) of the job.

V. IMPLEMENTATION

We implemented a prototype of RT-TEE on both ARMv8-
A and ARMv8-M architectures. For ARMv8-A, we built on
top of OP-TEE v3.4 for the secure kernel and Raspbian
Linux 4.14.95-emlid-v7+ for the normal world. For ARMv8-
M, we build on top of the evaluation firmware OS from NXP.
As shown in Figure 6, there are three main implementation
efforts, HAL, hierarchical scheduling, and secure I/O. For both
the scheduling and secure I/O, there are both design/compile
time components and run-time components. Due to space
limitations, the implementation of HAL can be found in
Appendix B.

Hierarchical Scheduler: To support real-time scheduling, we
implemented a customizable hierarchical scheduler on top of
the RT-TEE HAL. The basic components in a scheduling
system include management of tasks and prioritization. On the
task management side, since the current OP-TEE does not sup-
port secure scheduling natively, we implemented our own con-
text switching and task structure on top of the current OP-TEE
thread pool architecture using the Linux scheduling subsystem
as a reference architecture. From the prioritization side, our
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scheduler framework is fully modularized. It provides the basic
API to developers for building different real-time algorithms,
such as world budget update and world prio recalc. Besides
the infrastructure, we also implemented several concrete prior-
itization and budget replenishment algorithms. Our prototype
uses partitioned Rate-Monotonic (RM) with deferrable server
for the world scheduler and RM scheduler for the secure OS.

Debloated Driver: To record all the sensor operations, we in-
strumented the lowest level kernel functions, writel and readl,
then exercised the sensor operations from the user space device
driver. The recording contains a list of tuples [r/w, MMIO
address, content]. This list forms the basis of interaction
template. For many sensor reads, this list is fixed because the
driver is repeatedly asking the sensor for the last readings. For
other interactions, such as motor speed, the value is constantly
changing; however, the format remains the same. For polling-
based drivers, this list of MMIO reads/writes is enough.
The replay simply reads the tuple from memory, and writes
to the MMIO addresses using the hardcoded data or reads
from the registers. To support DMA on the template driver,
we also statically allocated memory and harcoded both the
structures and addresses into the template. Besides read/write,
our recording also records use of IRQ by instrumenting the
wait for completion function. For these types of interactions,
the template needs to be paused until IRQ is received, upon
which the replay can continue. We implemented the template
driver for all the sensors (5) and actuators (1) on Navio2.

Sandboxed Driver Implementation: There are two main
efforts, the process of splitting the driver into secure and non-
secure halves, and the process of instrumenting the secure
split to enable CFI, memory read/write sandbox, and MMIO
read/write trapping. We implemented one split driver for the
SPI bus controller since it is one of the most complex drivers
that is used by a majority of sensors and actuators on our
drone prototype. The ArduPilot program, containing millions
of SLOCs, also provides user space sensor drivers, such as
the AP InertialSensor Invensense.cpp, that interact with the
kernel using the IOCTL interface. Decoupling the existing
drivers from the non-secure OS and completely moving it
to secure environment is impractical and does not benefit
security, but having only hardware interaction (i.e., MMIO
reads/writes) in the secure world is also not a good solution
since it introduces a significant amount of overhead. To
minimize the performance penalty, we started with the main
transfer data function bcm2835 spi transfer one and moved
all its dependencies to the secure world but manually kept
all the linux kernel structures away. In the future, this can
be an automatic process. Once the driver was splitted, we
also replaced all the calls to readl/writel with traps to the
I/O reference monitor. To provide forward edge CFI, we also
unrolled all the indirect targets. The backward edge CFI is
implemented using a shadow stack by instrumenting function
entry and exit. Lastly, we also instrumented all the memory
reads/writes to sandbox the secure driver by masking.

I/O Reference Monitor Implementation: The RT-TEE I/O

reference monitor has two main components, the spatial
reference monitor and the temporal reference monitor. The
spatial I/O reference is highly policy dependent. In our im-
plementation, we implemented chip select checking for bus
communication and range checking for motors. To ensure I/O
requests are processed in real-time, all requests are processed
based on the priority of the process. There are multiple queues
for different ranges of priority levels and the corresponding
I/O tasks that handle requests in this queue. Therefore, it is
configurable from one queue per priority to one queue in the
entire system. In our prototype, we use a single queue and
assign all secure requests to the top half of the priority and
non-secure requests to the other half. Besides prioritization,
another key aspect is in bounding the priority inversion time.
To do so, we measure the runtime statistics of the peripheral
interactions and use the scheduler to enforce a time limit on
each I/O operation.

VI. EVALUATION

Our evaluation of the system focused on understanding
the added overhead of security on real-time systems. The
microbenchmarks measure the overhead of individual com-
ponents of RT-TEE, while the macrobenchmarks examine the
overall system performance under both synthetic workload and
real-world CPS applications. We have two evaluation plat-
forms, one for each ARMv8 architecture. For ARMv8-A, we
evaluated on a self-built quadcopter with Raspberry Pi 3 Model
B powered by ARM Cortex-A53 and with Navio2 board as the
controller. For ARMv8-M, we performed the evaluation on the
LPC55S69 micro-controller. For real-world CPS applications,
we chose ArduPilot [51], one of the most widely used open-
source autonomous vehicle controllers. Since hardware-in-the-
loop (HITL) is not supported in ArduPilot, we had to resort to
software-in-the-loop (SITL) for evaluating platforms that we
don’t have hardware for. To minimize the impact of simulation
on control performance, we ensured the platform resource
utilization was below capacity and that no tasks were missing
deadlines. We also added delays to the SITL to simulate actual
sensor/actuator response. Lastly, we built a drone using RPI3
as the flight controller to demonstrate feasibility.

Fig. 7: Experiment Platform

A. Microbenchmark on Scheduling

The microbenchmark, shown in Table I, measures the over-
heads introduced by the system. All the measurements are an
average of 100 runs. Task invocation delay measures the delay
between scheduler deciding which tasks to run and the actual
start of the task execution. The conventional non-secure-based
scheduling mechanism in OP-TEE takes around 53 µs and
111 µs to invoke a secure kernel space function and a secure
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TABLE I: RT-TEE Scheduling Overhead

Runtime Overhead RT-TEE OP-TEE
S EL0 Task Invoc. Delay 89.35 us 111.00 us
S EL1 Task Invoc. Delay 16.51 us 53.00 us
World Scheduling Delay 0.94 us N/A

Workload Dis: 50%(NS) 50%(S) Total Workload: 70% (Run Time16.91s)
Total Scheduling Event 2713(W)/2155(S)/4156(NS) 16751(N)

Total Scheduling Overhead 158.24 ms 617.95 ms

user space function, respectively. It takes around 16.51 µs
and 89.35 µs under RT-TEE. The performance gain is mainly
due to significant reduction in context switch overhead for
invoking secure world functions. The difference between user
task and kernel task is primarily due to the user process setup.
We also measured the task invocation time on the LPC55S69
micro-controller. The invocation delay is 0.35 µs with RT-
TEE and 0.31 µs without RT-TEE. The invocation delay is
shorter due to a much simpler context switch. To measure
the efficiency of the event-driven scheduler adopted by RT-
TEE, we instrumented RT-TEE hierarchical scheduler and
non-secure OS scheduler in Linux to record the scheduling
event count and the total overhead over the execution of a set
of real-time tasks executing in both S and NS environment
over 16.91s. As shown in Table.I, event-driven scheduler has
46.13% fewer scheduling events and 74.40% less scheduling
runtime overhead than conventional time-based scheduler.

B. Micro-benchmark on I/O

I/O – Debloated Driver: To find the number of sensor
operations, we instrumented all the IOCTL in ArduPilot. We
found that during drone operation, there are six sensor/actuator
operations. To demonstrate driver flexibility, we implemented
and evaluated the debloated/template-based drivers for all the
sensor and actuator operations needed to operate the drone.
Each operation has its own individual template, as shown in
Table. II. These drivers encompass 2 buses (SPI and I2C) and
three mechanisms of message delivery (DMA, IRQ, and Poll).
However, driver interaction with peripherals always follows a
similar protocol, which allows us to turn them into templates.
During the experiments, we attempted to speed up the I/O
operations in the template but failed due to the bus speed. As
a result, we decided to adhere to the existing delays in the
template. To compare with the native driver, we use the same
user space driver, but instead invoked the template version.
The runtime overheads of our debloated drivers are shown in
Table II. The latency is comparable to the original drivers. We
believe this is due to the fact that the debloated drivers save
complex configuration and simply replay data; however, they
suffer from world switches as well as I/O queue processing.

TABLE II: Debloated Driver Statistics

Sensors/Bus Operation
Semantics

Tpl.
Size

Transfer
Mech.

Native Debloated
Avg(us) Avg(us)

MPU9250/SPI R Inertial 117 DMA 157 165
AK8963/SPI R Compass 126 Poll 41 46
LSM9DS1/SPI R Compass 126 Poll 37 43
UbloxM8N/SPI R GPS 124 DMA 227 235
Motors/SPI W Motors 4374 IRQ 782 792
MS5611/I2C R Temp/Pres 225 IRQ 77 84

I/O – Sandboxed Driver Overhead: We split the SPI
controller driver for RPI3 as a feasibility study. To identify
the best split between the secure and non-secure parts, we
dynamically analyzed the driver to identify the function in
the execution trace that will have the least amount of Linux
structure dependency and the largest group of I/O operations.
Currently, this is a manual process. Once the function was
identified, we proceeded to extract all the dependencies of the
function along with the structures they refer to and flatten
them. Using the self-contained driver, we then sandboxed it
using the GCC pass. The non-secure split was also modified
to call secure world split upon entry of the function. The
average overhead was 6.86% for runtime and 13.75% for code
size. The overhead was within our expectation since average
masking overhead is around 5%, and there is only a single
invocation to the secure world.

C. Macro-benchmark with Synthetic Tasks

Using the synthetic tasks, we answered the question of
whether hierarchical scheduling has better real-time perfor-
mance than idle scheduling at different system loads. The per-
formance is measured by how few tasks miss their deadlines.
Particularly, we wanted to see heirachical scheduler deliver
on the promise of not missing secure task deadlines even if
non-secure environment is prioritized. All experiments were
conducted using ten synthetic tasks. The actual execution was
randomly generated from 1ms to 20ms, with five as secure
tasks and five as nonsecure tasks. Given the real-time task
specification, we used CARTS [43] to calculate budgets for
each world, which ensures the schedulability of tasks.
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Fig. 8: Tasks Miss Rate Compared with Idle Scheduling on ARMv8-A

Idle Scheduling Performance Comparison: Fig. 8 shows
real-time performance comparison between idle scheduling
and hierarchical scheduling. We can make the following
observations. 1) Hierarchical scheduling has better real-time
performance when secure world is prioritized in hierarchical
scheduling since task miss rate is always lower with hierarchi-
cal scheduling, as shown in Fig. 8a. 2) Hierarchical scheduling
always outperforms idle scheduling when system load is below
80%, as shown in Fig. 8b. In other words, our scheduling struc-
ture allows better responsiveness of non-secure tasks without
impacting secure workloads as long as the system is designed
to be below 80% utilization, which is a reasonable assumption
since many CPS systems are not schedulable when the system
utilization is high (69% for rate monotonic systems [37]). In
other words, when the real-time task set is schedulable, it is
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Fig. 9: Control Performance with RT-TEE and Baseline w/o TEE on Copter

always better to leverage hierarchical scheduling to provide
better non-secure task responsiveness.

D. Macro-benchmark with Real-world CPS in Simulation

While synthetic tasks are informative and allow us to
explore the various conditions the system can face from the
computation perspective, we are also interested in seeing how
the system can be used to protect real-world CPS applica-
tions. Therefore, we used RT-TEE to protect three real-world
applications to show the feasibility and potential limitations.
Particularly, we used RT-TEE to protect fail-safe controller and
attitude controller on the quadcopter and fail-safe controller on
the plane and rover platforms. Fail-safe controller was selected
because it can be used to detect unsafe physical condition of
the autonomous system, while attitude controller was selected
for its ability to act as an enforcer for mission trajectory.
We used CMAC-copter-circuit, CMAC-circuit, and CMAC-
bigloop of ArduPilot autotest as missions for quadcopter,
plane, and rover, respectively.
RT-TEE Impact on Control Performance: To understand
the impact of RT-TEE on the control, we recorded the actual
position, velocity, and acceleration of the autonomous vehi-
cle, and compared that to the reference state. The deviation
between observed state and reference state is quantified using
integral absolute error (IAE), a widely used stability metric
in control systems. Shown in Fig. 9 and Table III are the
measurements during the test flight. The control deviation
introduced by RT-TEE is within 13%, and can be further
reduced by tuning the scheduling of the attitude controller.
Shown in Fig. 9a and Fig. 9b, the performance under stabilized
system after the short period of convergence is comparable to
the baseline. The control performance for rover and plane can
be found in Appendix. E.
Macro-benchmarks on Real-life Copter: We measured the
average execution time of 27 ArduCopter task executions over
100 times when flying an actual quadcopter with RT-TEE. The
average execution time of each real-time task in ArduCopter
reflects the overall runtime overhead generated by RT-TEE
components, such as secure timer interrupt handler, world

TABLE III: Control Deviation of ArduCopter with RT-TEE

Baseline without TEE RT-TEE
Control Var Average Max Average Max Avg Overhead %
∆ X-axis pos. 2.029 2.627 2.138 2.944 5.37
∆ Y-axis pos. 5.917 8.043 6.643 9.047 12.27
∆ X-axis vel. 0.009 0.277 0.010 0.300 11.11
∆ Y-axis vel. 0.020 0.766 0.023 0.790 12.75
∆ X-axis accel. 0.008 0.091 0.009 0.084 12.50
∆ Y-axis accel. 0.012 0.230 0.013 0.250 8.33

scheduling, secure task scheduling, I/O reference monitor,
and debloated driver. To measure task execution time in
ArduCopter, we instrumented each real-time task to record
task start time and end time to calculate the runtime. To
minimize time recording overhead, we stored all the data
into pre-allocated memory and exported them when a copter
mission finished. As shown in Fig. 10, none of real-time tasks
exceeding their max execution time, demonstrating means
the runtime overhead generated by RT-TEE components is
acceptable in ArduCopter.

Baseline without TEE
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Max Execution Time
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Fig. 10: Runtime Overhead with RT-TEE and Baseline without TEE

Defense Case Study: Fig. 11a and Fig. 11b shows the defense
effectiveness of RT-TEE quantitatively under the same setting
as the time warping attack introduced earlier in the motivation,
between baseline TEE (such as OP-TEE) and RT-TEE. It can
be observed that under the protection of RT-TEE, the absolute
pose error remains very small even after the attack is launched.

Launch Time 
Warping Attack

(a) Trajectories

Launch Time Warping Attack

(b) Absolute Pose Error

Fig. 11: Time Warping Attack on Baseline and RT-TEE

VII. SECURITY ANALYSIS

A. Real-time Computational Availability – R1, R2, R3

Computation Availability – R1: The availability guarantee
on a processor is through the use of non-bypassable timers.
On ARM platforms, this is the secure physical timer, which
is not modifiable by the non-secure OS. When the timer
triggers, the secure world regains the non-interruptable control
on the processor. Similar primitives are also available on other
hardware platforms [30], [28], [35].
Physical Passage of Time – R2: Physical world interaction
requires accurate timing on sensing and actuation. Malicious
modification to time can lead to inaccurate perceptions. Physi-
cal passage of time can be obtained from the generic timer on
ARM or the trusted timer on RISC-V. Neither of these timers
is not modifiable by software.
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Real-time Computational Availability – R3: From the
computation perspective, real-time implies that secure safety-
critical tasks have appropriate allocation of processor time
to meet their corresponding deadlines. In RT-TEE, this is
accomplished using a real-time hierarchical scheduler which
enforces the real-time scheduling policy. For all types of
real-time schedulers, including hierarchical scheduler, when
schedulability analysis [43], [33] yields a solution that satisfies
the scheduling constraints, all the tasks are guaranteed to meet
their deadlines as long as the scheduling policy is strictly
enforced. In other words, individual processes should get their
slices of CPU at the right time for the right duration. Using
the secure timer, the scheduler can ensure that tasks are given
the opportunity to run at the right time. Using an accurate
accounting of physical time, RT-TEE ensures that processes
(malicious or benign) cannot occupy the processor beyond its
allocated budget, thereby enforcing the scheduling policy to
provide real-time availability.

Robustness against Adaptive Attacker: Since the task sched-
ule is often public, an adversary may attempt to occupy the
processor to prevent secure task from running. However, both
the runtime budget and the priority are strictly enforced by
the scheduler. An adversary may also attempt to block the I/O
to cause priority inversion, but that is prevented by bounded
priority inversion in the temporal I/O reference monitor.

B. Real-time I/O Availability Protection – R3

I/O Availability – R1: I/O availability in CPS implies access
to functional sensors and actuators. The assurance of I/O
availability in RT-TEE is based on the use of an I/O refer-
ence monitor which mediates over all accesses to the secure
peripherals. Based on the I/O access control policy, adversarial
interactions with the peripherals are prevented to maintain
functional software and hardware states of the peripherals.

RT-TEE supports different types of I/O access policies. The
simplest policy we used in the prototype states that only
secure tasks can access secure peripherals. For the rest of
the discussion, the focus will be on ensuring the complete
mediation such that the policy can be enforced. There are
two ways that a non-secure OS can access the peripherals,
directly manipulating the MMIO registers and compromising
the driver software to manipulate the device. Direct access
to the MMIO registers is prevented using the hardware prim-
itive for resource isolation [28], [30], [15], e.g., TZASC in
ARM [15]. Drivers remain a key challenge, especially when
our design excludes the feature-rich instance from the TCB.
Debloated drivers replay known interactions. Therefore, an
adversary can only influence what template to replay after the
I/O reference monitor approves the I/O transaction request.
The fixed-length inputs for the templates are also placed on
the predetermined position of the data, minimizing the attack
surface. For untrusted sandboxed drivers, the main challenge
is the mechanism to confine its behavior with the peripheral.
This is accomplished by trapping all the hardware interaction
instructions to the I/O reference monitor. Based on the I/O

security policy, the reference monitor can either allow or deny
access. In the case when the peripheral is a bus controller,
the I/O reference monitor can also be used to further restrict
which device on the bus a process can interact with.

Real-time I/O Availability – R3: For I/O operations to be
real-time, each request has to be prioritized according to the
process priority. However, some of the low level I/O operations
cannot be easily preempted and can lead to priority inversion,
blocking the secure tasks. In RT-TEE, priority inversion is
minimized and bounded. It is minimized by keeping multiple
priority queues of all the I/O requests such that they are
processed in the correct order. To bound the priority inversion,
the temporal I/O reference monitor inspects each I/O request
to determine if it exceeds the volume or size of the legitimate
requests. The reference monitor will also use the scheduler to
specify a timeout for each I/O operation, thereby bounding the
priority inversion time.

Preventing DoS by Shutdown – R4: There are two mech-
anisms to shutdown or restart the system. One way is to
manipulate power management registers. This is prevented
using the I/O reference monitor. Another way is suspending
the CPU by executing WFI or WFE instructions. However, the
non-bypassable secure timer will always wake up the processor
at the time scheduling events occur, thwarting the attack.

Preventing Physical Component Damage – R4: An ad-
versary can send unsafe actuation commands to permanently
damage physical parts. This can be prevented using the I/O
reference monitor via value range specification.

C. TCB Minimization and Platform Security

TCB Analysis – R5: RT-TEE adds several components in the
TCB, as listed in Table IV. The hierarchical scheduler includes
both the world scheduler, the secure scheduler, and task
structure as well context switching code. However, only rate
monotonic scheduling algorithm is included in the TCB. The
debloated driver pushes almost all the logic to data. Therefore,
the replayer requires around 13 lines of well crafted C code to
replay from memory, with only four types of recordings. The
temporal reference monitor includes basic request data parsing
about the I/O request, priority queue, and dispatcher to invoke
the corresponding driver entry point. We leverage the existing
queue structure and sorting algorithm to minimize TCB. For
the spatial reference monitor, our current policy only involves
range checking. We push all the policy logic to data and have a
few C LOC to check data ranges instead. To support DMA and
IRQ on the drivers, we also need to add 88 lines of assembly
and C code on top of existing IRQ handlers. Lastly, since
our sandbox does not emulate any functionality, it does not
permit control flow outside the sandbox except returning to
the dispatcher in I/O reference monitor. The only TCB are a

TABLE IV: TCB Sizes of Components in RT-TEE

Component Sched. Replayer Refer.
Monitor

S Interrupt
Handler Sandb.

LoC C/Asm 820/100 13/2 37/0 12/76 32/0
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few lines of C code to reuse RT-TEE thread management and
OP-TEE memory management to setup the execution context.

Defense against Time Warping Attack: Time warp attack
exploits the DVFS to present a false sense of execution
on secure tasks. It represents a new class of attacks that
exploit performance interference. Even though access to DVFS
can be prevented using the I/O reference monitor, complete
performance isolation on all shared resources remains an open
research question. To verify the defense, we launched the
attack and were prevented by the I/O reference monitor.

Additional Security Analysis: Analysis on process isolation,
side-channel, and sandbox isolation is available in Appendix F.

VIII. RELATED WORK

TEE on Embedded Processors: Existing work on embedded
TEE has three categories, novel TEE hardware architectures,
hardening TEE environments, and the applications of TEE.
1) Recognizing the limitations on existing commodity TEEs,
there are works focusing on novel TEE hardware architec-
tures [17], [28], [30], [18], [52], [53], [35], [54], [55], [27],
[40], [36], [41]. Particularly, [28], [30], [27] are designed
to provide hardware primitives to bootstrap availability. RT-
TEE is complementary in that our work aims to build on top
of the HAL provided by these novel hardware designs. RT-
TEE addresses key challenges regarding effective use of the
primitives in scheduler and driver software system designs. 2)
To improve the security of existing TEEs, there are also works
hardening the TEE environments [56], [57], [58], [59], [60],
[61], [62]. [59] is a closely related concurrent work in which
Guo et al. proposed to drive peripherals using recordings.
However, our work addresses additional challenges in real-
time, availability, bus, and rich features. 3) Recognizing the
benefits of TEE, there are works that leverage TEE to harden
non-secure environments [20], [63], [64], [65], [66], [67].
RT-TEE is complementary in that it can provide additional
protections, such as availability and protected I/O. While
there is rich literature on TEE, their focus is mostly on
confidentiality and integrity. Recently, there are new novel
hardware designs to bootstrap availability; however, the TCB
complexity on both the scheduling and I/O subsystems have
not been explored in the context of availability. We believe RT-
TEE is complementary to existing works, addressing important
challenges for the wider adaption of TEE in CPS.

Real-time Scheduling and Security: Real-time scheduling
is one of the most active areas in cyber-physical systems.
Hierarchical scheduling has been used in hypervisors to enable
more optimal utilization between isolated containers [68].
There has also been some work in repurposing TrustZone as
a hypervisor [45], [69], [44] and putting the entire safety-
critical operating system into a secure world to achieve per-
formance isolation. There are also recent works in applying
microkernel [34] and microhypervisor [70] to provide timing
control. RT-TEE is complementary to the existing works in
that it focuses on solving TCB minimization and secure I/O
in addition to real-time scheduling.

CPS and Embedded System Hardening: Existing work on
improving CPS resiliency generally falls into two categories,
the control approach [71] and the system approach [72], [66],
[73], [12], [11], [74], [64], [75], [13], [76]. The I/O reference
monitor in RT-TEE is inspired by [13], [76]; however, RT-
TEE is a prevention system rather than a detection system and
additionally ensures availability. RT-TEE is complementary
to these system hardening techniques, providing a previously
unexplored security attribute: availability.

IX. LIMITATIONS AND DISCUSSIONS

Hardware Abstraction for Resource Isolation: Many mod-
ern embedded TEE architectures [17], [28], [30], [18], [35],
[54], including the upcoming ARM CCA [54], support full
system resource isolation, including both processor and I/O.
Though the concrete mechanism and configuration are often
SoC-dependent, RT-TEE builds on top of a common abstrac-
tion of availability primitives and is capable of supporting
these new platforms through individual HAL implementations.
Driver Transformation and Exception Handling: One of the
key trade-offs in driver debloating is simplicity for security.
In predictable CPS, this is effective, as demonstrated in our
drone prototype. However, there are also limitations. First,
error handling is removed. In CPS platforms, this is acceptable
since most of the error handling functions just probe the sensor
again. If necessary, a sensor initialization template can also
be added to support recovery. Second, there might be drivers
with many features leading to an explosion of templates. A
sandboxed driver can be used along with the debloated driver
to mitigate the tension in RT-TEE.

X. CONCLUSION

In this paper we present RT-TEE, a real-time trusted ex-
ecution environment that aims to address one of the most
fundamental needs of safety-critical cyber-physical systems:
system availability. RT-TEE builds on top of a minimized
abstraction of hardware primitives that enables bootstrapping
of availability. It leverages a newly designed two-layer policy-
based event-driven hierarchical scheduler to provide real-time
scheduling while minimizing the impact on TCB. To enable
I/O availability, we proposed and designed an I/O reference
monitor that enforces both temporal (real-time) and spatial
(security) policies on the hardware/software interactions. To
minimize the TCB impact due to I/O drivers, we proposed a
combination of sandboxed feature-rich untrusted drivers and
minimized functionality trusted debloated drivers. We built
prototypes for both ARMv8-A and ARMv8-M platforms and
validated the system on a real drone.
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APPENDIX A
SECURE TIMER POPULARITY

To understand the popularity of hardware secure timer,
we surveyed the support of secure timer on two of the
most popular embedded processor manufacturers, ARM and
Synopsys, who occupy the majority of the embedded processor
market shares [77], [78].

TrustZone is the TEE technology by ARM. ARM Cortex-A
supports physical secure timer inside the CPU. We surveyed
all ARM Cortex-A processes on the ARM product list [77],
including A5, A7, A32, A34, A35, A53, A55, A65, A65AE,
A72, A73, A75, A76, A76AE, A77, A78, A78AE, A78C,
A710, and A510 by crosschecking with CPU reference man-
uals. All the ARM Cortex-A processors clearly state secure
physical timer support in their manuals with a few exceptions.
The A710 and A510 are the ARMv9 CPUs with incomplete
documentation, and we were not able to confirm support. The
earlier generation A32 and A5 CPUs also do not provide
any concrete statement about support. We also surveyed the
Cortex-M series, M23, M33, M55, listed on the ARM official
website[77]. They all have support for secure timer. Further-
more, out of the nine SoCs recommended by ARM, six of
them additionally support secure timer peripherals.

For Synopsys, there are two processor series that provide
the SecureShield[78] TEE technology, i.e., EM and SEM. All
EM processors, including EM4, EM6, EM5D, EM7D, EM9D,
EM11D, and EM22FS, have secure timer according to their
manuals. Meanwhile, the SEM processors have watch dog
timer which can be used to reset the processor or for other
functionalities if desired when it expires [79].

APPENDIX B
REALIZING THE AVAILABILITY HARDWARE ABSTRACT

LAYER ON ARM PLATFORMS

To take control of the platform, two key ARM features are
used, secure timer and fast interrupt request (FIQ). To regain
control at a specific time, we rely on secure timer. Within
the set of core-specific timers, the majority of the TrustZone-
aware SoCs offer a secure timer that can only be set and
configured by the secure world. For RPI3 of ARMv8-A, we
make use of the EL1 Secure Physical Timer. For LPC55S69
of ARMv8-M, we make use of the CTimer, which offers
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different configuration registers for normal world and secure
world. To prevent the normal world from interrupting, the
secure timer interrupts are routed to FIQ, which has higher
priority than regular IRQ. A TrustZone-enabled GIC permits
all implemented interrupts to be individually defined as Secure
or Non-secure, through the Interrupt Security Registers set
(ICDISRn)[45]. On the I/O front, peripherals are assigned to
the secure world. On ARMv8-M platforms, the assignment
of peripheral devices can be configured using SoC-specific
controllers such as the Central Security Unit (CSU) in i.MX6
or TrustZone Protection Controller (TZPC) in Xilinx Zynq-
7100 among others [62]. While we were able to use the
TrustZone features on NXP development board to protect the
peripherals, Raspberry Pi 3 is an evaluation hardware platform
that doesn’t include secure boot or TZASC. Therefore, the I/O
address configuration code is not active in our prototype for
this platform. For physical passage of time, both the banked
systick timer and the system counter in the generic timer
system provide a non-mutable clock. Besides ARM TrustZone,
many recently proposed TEE platforms [17], [28], [30], [18],
[35] also provide the necessary hardware security primitives
for RT-TEE.

APPENDIX C
CASE STUDY ON AUTONOMOUS DRONE

RT-TEE is designed to support different types of safety-
critical real-time task deployments based on security and real-
time policies. In the following, we will show how it can be
used to protect ArduPilot, an autonomous drone controller.

Case 1 – Flight Controller Protection: As shown in Fig-
ure 12, RT-TEE is used to protect the flight controller. Current
commercial drones often install various kinds of third-party
libraries to support different functionalities, such as video
streaming and cartography, which may contain different soft-
ware vulnerabilities. In systems that can tolerate a large TCB,
the whole flight controller can be put into the secure world,
protecting the safety-critical components from the rest of the
system. From the I/O perspective, the peripherals used by
a flight controller have to be assigned to the secure world.
Furthermore, each driver needs to be analyzed and transformed
before deploying in the secure world.
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Case 2 – Fail Safe Protection: As shown in Figure 12,
in the second case, the objective is to ensure fail-safe op-
erations, therefore only the fail-safe controller is protected.
Fail-safe checkers periodically check system status to make
sure the system is in healthy condition. When the system state
falls into a danger zone, a simple fail-safe default will be
triggered to bring the system into safety. In this case study,
we implemented the fail-safe checker along with a default
fail-safe recovery landing procedure. All of the sensors and
corresponding drivers used by fail-safe controller are assigned
and migrated to the secure world. Upon detection of a failure,
the self-contained lander will take over the drone and land it.

APPENDIX D
EVALUATION ON DIFFERENT PHYSICAL CONDITIONS

0 1 2 3 4 5 6 7 8 9 10

Wind Speed (m/s)

0

5

10

15

20

D
e
v
ia
ti
o
n
(%

)

Delta V in X-axis of Baseline without TEE (m/s) 
Delta V in Y-axis of Baseline without TEE (m/s) 
Delta V in X-axis with RT-TEE (m/s) 
Delta V in Y-axis with RT-TEE (m/s)

(a) Different wind speed

−50 0 50

Pos. x-axis (m)

−75

−50

−25

0

P
o
s
.
y
-a
x
is
(m

)

Observed State of Baseline without TEE
Observed State with RT-TEE

(b) Position difference

0 50000 100000 150000
Control loop

0

2

4

Ve
lo

cit
y 

(m
/s

)

(c) Velocity difference

0 25000 50000 75000100000125000150000
Control loop

2

4

6

Ac
ce

le
ra

tio
n 

(m
/s

2 )

(d) Acceleration difference

Fig. 13: Phys. Cond. Impacts on Control with RT-TEE and Baseline w/o TEE

In real-world missions, the UAV often faces different phys-
ical environments, such as different wind conditions. In this
set of experiments, we vary the wind conditions in simulation
from no wind to gentle wind (with a horizontal wind compo-
nent of 5 m/s or a vertical wind component of 1 m/s), and
to strong wind (with a horizontal wind component of 10 m/s
or a vertical wind component of 2 m/s) to observe how our
system responds. Fig. 13a shows the control state deviations
under different wind conditions on the velocity of the copter.
From this set of experiments, we can observe that systems
with RT-TEE and baseline without TEE share the same control
characteristics in different wind conditions. Specifically, both
fail to track the reference state when the wind is stronger
than 10m/s, this is an inherent limitation of the physical
construction of the machinery, such as max throttle. When
the wind is weaker, both systems have maintained control
well. Under the strong wind, Fig. 13c and Fig. 13d show
systems with RT-TEE look less capable of stabilizing attitude
than original systems as it deviates a bit more in the first
half. Despite greater deviation in acceleration and velocity,
the drone remains capable of following its mission trajectory,
as shown in Fig. 13b.

0 20000 40000 60000 80000
Control loop

−4

−2

0

Ro
ll 

co
m

m
an

d 
(1

03 )

(a) Roll command of Plane

0 20000 40000 60000 80000
Control loop

−800

−600

−400

−200

0

Pi
tc

h 
co

m
m

an
d

(b) Pitch command of Plane

0 10000 20000 30000 40000
Control loop

−0.02

−0.01

0.00

0.01

0.02

St
ee

rin
g

(c) Steering command of Rover

0 10000 20000 30000 40000
Control loop

64.9

65.1

Th
ro

ttl
e

(d) Throttle command of Rover

Fig. 14: Additional Control Performance with RT-TEE and Baseline w/o TEE

APPENDIX E
ADDITIONAL EVALUATION ON CONTROL PERFORMANCE

To understand the potential impact of RT-TEE on different
system controls across different CPS platforms. For plane, the
roll command and pitch command are used to measure the
control deviation. From Fig. 14a and Fig. 14b, we can observe
that the performance with RT-TEE and baseline without TEE
is almost identical. The similarity in performance with RT-TEE
and baseline without TEE can also be observed in the rover
experiment shown in Fig. 14c and Fig. 14d, where steering
and throttle are used as the metric.

APPENDIX F
ADDITIONAL SECURITY ANALYSIS

Sandboxed Driver Isolation: A compromised sandboxed
driver can attack the system by attempting to read or write
memory in the secure environment; however, all reads and
writes are instrumented to confine the memory addresses it
can visit. An attacker may also write arbitrary content into the
I/O registers; this is prevented using the I/O reference monitor.
The driver may also attempt to branch outside the sandbox.
However, there are no indirect calls in the code the attacker
can exploit due to target unrolling. Moreover, the backward
edge is protected by the shadow stack.

Protection against Malicious DMA Access: A compromised
driver may also attempt to program the peripheral use DMA
to tamper with secure environment memory. This can be
mitigated either with the I/O reference monitor or hardware
(such as system memory management unit (SMMU)).

Process Isolation: RT-TEE relies on the OS in each world to
isolate and manage task scheduling individually. However, if
needed, the world scheduler can be used to directly schedule
tasks in both worlds, treating each task as an individual world
at the cost of increased TCB.

Side-Channel and Covert Channel: From the perspective
of side-channel and covert channel, the bandwidth on various
shared resources (such as cache) is likely similar to or lower
than existing TEEs. This is because the untrusted OS can no
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longer freely control secure function invocation due to the
new scheduling infrastructure. However, real-time scheduling
remains predictable [80].

APPENDIX G
ADDITIONAL DETAILS ON SCHEDULING SUBSYSTEM

World Scheduler: The real-time properties, including period,
budget, and priority of each world are configured through in-
voking the RT-TEE API world rt param init at initialization,
subsequent updates can only be done via secure world, since
non-secure world is no longer trustworthy once the system
starts execution. Each world has four states, i.e. running,
runnable, out of budget, and idle. Running state is set when
a world is running. Runnable state is set when a world has
budget but isn’t running. Out of budget means a world runs
out of budget and idle means a world owns budget but has
nothing to run. When scheduler runs, it first burns the budget
for the running world. World scheduler replenishes budgets
and updates deadlines at the start of each period. The states
of each world will become runnable after replenishing budgets.
According to the priorities, the world scheduler will then
choose a world to resume.
Secure OS Scheduler: Since there is no existing scheduling
infrastructure in the secure OS of OP-TEE, we have to
implement a minimal scheduling infrastructure that supports
time accounting, context switches as well as APIs to support
different scheduling heuristics. In addition to the infrastructure,
we also implemented a RM scheduler for our prototype.
Multicore Support: RT-TEE supports multi-core deployment
and makes use of mutex to protect the shared resources.
Under current OP-TEE implementation, whenever the mutex
blocks, the process will be suspended and control flow will be
redirected back to normal world. This is a security problem,
we took two steps to mitigate this issue. First, we minimize the
amount of shared resources. Second, for the very few status
related variables, we make use of spinlock instead.
RT-TEE Scheduling API: RT-TEE is designed to offer an
open framework to implement different types of real-time
scheduling on a real-world CPS platform. The APIs flow
is shown in Fig 15. RT-TEE provided three kinds of API
calls, SA (Scheduling Algorithm) functions, SI (Scheduling

Infrastructure) functions, and USER functions, to perform
world-level scheduling, secure tasks scheduling and RT-TEE
initialization. SA APIs are developer customizable, SI APIs
are responsible for assisting SA implementation. USER APIs
is exposed to users to use RT-TEE.

During the system boot up phase, it is generally assumed
that normal world is started with secure boot process and
it is trustworthy until there are external communications. At
this time, world rt param init and task rt param init should
be invoked to initialize the real-time parameters of the two
worlds, and the secure tasks. Alternatively, this can be hard-
coded in the firmware and starts automatically with the secure
world. Then user task load will be invoked to load user tasks,
and world scheduler start is invoked to start world scheduler.

At the world scheduling level, world budget update, and
world prio recalc are the two SA functions responsible for
world budgets updating and resuming the next running world.
Developers can implement these two APIs to provide differ-
ent resource reservation algorithms (servers) and scheduling
algorithms. return to nw and return to sw are two SI APIs
invoked by the world scheduler who decides which world to
run next. task release will insert periodic released (ready to
run) tasks into run queue.

At the secure tasks scheduling level, task budget update,
and task prio recalc are two SA functions responding for se-
cure tasks budgets updating and next running tasks picking up.
Developer can implement these two APIs to provide different
tasks-level resource reservation algorithms (servers) and tasks
scheduling algorithms. task invoke, and task resume are two
SIs assisting the implementation of task budget update and
task prio recalc.

APPENDIX H
ADDITIONAL DETAILS ON I/O SUBSYSTEM

Sample Template for I2C Bus: Table V shows the template
driver for reading pressure from MS5611 barometer. Every
command comprises nine bytes. The first byte encodes the
command i.e., write(0x0), read(0x1), wait(0x2), and trap-
ping(0x3). The next four bytes encode the value of the MMIO
register to be written or the virtual address of memory to
store the read result or the worst execution time for the

TABLE V: Part of MS5611 Barometer Driver Template (Get Pressure)

Type Val/WCET Reg. Address Semantic
0x0 0x000000fa 0x14404014 set clock speed of I2C controller
0x0 0x000f003e 0x14404018 set delay of sampling/launch data
0x0 0x00000077 0x1440400c set barometer device bus address
0x0 0x00000001 0x14404008 set data length to be sent
0x0 0x00008280 0x14404000 start write transfer, set interrupt
0x2 0x00000032 0x14404000 wait for interrupt, WCET is 50us
0x0 0x00000044 0x14404010 write cmd to FIFO to get pressure

...
0x0 0x00000077 0x1440400c set barometer device bus address
0x0 0x00000003 0x14404008 set data length to be sent to 3
0x0 0x00008481 0x14404000 start read transfer, set interrupt
0x2 0x00000032 0x14404000 wait for interrupt, WCET is 50us
0x1 0x1015a118 0x14404010 read 1 byte pres. data from FIFO
0x1 0x1015a118 0x14404010 read 1 byte pres. data from FIFO
0x1 0x1015a118 0x14404010 read 1 byte pres. data from FIFO
0x0 0x00000010 0x14404000 clear buffer
0x0 0x00000302 0x14404004 set transfer DONE in state register
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corresponding I/O operation. The last four bytes are the
memory address of the I2C controller MMIO register.

Execution of Bus Transactions: The execution flow of the
debloated I2C driver is shown in Fig. 16. One I2C transaction
contains four phases. The Start Config phase configures the
I2C controller. The Write Transfer phase writes a command for
sensor into I2C controller FIFO. The read Transfer phase reads
data from the I2C bus controller FIFO into memory. The End
Config phase clears the FIFO buffer and sets done state in the
control register. Table. V shows the generated driver template
for getting pressure operation in MS5611 Barometer. The
implementation of the SPI driver is similar to I2C except that
the SPI in Navio2 disabled the native CS (Control Register) in
the SPI controller. Instead, it leverages GPIO to select devices.
According to the device id, the corresponding GPIO pins are
set to high. The two native chip select bits in the control status
are set to 11 (reserved). After the completion of the transfer,
GPIO pins are reset to disable the chip selection.

Peripheral Driver Sandboxing: CFI in RT-TEE sandboxing
includes forward edge and backward edge CFI. To enforce
forward edge CFI, we avoid function calls using function
pointer in the split driver by unrolling all indirect function
calls into switch statements including all potential targets in
each case. To enforce backward edge CFI, we leverage shadow
stack. RT-TEE provides two RTL-level (Register Transfer
Language) GCC passes to modify the epilogue and prologue
of each function. In the epilogue of the callee function, the
return address is saved on the statically allocated shadow
stack outside the sandbox. Upon returning to the caller in the
epilogue, the previous saved address is used.

RT-TEE puts sandboxed split peripheral drivers in reserved
address space of secure OS. Read/write instructions on phys-
ical memory are instrumented with the bfxil instruction
with a reserved general-purpose register to enforce a mask.
To sandbox read and write instructions used to access MMIO
device address, we instrument each MMIO access read and
write instruction with spatial reference monitor trampoline, in
which we check the validity of the access destination address
and the values to be written with the I/O policy. RT-TEE uses
another GCC pass to add the data access sandboxing.

APPENDIX I
DETAILS ON SECURE CLOCK AND POWER

To prevent the non-secure OS from configuring power and
clock maliciously, power and clock management configuration

registers have to be assigned to the secure environment.
The exact interface for power/clock management is hardware
implementation-specific. On RPI3 SoC, the Clock Manager
(CM) registers (0x7E101000-0x7E101FFF) are responsible for
clock control of the peripherals. Power Management (PM)
registers (0x7E100000-0x7E000FFF) are used to reset pe-
ripherals [81]. On LPC55S69 SoC, the System Controller
(SYSCON) (0x40000000-0x40000FFF) is used to select and
control clock and reset peripherals. Analog Control Register
(ANACTRL) (0x40003000-0x40003103) is used to control the
frequency of oscillators. Power Management Controller (PMC)
(0x40020000-0x400200CB) is used to control the power of
oscillators. It is possible to use SAU to secure these addresses.
The prevention of malicious manipulation on processor reset
can be commonly achieved by configuring the TrustZone-
aware processor to prevent system reset from normal world.
On ARM Cortex-A53, Reset Management Registers (RMR)
which signal SoC reset controller are only accessible from
EL3, effectively preventing reset requests from normal world.
On ARM Cortex-M33, the SYSRESETREQS bit of AIRCR
(Application Interrupt and Reset Control Register) can be used
to disable normal world from making a system reset request.

APPENDIX J
ADDITIONAL RELATED WORK

RT-TEE is different from the existing hypervisor ap-
proach [82], [69], [68] regarding the primitive we used to
accomplish time isolation. Furthermore, the protection gran-
ularity is also different in that hypervisor provides OS-level
isolation but RT-TEE provides task-level fine-grained isolation.
We are also different from existing TEE solutions[21], [25],
[26], [24], [22], [23] in that we focus on system availability
in addition to integrity and confidentiality.

Our work also has related work on how change of task
timing can destabilize a system. The impact of schedule jitter
was investigated in [31]. [32] examines how execution time
of different SLAM algorithms impact the physical control.
Frequency scaling was used to trigger processor faults in
TrustZone in [83]. However, we are the first to examine the
impact on timing of processor frequency scaling on cyber-
physical systems.
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