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Abstract—Honeywords are decoy passwords associated with
each user account to timely detect password leakage. The key
issue lies in how to generate honeywords that are hard to be
differentiated from real passwords. This security mechanism was
first introduced by Juels and Rivest at CCS’13, and has been
covered by hundreds of media and adopted in dozens of research
domains. Existing research deals with honeywords primarily in
an ad hoc manner, and it is challenging to develop a secure
honeyword-generation method and well evaluate (attack) it. In
this work, we tackle this problem in a principled approach.
We first propose four theoretic models for characterizing the
attacker A’s best distinguishing strategies, with each model
based on a different combination of information available to
A (e.g., public datasets, the victim’s personal information and
registration order). These theories guide us to design effective
experiments with real-world password datasets to evaluate the
goodness (flatness) of a given honeyword-generation method.

Armed with the four best attacking theories, we develop the
corresponding honeyword-generation method for each type of
attackers, by using various representative probabilistic password
guessing models. Through a series of exploratory investigations,
we show the use of these password models is not straightforward,
but requires creative and significant efforts. Both empirical
experiments and user-study results demonstrate that our meth-
ods significantly outperform prior art. Besides, we manage to
resolve several previously unexplored challenges that arise in the
practical deployment of a honeyword method. We believe this
work pushes the honeyword research towards statistical rigor.

I. INTRODUCTION

Password-based authentication remains the most widely-
used mechanism for authenticating users in computer systems
since its advent in the 1970s. Ample of studies have revealed
its security issues (e.g., guessing [14], reuse [56] and key-
logging [37]) and usability problems (e.g., creation [42], mem-
orization [26], typing [22]), various alternative authentication
methods (e.g., graphical passwords [9], multi-factor authen-
tication [36] and behavior biometrics [46]) have also been
proposed. However, passwords stubbornly survive and are
proliferating with almost every new web service. Gradually,
a consensus is being reached in both research [15], [16], [48]
and industry [3], [17], [49] that password-based authentication
is likely to keep its place in the foreseeable future.

In password-based authentication systems, the server needs
to maintain a sensitive password file of all users. This file
provides attackers/insiders with a rich target for compromise.
These years we seem to get accustomed to catastrophic
password data breaches from high-profile sites (e.g., 3 billion
Yahoo leak [2] and 68 million Dropbox leak [33]). Once
this file is somehow obtained by the attacker A, users’
passwords are subject to offline guessing in which A can
employ dedicated password-cracking hardware like GPU [29]

and even cloud services like Amazon EC2 [8]. To address this
issue, the research community has given much attention to
how to store this file securely [7], [39] and why developers
get password storage wrong [45], [51], and nice progress has
also been made on how to measure [28], [43] and increase
[10], [12] the offline guessing attacker’s workload.

Relatively little attention has been given to how to timely de-
tect the password-file leakage. It is a rare piece of good news in
password research that users do tend to change their passwords
when notified about password breaches [41]. However, without
a timely detection mechanism, responsive countermeasures are
impossible. Unsurprisingly, hundreds of popular web services
have recently suffered large-scale password leaks, and most of
them (e.g., Yahoo [2], MyFitnessPal [13], LiveJournal [23],
Dropbox [33] and MyHeritage [38]) ask users to change
passwords 1∼8 years after the leaks originally occurred.
This provides attackers enough time to crack/exploit user
passwords, making the question of how to timely detect
password-file compromise increasingly important.

A promising approach, named honeywords, to achieving
timely password breach detection was first proposed by Juels
and Rivest at CCS’13 [35]. Honeywords are decoy passwords
generated for each user account, and they are stored together
with the user’s real password. The index of the real passwords
is stored in another server of minimalist design (called honey-
checker). To successfully log in, the attacker A has to tell
the real password apart from a set of k-1 honeywords (e.g.,
k=20 as recommended [35]). Login with a honeyword signals
a password-file leakage. The key issue lies in, when given a
user account, how to generate a set of honeywords that cannot
be easily distinguished from the real password.

Juels and Rivest [35] divided honeyword-generation meth-
ods into two categories: legacy user-interface (UI) based ones
and modified-UI based ones. In legacy-UI based methods,
there is no change at the user side and usability is maintained;
in the modified-UI based methods, the user needs to change
behavior. Because the cost of “requiring users to change
behavior” is generally highly expensive [16], legacy-UI based
methods are much more promising. In addition, the generation
of perfect honeywords for modified-UI is straightforward (see
Sec. 4.2 of [35]). Hence, in this work we mainly focus on
legacy-UI based honeyword-generation methods.

A. Design challenges

Juels and Rivest [35] classify the legacy-UI based methods
into two categories (i.e., chaffing-by-tweaking and chaffing-
with-a-password-model), and three of their four primary
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legacy-UI methods belong to “chaffing-by-tweaking”. As
shown by Wang et al. [53], these four methods are all highly
vulnerable. In a passing comment (see Sec. 4.1.2 of [35]),
Juels and Rivest [35] do mention the possibility of using a
password model to build honeywords. However, the use of
password models looks deceptively simple, but actually it is
rather challenging. The following explains why.

Firstly, it is virtually impossible to employ a password
model to generate honeywords with the same probability as the
user’s password. User passwords are revealed well following
the Zipf-like distribution [52], and this finding has been
corroborated by evidence from 70 million Yahoo passwords
[12]. Therefore, it is inherently impossible to generate enough
candidate honeywords (at least 103 to mitigate denial-of-
service attacks) that are equally probable with a relatively
popular real password. This inequality gives chances to A to
distinguish real passwords by using probabilistic approaches.

Secondly, each of the state-of-the-art password models
has its own, inherent weaknesses. As briefly mentioned in
[53] and in-depth investigated in this work, the PCFG-based
model [56], [58] underestimates the probability of interleaving
passwords (e.g., 1a2b3c4d and 1qa2ws3ed); the Markov-
based model [40] underestimates long but meaningful pass-
words (e.g., password123 and 110120130); the List-
based model (see Sec. II-D) underestimates all passwords that
do not appear in the given password list (e.g., the 3 billion
Yahoo list [2]), while every password list is of limited space
and each service has its unique password distribution (see Fig.
3 of [56]). Such weaknesses make it improper to always use
a single password model to generate honeywords, but when
and how to integrate these password models to overcome the
identified weaknesses has not been systematically explored.

Thirdly, the attacker A is powerful (yet realistic). Following
the Kerckhoffs’s principle, it is natural to assume that A
knows which password model is used by the server to generate
honeywords. As hundreds of sites have leaked their passwords
(see [1]), and even many sites have leaked their passwords
more than once (e.g., Yahoo [2], Phpbb, Ubuntu and Anthem
[47]), it is also realistic to assume that A knows some infor-
mation about the password distribution of the target service. In
addition, A may exploit not only users’ behavior of selecting
popular passwords but also the victims’ personally identifiable
information (PII). In reality, a large fraction of users build
passwords using their own PII (e.g., 36.95%∼51.43% [53]),
while a user’s PII can often be easily learned from social
networks [20] and unending data breaches [4], [27], [47].
For instance, in April 2021, the personal data of 533 million
Facebook users was made freely available [34], such as name,
birthday, location, phone # and email; in June 2021, personal
data of 700 million LinkedIn users was sold online for $5,000
[44], including name, email, location, phone #, gender, etc.

Moreover, the registration order of users is useful for A.
This piece of info is often explicitly stored in the leaked
password file (e.g., Forbes, QNB and Tianya) or implicitly
reflected by the monotonically increasing user registration
number. Even if it is unavailable from the leaked password file,

it can often be crawled from user profiles in some applications
(e.g., social/programmer forums and discussion boards), or it
can be largely determined by the time when the user first
participates in discussions, posts questions/answers, etc. We
will show that this capability is especially useful for A against
adaptive password-model based honeyword methods, of which
the training set keeps updating as new user registers.

B. Related work
In 2015, Chakraborty and Mondal [21] pointed out that

all of Juels-Rivest’s honeyword methods [35] are random-
replacement based, and thus are inherently unable to resist
semantic-aware attackers. They provided some typical counter-
example passwords (e.g., bond007 and john1981) to show
this. Further, they suggested a new, heuristic modified-UI
honeyword method. At ACSAC’15, Almeshekah et al. [7]
pointed out that the honeyword mechanism still cannot com-
pletely eliminate offline password guessing, and proposed the
ErsatzPasswords scheme that employs a machine-dependent
function to store passwords. Though this makes offline pass-
word guessing impossible, scalability issues arise.

In 2016, Erguler [24] also used some typical counter-
example passwords to “give some remarks” about the inse-
curity of Juels-Rivest’s four methods [35]. Since the key goal
of a honeyword method is to generate honeywords indistin-
guishable from the user’s real password, Erguler presented a
new heuristic method (called “Honeyindex”) that uses pass-
words of other users in the system as honeywords. However,
the evaluation of Honeyindex is still in an ad hoc manner.
Unsurprisingly, as shown in Appendix B, “Honeyindex” [24]
has critical security and deployment issues.

At NDSS’18, Wang et al. [53] used heuristic experiments to
reveal that the four honeyword methods by Juels-Rivest [35]
all fail to achieve the claimed security in a large part: When
allowed one guess, A’s success rate can be 29.29%∼32.62%,
but not the expected 5%. To find potential countermeasures,
they preliminarily show that existing password models (e.g.,
Markov [40] and PCFG [58]) each has its own inherent
defects and cannot be readily used to generate honeywords.
Accordingly, they propose to combine different password
models together to overcome the defects in each individual
model. However, all their experiments/proposals are still ad
hoc: Whether (and when) they are optimal is unknown.
Wang et al. only briefly introduced one honeyword-generation
method under trawling attackers, and as shown in Sec. IV, their
proposal is not optimal for their intended type of attackers, but
desirable for another type of attackers that is not considered
in [53]. Besides, they did not provide any human-attacker
evaluation for their honeyword-generation method.

At 2019, Akshima et al. [6] used heuristic arguments to
point out that the primary honeyword methods by Juels-
Rivest [35] and Chakraborty-Mondal [21] all fail to achieve
the claimed security. Further, they proposed three ad hoc
honeyword-generation methods, two for legacy-UI and one for
modified-UI. We show in Appendix B that their two legacy-UI
methods are still subject to critical security issues.
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Fig. 1. Password (PW) authentication with honeywords. For better illustration,
here passwords are shown in plain-text, while in reality they are stored in
salted hash. The bottom of the figure shows some personal info about the
victim Ui, and exemplifies two sets of 13(=k-1) honeywords generated for
Ui’s password “tiger81” by two different methods: one by the hybrid method
[35] and one by our TarList method (see Sec. IV).

Note that, the honeyword system is essentially a bit similar
to distributed password storage (e.g., [5], [18]) that cryp-
tographically splits passwords across two or more servers.
While the former involves relatively few changes to the
server side and no changes to the client side, the latter
necessitates substantial changes to both sides. In addition,
memory-hard functions (e.g., [10], [11]), which slow down
(but cannot eliminate) password guessing, are recommended to
pre-process passwords/honeywords before storage [12], [53].

In all, most prior art [6], [21], [24], [35] on honeywords
mainly employs an ad hoc approach to design and evaluate
new/existing methods. Particularly, little progress has been
made towards the key question of how best to generate and
evaluate honeywords when various types of info and varied
password models are available to A. What’s more, none of the
existing honeyword proposals (including [53]) have considered
an attacker with user-registration order and/or the victim’s PII.

C. Our contributions

Based on prior art [6], [21], [24], [35], here we take a
principled approach to honeyword research. We first rigorously
address the problem of how best to attack a given honeyword
method under varied kinds of capabilities available to an
attacker (i.e., understanding the “sword”), and then forge the
“shield”—design the corresponding honeyword method based
on leading password models. Our underlying rationale is that,
only when one knows what’s A’s best attacking strategy, one
can figure out how to design the most effective countermea-
sures. In all, we make the following key contributions:
• Attacking theories. To characterize the attackers’ best

strategies, we, for the first time, propose a series of theoretic
models based on varied kinds of capabilities available to an
attacker. Particularly, we are the first to consider the realistic
attackers that exploit each victim’s personal information and
know the order of user registration. These models enable
us to design effective experiments with real-world datasets

to evaluate the goodness (flatness) of a generation method,
answering the open question left by Juels and Rivest [35].

• Generation methods. We develop four novel and efficient
honeyword-generation methods based on various existing
probabilistic password-cracking models (e.g., Markov [40],
PCFG [58] and TarGuess PCFG [56]). The use of these pass-
word models requires significant, novel and creative efforts,
and we show this by a series of exploratory investigations.
Our constructions not only resolve Juels-Rivest’s question
[35], but also give a way to retool cracking models to build
flat honeywords, enabling future improvements of cracking
models to be easily incorporated into honeyword methods.

• An intensive evaluation. We implement our new meth-
ods and show their effectiveness by performing extensive
experiments under four kinds of attackers (A1∼A4), each
based on a different combination of info available to A:
public datasets, user PII and registration order. Our exper-
iments build on 11 large-scale datasets, including 105.44
million real-world passwords. To see how they perform
under semantic-aware humans, we further conduct a user
study of 11 trained human attackers. Results indicate that our
methods can survive both automated and human attackers.

• Some insights. We obtain a number of insights, some
expected and some surprising, from our theories and ex-
periments. Our attacking theories show that the “chaffing-
by-tweaking” category of methods is inherently problematic,
and all such methods are far from flat (distinguishable). This
is opposed to the common belief in [35], is corroborated
by the empirical results in [53] and necessitates the design
of password-model based methods. As expected, password
models can be used to build flat honeywords, but somewhat
surprisingly, the adaptive List model (not the expected PCFG
or Markov [40]) can generate nearly flat honeywords under
the basic attacker who is with only public datasets.

II. PRELIMINARIES

A. System model
As shown in Fig. 1, four entities are involved in the honey-

word system: a user Ui, an authentication server S, a honey-
checker, and the attacker A. User Ui first creates an account
(IDi,PWi) at the server S. Some PII may also be provided
to S, and this enables S to employ PII-aware honeyword
methods. Besides the normal procedures for user registration,
S carries out a command Gen(k; PWi): S generates a list
of k-1 distinct, decoy passwords (called honeywords) to store
along with Ui’s real password PWi, where k=20 as suggested
in [35]. PWi and its k-1 honeywords are called k sweetwords.

Generally, honeyword-generation methods can be classified
into two broad categories: password-model based (see Sec. IV)
and random replacement based (i.e., chaffing-by-tweaking in
[35]). Generally, random replacement based methods are also
real-password related: They generate honeywords explicitly re-
lating to the real password (e.g., tweaking-tail [35]); password-
model based methods are real-password unrelated, i.e., they
generate honeywords independent of the real password (e.g.,
Honeyindex [24] and all the four new methods in this work).
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Without loss of generality, we use Juels and Rivest’s first
method [35], i.e. “Tweaking by tail” [35], as a representative
of non-password-model based methods. This method “tweaks”
the selected character positions of the real password PWi to
generate the k−1 honeywords. Let t (e.g., t = 2 or 3) denote
the desired number of positions to tweak. Each character in the
last t positions of PWi is substituted by a randomly-selected
character of the same type: A digit is substituted by a digit, a
letter by a letter, and a symbol by a symbol. For example, if
PWi is loveu1, k=4 and t=2, then the sweetword list SWi

for Ui might be {lovea0, lovex7, lovee0, lovey3}.

B. Security model
Honeyword distinguishing attacker. The essential security
goal of any honeyword method is, when given user Ui’s
account, to generate a set of k-1 honeywords such that they
are indistinguishable from Ui’s real password PWi. This goal
is defined against the honeyword distinguishing attacker A as
shown in Fig. 1, who has obtained the sweetword file, offline
guessed all the users’ sweetwords and employed S as an online
querying oracle. A’s honeyword online querying attempts will
be detected by the honeychecker, if A uses a honeyword to
log in. If the number of honeyword login exceeds the per-user
threshold T1 (e.g., 3), A will raise the alarm on Ui’s account.
A will also cause the system-wide alarm to be raised if A’s
honeyword login attempts exceed the system-wide threshold
T2 (e.g., 104). Thus, to avoid being detected, A shall try
honeywords as few as possible. Note that, the exact values of
T1 and T2 depend on the target system’s risk analysis results,
and are out of our scope. This explains why they have not
been discussed in the existing literature. Still, since the system
has to balance honeyword-distinguishing attacks and denial-of-
service (DoS) attacks, T2 should not be too small or too large,
and without loss of generality, we set T2=104 as with [53].
Attacker capabilities. As shown in Table I, we assume that
A has somehow already got access to the server S’s password
hash file, and knows all public info such as leaked password
lists, password policy and the honeyword method used by S
to generate honeywords. As hundreds of sites have leaked
their passwords (see [1]), A may also know some info about
the password distribution of the target system. This kind of
attacker (i.e., type-A1) is the basic attacker, and it has been
(implicitly) made in existing studies [6], [18], [24], [35]. To
make our attacking models more realistic, we also investigate
the scenario where some sweetwords are unknown to A.

As users love to build passwords using their own PII, a
practical method should not overlook this information. In
addition, users’ registration order is also useful for A. This
info is especially useful for A against adaptive password-
model based honeyword-generation methods. In such adaptive
methods, the underlying password-model keeps updating with
newly registered passwords, and newly generated honeywords
will only depend on existing passwords but not the future
passwords (similar to Honeyindex [24] and Akshima et al.’s
methods [6], which are analyzed in Appendix B). Therefore, A
can attack in the same order as the user registration order. As

TABLE I
ATTACKER CAPABILITIES CONSIDERED IN THIS WORK.

Attacker type PW
file

Public
info1

Personally
identifiable

info2

User reg-
istration

order
Existing
literature

Distinguishing
attacker

A1 X X [6], [24], [35], [53]
A2 X X X [53]3
A3 X X X None
A4 X X X X None

1 Typical public info includes the various leaked password lists, password
policy and all the cryptographic algorithms (e.g., hash methods and the
honeyword-generation methods).

2 Such as name, birthday, gender, email, education and hobbies.
3 In [53], PII is only considered for attacking, but not for defense.

mentioned in Sec. I, this piece of info is often not considered
sensitive and can be obtained/inferred in a number of ways.
Other attackers. As discussed in [6], [24], [35], [53], other
threats against honeywords, such as multi-system intersection
attacks, DoS attacks and honeychecker-related attacks, are also
practical concerns. Fortunately, most of them can be well
mitigated. For example, multi-system intersection attacks arise
because users tend to reuse passwords across different ser-
vices, and they can be thwarted by cryptographic means [57].
To resist DoS attacks (that deliberately login with honeywords
to raise alarms), we can focus on producing flat honeywords
in the generation phase, and the server S can take proper
measures (without sacrificing too much security/usability) in
the authentication phase. For example, S can employ stricter
rate-limiting policies and Captcha schemes to thwart malicious
login attempts, and set customized alarm policies to give more
weight to strong honeywords than weak ones (as it would be
more difficult to guess strong honeywords correctly [6]). Also
note that flatter password-model based honeyword methods
might be easier to DoS attacks, because popular passwords are
now more likely to be selected as honeywords. Thus, S can
further employ blocklists and password strength meters (PSM,
like fuzzyPSM [54] and Zxcvbn [59] as suggested in [28]) to
reduce the use of weak passwords during user registration, and
in this case, weak honeywords shall similarly be blocked.

C. Evaluation metrics

This work adopts the two evaluation metrics proposed in
[53] to measure the advantages of a distinguishing attacker,
or equally the goodness of a honeyword method.
Flatness graph plots the chance y of finding the real password
by making x login attempts per user, where y ∈[0, 1] and
x≤k (actually, x≤T1). This metric measures the average-
case performance of a honeyword method. The ϵ-flat metric
introduced in [35] is just the first data point (x=1, ϵ=y|x=1)
on the flatness graph, i.e., the ϵ-flat metric is incorporated.
Success-number graph plots the number y of successfully
identified real passwords, when the attacker A has made a
total of x honeyword login attempts, where x≤T2. To find
more real passwords, the best strategy for A is to first try
these most probable passwords. Thus, this metric measures
the worst-case performance of a method.

D. Probabilistic password models

We introduce six representative probabilistic password mod-
els our new methods build on: PCFG [58], Markov [40], List
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[53], and their corresponding targeted versions converted by
using the PII type-based tags [56]. They all require a training
set. We do not consider the neural-network-based model,
because it is ineffective when A’s guess number is small (e.g.,
≤T2) [43] and thus unsuitable for honeyword settings.
PCFG. This model was first introduced by Weir et al. [58], and
it has been established to be one of state-of-the-art password
cracking algorithms by recent research (e.g., [40], [42], [56]).
This model treats passwords as a combination of segments.
For example, “wanglei@123” is divided into the L segment
“wanglei”, S segment “@” and D segment “123”, and its base
structure is L7S1D3. The probability of “wanglei@123”
Pr(wanglei@123) is the product of Pr(L7S1D3), Pr(L7 →
wanglei), Pr(S1 → @) and Pr(D3 → 123).
Markov. Unlike the PCFG-based model, there is a parameter
determining the Markov-based model [40]—the order of the
Markov chains. A Markov chain of order d, where d is a
positive integer, is a process with a Markov assumption:

Pr(ci|c1c2 · · · ci−2ci−1) = Pr(ci|ci−d · · · ci−1).

=
Count(ci−d · · · ci−1ci)

Count(ci−d · · · ci−1ci−1)
.

where Count(ci−d, · · · , ci−1, ci) denotes the number of oc-
currences of the string ci−d · · · ci−1ci in the training set. That
is, the probability of the next character in a string is based
on a prefix of length d. Then, the probability of a string
s=c1c2 · · · cn is:

Pr(s) = Pr(c1) Pr(c2|c1) · · ·Pr(cn|cn−1ci−2 · · · c1)

=
n∏

i=1

Pr(ci|ci−1 · · · ci−d).

List is a simple yet useful model: ∀s ∈ D, PD(s) =
Count(s)

|D| ,
where D is a multi-set (e.g., a leaked password dataset) and
Count(s) is the occurrences of password s in D.
TarPCFG. This model was first proposed in [56] and also
called TarGuess-I. Besides the L, D, S tags originally defined
in PCFG [58], TarPCFG defines a series of new type-based
PII tags (e.g., N1∼N7 and B1∼B10). For a type-based PII tag,
its subscript number denotes a particular sub-type of one kind
of PII usages but not the length matched, contrary to the L, D,
S tags. For instance, N stands for all kinds of name usages,
where N1 for full name (e.g., wang lei) and N2 for family
name (e.g., wang); B stands for all kinds of birthday usages,
and B1 for full birthday in YMD format, etc. Each PII tag can
then be operated in the same way with L/D/S tags. TarPCFG
outperforms PCFG by 412%∼740% within 100 guesses.
TarMarkov. As shown in [56], to convert a traditional Markov
model into a PII-enriched Markov model, one only needs to
include the type-based PII tags {N1, . . . ,N7; B1, . . . ,B10; . . .}
into the alphabet Σ (e.g., Σ = {95 printable ASCII characters}
in [40]) of the Markov n-gram model, and all operations for
these PII tags are the same with the atomic characters in Σ.
TarList. As the List model can be essentially seen as a PCFG
without the L, D and S tags, it can be similarly converted into
a targeted model with that of PCFG.

TABLE II
BASIC INFO ABOUT OUR 10 PASSWORD DATASETS.†

Dataset Web service Language When leaked Total PWs With PII
Tianya Social forum Chinese Dec., 2011 30,901,241
Dodonew E-commerce Chinese Dec., 2011 16,258,891
CSDN Programmer Chinese Dec., 2011 6,428,277
Mango E-commerce Chinese July, 2015 1,074,742
Rockyou Social forum English Dec., 2009 32,581,870
000webhost Web hosting English Oct., 2015 15,251,073
Yahoo Web portal English July, 2012 442,834
12306 Train ticketing Chinese Dec., 2014 129,303 X
ClixSense Paid task platform English Sep., 2016 2,222,045 X
Rootkit Hacker forum English Feb., 2011 69,418 X
QNB∗ E-bank English April, 2016 79,580 X

†PW stands for password, PII for personally identifiable information.
∗QNB passwords are from e-Bank and used as high-value targets.

TABLE III
BASIC INFORMATION ABOUT OUR PII DATASETS.†

Dataset Language Items num Types of PII useful for this work
Hotel Chinese 20,051,426 Name, Birthday, Phone, NID∗

51job Chinese 2,327,571 Email, Name, Birthday, Phone

12306 Chinese 129,303 Email, User name, Name, Birthday,
Phone, NID

ClixSense English 2,222,045 Email, User name, Name, Birthday
Rootkit English 79,580 Email, User name, Name, Birthday

QNB English 77,799 Email, User name, Name, Birthday,
Phone, NID

† NID=National identification number, e.g., social security number.

Generating honeywords. Since probabilistic password mod-
els can produce a set of passwords (usually called guesses)
with probabilities, honeywords can be generated by uniformly
sampling from this probability space. For the List model,
we directly sample from this set of guesses; For other more
complex models, it is computationally prohibitive to explicitly
generate this set of guesses and then directly sample from it.
Instead, we sample from the interim probabilistic products
by using inverse CDF. Take PCFG [58] for an example.
We first use the inverse CDF to (uniformly) sample from
Pr(S→·) to obtain the base structure L7D3, and then similarly
obtain segments wanglei from Pr(L7→·) and 123 from
Pr(D3→·), respectively. For hybrid models, we first determine
which password model to be used according to their weights,
and then perform inverse CDF sampling on the selected model.
For targeted models (e.g., TarPCFG [56]), we first similarly
obtain samples which contain PII tags, and then substitute
the tags with user PII. For example, for user “John Smith”,
sampling from TarPCFG may first produce the interim item
N2123. Then, by replacing the family name tag N2 with
his family name Smith, we obtain the final honeyword
Smith123. For concrete examples of generated honeywords,
see the bottom of Fig. 1. Our constructions in Sec. IV follow
this basic idea, but further address a number of challenges.

E. Our datasets and ethics consideration
We evaluate the existing honeyword methods and our pro-

posed ones based on 11 large real password datasets (see
Table II and Table III), a total of 105.44 million passwords.
Our password datasets include four from English sites and
five from Chinese sites. For better comparison, these datasets
except Mango are the same with [53].

Particularly, four of our password datasets (i.e., 12306,
ClixSense, Rootkit and QNB) are associated with various
kinds of PII. To enable extensive targeted attacks, we ob-
tain nine PII-associated password datasets (see Table IV) by
matching the non-PII-associated password datasets with these
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TABLE IV
BASIC INFO OF OUR NINE PII-ASSOCIATED PASSWORD DATASETS THAT ARE CONSTRUCTED BY MATCHING EMAIL.

Dataset name PII-Dodonew PII-12306 PII-CSDN PII-Rootkit PII-000webhost PII-ClixSense PII-Yahoo PII-QNB
Size 161,517 129,303 77,216 69,330 153,390 2,222,045 16,307 77,799

PII-associated ones through email. As the canonical dataset
Rockyou only consists of passwords (with no user names or
emails), it will not be used when evaluating targeted threats.
For more information about our datasets, see Appendix A.

For ethical considerations, we only present the aggregated
statistical information and protect each individual account as
confidential. All our datasets are stored and processed on
computers not linked to the Internet. In addition, recovered
password hashes are deleted once the data analysis is com-
pleted, though it is likely that attackers would have already
cracked most of them [8], [29]. Our measures can secure the
recovered passwords just in case when we have cracked some
hashes that attackers have not, ensuring that no new risks is
brought to victim users. While attackers may exploit these
datasets for misconduct, our use is both beneficial for the
academic community to understand honeyword choices and
for security administrators to timely detect password leaks.
As our datasets are all publicly available from the Internet,
this work is reproducible.

III. OUR ATTACKING THEORIES

We now propose a series of theoretic models for charac-
terizing the attacker A’s best attack strategies in telling apart
the real password from a set of honeywords. Each of these
models is based on varied kinds of information available to
A (Table I). Particularly, we are the first to consider quite
realistic attackers who know user registration order. These
models guide us to design effective experiments with real
datasets to evaluate a given honeyword method.

A. Theoretical attacking models

As implied in Sec. II-B, there are two main goals of the dis-
tinguishing attacker A: (1) Global goal—identifying real pass-
words from a given password file F composed of n sweetword
lists {SW1, SW2, . . . ,SWn}, where SWi=(swi,1, . . . , swi,k),
1 ≤ i ≤ n; and (2) Local goal—identifying the real password
from a given sweetword list SWi of user Ui. Since A can at
most make T2 overall failed attempts for the system and T1
failed attempts per user, to achieve each goal she needs to try
these most probable sweetwords first.
Basic idea. We first show that A’s two goals can be best
achieved by using the same attacking strategy. Next, by ana-
lyzing and exploiting various properties of the two categories
of honeyword methods, we formulate what a basic attacker
A1’s optimal strategy is. Finally, we extend the best attacking
strategy for A1 to the other three types of attackers A2∼A4.

Theorem 1: Let pwi,j (1 ≤ j ≤ k) denote the event that Ui

selects swi,j as her real password, and hwi,t denote the event
that swi,t is produced as a honeyword for Ui. We have

Pr(pwi,j |SWi) =
Pr(pwi,j)

∏
l ̸=j Pr(hwi,l|pwi,j)∑k

t=1 Pr(pwi,t)
∏

l ̸=t Pr(hwi,l|pwi,t)
, (1)

under the assumption that hwi,1, . . . , hwi,j−1, hwi,j+1, . . . ,
hwi,k are mutually independent under the event pwi,j .1

The detailed proof can be found in Appendix C. This
theorem indicates that Pr(pwi,j |SWi) can be computed if
Pr(pwi,j) and Pr(hwi,t|pwi,j) are known. Fortunately,
Pr(pwi,j) can be obtained by using various password models
(e.g., the List model—directly from a leaked password
dataset), and Pr(hwi,t|pwi,j) can be obtained by analyzing
the properties of a given honeyword method.

Theorem 2: Let F denote the event that the file F is
produced as the password-file for all users, and the other
definitions comply with those in Theorem 1. We have

Pr(pwi,j |F ) = Pr(pwi,j |SWi), (2)

under the assumptions that users independently create pass-
words, and the assumptions of Theorem 1.

The detailed proof can be found in Appendix C. This
theorem indicates that, finding the most probable password
in SW1, . . . , SWn can be reduced into first finding the most
probable password within each sweetword list and then ranking
these candidate passwords. In this light, attacker A’s two goals
can be essentially achieved using the same attacking strategy.

We now summarize four properties that a honeyword
method may have. These properties can be used to classify
existing honeyword methods into two cases, and then we
simplify the computation of Eq. 1 for each case. The domain
of sweetwords is by default Dpw, the entire password space.
Let T (x) denote the sweetword space of x, that is, the set of
sweetwords obtainable from password x. We define:

P1: ∀sw1∀sw2, sw1 ∈ T (sw2) =⇒ T (sw1) = T (sw2).
This property states that any sweetword can generate
any other sweetword in a sweetword list. This is a
desirable property to achieve, because suppose swi,j ∈
SWi cannot generate some sweetwords that appear in
the list SWi, then it is certain that swi,j will not be the
real password. Otherwise, a paradox arises. The attacker
A can thus easily eliminate some non-real passwords
like swi,j without trying to log in. To formalize, this
property indicates that ∀t, T (swi,t) = T (swi,1), and
∀t, ∀l ̸= t,Pr(hwi,l|pwi,t) ̸= 0.

P2: ∀sw1∀sw2, ∀sw3 ∈ T (sw1) ∩ T (sw2),
Pr(hw3|pw1) = Pr(hw3|pw2).
This property states that every sweetword can be gener-
ated by any candidate password with equal probability.
All honeyword-generation methods we discuss satisfy
P1 and P2. For example, under t = 2 tweaking-
tail method, the probabilities of sweetword lovea0
conditioned on password being respectively loveu1
and lovee0 are the same.

1Note that, the assumptions in Theorem 1 comply with the fact that
the events hwi,1, . . . , hwi,j−1, hwi,j+1, . . . , hwi,k may be dependent
or independent on the event pwi,j .
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P3: ∀sw1, ∀sw2∀sw3 ∈ T (sw1),Pr(hw2|pw1) = Pr(hw3|pw1).
This property states that every sweetword generates
all sweetwords in its sweetword space with the same
probability. All non-password-model based methods we
discuss here (e.g., tweaking-tail) satisfy this property.

P4: ∀sw1∀sw2∀sw3,Pr(hw3|pw1) = Pr(hw3|pw2).
This property states that honeywords are unrelated with
the real password; when combined with property P1, it
indicates that ∀pw, T (pw) = Dpw.

Case 1. For these methods (i.e., all of non-password-model
based methods, like tweaking-tail [35]) that satisfy the prop-
erties P1∼P3, it follows that ∀i∀j, ∀l ̸= j,Pr(hwi,l|pwi,j) ≡ c,
where c > 0 is a constant. Now, we can derive

Pr(pwi,j |SWi) =
Pr(pwi,j)∑k
t=1 Pr(pwi,t)

, (3)

where both Pr(pwi,j) and Pr(pwi,t) can be obtained by using
various password models (e.g., List, PCFG-based [58]).

Eq. 3 fundamentally explains why the “normalized top-
PW” attacking strategy in Sec. 3.2 of [53] is effective: This
strategy accords with our above theory and is the optimal one
against Juels-Rivest’s four methods [35]. It in turn suggests
that, for these honeyword methods in [35] to achieve 1

k -flat
(i.e., to be perfect), all k sweetwords in the list SWi shall
have an equal probability to be selected as Ui’s real password
PWi. In other words, given the real password PWi, a real-
password related method needs to produce k− 1 honeywords
with equal probability to be Ui’s password as PWi a priori.
This is inherently unachievable due to the fact that user-chosen
passwords follow the Zipf’s law [52]: pr = C · rs- C · (r−1)s

≈ C · s · rs−1, where pr denotes the probability of the rth
popular password, and s∈[0.15, 0.30] and C∈[0.001, 0.1] are
constants. As pr decreases sharply with r when r is small, it is
difficult to find suitable honeywords for relatively popular real
passwords. This outlines the need for new design techniques
beyond the real-password related ones.
Case 2. For methods (e.g., Honeyindex [24] and all our meth-
ods) that comply with the properties P1, P2 and P4, it follows
that ∀sw1, sw2, sw3 ∈ Dpw, Pr(hw3|pw1) = Pr(hw3|pw2).
For simplicity, we write Pr(hw3|pw1) as PrHW(sw3), which
means that the probability of producing sw3 as a sweetword
only depends on the underlying honeyword method HW . Sim-
ilarly, we use PrPW(sw1) to denote Pr(pw1): The probability
of selecting the string sw1 as a real password. Now, we can
simplify Eq. 1 to be:

Pr(pwi,j |SWi) =

PrPW(swi,j)
PrHW(swi,j)∑k
t=1

PrPW(swi,t)
PrHW(swi,t)

, (4)

where both PrPW(swi,j) and PrPW(swi,t) can be obtained by
using various password models (e.g., List and Markov-based
[40]), and both PrHW(swi,j) and PrHW(swi,t) can be com-
puted by the corresponding honeyword-generation method.

Eq. 4 points out how to best attack all our honeyword-
generation methods, in which honeywords are independent
of the user’s real password. It in turn suggests that, for

such methods to achieve perfect flatness, they shall satisfy
∀pw ∈ Dpw,PrHW(pw) = PrPW(pw). In other words, the
probability distribution model (function) PrHW(·) of such
methods shall be equal to the password distribution model
PrPW(·) of the authentication system. It conforms to our
intuition, because password and honeyword would be indis-
tinguishable if they have the same distribution.

This in turn indicates that, for a method to be perfect,
PrHW(·) shall be the same with PrPW(·), while the latter
primarily depends on the underlying system (e.g., language,
service type and password policy) and can be approximated by
various probabilistic password models (e.g., List, PCFG-based
[58], Markov-based [40] and TarGuess [56]). This suggests
that these password models can be potentially employed to
build honeyword methods (i.e., PrHW(·)), and we show how
to make it a reality in the next section.

B. Three extensions
In the above, we have only investigated the best attacking

strategies for a distinguishing attacker A who is with capa-
bilities of A1 (see Table I). A1 does not exploit user PII
or user registration order. Yet, in reality a large fraction of
users (i.e., 36.95%∼51.43% [53]) build passwords with their
own PII; in Sec. IV, we show user registration order can also
be exploitable. We now provide the best attacking theory for
attackers A2, A3 and A4, respectively.

We demonstrate that, similar as attackers of type-A1, the
attackers of type- A2, A3 and A4 have the same equations of
best attacking theories except with one more condition X.

Pr(pwi,j |SWi,X) =
Pr(pwi,j |X)

∏
l̸=j Pr(hwi,l|pwi,j ,X)∑k

t=1 Pr(pwi,t|X)
∏

l̸=t Pr(hwi,l|pwi,t,X)
, (5)

where the condition X is the personally identifiable informa-
tion (PII) for type-A2 attacker, the registration order Reg for
type-A3 attacker and (PII,Reg) for type-A4 attacker. In what
follows, we take X=PII for a concrete example.

Theorem 3: Let pwi,j (1 ≤ j ≤ k) denote the event that
Ui selects swi,j as her password, hwi,j denote that swi,j is
produced as Ui’s honeyword, and PII denote Ui’s PII. We have

Pr(pwi,j |SWi,PII) =
Pr(pwi,j |PII)

∏
l̸=j Pr(hwi,l|pwi,j ,PII)∑k

t=1 Pr(pwi,t|PII)
∏

l̸=t Pr(hwi,l|pwi,t,PII)
,

under the assumption that hwi,1, . . . , hwi,j−1, hwi,j+1, . . . ,
hwi,k are mutually independent under the event (pwi,j ,PII).

The detailed proof can be found in Appendix C.
We now instantiate/simplify Eq. 5, and derive the optimal

honeyword attacking strategies for type-A2∼A4 attackers un-
der these two cases of different honeyword methods.
For attackers of type-A2. As with a type-A1 attacker, there
are two cases (see the detailed definition in Sec. III-A) to be
considered for different types of honeyword methods.

Similar to Eq. 3, Eq. 6 explains that for non-password-model
based methods to be secure, probabilities of all sweetwords
in the same sweetword space should be approximately the
same under targeted password models. This is more difficult
to achieve than the trawling scenario, because the probabilities
of targeted password models would change more drastically
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[56]. Eq. 7, like Eq. 4, shows that for password-model based
methods to be secure, the targeted distribution of honeywords
should be close enough to the distribution of passwords.

Case1 : Pr(pwi,j |SWi,PII) =
PrPW(swi,j |PII)∑k
t=1 PrPW(swi,t|PII)

. (6)

Case2 : Pr(pwi,j |SWi,PII) =

PrPW(swi,j |PII)
PrHW(swi,j |PII)∑k
t=1

PrPW(swi,t|PII)
PrHW(swi,t|PII)

. (7)

For attackers of type-A3. As user registration order is mainly
meaningful for password-model based methods, a type-A3

attacker is restricted to Case 2 in Sec. III-A. More specifically,
for Eq. 4, the attacker A can improve PrPW(swi,j) to be
PrPW(swi,j |Reg) and PrHW(swi,t) to PrHW(swi,t|Reg) by
using user registration order (e.g., by adaptively updating her
training set):

Pr(pwi,j |SWi,Reg) =

PrPW(swi,j)
PrHW(swi,j |Reg)∑k
t=1

PrPW(swi,t)
PrHW(swi,t|Reg)

. (8)

For attackers of type-A4. When a type-A3 attacker is further
equipped with user PII, she can improve her advantages by
combining Eqs. 7 and 8 to get:

Pr(pwi,j |SWi,PII,Reg) =

PrPW(swi,j |PII)
PrHW(swi,j |PII,Reg)∑k
t=1

PrPW(swi,t|PII)
PrHW(swi,t|PII,Reg)

. (9)

C. Applications of our attacking theories

We now show how to apply the above attacking theories
to design more effective attacks. Without loss of generality,
here we take the tweaking-tail method in [35] as the target
method. First of all, since Theorems 1 and 2 are general
(according to their definitions), so they can be readily applied
to any method. The next step is to choose the right attacking
theories by analyzing the properties of the method under study.
Since the tweaking-tail method satisfies the Property 1∼3, for
a type-A1 attacker, Eq. 3 is applicable; for a type-A2 attacker,
Eq. 6 is applicable. Since Ui’s honeywords generated by the
tweaking-tail method only relate to Ui’s real password PWi,
the registration order will be useless. Thus, in this case, type-
A3 and A4 attackers will not be more effective than type-A1

and A2 ones, respectively. In all, mainly Eqs. 3 and 6 are
helpful for attacking the tweaking-tail method.

Essentially, Wang et al.’s empirical evaluations [53] of Juels-
Rivest’s four methods [35] can be seen as some applications
of our attacking theories Eqs. 3 and 6, while their empirical
evaluations of two password-model based methods (i.e., PCFG
and Markov) can be seen as the applications of our attacking
theories Eq. 4. More specially, their “Norm top-PW” attacks
(see Fig. 7 of [53]) against Juels-Rivest’s four methods [35]
are instantiations of Eq. 3 for the type-A1 attacker, and Eqs.
6 for the type-A2 attacker; their “Norm PW-model” attacks
(see Fig. 10 of [53]) against password-model based methods
are instantiations of Eq. 4. This explains why Wang et al.’s
attacks are effective, and resolves their open question [53]:
“Is our attacking strategy optimal?”

Wang et al. [53] show that, if the attacker A2 exploits the
victim’s PII but the honeyword generation method does not
consider user PII, A2 can indeed improve her chance. Also
take the Tweaking-tail method as an example. As revealed
in Fig. 7(a) of [53], A2 can guess 47.1%∼61.3% more real
passwords when T2=104, and achieve 40.9%∼51.6% more
success rates in terms of the ϵ-flatness metric (see the point
(x=1, y=0.5) in Fig. 7(d) of [53]). What’s most disturbing
is that, against every method, PII-enriched attackers now can
attain over 49.5% of success rates in distinguishing the real
password from 19 honeywords with only one guess (i.e., being
0.495+-flat), while the desirable, optimal security is 0.05-flat.

Fig. 2. Success-number graph of the
honeyword method 1

3
List + 1

3
Markov

+ 1
3

PCFG (see Sec. IV). Trained on
Dodonew-tr, tested on Dodonew-ts.
Uncracked sweetwords are selected in
four ways: randomly or deemed strong
by Zxcvbn [59], per account (Local)
or among all sweetwords (Global).

In the above we assume
that all hashed sweetwords
can be cracked and known to
A, yet in reality there might
be a portion of sweetwords
that are difficult to be recov-
ered. Still, this new assump-
tion does not change our
optimal attacking strategies
in terms of flatness: Now
the attacker only needs to
apply our strategy to these
cracked sweetwords. This is
essentially the “nut” strategy
in [35]: The attacker is more likely to crack user-chosen
passwords, but not hard honeywords (“nuts”).

Comparatively, it is challenging to derive the optimal strat-
egy in terms of success number under the new assumption,
but we empirically show that simple approximations can
work very well. We experiment with the attacker’s strategy
that treats all uncracked sweetwords as honeywords. The
server uses the 1

3List+ 1
3Markov+1

3PCFG model to generate
honeywords, and the trawling attacker accordingly uses the
strategy in Sec. IV to instantiate probabilistic models. Fig.
2 shows that when 20% uncracked sweetwords are selected
randomly, A’s success number is close to the ideal case (where
all sweetwords are cracked); when 20% strongest sweetwords
are marked as uncracked according to the Zxcvbn PSM [59],
A can even gain a higher advantage than the ideal case. This is
because Zxcvbn [59] helps eliminate these top 20% strongest
sweetwords which are more likely to be produced by password
models as honeywords. We obtain similar results no matter
the uncracked sweetwords are selected locally (per account)
or globally (in the whole sweetword file).

Summary. We, for the first time, propose a series of theoretic
honeyword guessing models, each of which is based on varied
kinds of capabilities allowed to an attacker. Particularly, we are
the first to consider realistic attackers that know the order of
user registration. These models enable us to design effective
experiments with real-world datasets to evaluate the strength of
a honeyword-generation method. All this pushes the evaluation
of honeywords toward statistical rigor, and also inspires the
design of robust honeyword-generation methods.
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TABLE V
AN OVERVIEW OF THE DESIGN AND EVALUATION SPACE OF OUR NEW HONEYWORD-GENERATION METHODS.†

Attacker type Our proposed method How best to evaluate (i.e., compute the probabilities in Sec. III)
(see Table I) Password models used Solutions to challenges How best to instantiate PrPW(·) How best to instantiate PrHW(·)

Type A1 List +1 smooth List; +1 smooth, PrPW(·)
PrHW(·)=1 smooth Same with our method

Type A2 TarList +1 smooth TarList; +1 smooth, PrPW(·)
PrHW(·)=1 smooth Same with our method

Type A3
1
3

List+ 1
3

Markov+ 1
3

PCFG
+1 smooth; Internal training;

List; +1 smooth, PrPW(·)
Pr

H̃W
(·)=1 smooth Same with our methodPrPW(·)

Pr
H̃W

(·) >20 tweak tail

Type A4

1
3

TarList+ 1
3

TarMarkov +1 smooth; Internal training;
TarList; +1 smooth, PrPW(·)

Pr
H̃W

(·)=1 smooth Same with our method+ 1
3

TarPCFG PrPW(·)
Pr

H̃W
(·) >20 tweak tail

†The hybird method xList+yMarkov+zPCFG (x, y, z ∈[0,1] and x+y+z=1) means: x fraction of honeywords are from List model, y from PCFG, etc.

IV. OUR NEW CONSTRUCTIONS

We now elaborate on our new construction techniques of
honeywords. Inspired by the above best “swords” (including
the attacking theories and experiments), we forge the cor-
responding “shields”—four secure and efficient honeyword-
generation methods based on various representative password
models (e.g., trawling guessing models [40], [58] and targeted
guessing models [56]). However, the use of these password
models is not straightforward, but requires significant, novel
and creative efforts, and we show this through a series of
exploratory investigations. Besides, we manage to resolve
several previously unexplored challenges that arise in the
practical deployment of a honeyword method.

A. Overview of our new constructions
The real-password related design approach in [35] have two

fundamental limitations. First, it easily reveals the features
(e.g., length and character composition) of the real password
PWi to the attacker A, once A has offline recovered a single
sweetword from the password hash file F . What’s worse, it is
inherently unable to produce k-1 honeywords with the equal
probability of Pr(PWi), because that user passwords follow
the Zipf’s law (see Case 1 in Sec. III-A). Thus, we prefer the
real-password unrelated design approach.

We consider four types of distinguishing attackers as listed
in Table I, and design one best honeyword method for each
of them. There is no single silver bullet. Our basic idea is
that, under a different kind of attacker, the best attack will be
different; to resist this different best attack, we need a different
best honeyword method. This results in our four methods
in Table V. The probabilistic password models (e.g., PCFG
[40] and Targeted-PCFG [56]) cannot be readily applied, but
require a number of tunings in both the design and evaluation
process. These tunings are particularly challenging when A is
with user registration order. The techniques in Table V and
their underlying rationales will be elaborated in what follows.

B. Exploratory experiments
With the attacking theories (see Eqs. 4, 7∼9 in Sec.

III-B), we now investigate which models with what tunings
(parameters) can best withstand a given type of attackers.
For attackers of type-A1. In this case, Eq. 4 applies. As there
are three kinds of major password models (i.e., List, Markov
and PCFG), a total of 7(=

(
3
1

)
+
(
3
2

)
+
(
3
3

)
) honeyword methods

will arise from combining these 3 password models. We attack

these 7 honeyword methods by using three different password
models. Fig. 6 in Appendix E shows that the List-based
method always parallels with the perfect method in terms of
both success-number and flatness: Whichever password model
is used to instantiate PrPW(·) in Eq. 4,2 A can only distinguish
about 526=104/19 passwords (see Fig. 6(a)∼6(c)); A only
gains a 5% success rate with one guess against 20 sweetwords
(see Fig. 6(d)∼6(f)). Moreover, the List-based attacks are the
most effective among three password models.

All this indicates that: (1) We shall prefer the List-model
based honeyword method to instantiate PrHW(·) when subject
to a type-A1 attacker; and (2) Wang et al.’s proposal [53] of
using the hybrid method 1

3List+ 1
3Markov+1

3PCFG to resist
a A1 is not optimal. We note that, when A does not use
List-model based attacks (see Figs. 6(e) and 6(f)), Markov or
1
3List+ 1

3Markov+ 1
3PCFG based methods sometimes perform

better than the perfect method and the List method. This does
not contradict with our preference but only emphasizes that A
is ineffective when does not use List-model based attacks.

We note that when A uses the List-based password model
to instantiate PrPW(·), there will be a number of sweetwords
that are with a large PrPW(·)

PrHW(·) , yet these sweetwords are not real
passwords. We further investigate the issue and find that this is
caused by the “+1” smoothing technique (proposed by [53]):
If swi,j ̸∈ D, set Pr(swi,j)= 1

|D|+1 . Wang et al. [53] have
experimented with three smoothing methods (i.e., Laplace,
Good-Turing and +1), and found the +1 method most effective.
This kind of smoothing is suitable for attacking popular
passwords, which is the case for Juels-Rivest’s methods [35].
However, special attention shall be given to our methods where
unpopular passwords are vulnerable (see Appendix D). For
these extremely unpopular passwords, 1

|D|+1 is still too large

and will result in a large PrPW(·)
PrHW(·) , causing a false positive. We

devise a smoothing technique for A in such cases: If swi,j

̸∈ D and PrPW(swi,j)
PrHW(swi,j)

> 1, then set PrPW(swi,j)
PrHW(swi,j)

=1. As a result,
these false positives can be eliminated.
For attackers of type-A2. A now further exploits user PII
as compared to a type-A1 attacker, and the Eq. 7 applies.
Thus, the corresponding method shall be able to capture the
PII semantics in passwords. This leads to our design of the
TarList method to best resist against a type-A2 attacker. The
rationale is that the TarList method inherits the merits of the

2To be most effective, A shall always use the system’s honeyword method
PrHW(·), which is public info, to instantiate her PrHW(·).
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(a) 7 methods under a type A2 attacker. The results
are desirable and the experiment succeeds.

(b) 7 methods under A3; PrHW(·) uses an
external train set, without PrPW(·)

PrHW(·)>thd smooth.
(c) 7 methods under A3; PrHW(·) uses an internal
training set, with no PrPW(·)

PrHW(·) check.

(d) Four versions of the method List&PCFG
&Markov (= 1

3
List+ 1

3
Markov+ 1

3
PCFG) that tackle

the PrPW(·)
PrHW(·)>thd smooth, UB=user base.

(e) Three hybrid methods under A3; PrHW(·)
uses an internal training set (i.e., the passwords of
the target site) and PrPW(·)

PrHW(·) >20 smooth.

(f) Three targeted hybrid methods under A4;
PrHW(·) uses an internal training set (i.e., passw-
ords of the target site) and PrPW(·)

PrHW(·)>20 smooth.

Fig. 3. Exploratory experiments examining practical issues under attackers A2 ∼ A4, trained on Dodonew-tr and tested on Dodonew-ts.
TarList under A2, 1

3
List+ 1

3
Markov+ 1

3
PCFG under A3, and 1

3
TarList+ 1

3
TarMarkov+ 1

3
TarPCFG under A4 are the best ones.

List method as discussed above and can further deal with user
PII. As expected, Fig. 3(a) shows that the optimal attacker only
achieves a 5% success rate with one guess when k=20. A can
only distinguish 531 real passwords when T2=104, quite close
to that of the perfect method (i.e., 526=104/19). Hereafter we
give A’s success-number (at 104 failed attempts) instead of
the whole graph due to space constraints.

For attackers of type-A3. A now further exploits the user
registration order as compared to a type-A1 attacker, and Eq.
8 applies. With the knowledge of user registration order, A
now can figure out which sweetwords are popular or not (at a
given time point). As revealed in Appendix D, the List-based
password model alone is vulnerable to unpopular passwords.
For example, if A finds a sweetword that has never appeared
in the earlier users’ sweetlists, then she can be certain that
this sweetword is the current user’s real password. Thus, the
List honeyword method is unsuitable for a type-A3 attacker.
Fortunately, at the same time we find that the PCFG-based
and Markov-based password models are good at capturing
unpopular passwords, even though they each has their own
defects (see Appendix D). This leads to our design of the
hybrid method 1

3List+1
3Markov+1

3PCFG to best resist a type-
A3 attacker. For hybrid models, the way to instantiate the best
strategy for the type-A3 attacker is similar to attacker A1;
that is, the type-A3 attacker uses the smoothed List model to
instantiate her password model, and uses the same honeyword
generation model as the server to instantiate her honeyword
model. In particular, A adaptively updates her honeyword
model using the sweetword file to increase her advantage.

However, there are a number of practical issues to be

addressed when applying the hybrid-model based honeyword
design approach, and the two most challenging ones are: (1)
Can we use external password datasets to be the training set
when the user base is not large?; and (2) What can we do when
encountering a sweetword swi,j such that PrPW(swi,j)

PrHW(swi,j)
≫1?

We now investigate the influence of external training
datasets. For example, suppose a start-up web service wants
to adopt a honeyword system when it only has 104 users.
Generally, such a small user-base is considered insufficient
to be used as training sets for password models like PCFG
[40] and TarPCFG [56]. Thus, it is natural to employ an
external training set. However, Fig. 3(b) shows that such an
approach is insecure: Under A3, 1

3List+ 1
3Markov+1

3PCFG
only achieves 0.2525-flatness when the external Tianya
training set is used. The reason is that: The external dataset
is static, while the password distribution of the service under
study is dynamic as new users register, and as time goes on,
these two password distributions will be evidently different.
A3 can exploit this fact. We prefer only using the internal
training set, that is, the password dataset of its own users. As
shown in Fig. 3(c), things go better (ϵ-flatness goes down by
5%∼10% in general), but the situation is still undesirable.

Fortunately, as discussed in Sec. IV-A, these sweetwords x
resulting in a large PrPW(x)

PrHW(x) are mainly unpopular ones (i.e.
with frequency f<10). This makes it reasonable to switch
to the tweaking-tail method which is good at producing flat
honeywords when x is unpopular: For password x, if we find
PrPW(x)
PrHW(x) is larger than a threshold thd, we use the tweaking-tail
method. Note that, when distinguishing a sweetword x, A shall
also switch to Eq. 3 when finding that PrPW(x)

PrHW(x)>thd. Now,
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how to set thd? After a number of experiments, we find that
thd=20 performs the best. Fig. 3(d) presents an illustration.

When user Ui registers, the site first produces k-1 hon-
eywords using our hybrid method 1

3List+ 1
3Markov+1

3PCFG
trained on the internal training set, and then Ui’s password is
inserted into the training set for update. Note that all password
models we consider in this work can be trained in a streaming
fashion, and thus there is no need to temporarily keep plaintext
passwords on the server for training. Fig. 3(e) shows that,
after addressing these practical issues, our hybrid method
can be 0.178-flat (resp. 0.2525-flat in Fig. 3(b)) against A3

when k=20. A3 can only distinguish 736 real passwords when
T2=104, suggesting our method is promising against A3.
For attackers of type-A4. A now further exploits user PII as
compared to a type-A3 attacker, and the Eq. 9 applies. This
leads to our design of the 1

3TarList+1
3TarMarkov+1

3TarPCFG
method to best resist A. The rationale is the same with the case
for a type-A2 attacker. As expected, the most harsh attacker
only achieves a success rate of 18.2% with one guess against
a list of 20 sweetwords (see Fig. 3(f)), and recovers mere 981
real passwords when the global threshold T2=104.

Fig. 4. DoS success rate against
1
3

List+ 1
3

Markov+ 1
3

PCFG. Trained on
Dodonew-tr, tested on Dodonew-ts.
“Blocklist” means a 100k blocklist is
used to filter weak passwords (and
honeywords), while “Normal” means
no blocklist is used. “DoS success
rate” means the probability of hitting
T1=1 honeyword for each account.

DoS attack. As our honey-
word methods can produce
honeywords that are nearly
indistinguishable from real
passwords, the fraction of
popular honeywords would
be close to the fraction of
popular passwords. There-
fore, when server S fails to
adopt proper mitigations, a
DoS attacker could trigger
false alarms by deliberate-
ly submitting popular pass-
words. As discussed in Sec.
II-B, S can effectively mitigate DoS threats by using block-
lists, PSMs, rate-limiting and customized alarm policies, etc.

We now conduct two preliminary experiments to show the
effect of blocklists against DoS attacks. We first construct
a blocklist with 105 popular passwords for Chinese users
according to [56]; a blocklist of size 105 is widely recom-
mended [19], [31]. To test the DoS mitigation effectiveness
of our blocklist on the 1

3List+ 1
3Markov+1

3PCFG method, we
filter passwords that appear in the blocklist to simulate the
deployment of blocklist on registration, and similarly block
weak honeywords in the honeyword generation phase. Fig. 4
shows that introducing a blocklist significantly alleviates the
DoS risks: When T1=1, with 100 online guesses the DoS
attacker can achieve a success rate of 6.08% when k=20 and
a success rate of 12.13% when k=40, while this figure will
be 0.003% for k=20 and 0.025% for k=40 when T1=3 (see
Fig. 4 in Appendix E). This indicates that a proper blocklist
can effectively mitigate DoS attacks in a large part. Further
coupled with PSMs, stricter rate-limiting and customized
alarm policies, DoS threats can be further mitigated.

Model extraction attack. For the attacker that can some-
how obtain the adaptive training model (e.g., compromise
S), it is possible to extract high entropy passwords (e.g.,
fullname+birth year) directly from the model without online
and offline guessing. Nevertheless, this risk is very limited.
First, real user passwords are only used in training, and
they can be deleted from the memory/disk once honeyword
models are generated/updated. Second, A still has to generate
a set of password guesses from (smoothed) password models,
and invest considerable efforts to perform offline guessing;
otherwise, it is impossible to know which password belongs
to which user account. Finally, our honeyword system remains
robust even when all sweetwords are recovered.
Summary. We retool probabilistic password cracking models
to build flat honeywords. This approach has significant benefits
in that: Future improvements to password models (e.g., deep
learning) can be included easily into our honeyword meth-
ods. We manage to overcome several previously unexplored
challenges that arise in the practical adoption of password
models. This resolves the question of “can the password
models underlying cracking algorithms (e.g., PCFG [58]) be
easily adapted for use” as left in Juels-Rivest’s work [35].

V. EVALUATION RESULTS

We now examine the scalability of our methods, and eval-
uate their security by both experiments and user-studies.

A. Scalability with varying k

Clearly, the security of a honeyword method depends on
the parameter k which indicates how many sweetwords are
associated with each account. In Juels-Rivest’s work [35], k
is recommended to be 20, as they believed that it is acceptable
for the attacker A to gain “a chance of at most 5% of picking
the correct password” when given 20 sweetwords (i.e., being
ϵ=0.05 flat). Existing literature only evaluates the situation of
k=20. Now a natural question arises: How can we set k to
ensure that the method achieves an expected security level
(e.g., 0.05-flat)? In other words, how will a method perform
with varying k? We call this property as a method’s scalability.

As shown in Fig. 8(a) in Appendix E, a security goal
of 0.05-flat seems prohibitively far away: Storing too many
sweetwords for each user will not only increase storage
cost but also delay login time. Though our hybrid method
1
3List+ 1

3Markov+1
3PCFG (under A3) shows much better scala-

bility (see Fig. 8(b)), it only reaches 0.1-flat when k=200. Note
that ϵ decreases rather slowly as k increases. Interestingly, we
find that ϵ and k well follow ϵ = a + b

kc , where a=0.084,
b=1.4468, c=0.8329. As k → +∞, ϵ decreases monotonically
and ϵ → a=0.084>0.05. This suggests that, for some password
distributions, 0.05-flat is likely out of practical reach.

As shown in Fig. 8(b), our method 1
3List+ 1

3Markov
+1
3PCFG reaches ϵ=0.20 when k=20, ϵ=0.17 when k=30,

ϵ=0.15 when k=40, and ϵ=0.14 when k=50. We have
experimented with other combinations, and got similar
diminish returns. Since services that adopt honeywords
generally would be security-critical, we recommend k=40 to
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(a) Success-number graph: Tweaking-tail. (b) Success-num graph: 1
3 List+ 1

3 Markov+ 1
3 PCFG. (c) Succ-num: 1

3 TarList+ 1
3 TarMarkov+ 1

3 TarPCFG.

(d) Flatness graph: Tweaking-tail. (e) Flatness graph: 1
3

List+ 1
3

Markov+ 1
3

PCFG. (f) Flatness: 1
3 TarList+ 1

3 TarMarkov+ 1
3 TarPCFG.

Fig. 5. Evaluating tweaking-tail [35] (under A1) and our two methods (under A3 and A4, respectively) by using seven password datasets.
50% of each dataset is used as training and another 50% as testing. Our methods achieve 0.15-flat under harsh attackers.

ensure an acceptable level of security (i.e., 0.15-flat) while
being reasonably cost-effective as shown in Sec. V-B.

B. Empirical evaluation results
Note that our List method and TarList method will always

yield the same security results as a perfect method under type-
A1 and A2 attackers, respectively. This is because the optimal
attacker needs to employ the List password model PrD(·) to
compute Eq. 3, and the server employs the PrD′(·) to generate
honeywords, while A’s training set D can only approximate
but will never equal the target site’s password distribution D′.
This has been empirically shown in Figs. 6 and 3. Thus, we
mainly evaluate our remaining two methods.

To avoid overfitting, the datasets used in all above explora-
tory experiments will not be used here. For fair evaluation,
we perform attacks simulating a type-A1 attacker against
tweaking-tail, attacks simulating a type-A3 attacker against
1
3List+1

3Markov+ 1
3PCFG, and attacks simulating a type-A4

attacker against 1
3TarList+ 1

3TarMarkov+1
3TarPCFG. This is

because each method is designed under a specified security
model, and it is only sensible to claim some form of security
under that model. Fig. 5 shows that for most of the datasets,
our methods can be 0.15-flat, while this figure for tweaking-tail
is 0.2+ and actually, our methods are evaluated under much
harsher attackers. Particularly, in our methods there are orders
of magnitude less “low-hanging fruits”(see Figs. 5(b)∼5(c))
that can be obtained by A. In all, our empirical results well
accord with the exploratory experiments, and when setting
k=40, our methods can ensure the security level of 0.15-flat.
Discussion. Fig. 5 shows that the language, service type
and size of the training/testing datasets all have a significant
influence on honeyword security. This is in line with [53],
[55]. There is no sign from our evaluation results that pass-
words/honeywords from English users are more vulnerable or

secure than those of Chinese users. Moreover, the perceived
risk (service type) of the site will greatly influence users’
password behaviors. This has been confirmed in password
research [32], [55]. For instance, users on the QNB banking
site (see Table II) have, on average, less-common passwords:
The top 10 most popular passwords only account for 0.59%
of QNB users, while the figure for the remaining 10 datasets
(in Table II) is 4.16% on average. Thus, the closer the training
set is to the passwords of the target site, the better/flatter the
generated honeywords will be. This explains why adaptive
password/honeyword models are preferable. Results of QNB
in Fig. 5 demonstrate that our adaptive honeyword methods
are suitable for highly sensitive services like Banking.
Overheads. The overall overheads of our methods are low and
acceptable, because: (1) All training, generation and update
processes are conducted on the server side and need no
user interactions/feedbacks, and thus they do not impair user
experience; (2) Training is costly, but it is only conducted
once; and (3) Generation and update processes mainly entail
some table lookups, which is lightweight. For instance, when
k=40 and trained on 32M Rockyou, training costs 70 min on
a common PC; the generation time is 2ms; honeyword storage
for 107 users costs 12.8GB when using PBKDF2-SHA256.

C. Human-based evaluation results
While our methods can provide desirable security against

computer-automated attackers, whether the conclusion still
holds under semantic-aware humans is unknown. This is of
particular concern when considering that, there are many
semantics in passwords (e.g., bond007 and john1981) that
can be easily recognized by a human being but difficult to
be understood by an automated attacker. Thus, we recruited
11 graduate students who were taking a “network security”
seminar to participate in our evaluation.
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Setups. Before starting the experiments, our participants were
asked to read the honeyword-related literature [21], [24], [35],
and were informed of both Juels-Rivest’s four [35] and our
four honeyword-generation methods. One month later, they
were asked to take a quiz with questions covering various
aspects of honeywords, and all passed. Their expertise enables
them to comprehend all the twelve attacking scenarios inside
out, and to know clues/weaknesses and where and how to
look for them in telling honeywords and real passwords apart.
Hence, they are competent adversaries in our setting. For the
sake of incentive, we specify that, when given a list of k
sweetwords, 1 CNY will be awarded if a participant finds
the real password with the 1st attempt, 1

2CNY with the 2nd
attempt, and so on. The procedure of human experiments is
established with the help of two usable-security researchers
with survey expertise.

The experiment lasted six consecutive days during a holiday.
On each day, one attacking scenario is accomplished in the
morning and another in the afternoon. During each scenario,
a participant will be given 40 sweetword lists, each of which
includes 20 sweetwords, and participants are asked to finish
within 30 minutes. This leads to a total consumption of
5280(=40×2×6×11) user accounts (with PII), which are
randomly drawn from the 161,517 PII-associated Dodonew
password accounts (see Table IV). The reason why we choose
Dodonew as the main dataset in this experiment is given in
Appendix E. We had initially attempted to include 40 sweet-
words in each sweetword list (and one scenario costs about 45
minutes), yet feedbacks from the two usable-security experts
signal that this is too fatiguing. The schedule was established
and sent to every participants before the experiment.

In the testing phase, they came to our lab to conduct the
attacks. Each computer stores a dozen of password datasets
that the participant can query, which simulates a basic attacker
with the type-A1 capability. For each attacking scenario, either
the method or attacker type will be different from the other
ones. For a type-A1 attacker, participants are only given 40
sweetword lists. For A2, the common PII of each victim will
be provided; for A3, the order of the sweetword list is just
the order of user registration; for A4, this is the joint case
of A2 and A3. For ethical considerations, all computers are
disconnected from the Internet, no paper or memory device
are allowed for recording, and Email suffix and NID are not
given to the participants to make the users less identifiable.

Results. Each sub-figure in Fig. 9 in Appendix E shows
the flatness curves for all 11 experts (denoted by A to
K) under a given attacking scenario. As summarized in
Table VI, the four methods in [35] achieve 0.40+-flatness
under Type-A1 attacker and 0.48+-flatness under Type-A2

attacker, far from perfect flatness. In comparison, both List
and 1

3List+1
3Markov+ 1

3PCFG methods achieve almost perfect
flatness (i.e., ϵ≈ 1

20 ) under non PII-aware attackers. Even when
attackers are PII-aware (i.e., Type-A2 and A4), our corre-
sponding methods still achieve 0.09−-flatness. This suggests
that our targeted methods can well capture user PII semantics.

As compared to the four methods in [35], all our four methods
are over 4.5=(0.4023/0.0886) times more secure in terms of
ϵ-flatness. To sum up, results suggest that our methods are
substantially better at resisting human-expert attackers.

Generally, when human experts are not provided with
the victim user’s PII, they are considerably more effective
than computer-automated algorithms (see Table X of [53]).
For instance, when the victims’ PII is not available, human
experts achieve a success rate of 40.23%∼55.00% (with just
one guess) at telling apart real passwords from honeywords
generated by Juels-Rivest’s four methods [35], while the figure
for computer-automated algorithms is 34.21%∼49.02%. When
human experts are provided with victims’ PII, their advantages
are comparable to PII-enriched computer-automated algo-
rithms. For instance, when the victims’ PII is available, human
experts achieve a success rate of 58.64%∼71.59% (with just
one guess) at telling apart real passwords from honeywords
generated by Juels-Rivest’s four methods [35], while the figure
for computer-automated algorithms is 56.80%∼67.90%.

TABLE VI
ϵ-FLAT INFORMATION UNDER HUMAN ATTACKS.

Honeyword-generation methods Attacker type ϵ-flatness
Tweak tail Type-A1 0.4023
Tweak tail Type-A2 0.5864

Model-syntax Type-A1 0.5500
Model-syntax Type-A2 0.7159

Hybrid Type-A1 0.4886
Hybrid Type-A2 0.6023

Simple model Type-A1 0.4682
Simple model Type-A2 0.6659

List Type-A1 0.0568
TarList Type-A2 0.0705

1
3

List+ 1
3

Markov+ 1
3

PCFG Type-A3 0.0591
1
3

TarList+ 1
3

TarMarkov+ 1
3

TarPCFG Type-A4 0.0886

The human-expert attacks on Dodonew have well shown
that Chinese human attackers are PII-aware in nature, and
since English users and Chinese users show quite similar PII
usage behaviors [55], it is highly likely that attackers in other
languages would have similar performance. Thus, when user
PII is available, honeywords shall be generated with PII.
Summary. Our empirical evaluation builds on 11 large-scale
datasets and considers various attackers. Further, to see how
our methods perform under sematic-aware humans, we con-
duct a user study of 11 trained expert attackers. Results show
that they can survive both automated and human attacks.

VI. CONCLUSION

We have systematically tackled the question of how best
to attack, design and evaluate honeyword-generation methods.
For the first time, we provided theoretical proofs and empirical
explorations of how best to attack honeywords. This in-depth
understanding of honeyword attackers enables us to suggest a
suite of honeyword-generation methods by using leading prob-
abilistic password models. We demonstrated the effectiveness
of our methods by conducting both automated experiments and
trained human-expert attacks. In the meanwhile, we addressed
two open problems left in [35] and one in [53].
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APPENDIX

A. Detailed information about our datasets

We evaluate the existing honeyword methods and our pro-
posed ones based on 11 large real password datasets (see
Table III), a total of 105.44 million passwords. Three of
our datasets were leaked in MD5 hash, and we manage to
recover an overwhelming fraction of them by using off-the-
shelf cracking tools like Hashcat and John the Ripper, various
trawling guessing models [40] and the targeted guessing model
TarGuess [56], on a common PC with GPU in one week. More
specially, Rootkit initially consists of 71,228 passwords and
we recover 97.46% of them; QNB initially contains 97,415
passwords and was leaked from the Qatar national bank, which
is located in Middle East, in April 2016 [50], and we recover
79,580 (81.69%) of them; Mango initially contains 1,113,638
passwords, and we recover 96.51% of them.

Particularly, four password datasets (i.e., 12306, ClixSense,
Rootkit and QNB) are associated with various kinds of PII as
shown in Table III. To facilitate a more comprehensive empir-
ical analysis of honeyword security under targeted attackers,
we further match the non-PII-associated password datasets
with these PII-associated password datasets by using email. As
a result, this produces nine PII-associated password datasets
as shown in Table IV: (1) The four Chinese PII-associated
datasets are obtained by matching the corresponding non-
PII-associated dataset with 12306; (2) The four US-English
ones are: PII-Rootkit, PII-ClixSense, and two other ones
obtained by matching 000webhost and Yahoo with ClixSense,
respectively; and (3) PII-QNB, which is QNB itself. Note that,
the non-PII-associated US-English dataset Rockyou includes
neither email nor NID, and thus it cannot be matched.

We further employ two auxiliary PII datasets that do not
have passwords (i.e., Hotel and 51job) to augment each Chi-
nese password dataset to obtain more PII-associated accounts

by matching email or NID. We note that many PII-associated
accounts miss some important PII attributes, and they can be
supplemented by using the auxiliary PII datasets.

All our 11 datasets were hacked and made public on the
Internet between 2009 and 2016, and they may be a bit old.
However, they can represent current user password behaviors
due to three reasons. First, three datasets (i.e., 000webhost,
ClixSense, and Qatar national bank (QNB)) were leaked after
2015 and may well exhibit up-to-date user password behaviors.
Second, human-being’s cognition capabilities (e.g., memory)
remain rather stable as time goes on, and Bonneau has revealed
that “passwords have changed only marginally since then
(1990)” [14]. Finally, the password ecosystem evolves very
slowly. A number of recent researches (see [16], [25], [28],
[55]) show that password guidance and practices implemented
on leading sites have seldomly changed over time.
B. Revisiting recent honeyword methods

Here we give a brief analysis of the pitfalls in three
recent honeyword proposals [6], [24], [30]. Due to space
constraints, readers are referred to the companion site of this
revision https://github.com/honeyword/honeywords-project for
more details. Briefly, the computational cost of Honeyindex
is k/2 times larger (on average) than Honeyword [35]. In
addition, Honeyindex [24] suffers from the mapping attack and
the peeling-onions style distinguishing attack; the latter can
be resisted by regenerating sweetindexes periodically, yet this
will bring a high probability of false alarms. For the “evolving
password model” by Akshima et al. [6], it is inherently
vulnerable to the “normalized top-PW” attack mentioned in
Sec. III-A; their “user-profile model” is further vulnerable to
targeted attackers. As for Superword [30], it is prone to DoS
attack, which cannot be remedied with these DoS measures
mentioned in Sec. II-B. Besides, Superword [30] has a large
communication overhead, and introduces new vulnerabilities
by placing too much burden on the honeychecker which
defeats the purpose of Honeywords in the first place.

C. Proofs of Theorem 1, 2, and 3

Theorem 1: Let hwi,j (1 ≤ j ≤ k) denote the event that
swi,j is produced as a sweetword for Ui, and pwi,j denote
the event that Ui selects swi,j as her real password. We have

Pr(pwi,j |SWi) =
Pr(pwi,j)

∏
l ̸=j Pr(hwi,l|pwi,j)∑k

t=1 Pr(pwi,t)
∏

l ̸=t Pr(hwi,l|pwi,t)
,

under the assumption that hwi,1, . . . , hwi,j−1, hwi,j+1, . . . ,
hwi,k are mutually independent under the event pwi,j .

Proof. Since hwi,1, . . . , hwi,j−1, hwi,j+1, . . . , hwi,k are
mutually independent under the event pwi,j , we have
Pr(SWi|pwi,j) =

∏
l ̸=j Pr(hwi,l|pwi,j). Now, leveraging the

Bayesian theory, we can derive:

Pr(pwi,j |SWi) =
Pr(SWi|pwi,j) · Pr(pwi,j)∑k
t=1 Pr(SWi|pwi,t) · Pr(pwi,t)

=
Pr(pwi,j) ·

∏
l ̸=j Pr(hwi,l|pwi,j)∑k

t=1 Pr(pwi,t) ·
∏

l ̸=t Pr(hwi,l|pwi,t)
. �
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(a) Success-number graph: List-based attack. (b) Success-number: Markov-based attack. (c) Success-number: PCFG-based attack.

(d) Flatness graph of List-based attack. (e) Flatness graph of Markov-based attack. (f) Flatness graph of PCFG-based attack.
Fig. 6. Experiment results for attacking 7 honeyword methods with 3 different password guessing models under attacker-A1, trained on
Dodonew-tr and tested on Dodonew-ts. The List method performs equally well with the perfect method: Their flatness-graph lines overlap
with each other. When A1 does not use List-model based attacks, Markov or hybrid methods sometimes perform better than other methods.

Theorem 2: Let F denote the event that the file F is
produced as the password-file for all users, and the other
definitions comply with those in Theorem 1. We have

Pr(pwi,j |F ) = Pr(pwi,j |SWi),

under the assumptions that users independently create pass-
words, and the assumptions of Theorem 1.

Proof. Since users create their own passwords indepen-
dently and SWi only depends on Ui’s real password pwi,j ,
SW1, . . . ,SWn will be mutually independent, we can derive:

Pr(pwi,j |F )

=Pr(pwi,j ,

sw1,1 · · · sw1,k

...
. . .

...
swn,1 · · · swn,k

)/Pr(

sw1,1 · · · sw1,k

...
. . .

...
swn,1 · · · swn,k

)

=
Pr(pwi,j ,SWi)

∏
l̸=i Pr(SWi)∏n

l=1 Pr(SWl)

=
Pr(pwi,j ,SWi)

Pr(SWi)
= Pr(pwi,j |SWi). �

Theorem 3: Let pwi,j (1 ≤ j ≤ k) denote the event that Ui

selects swi,j as her real password, hwi,j denote the event that
swi,j is produced as a honeyword for Ui, and let PII denote
Ui’s PII. We have

Pr(pwi,j |SWi,PII) =
Pr(pwi,j |PII)

∏
l ̸=j Pr(hwi,l|pwi,j ,PII)∑k

t=1 Pr(pwi,t|PII)
∏

l ̸=t Pr(hwi,l|pwi,t,PII)
,

under the assumption that hwi,1, . . . , hwi,j−1, hwi,j+1, . . . ,
hwi,k are mutually independent under the event (pwi,j ,PII).

Proof. Here we provide a detailed proof for Theorem
3. Since hwi,1, . . . , hwi,j−1, hwi,j+1, . . . , hwi,k are mutually
independent under the events pwi,j and (pwi,j ,PII), we have
Pr(SWi|pwi,j ,PII) =

∏
l ̸=j Pr(hwi,l|pwi,j ,PII). Now, lever-

aging the Bayesian theory, we can derive:

Pr(pwi,j |SWi,PII)

=
Pr(SWi|pwi,j ,PII) · Pr(pwi,j |PII)∑k
t=1 Pr(SWi|pwi,t|PII) · Pr(pwi,t|PII)

=
Pr(pwi,j |PII) ·

∏
l ̸=j Pr(hwi,l|pwi,j ,PII)∑k

t=1 Pr(pwi,t|PII) ·
∏

l ̸=t Pr(hwi,l|pwi,t,PII)
. �

D. Pros and Cons of existing PW models
As mentioned in Sec. II-D, we mainly consider six repre-

sentative, probabilistic password models: PCFG [58], Markov
[40], List [53], and their targeted versions. The first ques-
tion we are confronted with is: As there are a number of
candidates, which password model shall be preferred? To
answer it, we investigate the weaknesses of each individual
model. Generally, the effectiveness of a machine-learning-
based password model relies on two factors: The model itself
and the training sets used. To preclude the impacts of training
sets, as recommended in [53], [56], we randomly split the
Dodonew dataset into two equal parts, and use part-1 (i.e.,
Dodonew-tr) for training and part-2 (i.e., Dodonew-ts) for
testing. We implement the PCFG model and Markov model
according to the most recent improvements in [40]. More
specifically, for PCFG model the probabilities associated with
letter segments are learned directly from the training process,
and for Markov model we use a fourth order Markov chain
with end-symbol normalization and Laplace smoothing.

Guided by Eq. 4, we know the defects of password model
are the passwords pw, PrPW(pw)

PrHW(pw) ≫ 1. These passwords will be
cracked first by the optimal adversary. In Table VII, we mea-
sure the value of PrPW(pw)

PrHW(pw) for typical passwords pw, where
PrPW(pw) comes directly from Dodonew-ts and PrHW(pw)
is output by each password model. We can conjecture that:
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TABLE VII
THE VALUE OF

PrPW(·)
PrHW(·) GIVEN BY EACH PASSWORD MODEL FOR TYPICAL

PWS (DODONEW-TR VS. DODONEW-TS).†

Typical password Probability PrPW(·) List PCFG Markov
123456 0.01443750 0.99 1.25 0.96
password 0.00044136 1.02 1.63 1.25
123qwe 0.00027111 0.95 46.35 1.39
1q2w3e4r 0.00011588 1.14 6.57 · 1010 1.18
147852369 0.00004293 1.07 0.92 107.42
110120130 0.00002337 0.84 0.86 5059.23
110011 0.00000886 0.77 1.05 41.06
password123 0.00000381 1.07 0.55 1.82
p@ssw0rd 0.00000221 0.78 8.74 · 1010 1.25
XX123456 0.00000160 13.00 1.39 4.58
34567890 0.00000148 12.53 6.87 6.92
123qwe123qwe 0.00000123 0.77 6662.66 27.13
Password123 0.00000037 0.60 2.02 5.31
iloveyou123456 0.00000025 0.67 0.59 0.51
123456abcdefg 0.00000012 0.09 7.98 0.31
520yong 0.00000011 0.09 0.51 0.44

† A value of PrPW(·)
PrHW(·) with dark gray means it’s the worst one to approximate the

real probability PrPW(·), and light gray means the 2nd worst one.

The List model is good at approximating popular passwords,
PCFG good at passwords with a simple structure, and Markov
good at short passwords. All this suggest that each individual
password model has it own advantages, and a hybrid model
would be desirable when A (e.g., a type A3 attacker) may
exploit each model’s disadvantages.

Note that, for a hybrid model A&B that is resulted from
models A and B, denoted by PrAB(pw) = 1

2 PrA(pw) +
1
2 PrB(pw)), the event PrPW(pw)

PrAB(pw) ≫ 1 happens if and only if
PrPW(pw)
PrA(pw) ≫ 1 and PrPW(pw)

PrB(pw) ≫ 1. So such hybrid models can
significantly alleviate defects of individual password model.
Therefore, we use hybird models (e.g., 1

3List + 1
3Markov +

1
3PCFG) to resist type A3 and A4 attackers.

The above conjectures are corroborated by Table VIII. We
measure the passwords that appear in the top-103 PrPW(·)

PrHW(·) list
under each model. According to our theories in Sec. III, these
passwords will be attacked in A’s first 1000 attempts and thus
they are the top-1000 most vulnerable ones. As expected, all
methods are not good at dealing with PII-semantic involved
passwords and passwords not covered by the training set. This
outlines the need for designing PII-aware methods when type
A2 attacker (i.e., with PII) is considered.

TABLE VIII
BASIC INFO ABOUT PWS IN THE TOP-103
PrPW(·)
PrHW(·) LIST UNDER EACH PW MODEL.

List Markov PCFG

In top-104 PW list 0.000 0.000 0.000
Not in training set 1.000 0.993 0.998
Feq.>2 (in test set) 1.000 0.006 0.005
Feq.<10 (in test set) 0.960 1.000 1.000
Password len. ≥16 0.000 0.906 1.000
Structure len. ≥6 0.001 0.995 0.576
With semantic info 0.012 0.016 0.051
Email/site address 0.000 0.442 0.695

* feq.=frequencey; len.=length.

Table VIII also re-
veals some unexpected
results. No matter hon-
eywords are generated
by which model, all
these top-103 most vul-
nerable passwords are
not popular ones—they
do not fall into the top-
104 popular password
list. When combining the 3rd and 4th rows, one can infer
that the List model is not good at predicting these passwords
with a frequency 2<f<10, while the other two models are not
good at these with f ≤ 2. This has important implications for
designing these hybrid models: For a user password pw, if we
find PrPW(pw)

PrHW(pw) is dangerously high (i.e., ≫1), we can switch
to the tweaking-tail method which is good at producing flat
honeywords when pw is unpopular.

E. Additional experiments and discussions
Fig. 6 demonstrates the effectiveness of our List-model

based honeyword method against three different password
guessing models, under the basic attacker A1 who only has
public datasets. A1 can merely distinguish about 526=104/19
passwords (see Fig. 6(a)∼6(c)); A gains a success rate of 5%
with one guess against 20 sweetwords (see Fig. 6(d)∼6(f)).
Interestingly, when A1 does not employ List-model based
attacks, Markov or hybrid methods sometimes perform the best
over other methods including the List-model based one. This
indicates the importance of designing optimal attacks for a
given scenario, otherwise the security might be overestimated.

Fig. 4 of Sec. IV-B shows that DoS can be largely mitigated
by imposing a 105 blocklist that filters weak passwords
and honeywords, under the alarm policy T1=1 that a single
honeyword attempt against an account raises an alarm. Still,

Fig. 7. DoS success rate against
1
3

List+ 1
3

Markov+ 1
3

PCFG. Trained on
Dodonew-tr, tested on Dodonew-ts.
“Blocklist” means a 100k blocklist is
used to filter weak passwords (and
honeywords), while “Normal” means
no blocklist is used. “DoS success
rate” means the probability of hitting
T1=3 honeywords for each account.

when allowed 100 online lo-
gin attempts, the DoS attack-
er can achieve a success rate
of 6.08% when k=20 and a
success rate of 12.13% when
k=40. The effectiveness is
not very desirable. Fig. 7
further investigates the effec-
tiveness of this same block-
list under the case when we
set T1=3. Results show that
this countermeasure signifi-
cantly alleviates DoS risks:
Within 100 guesses, the DoS
attacker can only achieve a success rate of 0.003% when k=20,
0.010% when k=30, and 0.025% when k=40. In contrast,
without this blocklist, this figure will be 5.45% when k=20,
14.64% when k=30, and 26.41% when k=40.

Fig. 8 illustrates how flatness varies with the number (i.e.,
k) of sweetwords that are associated with each user account.
There are obvious diminish-returns: When k is large enough
(e.g., ≥60), marginal security gains will be achieved when k is
further increased. On the other hand, a larger k means a larger
storage cost. Thus, we recommend k=40 to be cost-effective.

We choose Dodonew as the dataset used in our human-based
experiments, because: (1) Dodonew is a canonical dataset for
Chinese users, and it has been used in almost every research
regarding passwords of Chinese users (see [12], [40], [52],
[53], [56]); and (2) For ethics considerations—Dodonew was
leaked in 2011, ten years ago, and it is reasonable to assume
that Dodonew users have already changed their passwords.

Fig. 9 shows the flatness curves of human-based evaluation,
and detailed setups can be found in Sec. V-C. The four
methods in [35] achieve 0.40+-flatness under A1 and 0.48+-
flatness under A2, far from perfect. In comparison, both List
and 1

3List+ 1
3Markov+1

3PCFG methods achieve almost perfect
flatness (i.e., ϵ≈ 1

20 ) under non PII-aware human attackers.
Even when attackers are PII-aware (see Figs. 9(j) and 9(l)),
our methods still achieve 0.09−-flatness. This implies that our
targeted methods can well capture user PII semantics.
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(a)Tweaking-tail: How flatness varies with k (b) Our method: How flatness varies with k. (c) Ours: The relationship between ϵ and k.

Fig. 8. How the flatness curve varies with k, trained on Dodonew-tr and tested on Dodonew-ts. Here we use tweaking-tail (under A1) and
1
3

List+ 1
3

Markov+ 1
3

PCFG (under A3) as examples. The sub-fig(c) shows how ϵ (=y|x=1 in sub-fig(b)) in our hybrid method evolves with k.

(a) Flatness graph of Tweaking-tail (under a type-
A1 attacker).

(b) Flatness graph of modeling syntax (under
a type-A1 attacker).

(c) Flatness graph of hybrid (under a type-A1

attacker).

(d) Flatness graph of Tweaking-tail (under a type-
A2 attacker).

(e) Flatness graph of modeling syntax (under a
type-A2 attacker).

(f) Flatness graph of hybrid method (under a type-
A2 attacker)

(g) Flatness graph of simple model (under a type-
A1 attacker).

(h) Flatness graph of our list method (under a type-
A1 attacker).

(i) Flatness graph of 1
3 List+ 1

3 PCFG+ 1
3 PCFG (under a

type-A3 attacker).

(j) Flatness graph of simple model (under a type-
A2 attacker).

(k) Flatness graph of our TarList method (under a
type-A2 attacker).

(l) Flatness graph of 1
3 TarList + 1

3 TarMarkov +
1
3 TarPCFG (under a type-A4 attacker).

Fig. 9. Evaluating our methods and Juels-Rivest’s ones [35] by using human-expert-based attacks. “under Ax” means experts are simulating
type-Ax attackers. Humans are particularly effective at telling apart real PWs generated by Juels-Rivest’s methods [35] when given PII (see
sub-figs d, e, f and j), yet they show no advantages over computer-based attackers against our methods. The 5,280 tested accounts are from
PII-Dodonew. All our four methods show significantly better security than Juels-Rivest’s four real-password related methods [35].
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