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Abstract—We consider interdependent systems managed by
multiple defenders that are under the threat of stepping-stone
attacks. We model such systems via game-theoretic models and
incorporate the effect of behavioral probability weighting that is
used to model biases in human decision-making, as descended
from the field of behavioral economics. We then incorporate
into our framework called TASHAROK, two types of tax-based
mechanisms for such interdependent security games where the
central regulator incentivizes defenders to invest well in securing
their assets so as to achieve the socially optimal outcome. We first
show that due to the nature of our interdependent security game,
no reliable tax-based mechanism can incentivize the socially
optimal investment profile while maintaining a weakly balanced
budget. We then show the effect of behavioral probability
weighting bias on the amount of taxes paid by defenders, and
prove that higher biases make defenders pay more taxes under
the two mechanisms. We then explore voluntary participation
in tax-based mechanisms. To evaluate our mechanisms, we use
four representative real-world interdependent systems where we
compare the game-theoretic optimal investments to the socially
optimal investments under the two mechanisms. We show that the
mechanisms yield higher decrease in the social cost for behavioral
decision-makers compared to rational decision-makers.

Index Terms—Behavioral decision-making; Security games;
Mechanism design; Interdependent systems; Attack graphs.

I. INTRODUCTION

Today’s interdependent systems face sophisticated attacks
from external adversaries where the attacker aims to breach
specific critical assets within the system [1], [2]. Such attacks
pose a serious danger to large-scale critical infrastructure (e.g.,
the massive supply chain attack on SolarWinds in 2020 [3]
and the recent Colonial Pipeline ransomware attack in May
2021 [4]). Such attacks have motivated several attempts to
improve the cyber security of these systems [1], [5], [6],
[7], [8]. Several challenges exist for these improvements.
System operators often have limited security budgets that they
need to allocate wisely within the systems they manage to
reduce security risks. Moreover, coordination in large-scale
systems that are composed of many interdependent subsystems
managed by different operators is challenging as each operator
has her local priority of securing her own subsystem.

Prior work has considered such security decision-making
problems in both decision-theoretic [9], [10], [11], [12] and

game-theoretic settings [13], [14], [15], [16]. The crux of the
problem is that the security risk (usually captured by the
probability of successful attack on system’s critical assets)
faced by a defender depends on her own security investments
as well as those of other defenders securing subsystems that
are interdependent with her subsystem. However, most existing
work has relied on classical models of decision-making, where
all defenders and attackers are assumed to be fully rational
decision-makers [13], [16], [17].

In contrast, behavioral economics has shown that
humans consistently deviate from these classical models
of decision-making. Most notably, research in behavioral
economics has shown that humans perceive gains, losses
and probabilities in a skewed, nonlinear manner [18]. In
particular, humans typically overweight low probabilities
and underweight high probabilities, where this weighting
function has an inverse S-shape, as shown later in Figure 2.
Many empirical studies (e.g., [19], [18], [20]) have provided
evidence for this class of behavioral models. These effects
are relevant for evaluating the security of interdependent
systems in which decisions on implementing security controls
are not made purely by automated algorithms, but rather
through human decision-making, albeit with help from threat
assessment tools [12], [21]. The prevalence of human factors
in security decision-making has been recognized through
popular press articles [22], [23] and in academic studies [24],
[25], [26]. Recent research has also shown that cybersecurity
professionals’ risk perceptions are as susceptible to systematic
biases as those of the general population [27], [28] and related
behavior of system-administrators securing systems [29].

Recent work has begun to model and predict the effect of
behavioral decision-making on security investments [25], [30],
[31], [32], [33]. However, none of this research sheds light
on the mitigation of such cognitive biases and these works
have only studied specific interdependent games. In contrast,
we consider general defense allocation techniques that can be
applied to any system whose failure scenarios are modeled
by an attack graph. We consider tax-based mechanisms to
guide behavioral decision-makers towards enhancing their
security investments and incentivize them to achieve socially
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optimal allocations that reduce the overall security risk.
Fundamentally, our framework, TASHAROK1, identifies the
effects of behavioral bias on the design of mechanisms for
improving security decisions in interdependent systems.

Throughout our paper, we consider two classes of defenders.
Behavioral defenders: These defenders make security
investment decisions subject to the nonlinear probability
weighting cognitive bias, found in prospect-theoretic models.
They misperceive the probabilities of a successful attack on
each edge of the attack graph of the system network.
Non-behavioral (rational) defenders: These defenders make
security investment decisions based on the classical models of
fully rational decision-making. Thus, they correctly perceive
the probability on each edge within the attack graph.
Problem setup and mechanism design:
In this paper, we model a security setup of interdependent
systems with multiple defenders. Each defender is responsible
for defending a subnetwork of the whole network. In
such interdependent systems, stepping-stone attacks are often
used by external attackers to exploit vulnerabilities within
the system in order to compromise critical targets. These
stepping-stone attacks are captured via attack graphs [34].

We first show the difference between the Pure-Strategy
Nash Equilibrium (PNE)2 investments (by both rational and
behavioral defenders) and the socially optimal investments via
multiple motivating examples. We then design two tax-based
mechanisms that enhance security investment decision-making
for our interdependent security games. Such mechanisms use
monetary payments/rewards to incentivize socially optimal
(SO) security behavior, i.e., those minimizing the sum of
the costs of all defenders due to a security attack. The two
tax-based mechanisms are the ‘Externality’ mechanism [35]
and the Vickrey-Clarke-Groves (‘VCG’) mechanism [36].
These mechanisms enhance the implemented security policy
by incentivizing defenders to allocate their limited security
resources to minimize the system’s social cost.

We then show a fundamental result that there exists
no reliable tax-based mechanism which can incentivize the
socially optimal investment profile while maintaining a weakly
balanced budget (i.e., the central regulator does not pay
out-of-pocket money) for all instances of interdependent
security games. We show the difference between our result and
prior results in the security economics literature [36], [37] in
Section VII. Our result shows that designing mechanisms in
interdependent security games is more challenging compared
to monolithic systems. We also show the effect of behavioral
biases on the two mechanisms’ outcomes in our interdependent
security games framework.

We then evaluate our findings using four synthesized
attack graphs that represent realistic interdependent
systems and attack paths through them. These systems
are DER.1 [21] (modeled by NESCOR), SCADA industrial

1TASHAROK is a word in Arabic that denotes several persons collaborating
while carrying equal responsibilities for the sake of successful trade.

2A profile of security investments by defenders is said to be a PNE if no
defender can decrease her cost by unilaterally changing her investment.

control system modeled using NIST guidelines for ICS [16],
E-commerce [17], and VOIP [17]. We do a benchmark
comparison with four prior solutions for optimal security
controls with attack graphs [25], [12], [38], [9]. In conducting
our analysis, we address several domain-specific challenges
in the context of security for interdependent systems.
These include augmenting the attack graph with certain
parameters such as edges’ sensitivity to security investments
(Equation 2), estimation of baseline attack probabilities
(Table II), modifying mechanism formulations for our
interdependent security games (Section V), and incorporating
behavioral biases in our formulations (Section II).
Key insights:
Abstracting from the details, we provide three hitherto
unknown insights into the security of interdependent systems.
1) A social planner (e.g., government agency) can achieve

much lower security loss than each defender acting on
her own. The difference increases when security defenders
have more cognitive biases (Figure 9). The global planning
is beneficial even if the planner is behavioral (Example 1).
However, if the degree of interdependency is slight, then
there is no need to go to the complexity of setting up central
regulation — each defender acting independently (selfishly)
achieves close to the optimal security (Figure 10(a)).

2) Our work supports recent proposals for companies to buy
cyber insurance as part of their risk management strategy.
In such process, the company would pay a tax (determined
by the regulator depending on the system architecture
(Figure 12)) and then transfer the financial risks related
to network and computer incidents to that regulator.

3) Behavioral decision-making leads to suboptimal resource
allocation and thus tax-based mechanisms can be more
helpful in a system with behavioral defenders compared to
non-behavioral (rational) decision-makers (Figure 11). In
such mechanisms, we prove that behavioral biases make
defenders pay more taxes compared to rational defenders.

In summary, this paper makes the following contributions:
1) We propose a security investment guiding technique for

defenders of interdependent systems whose assets have
mutual interdependencies. We show the effect of an
important behavioral bias of human decision-making and
selfishness of PNE decision-making on system security.

2) We consider two mechanism designs for interdependent
security games modeled by attack graphs to guide
decision-makers toward the socially optimal solution. In
contrast to excludable public good games, we show that
a weak budget balance condition is not guaranteed for all
instances of interdependent security games.

3) We explore the voluntary participation in tax-based
mechanisms and show that behavioral defenders participate
under higher tax payments, compared to rational defenders.

4) We illustrate the benefits of our mechanisms through
four real-world interdependent systems and analyze the
different system parameters and the effect of behavioral
decision-making on the mechanisms’ outcomes and the
overall security of these interdependent systems.
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II. BACKGROUND AND PROBLEM SETUP

We now present a background on interdependent security
games, establishing a theoretical basis that can be used
to model multi-defender interdependent systems. These
defenders can be different divisions within a large company, or
different sectors of a country’s economy. We formally define
an interdependent system as “the system that has multiple
defenders where each defender is responsible for defending
a subnetwork of the whole network. In that system, there are
dependencies among assets of different subnetworks which are
captured via directed acyclic graph (DAG)”. Figure 1 shows
a simple example of our setup, which represents a system
consisting of 3 interdependent defenders. An external attacker
aims to exploit vulnerabilities within the network in order to
compromise critical targets. We now formalize the attacker and
defenders’ goals and actions. The formulation in Sections II-A
and II-B is well accepted in the security literature of attack
graphs [12], [9], [39], [40]. We start discussing the notion
of behavioral defenders from Section II-C where we tread
ground not often trodden in the security literature, with some
exceptions [25], [41], [42].

A. Threat Model
We consider security games consisting of one attacker and

multiple defenders interacting through a directed acyclic attack
graph G = (V, E). The nodes V of the attack graph represent
the assets in the system, while the edges E capture the attack
progression between the assets. In particular, an edge from vi
to vj , (vi, vj) ∈ E , indicates that if asset vi is compromised
by the attacker, it can be used as a stepping-stone to launch
an attack on asset vj (e.g., if an attacker gains the password
required to access a power plant’s control software (vi), it
can use it to attempt to alter the operation of a generator
(vj)). We denote the baseline probability that the attacker can
successfully compromise vj given that it has compromised vi,
by the edge weight p0i,j ∈ [0, 1]. By “baseline probability” we
mean the probability of successful compromise without any
security investment in protecting the assets.3 Suppose that the
set of all defenders is given by D = {D1, . . . , Dk, . . . , D|D|}.
The attacker initiates attacks on the network from a source
node vs (or multiple possible source nodes), and aims to reach
a target node vm, i.e., a critical node for any defender Dk ∈ D.

B. Defense Model
Each defender Dk ∈ D is in control of a subset of

assets Vk ⊆ V . Among all assets in the network, a subset
Vm ⊆ V are critical assets, the compromise of which entails
a financial loss for the corresponding defender. Specifically, if
asset vm ∈ Vm is compromised by the attacker, any defender
Dk with vm ∈ Vk suffers a financial loss Lm ∈ R>0. Note that
the critical assets of different defenders can be overlapping if
they share common critical assets (e.g., the SCADA system in
Figure 6). We emphasize that different critical assets can have
heterogeneous loss valuations (Section VI).

3We emphasize that p0i,j can also represent the pre-existing (inherent) security
investments on the edge (vi, vj) (e.g., old software patched).

To protect the critical assets from being reached through
stepping-stone attacks, the defenders can choose to invest
their resources in strengthening the security of the edges in
the network. Specifically, let xk

i,j denote the non-negative
real investment of a defender Dk on edge (vi, vj) ∈ Ek
(it suffices for an edge to belong to Ek if it belongs to at
least one attack path from the source node vs to one critical
asset vm ∈ Vk), and let xi,j =

∑
Dk∈D xk

i,j be the total
investment on that edge by all eligible defenders. Then, the
probability of successfully compromising vj starting from vi
is given by pi,j(xi,j). In addition, let si,j ∈ [1,∞) denote
the sensitivity of edge (vi, vj) to the total investment xi,j . For
larger sensitivity values, the probability of successful attack on
the edge decreases faster with each additional unit of security
investment on that edge; in other words, edges that are easier
to defend will have larger sensitivity.

Let Pm be the set of all attack paths from vs to vm.
The defender assumes the worst-case scenario, i.e., the
attackerexploits the most vulnerable path to each target. Note
that previous works considered such an adversary model that
chooses the most vulnerable path to target assets (e.g., [16],
[13]). Mathematically, this can be captured via the following
total loss function for Dk:

Ĉk(x) =
∑

vm∈Vk

Lm

(
max
P∈Pm

∏
(vi,vj)∈P

pi,j(xi,j)
)
. (1)

In the above cost function in (1), we assume that the defense
cost is negligible with respect to the huge financial cost
under successful attack. We let the probability of successfully
compromising vj starting from vi be given by,

pi,j(xi,j) = p0i,j exp
(
− si,j xi,j

)
. (2)

That is, the probability of successful attack on an edge (vi, vj)
decreases exponentially with the sum of the investments on
that edge by all defenders. This probability function falls
within a class commonly considered in security economics
[43], [10], [16], [32]. Note that (2) is a log-convex function.

C. Behavioral Probability Weighting

As mentioned in the introduction, the behavioral economics
literature has shown that humans consistently misperceive
probabilities by overweighting low probabilities, and
underweighting high probabilities [18], [44]. More specifically,
humans perceive a “true” probability p as probability w(p),
where w(·) is known as a probability weighting function.
A commonly studied form for this weighting function was
formulated by Prelec in [44], shown in Figure 2, given by

w(p) = exp
[
− (− log(p))α

]
, p ∈ [0, 1], (3)

where α ∈ (0, 1] controls the extent of misperception. When
α = 1, we have w(p) = p for all p ∈ [0, 1], which corresponds
to correct perception of probabilities, i.e., a non-behavioral
(rational) defender (agent).
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Fig. 1: An overview of the interdependent security framework.
The interdependencies between assets are represented by
edges. An attacker tries to compromise critical assets using
stepping-stone attacks starting from vs. The bold (red) edges
show one such attack path.
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Fig. 2: The Prelec probability weighting function. The
parameter α ∈ (0, 1] controls the extent of overweighting
and underweighting, with α = 1 indicating non-behavioral or
rational decision-making. The smaller the value of α the more
behavioral the action is (see dotted curves in the figure).

D. Perceived Cost of a Behavioral Defender

We now incorporate this probability weighting function into
the interdependent security game defined in Section II-B. In a
Behavioral Security Game, each defender misperceives attack
success probability on each edge according to the probability
weighting function in (3). She then chooses her investments
xk := {xk

i,j}(vi,vj)∈Ek
to minimize her perceived loss

Ck(xk,x−k) =
∑

vm∈Vk

Lm

(
max
P∈Pm

∏
(vi,vj)∈P

w (pi,j(xi,j))
)
,

(4)
subject to her total security investment budget Bk, i.e.,∑

(vi,vj)∈Ek
xk
i,j ≤ Bk

4, and non-negativity of the investments,
i.e., xk

i,j ≥ 0. We now show that the total loss (4) is convex.

Lemma 1. Let the probability of successful attack function
on each edge pi,j(xi,j) be twice-differentiable and log-convex.
Then, the total loss function in (4) is convex in investment xi,j .

The proof of Lemma 1 follows from the second derivative
of the total loss function in (4) with respect to xi,j and the
properties of the probability weighting function in (3).

E. Socially Optimal Investments

It is also common in the literature to measure the
sub-optimality of Nash equilibria (attained by interdependent
security games between multiple selfish defenders) by
comparing them to socially optimal (SO) investments.
Formally, the socially optimal investment levels x∗ are those
that maximize the social welfare (i.e., these investments
minimize the sum of all defenders’ costs), which is given by

x∗ = argmin
x⪰0;

1Tx≤
∑|D|

k=1 Bk

|D|∑
k=1

Ck(x), (5)

where |D| is the number of defenders.

4Our findings will also follow if each defender invests any amount subject to
a maximum budget. The stakeholder (defender) can use any amount from
such a maximum budget limit for enhancing the security of her subnetwork.

A comparison of the Nash equilibria and the socially
optimal solution often reveals sub-optimal investment in
security by defenders at PNE where each defender only cares
about her own critical assets. In the literature, there are
several works that have proposed mechanisms for decreasing
this inefficiency gap, by incentivizing improved security
investments [37], [45]. However, these works studied specific
games where each defender has a single asset in which she
allocates her resources [37] or considered that all defenders
have a common asset [45]. Moreover, all of these works
considered only classical models of rational decision-making
introduced earlier. On the contrary, we consider an attack
graph based system where each defender has the ownership
of a subset of nodes. Further, the interdependency between
defenders is captured via overlapping paths for reaching
different defenders’ assets, and we model the behavioral
probability weighting bias as well. These two distinctions
make our setup more challenging compared to prior work and
more representative of the reality of interdependent system
security with humans acting as security decision-makers.

III. MECHANISM DESIGN SETUP

The focus of the present paper is designing and evaluating
regulatory mechanisms, specifically monetary taxation, to
incentivize socially optimal security behavior for defenders
in interdependent security games. Our goal is to find a
mechanism, run by a central regulator (e.g., a government
agency), such that the induced interdependent security game
has as its equilibrium the solution to the centralized
problem (5) (also referred to as “implementing” the socially
optimal solution). Such mechanisms incentivize optimal
behavior by assessing a tax tk to each participating defender
Dk; this tax may be positive, negative, or zero, indicating
payments, rewards, or no payment, respectively. Similar to
prior work [37], [46], we assume that defenders’ costs are
quasi-linear; i.e., linear in the tax term tk. Therefore, the total
(security) cost for a defender Dk when she is assigned a tax
tk is

Ck(x, tk) := Ck(x) + tk, (6)
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where the tax amount tk can in general be a function of the
total security investment x or the overall state of system’s
security (as will be explained later in Section V) where each
mechanism corresponds to one form of tk.

Remark 1. Following the previous works [37], [46], [47],
we assume that the money used for the taxes paid by each
defender comes from a separate pool from the pool from which
the security enhancement budget of each defender is drawn.
However, we believe that considering them to be from the
same pool is an interesting direction for the future extensions.

Proposition 1. There always exists a Pure-Strategy Nash
Equilibrium in an unregulated (i.e. ti = 0, ∀i) Behavioral
Security Game as modeled in this section.

The proof of the above result follows by noting from
Lemma 1 that the cost function of each defender is convex
in the security investment level x (equivalently the payoff
is concave function in x), thus this game is an instance of
concave games which always have a PNE [48].

Mechanism Properties: In addition to implementing the
socially optimal solution, incentive mechanisms are often
designed so as to satisfy one main property. When using
taxation, the mechanism designer prefers to maintain weak
budget balance (WBB) [35], [46]; i.e.,

∑N
i=1 ti ≥ 0.

In other words, the regulator does not pay out to the
defenders. In contrast,

∑N
i=1 ti < 0 implies a budget

deficit, i.e., the mechanism would require spending external
resources by the designer. At first, we consider two
mechanism designs where participation by defenders is
mandatory (Sections V-A and V-B) and then we consider the
mechanism where participation is voluntary (Section V-C).
The mandatory participation maps to the realistic case that a
government agency can make participation in cyber-insurance
a prerequisite for companies to receive security funding
or business opportunities [26]; see for example the recent
California proposal for mandatory cyber insurance [49].

IV. MOTIVATIONAL EXAMPLES

Having provided the game notations and the general
tax-based mechanism, we now provide a couple of examples
to show the difference between the social optimal solution
(given by (5)) and the PNE solution (where each defender
best responds to the aggregate optimal investments of other
defenders) to reach the PNE of Behavioral Security Games.

Example 1. Consider the attack graph of Figure 3. There are
two defenders, D1 and D2, where defender D1 aims to protect
node v4, and defender D2 wishes to protect node v5. Suppose
that D1 has a budget B1 = 16 and D2 has B2 = 12, and let
the probability of successful attack on each edge (vi, vj) be
given by pi,j(xi,j) = e−xi,j (assuming p0i,j = 1). Moreover,
both defenders have behavioral bias with α1 = α2 = 0.5.
Figures 3a and 3b illustrate two distinct PNE for this game.

We obtained these multiple Nash equilibria by varying the
starting investment decision of defender D1 and then following
best response dynamics until the investments converged to

vs v1 v2

v3 v4 v5

L1 = 1 L2 = 1

4

0

0

4

4 0 4 0 0 4

4

0

0

4

(a) First PNE

vs v1 v2

v3 v4 v5

L1 = 1 L2 = 1

1

4

0

3.14

5 0 5 0 0 3.14

5

0

0

1.72

(b) Second PNE

vs v1 v2

v3 v4 v5

L1 = 1 L2 = 1

14 0

14 0 0

0 0

(c) Rational central regulator

vs v1 v2

v3 v4 v5

L1 = 1 L2 = 1

9.34 1.52

5.94 3.31 1.52

5.94 0.43

(d) Behavioral central regulator

Fig. 3: An instance of a Behavioral Security Game with multiple
PNE and its corresponding social optimal solution. The costs for
each defender are lower with the central regulator than with PNE.
Defenders D1 and D2 are behavioral decision-makers with α1 =
α2 = 0.5. In (a) and (b), the numbers above/left and below/right
of the edges represent investments by D1 and D2, respectively. In
(c) and (d) these numbers represent investments by rational and
behavioral (with α = 0.5) central regulator, respectively.

an equilibrium. It is interesting to note that these two Nash
equilibria lead to different costs for the defenders.

Difference between PNE and social optimal: First, for
the Nash equilibrium of Figure 3a, defender D1’s perceived
expected cost, given by (4), is equal to exp(−4), while her true
expected cost, given by (1), is equal to exp(−8). Defender D2

has a perceived expected cost of exp(−6), and a true expected
cost of exp(−12). In contrast, for the Nash equilibrium in
Figure 3b, defender D1 has a perceived expected cost of
exp(−4.5) and a true expected cost of exp(−10). Defender
D2 has a perceived expected cost of exp(−5.78) and a true
expected cost of exp(−11.28). As a result, the equilibrium in
Figure 3a is preferred by defender D2, while the equilibrium
in Figure 3b has a lower expected cost (both perceived and
real) for defender D1.

Second, we calculate the optimal investments by a social
planner for such network. We assume that this social planner
would have the same total budget (i.e., the sum of the two
budgets of defenders D1 and D2) and calculate the optimal
investment of that social planner (given by (5)). Figure 3c
shows that the rational social planner would distribute her
budget equally (only) on the edges (vs, v1) and (vs, v3) while
Figure 3d shows that the behavioral social planner (with
α = 0.5) would distribute investments on all edges. We
emphasize that the true expected cost of defender D1 is
exp(−14.0) and the true expected cost of defender D2 is
exp(−14.0) under rational central planning. On the other hand,
the true expected cost of D1 is exp(−11.88) and the true
expected cost of defender D2 is exp(−12.31) under behavioral
central planning. In other words, rational central planning is
better for both defenders and for the system as a whole.
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vs v1 v2 v3 vK

L1 L2 L3 LK

Fig. 4: An attack graph where the social optimal investment is
better than the PNE’s investments for all behavioral defenders.

Key takeaways: For both scenarios (rational social planner
and behavioral social planner), the true costs are better
(lower) for both defenders than in both of the attained PNEs.
Moreover, the system’s social cost is lower under such socially
optimal solutions. This example sheds light on the inefficiency
of the PNEs compared to the social optimal solution. In this
context, the notion of Price of Anarchy (PoA) is often used to
quantify the inefficiency of Nash equilibrium compared to the
socially optimal outcome [50]. The Price of Anarchy is defined
as the ratio of the highest total system cost at a PNE to the
total system cost at the social optimum. In Example 1, the
PoA under rational and behavioral social planning is 205.41
and 30.11, respectively, indicating a 205X and 30X reduction
in expected security loss with central planning. The higher the
PoA is, the greater is the motivation for centralized design of
a mechanism that incentivizes the defenders to enhance their
investments and achieve social optimal.

Example 2. Consider the attack graph in Figure 4, where
the probability of successful attack on each edge (vi, vj) is
given by (2) with p0i,j = 1. This graph contains |D| = K
defenders, and each defender Dk is responsible for defending
target node vk. Assume the total security budget B is divided
equally between the K defenders (i.e., each defender has a
security budget of B

K ). Let all nodes v1, v2, · · · , vK have same
loss which is L. Then, the socially optimal solution would put
all the budget B on the first edge (vs, v1), so that all nodes
have probability of successful attack given by exp(−B).

We now characterize the cost under the PNE for behavioral
defenders. This PNE is given by the investment profile where
each defender Dk puts their entire budget B

K on the edge
coming into their node vk. To show this, first consider defender
D1. Since investments on edges other than (vs, v1) do not
affect the probability of successful attack at node v1, it is
optimal for defender D1 to put all her investment on (vs, v1).
Now, given D1’s investment on (vs, v1), defender D2 should
optimally spread her budget of B

K over the two edges (vs, v1)
and (v1, v2) in order to minimize her cost (4). Thus, D2’s
optimization problem, given D1’s investment, is

minimize
x2
s,1+x2

1,2=
B
K

e−( B
K +x2

s,1)
α2−(x2

1,2)
α2

. (7)

The unique optimal solution of (7) (for all α2 ∈ (0, 1)) would
be to put all B

K into the edge (v1, v2), i.e., x2
1,2 = B

K and zero
on the edge (vs, v1), i.e., x2

s,1 = 0.
Continuing this analysis, we see that if defenders

D1, D2, . . . , Dk−1 have each invested B
K on the edges

incoming into their nodes, it is optimal for defender Dk to
also invest their entire budget B

K on the incoming edge to vk.
Thus, investing B

K on each edge is a PNE. Therefore, the true
cost of defender D1 under this PNE is given by K exp(−B

K ),
which is much larger than this of the social optimal solution.

Thus, the PoA in this game instance grows exponentially in
the sum of budgets B.

In total, the two examples show the importance of attaining
social optimal solution for both per-defender total real loss
and the social cost (sum of defenders’ real total losses).

V. MECHANISM TYPES AND PROPERTIES

We now provide two incentive mechanisms in our
interdependent security games, and identify features of the
interdependent systems that affect the properties attainable
through these mechanisms. Specifically, we explain and study
the performance of the two mechanisms (the Externality
mechanism and the VCG mechanism) within our class of
interdependent security games.

A. The Externality Mechanism
We now introduce the Externality mechanism inspired by

the work of Hurwicz [51]. A main design goal of this
mechanism is to guarantee a complete redistribution of taxes;
i.e., strong budget balance. This mechanism has been adapted
in [35], where it is shown to achieve social optimality,
guarantee participation, and maintain a balanced budget, in
allocation of power in cellular networks. However, the recent
work [37] has shown that this is not the case in security games
where each defender has a single asset in which she allocates
her resources. However, that work only considered classical
decision-making models (where all defenders are assumed
to be fully rational decision-makers), and did not consider
interdependency (attack graph models).

Let us denote the total tax paid by defender Dk at the
equilibrium as t∗k, which depends on the investment vector x,
i.e., t∗k = l∗kx. We denote l∗k := {lkn∗

ij }(vi,vj)∈En,Dn∈D where
lkn

∗

ij = −Lk
∂Ck

∂xn
i,j
(x∗) is the positive externality of defender

Dk due to defender Dn’s investment on the edge (vi, vj).
To have the designed mechanism achieve the social optimal,

the socially optimal investments x∗ will be individually
optimal as well; in other words, we have

x∗ ∈ argmin
x⪰0;

1Tx≤
∑|D|

k=1 Bk

Ck(x) + l∗kx. (8)

As a result, the Karush-Kuhn-Tucker (KKT) conditions on (8)
yield that the tax term of defender Dk under the Externality
mechanism in our interdependent security games is given by:

t∗k(x
∗) =

|D|∑
n=1

∑
(vi,vj)∈En

tkn
∗

ij . (9)

In other words, the total tax paid by defender Dk is a
summation of the taxes over all edges, where the tax on each
edge depends on the sum of the externalities of all defenders
on that edge. Specifically, the investment by defender Dn on
the edge (vi, vj) is denoted by xn∗

i,j .
Thus, the tax term that Dk pays due to the externality of

defender Dn’s investment on the edge (vi, vj) is given by

tkn
∗

ij = −Lkx
n∗

ij

∂Ck

∂xn
i,j

(x∗). (10)
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Interpretation of the Externality Mechanism: The
interpretation of the above tax terms is that by implementing
this externality mechanism, each defender Dk will be
financing part of defender Dn ̸= Dk’s reimbursement.
According to (9) and (10), this amount is proportional to the
positive externality of Dn’s investment on Dk’s cost.

Individual rationality and budget deficit: It can be shown
that despite attaining the socially optimal solution, these taxes
may fail to satisfy the weak budget balance constraint in our
behavioral interdependent security games. We characterize this
finding via the following result.

Proposition 2. There exists an interdependent security game
instance where the Externality mechanism cannot implement
the social optimal while guaranteeing weak budget balance.

Proof. See Appendix A.

Interpretation: Proposition 2 shows a budget deficit case
for the Externality mechanism in which the central regulator
has to spend out-of-pocket money to incentivize the defenders
to achieve the socially optimal solution in the context of our
interdependent security games (modeled by attack graphs).
Thus, we show for the first time that the prior result of
Externality mechanism [35], [51], [52], social optimality and
balanced budget, is not guaranteed in interdependent systems.

Now, we turn our attention to the effect of defender’s
behavioral bias on amount of taxes paid by the defender.

Theorem 1. Consider a set of defenders D and an underlying
attack graph G. Suppose that the joint investment profile by
all defenders except Dk, denoted by x−k, is fixed. Suppose
that pi,j(xi,j) ∈ (0, 1

e ]. Then the tax paid by defender Dk

under Externality mechanism, denoted by t∗k(x
∗) in (9), is

a decreasing function in αk. In other words, the behavioral
defender pays more taxes compared to a rational defender.

Proof. See Appendix B.

Behavioral level and the amount of taxes: Theorem 1
shows that under appropriate conditions, the behavioral
defender would pay more taxes compared to a rational
defender under the Externality mechanism. The reason for
such an increase in taxes is that the perception of the
behavioral defender of the externality from other defenders’
investments (via the drop in her perceived cost from such
investments) induce the defender to pay more taxes for such
a (perceived) increased safety level. We emphasize that the
central regulator does not enforce rational decision-making
on defenders but serves as a coordinator that facilitates
the mechanism-based game between the defenders and
incentivizes the optimal behavior of each defender by
assessing a tax tk (via creating the tax scheme upfront).

B. The VCG Mechanism

The second mechanism that we consider here is the VCG
mechanism [36], [53], also commonly known as the Pivotal
Mechanism. This is a family of mechanisms in which the
central planner incentivizes users (defenders) to reveal their

true preferences in dominant strategies through the appropriate
design of taxes for users with quasi-linear utilities (or costs).
This leads to achieving the socially optimal solution. In this
mechanism, each defender Dk receives a monetary transfer
equal to the amount he contributes to the rest of the society.
This ingenious, but simple, idea leads to aligning the incentives
of all players with the social cost.

VCG Mechanism Explanation: Let x∗
−k denote the

equilibrium (by all defenders except Dk) under exit of user
Dk (i.e., assuming Dk is not spending anything on defense),
which is given by

x∗
−k = argmin

x⪰0;

1Tx≤
∑

j ̸=k Bj

∑
j ̸=k

Cj(x). (11)

Let x represents a PNE investment vector by all defenders
(including defender Dk). Thus, the taxes paid by Dk in the
VCG mechanism under x for our interdependent security
games are given by

t∗k =
∑
j ̸=k

Cj(x)−
∑
j ̸=k

Cj(x
∗
−k). (12)

Interpretation of the VCG mechanism: Intuitively, each
defender receives a monetary transfer which is equivalent to
her “contribution” to the rest of the society. For instance, if the
defender Dk’s investments makes the system worse, i.e., the
social cost (without counting defender Dk) under the social
optimal (including defender Dk’s investments) is higher than
the social cost without including her in the system, then the tax
amount t∗k would be positive. In other words, the mechanism
penalizes the defender Dk for worsening the system. On the
other hand, if defender Dk’s investments makes the system
better (i.e., with less social cost), tk would be negative (i.e.,
Dk would receive such amount as a reward).

We now characterize the weak budget balance constraint and
different amount of taxes paid by defenders under the VCG
mechanism in our interdependent security games, respectively.

Proposition 3. There exists an interdependent security
game instance in which the VCG tax-based incentive
mechanism cannot implement the socially optimal solution
while guaranteeing weak budget balance.

Proof. See Appendix C.

Intuition: This result shows a budget deficit case for the
VCG mechanism in which the central regulator has to spend
out-of-pocket money to incentivize the defenders to achieve
the social optimal solution. It was shown that the VCG
mechanism achieves social optimality, and achieves weak
budget balance in many private and public good games (see
[36], [54], [55] for more details and related background).
However, we show for the first time that this is not satisfied in
interdependent security games. Fundamentally this is because,
in interdependent security games a defender can free ride (i.e.,
under-invest in security and depend on investments from other
defenders). Thus, such defender needs to be incentivized to
achieve the socially optimal solution.

7255



Effect of behavioral level on amount of taxes: We now
show that higher behavioral bias (i.e., smaller α) leads to
the payment of more taxes (by defenders) under the VCG
mechanism. The reason for such increase in the taxes paid
is that if any defender Dk ∈ D becomes more behavioral,
her investments become more suboptimal and consequently
increase (worsen) the system’s social cost compared to the
case in which Dk is not a member of the society. Thus, the
VCG mechanism imposes more taxes on Dk in such scenario.
We validate this finding in our evaluation (Section VI).

C. Voluntary Participation Mechanism Design

We next explore voluntary participation in interdependent
security games modeled by attack graphs. To participate in
the mechanism, a defender Dk ∈ D should have a preference
for being part of the mechanism over opting out. In other
words, the overall cost of defender Dk under the mechanism,
which is the defender’s cost under the attained joint investment
profile by the mechanism plus the taxes paid by the defender
to the central regulator (planner), must be lower than or equal
to defender Dk’s cost under PNE (for all defenders). Formally,
a defender Dk ∈ D participates in the mechanism if

Ck(x
∗) + tk ≤ Ck(x̄),

where Ck(x
∗) is defender Dk’s cost under the socially

optimal outcome (induced by the mechanism) and Ck(x̄) is
the corresponding PNE (state of anarchy) with no defender
Dk ∈ D being a part of the mechanism.

We first define a class of directed acyclic attack graphs
(DAG) defined as a “Layered DAG” [56] which is a special
case of a DAG where nodes are partitioned into l layers and
the DAG has certain properties.5

Definition 1. Let vji be the j-th node in layer i and Hi =
{vji |∀j} be the set of all nodes in layer i. In a layered DAG,
E only contains edges that connect nodes in Hi to nodes in
Hi+1, ∀1 ≤ i ≤ l − 1.

Amount of Taxes and Voluntary Participation: We now
present result on voluntary participation in our tax-based
framework for the introduced class of layered attack graphs.

Proposition 4. Suppose that G denotes a layered DAG that
has K behavioral defenders (with αk ∈ (0, 1)), where each
layer k has a single node vk and under ownership of a
defender Dk ∈ D. Suppose that the probability of successful
attack on each edge (vi, vj) is given by (2) with p0i,j = 1.
Suppose that each defender has security budget B

K and that
Li is the financial loss of asset vi. Then, we have

1) If ti ≤ Li

[
exp(− iB

K )− exp(−B)
]
, then defender Di

would participate in the mechanism

5The layered DAG structure represents stepping-stone nature of attacks on the
critical assets within the system that we consider here where attacker uses
one asset in one layer to progressively attack other assets in deeper layers.

2) The maximum amount of tax tmax
i that a defender can be

charged and participate in the mechanism is decreasing
in the defender index i,∀i = 1, · · · ,K.6

Proof. See Appendix D.

Intuition: The above result shows two main insights about
taxation and participation in the mechanism. First, in the
layered DAG, each defender would prefer participation in the
mechanism if the amount of taxes she pays is less than or
equal to the difference between the socially optimal solution
and the state of anarchy (PNE). Otherwise, the defender would
prefer to not participate in the mechanism since she can have
a lower cost without participation. Second, the social planner
can impose more taxes on the defenders that are nearer from
the attacker’s source node vs in the attack graph compared to
those who are far from the source node. The reason is that the
latter can free-ride on the security investments of the former
and will prefer PNE over the mechanism if they are charged
high amount of taxes. For instance, in the DAG considered in
Proposition 4, the maximum amount of tax to be imposed on
the last defender DK to participate in the mechanism is zero.

Remark 2. We also observe similar results of amount of taxes
and participation in all of our four case studies (in Section VI)
which have different attack graph structures.

VI. EVALUATION

Our evaluation aims to answer the following questions:
• What is the gain of using mechanism design for

incentivizing behavioral defenders toward the socially
optimal solution?

• How does the level of behavioral bias affect the
mechanism design outcomes?

• What is the maximum tax payment under which the
defender prefers to participate in a tax-based mechanism
over the state of anarchy (PNE)?

A. Dataset Description

We use four synthesized attack graphs that represent
real-world interdependent systems to evaluate our setups.
Specifically, we consider four popular interdependent systems
from the literature which are: DER.1 [21], SCADA [16],
E-commerce [17], and VoIP [17]. In all of these systems, nodes
represent the progression of attack steps (e.g., unauthorized
control of a physical generator in DER.1, taking privilege
of control unit software in SCADA). Note that for each of
our applications, it could be either air-gapped (here the attack
would be from an insider attacker) or externally accessible
(here the attack would be from an external adversary).

Now, we give a brief explanation of these systems and their
associated failure scenarios. We generate the attack graphs
of these systems using the CyberSage tool [21] which maps
system’s failure scenarios into an attack graph given the
workflow of that system, security goals, and attacker’s model.

6Defender Di’s asset is closer to attacker’s source node than defender Di+1’s
asset and thus defender Di securing her asset benefits all Dj , with j > i.
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Fig. 5: Attack Graph of DER System Fig. 6: Attack Graph of SCADA System

DER.1 System Description: The US National Electric
Sector Cybersecurity Organization Resource (NESCOR)
Technical Working Group has introduced a framework for
evaluating the risks of cyber attacks on the electric grid.
A distributed energy resource (DER) is described as a
cyber-physical system consisting of entities such as generators,
storage devices, and electric vehicles, that are part of the
smart energy distribution system. The DER.1 failure scenario
has been identified as the riskiest failure scenario affecting
distributed energy resources according to the NESCOR
ranking [21]. As shown in Figure 5, there are two critical
equipment assets: a PhotoVoltaic (PV) generator and an
electric vehicle (EV) charging station. Each equipment is
accompanied by a Human Machine Interface (HMI), the only
gateway through which the equipment can be controlled. The
DER.1 failure scenario is triggered when the attacker gets
access to the HMI. Once the attacker gets access to the system,
she changes the DER settings and gets physical access to the
DER equipment so that they continue to provide power even
during a power system fault. Through this manipulation, the
attacker can cause serious physical damage to the system.

SCADA System Description: The SCADA system is
composed of two control subsystems, where each incorporates
a number of cyber components, such as control subnetworks
and remote terminal units (RTUs), and physical components,
such as, valves controlled by the RTUs. We followed the
NIST guidelines for industrial control systems for such
architecture [57], where each subsystem is separated from
external networks through a demilitarized zone (DMZ). The
system implements firewalls both between the DMZ and the
external networks, as well as between the DMZ and its
control subnetwork. Therefore, an attacker must bypass two
different levels of security to gain access to these control
subnetworks. These two subsystems are interdependent via the
shared corporate network, as well as due to having a common
vendor for their control equipment. The resulting attack graph
of the described system is shown in Figure 6. The “Corp” and
the “Vendor” nodes connect the two subnetworks belonging to
the two different defenders and can be used as jump points to
spread an attack from one control subsystem to the other. This
system has six critical assets (3 RTUs, Control Unit, CORP,
and DMZ). The compromise of a control network “CONTROL
i” will lead to loss of control of all 3 connected RTUs.

E-commerce System Description: The E-commerce

system overview is shown in Figure 7. The web server sits
in a DMZ separated by a firewall from the other two servers,
which are connected to a network not accessible from the
Internet. All connections from the Internet and through servers
are controlled by the firewall. Rules state that the web and
application servers can communicate, and the web server can
be reached from the Internet. Here, the attacker is assumed to
be external and thus her starting point is the Internet and uses
stepping-stone attacks with the goal of having access to the
MySQL database, represented by node 19 in the attack graph.
For this system, we follow the attack graph generated by [17]
(Figure 7 (on right), shaded nodes are detectors, not attack
steps), based on popular vulnerabilities databases [58].

VoIP System Description: As shown in Figure 8, the
VoIP system is composed of three zones; a DMZ for the
servers accessible from the cloud, an internal network for local
resources (e.g., computers, mail server and DNS server), and
an internal network that is consisted of only VoIP components.
This architecture follows the NIST security guidelines for
deploying a secure VoIP system [59]. In this context, the
VoIP network consists of a Proxy, voicemail server, and
software-based and hardware-based phones. The firewall has
rules to control the traffic between the three zones. Note
that the DNS and mail servers in the DMZ are the only
accessible nodes to the Internet. The PBX server can route
calls to the Internet or to a public-switched telephone network
(PSTN). The ultimate attack goal is to eavesdrop on VoIP
communication. Figure 8 shows the resultant attack graph.

Having explained the failure scenarios of our four
interdependent systems. Next, we present our experimental
setup which includes simulation parameters and the procedure.

B. Experimental Setup

The simulations are based on our proposed game-theoretic
models in Section II and mechanism-based models in
Section V with the following parameters. Each system has
two defenders. For DER, E-commerce, and VoIP, we have
the financial losses Li = L = $2M, ∀i. The losses of the
critical assets within SCADA (in Million dollars) are shown in
Figure 6. We used the probability of successful attack function
in (2) in our simulations. To estimate the baseline probability
of successful attack on each edge (i.e., without any security
investment), we first create a table of CVE-IDs (from real
vulnerabilities reported in the CVE database for 2000-2020).
We then followed [34] to convert the main attack’s metrics
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Fig. 7: A high level network overview of E-commerce (on left)
adapted from [17]. The resultant attack graph (on right).

Fig. 8: A high level network overview of VoIP (on left) adapted
from [17] and its resultant attack graph (on right).
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Fig. 9: A comparison of social costs under the socially optimal
allocation (induced by mechanism) versus the PNE. We observe
that the social cost under the socially optimal allocation is much
lower than the social cost under PNE with behavioral defenders.

(i.e., attack vector, attack complexity) to a baseline probability
of successful attack. Table II (in Appendix E) illustrates
this process for DER.1 and SCADA systems. We sweep the
behavioral bias α such that α ∈ [0.4, 1]; this is consistent with
the range of behavioral parameters from prior experimental
studies [19], [60]. We consider a symmetric security budget
across the defenders (unless otherwise stated). For Nash
Equilibrium, we run the best response dynamics until the game
reaches the Nash Equilibrium while the social optimal is found
using (5). TASHAROK refers to the setup with any of the
two proposed mechanisms since both mechanisms lead to the
social optimal, albeit with different tax collections.

C. Evaluation Results

Next, we show our findings from different experiments
for the four interdependent systems. Mainly, we compare the
security investments (by both classes of decision-makers),
the social costs under different investments, the per-defender
expected loss, the amount of taxes (payments) under the
two mechanisms (from Section V), the effect of behavioral
decision-making, and the trends in voluntary participation.

Security Investments: We observe that the socially optimal
allocation leads to distributing investments only on min-cut
edges7. On the other hand, behavioral defenders distribute their

7The min-cut edges are the edges in the minimal set that can be removed to
disconnect the graph. Here the same concept is applied to our attack graph.

Real Expected Losses in SO vs PNE

 = 1  = 0.8  = 0.6  = 0.4
0

50

100

150

200

250

E
x
p

e
c
te

d
 L

o
s
s
 o

f 
e

a
c
h

 d
e

fe
n

d
e

r

Social Optimal

PNE

(a) DER

Real Expected Losses in SO vs PNE

 = 1  = 0.8  = 0.6  = 0.4
0

1

2

3

4

5

6

E
x
p

e
c
te

d
 L

o
s
s
 o

f 
e

a
c
h

 d
e

fe
n

d
e

r

10
4

Social Optimal

PNE

(b) SCADA

Fig. 10: A comparison of expected loss of each defender under
the social optimal (SO) versus the PNE under different behavioral
levels. We observe that the expected loss under SO is lower than
(same in DER) that under PNE irrespective of behavioral level.

investments across the network. This finding motivates the
importance of incentivizing behavioral defenders to achieve
social optimal investments since this would lead to reducing
the per-defender real cost and the social cost as shown next.

Social Costs: Figure 9a-9d demonstrate the reduction in
social cost (which is the sum of the real costs of all defenders)
following the implementation of the mechanism for the four
systems. We observe that the mechanism design is more
helpful for moderate and highly behavioral defenders since
the behavioral investments under PNE is much worse than
the social optimal solution. Numerically, as a result of risk
reduction following the implementation of the mechanism, we
see that the gain for society (represented by the ratio of the
social cost under PNE to social cost under the mechanism) is
3X for DER, 180X for SCADA, 450X for E-commerce, and
390X for VoIP when the defenders are highly behavioral (i.e.,
α1 = α2 = 0.4). This result shows that the social cost under
the socially optimal allocation is much lower than that under
PNE, and the gap is higher for highly behavioral defenders
and for systems with higher degree of interdependency.

Defender’s Real Expected Loss: Figure 10a and 10b
illustrate the real expected losses of all defenders under both
the PNE and the socially optimal outcome (incentivized by the
mechanism). Here the social planner is made to be behavioral
along with the defenders, at the same level (same value of
α). From the result, we see that implementing the proposed
mechanisms would incentivize risk reduction for each defender
for SCADA system while keeping the risk the same for the
DER system. This happens due to the loose interdependency in
the DER system. With such loose interdependency, the social
optimality is achieved simply by the defenders individually
spending their security resources efficiently.
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Fig. 11: The amount of taxes paid by each defender under the
studied mechanisms. For the VCG Mechanism, the player receives
payment (i.e., pay negative taxes). On the other hand, under the
Externality mechanism each defender pays positive taxes.
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Highly-Behavioral Defender (  = 0.4)

Fig. 12: The maximum amount of tax payment under which
each defender participates in the mechanism for the four studied
interdependent systems. The highly behavioral defender is willing
to participate under higher tax payment.

Tax Payment Amounts: Here, we compare tax payments
under different scenarios for both mechanisms that we study
here. First, for the DER.1 system, it has the nature that each
subnetwork is mainly affected by the corresponding defender.
Therefore, under VCG mechanism, both defenders can reach
the social optimal without paying taxes (i.e., budget balance
for the central regulator). Hence, we omit this figure. However,
for the SCADA system since the two subnetworks are mainly
interdependent (i.e., if the attacker access both subnetworks
via the Corp and the Vendor nodes, as explained earlier),
the budget balance condition is not satisfied for the VCG
mechanism. Figure 11a shows such insight where each of the
two defenders is paid by the central regulator in the VCG
mechanism since each defender makes the SCADA system
more secure by her investments. We note also that although
behavioral defenders invest suboptimally, they also benefit
other defenders in the network (reduce the social cost) and thus
need also to be paid by the VCG mechanism regulator. On the
other hand, Figure 11b shows that the budget balance condition
is satisfied with the Externality mechanism since each defender
pays for the positive externalities on her cost due to other
defender’s investments. Figure 11c-11d show similar findings
for E-commerce system due to interdependency among servers
via firewalls and internet. We omit similar tax figures for VoIP.

Amount of Taxes and Voluntary Participation: Human
bias is an important factor when trying to understand how
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Fig. 13: The effect of asymmetry in security budget distribution
across defenders on the social cost for different behavioral levels.
Such effect is more pronounced under high budget asymmetries.

stakeholders would react to the security tax. Thus, we consider
next the voluntary participation of the defenders under any
quasi-linear tax-based mechanism. This requires calculation of
the maximum tax payment under which each defender would
participate in the mechanism. Figure 12 shows such maximum
tax amount for our four interdependent systems under different
behavioral levels. The highly behavioral defender is willing to
participate in the mechanism even under higher tax payments
since her suboptimal investments are far from the socially
optimal level. For her, paying higher taxes and allocating
resources according to the social optimum would yield lower
total real loss compared to opting out and achieving PNE.

Asymmetry in Security Budget Distribution Across
Defenders: We now study the effect of asymmetry in security
budget distribution across the defenders and its effect on
social cost. Figure 13a and 13b show the results for the
DER and SCADA systems, respectively. For both systems, we
observe that the social cost is higher with very high budget
asymmetry and moderate to high behavioral level (i.e., one
defender has 10% of the total security budget and the second
defender has the remaining 90%). This observation can be
explained by two facts. First, with a suboptimal behavioral
allocation, the defender that has much less security budget
wastes her constrained budget on non-critical edges. Second,
the much richer behavioral player also allocates her resources
suboptimally. This leads to this magnified increase in the social
cost under extreme budget asymmetry. We observe similar
findings for E-commerce and VoIP systems (Figures omitted).

Number of Defenders: We create a network with multiple
defenders that contains replicas of these two subnetworks, and
assume that new installed equipment corresponds to a new
defender’s subnetwork. We consider a symmetric distribution
of the security budget over all defenders, with each defender
having same security budget. Figure 16 shows that as the
number of defenders increases, the difference between total
losses between non-behavioral and behavioral games increases
in a super-linear manner. For instance, when the number of
defenders is 4, a change from non-behavioral to behavioral
defenders (α = 0.6) increases the loss by 8.65%, while the
same change in α in the larger network with 16 defenders
results in a substantial increase of 26.17%. This is due to the
interdependencies between the subnetworks. For instance, if
there are two defenders, each will incur a loss in two cases:
when either her target asset is successfully compromised or
the other defender’s target asset is successfully compromised
(as it can lead to the compromise of their common goal G).
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On the other hand, if there are 16 defenders, for each defender,
there are 16 possible paths through which she suffers a loss.
This also explains why the total loss in the system increases
as the number of defenders increases—the individual budget
of each defender stays the same but the number of ways in
which her asset can be compromised increases linearly.

Asymmetry of Cognitive Bias across Defenders: We study
the effect of the asymmetry in cognitive bias across different
defenders, in contrast to the previous experiments where both
defenders had the same behavioral bias. Figure 17a-17b (in
Appendix F) shows the effect of such heterogeneity on the
social cost. We observe that two defenders with moderate
behavioral levels (α1 = 0.6, α2 = 0.6) would invest better
and consequently reduce the social cost more compared to two
heterogeneous defenders (with α1 = 0.8, α2 = 0.4), although
the mean behavioral level is the same in the two cases.

Sensitivity of Edges to Investments: Finally, we show the
effect of edges’ sensitivity to investments on each defender’s
real expected loss for different behavioral levels. We present
this experiment in Appendix F. The high-level takeaway is
that a defender whose edge is more sensitive to investments
(i.e., the probability of successful attack goes down faster) gets
more tax payments under the mechanisms.

D. Baseline Systems

We compare TASHAROK with four baseline systems
under rational defenders: the seminal work of [12] for security
investment with attack graphs on attack graph generation
and investment decision analysis8, [38] for placing security
resources using defense in depth technique which traverses
all edges that can be used to compromise each critical asset
and distribute resources equally on them, the recent work [25]
that explored behavioral decision-making in a non-cooperative
setup (PNE characterization), and the recent work [9] that
showed that attackers follow shorter paths to exploit target
assets in the generated attack graphs. Table I shows such
comparison by calculating the social cost under each work’s
defense allocation, indicating the superiority of TASHAROK
for almost all our interdependent systems (note similar results
between our proposed approach and most baselines for DER.1
in Table I due to the weak interdependency in this system).
Since three of the four baselines (except [25]) do not design
for behavioral defenders, we do not consider such defenders in
this experiment. The result bears out the fact that the defense
investments given by [25] and [12] are identical under rational
decision-making.

TABLE I: Comparison of TASHAROK and baseline systems in
terms of the social cost under each system’s defense allocation
(lower is better). For TASHAROK, we consider a rational social
planner. TASHAROK gives the best defense allocation among the
techniques (resp. the lowest social cost).

System Type S&P02 [12] Milcomm06 [38] AsiaCCS21 [25] CCS21 [9] TASHAROK
DER.1 173.390 600.451 173.390 173.390 173.390

SCADA 513.230 4.023× 104 513.230 5.902× 103 222.210
E-commerce 47.014 8.115× 104 47.014 2.493× 104 45.001

VoIP 184.120 1.525× 105 184.120 1.4859× 104 110.21

8More recent approaches (e.g., [61], [62], [63]) follow same strategy of [12].

VII. RELATED WORK

Game-theoretic modeling of security: Game theory has
been used to describe the interactions between attackers and
defenders and their effects on system security. A commonly
used model in this context is that of two-player games, where a
single attacker attempts to compromise a system controlled by
a single defender [64], [65]. Game theoretic models have also
been used in [14], [66], [67] to study the interaction between
one defender and (multiple) attackers attempting Distributed
Denial of Service attacks. Our work differs from both of
these lines of literature by considering the interdependencies
between multiple defenders in the network. Game theoretic
models have also been used to study critical infrastructure
security [13], [68], censorship-resilient proxy distribution [15],
and protecting networks from cascade attacks [69], [70]. The
major difference of our work is that we analyze behavioral
models of decision-making while existing work has focused on
classical game-theoretic models of rational decision-making.
Moreover, previous research does not consider mechanism
designs to improve security as we do here.
Human behavior in security and privacy: Notable
departures from classical economic models within the privacy
literature are [41], [71], which identify the effects of behavioral
decision-making on personal privacy choices. The importance
of considering similar models in the study of system security
has been recognized in the literature [60], [72]. Prior work
considers models from behavioral economics in the context of
security applications, but based only on psychological studies
[42], [73] and human subject experiments [74], [75], [30]
for the end user. Our work differs by exploring a rigorous
mathematical model of decision-makers’ behavior. We also
model the interaction between multiple defenders (in contrast
to only one defender in these studies), consider interdependent
assets (in contrast to studies that examine binary decisions for
isolated assets), and study the mechanism design for enhancing
security decision-making of behavioral defenders (in contrast
to these studies that did not consider any mitigation).
A few studies provide theoretical treatment of behavioral
decision-making in specific classes of interdependent security
games [33], [32], [76]. These works, however do not consider
any mitigation for behavioral decision-making.
Mechanism design in security: The motivation for
considering mechanism design models in the security literature
comes from two main characteristics of security games with
multiple defenders. First, the security investments of each
defender can help other defenders, similar to public good
provision with positive externalities. Second, defenders can
therefore free ride and depend on security investments by
other defenders. This leads to an inefficiently low overall
security level of the system [35], [36]. This motivates the
study of mechanisms for improving network security, and
ideally, incentivizing user cooperation and driving the system
to a socially optimal state of enhanced overall security,
e.g., [37], [46]. However, to the best of our knowledge,
no previous work in mechanism design has investigated
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behavioral decision-making effects and considered attack
graphs that can model any large-scale interdependent system.

Our presented impossibility result differs from those in the
existing literature, which builds on the seminal work of Green
and Laffont [77]. We differ in terms of the selected equilibrium
solution concept, the set of properties the mechanism is
required to satisfy, the space of cost functions, or the nature of
the system type. For instance, the Myerson and Satterthwaite
result [36] considers a Bayesian Nash solution while we have a
Pure Nash implementation. On the other hand, Maskin’s work
on implementation theory [78] considers Nash equilibrium
for the complete information setup. However it requires that
all NE be socially optimal which cannot be guaranteed in
interdependent security games (see Section IV). Finally, the
line of work [37], [46] has considered quasi-linear costs (where
the tax is added to the original cost function) and Nash
equilibrium solutions of the mechanisms, which has two main
differences from our present work. First, they consider utilities
with classical decision-making models, without the cognitive
biases that we consider here. Second, they do not consider
interdependent systems with attack graphs.

VIII. DISCUSSION

(1) Existence of bias in security decision-makers: Numerous
academic studies of even the most highly-trained specialists
have shown that experts are also susceptible to systematic
failures of human cognition (e.g., [79], [80]). Specifically,
the work [80] has conducted a survey of experiments that
considered behavior of students against experts in a wide
variety of professions. This survey reports only one out of
thirteen considered studies found that professionals make
decisions more closely in line with standard economic
theory. Moreover, recent research has shown that cybersecurity
professionals’ probability perceptions are as susceptible to
systematic biases as those of the general population [27], [28].
Finally, even if security experts exhibit weaker biases, this can
still result in sub-optimal security investments and their effects
may be magnified due to the magnitude of losses associated
with compromised real-world assets that these experts control.
(2) Guiding security decision-makers: We acknowledge that
the security state of a system cannot be fully summarized by
only one measure. However, we believe that our framework
provides an important estimate of the probability of successful
attack (resp. expected financial loss). We compose that
estimate from something that is easier to grasp — the loss due
to each asset in the system being compromised. We believe
that our work opens up a new dimension of intervention
in securing interdependent systems. Our framework allows
for a quantification of the improvements in security that
can be obtained by incentivizing security professionals to
invest better via our proposed mechanisms. Furthermore, this
framework can guide operators of large-scale interdependent
systems (akin to social planners), by allowing the operator to
investigate subsystems within the system where sub-optimal
security investments might have been made by subordinates
operating those subsystems and by calculating the taxes

charged to each subordinate to participate in the mechanism
and enhance overall system security (social cost). As shown in
Section VI, this would depend on the nature of the network and
the interdependency among different defenders. We emphasize
that our focus in this paper is to explore the benefit of such
mechanism for human decision-makers with cognitive biases
securing interdependent systems and explore its outcomes.
(3) Mechanism design to solve behavioral bias in
different security problems: Our proposed adaptation of
the Externality and VCG mechanisms to interdependent
security games (Section V) can be further used for different
security problems. Examples include defending isolated assets
with heterogeneous valuations, e.g., for enhancing security
decisions to defend different airports [81] or preventing
DAG-based ransomware attacks [82]. Recent work has shown
the effect of cognitive biases on security resource allocations in
such settings using decision- and game-theoretic analysis [76],
[33]. However, these studies do not consider any mitigation for
such biases. Thus, using mechanism design to improve such
biases would be an avenue for future work.

IX. CONCLUSION

We studied interdependent systems that are managed by
multiple stakeholders and are prone to cyber attacks that
progress in a stepping-stone manner. We modeled such attack
scenarios using a game-theoretic framework and captured the
attack progression and interdependency via attack graphs, in
our framework called TASHAROK. We then analyzed two
tax-based mechanism types for our interdependent security
setups where the central regulator incentivizes defenders to
achieve socially optimal allocations. We then showed that
a mechanism designer cannot guarantee social optimality
without paying money to incentivize defenders in all instances
of our interdependent security games. We also showed the
effect of behavioral bias on the two mechanisms’ outcomes
where higher bias leads to paying more taxes. We then
explored the relation between the tax amount and the voluntary
participation of defenders in the mechanism and showed that
behavioral defenders choose to participate in the mechanism
even under higher tax payments, compared to rational
defenders. We evaluated TASHAROK via four real-world
interdependent systems and showed the effect of mechanisms
on social cost and the effect of behavioral decision-making
on the mechanisms’ outcomes. We compared the security cost
achieved by security allocations of TASHAROK compared
to those of four baseline solutions from the attack graph
literature. We found that even with rational defenders
TASHAROK either equals or outperforms the baselines.

We believe that our study can help central regulators
and interdependent systems’ defenders attain improved
understanding of their security risks and consequently make
more effective investment decisions to mitigate such risks,
including additional risk from decisions under cognitive
biases. Future avenues of research include characterizing
the achievable security allocation, as well as the associated
mechanisms, and exploring attackers with cognitive bias.
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APPENDIX

A. Proof of Proposition 2

Proof. The proof of Proposition 2 follows by the following
counter example in which we give an instance of
interdependent security game that has a budget deficit.

Example 3. Consider the attack graph in Figure 14. This
graph contains 2 rational defenders (α1 = α2 = 1), and
each defender Dk is responsible for defending target node
vk. Let the defender D1’s node have loss equal to L1,
and the defender D2’s node have loss L2. From (8), the
cost of defender D1 is given by C1(x) = L1e

−x1
s,1−x2

s,1 +

[
l11

∗

s,1 l12
∗

s,1 l11
∗

1,2 l12
∗

1,2

] 
x1
s,1

x2
s,1

x1
1,2

x2
1,2

. Thus, the Lagrangian of the

defender D1 is given by

L(x, µ) = L1e
−x1

s,1−x2
s,1 +

[
l11

∗

s,1 l12
∗

s,1 l11
∗

1,2 l12
∗

1,2

] 
x1
s,1

x2
s,1

x1
1,2

x2
1,2


+ µ[x1

s,1 + x1
1,2 −B1]. (13)

Applying KKT conditions [59] to (13) yields

−L1e
−x1

s,1−x2
s,1 + l11

∗

s,1 + µ = 0 (14)

−L1e
−x1

s,1−x2
s,1 + l12

∗

s,1 = 0 (15)

l11
∗

1,2 + µ = 0 (16)

l12
∗

1,2 = 0. (17)

Thus, by solving (15)-(18) we have

l∗1 =
[
L1e

−x1
s,1−x2

s,1 − µ L1e
−x1

s,1−x2
s,1 −µ 0

]
t∗1 = l∗1

[
x1
s,1 x2

s,1 x1
1,2 x2

1,2

]T
.

Similarly, calculating the Lagrangian of defender D2 and
doing a similar analysis to that of defender D1 and letting
β2 = e−x1

s,1−x2
s,1−x1

1,2−x2
1,2 , the tax terms of defender D2 are

l∗2 = L2

[
β2 β2 − µ

′

L2
β2 β2 − µ

′

L2

]
,

t∗2 = l∗2
[
x1
s,1 x2

s,1 x1
1,2 x2

1,2

]T
.

Now, we calculate summation of taxes for the two defenders.
Note that under social optimal x∗, we have x1

s,1 = B1, x
1
1,2 =

0, x2
s,1 = B2, and x2

1,2 = 0. Thus, the taxes terms are

t∗1 = 2L1B1e
−B1−B2 − µB1, t∗2 = 2L2B2e

−B1−B2 − µ
′
B2.

For simplicity, suppose that L1 = L2 = L and B1 = B2 = B,
we thus have t∗1 = 2LBe−2B − µB and t∗2 = 2LBe−2B −
µ

′
B. Therefore, summing the taxes of the two defenders yield∑2
i=1 t

∗
i = 4LBe−2B − B(µ + µ

′
). Note that if 4Le−2B <

µ+µ
′

(which can happen under large budget B and small loss

L, e.g., L = 4 and B = 50 yields 4Le−2B = 2.97× 10−43),
we would have

∑2
i=1 t

∗
i < 0.

B. Proof of Theorem 1

Proof. We prove this result by showing that the amount of
taxes paid by defender Dk, given by t∗k(x

∗) is a decreasing
function in the defender Dk’s behavioral level αk. Recall
from (9) the tax term of defender Dk under the Externality
mechanism in our interdependent security games is given by:

t∗k(x
∗) =

|D|∑
n=1

∑
(vi,vj)∈En

tkn
∗

ij

(10)
= −Lk

|D|∑
n=1

∑
(vi,vj)∈En

xn∗

ij

∂Ck

∂xn
i,j

(x∗). (18)

Note that the marginal derivative of defender Dk’s cost w.r.t.
the investment of defender Dn on the edge (vi, vj) follows
from differentiating (4) and is given by

∂Ck

∂xn
i,j

(x∗) =
∑

vm∈Vk

Lm exp

−
∑

(vi,vj)∈P

[− log(pi,j(xi,j))]
αk
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× αk[− log(pi,j(xi,j))]

αk−1 ×
p′i,j(xi,j)

pi,j(xi,j)
,

where P = argmax
P∈Pm

∏
(vi,vj)∈P w (pi,j(xi,j)). Now,

differentiating ∂Ck

∂xn
i,j
(x∗) w.r.t. αk yields

d

dαk

∂Ck

∂xn
i,j
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∑
vm∈Vk

Lm exp
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∑
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αk(αk − 1)

log(pi,j(xi,j))
×

p′i,j(xi,j)

pi,j(xi,j)

))
.

Since 0 < pi,j(xi,j) ≤ 1
e , we have 1 ≤ − log(pi,j(xi,j)) < ∞

and 0 ≤ log(− log(pi,j(xi,j))) < ∞. Thus, the firt term
is negative. Moreover, since pi,j(xi,j) is decreasing in the
defense investment xi,j , we have p′i,j(xi,j) < 0, and since
αk ∈ (0, 1] and −∞ < log(pi,j(xi,j)) ≤ −1 (from above),
the third term is non-positive. Therefore, the whole term−

∑
(vi,vj)∈P

log(− log(pi,j(xi,j)))× [− log(pi,j(xi,j))]
αk


− 1 +

(
αk(αk − 1)

log(pi,j(xi,j))
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pi,j(xi,j)

)
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Fig. 14: An attack graph where the Externality mechanism has
individual rationality (achieves social optimal solution) but does
not have weakly budget balance.

is negative. Finally, from the above analysis and
noting that exp(x) > 0∀x ∈ (0,∞), the whole term∑

vm∈Vk
Lm exp

(
−
∑

(vi,vj)∈P [− log(pi,j(xi,j))]
αk

)
×

[− log(pi,j(xi,j))]
αk−1 × p′

i,j(xi,j)

pi,j(xi,j)
is negative. Therefore, we

have d
dαk

∂Ck

∂xn
i,j
(x∗) > 0.

Now, differentiating (18) w.r.t. αk with noting that the joint
investment profile x−k is fixed yields

d

dαk
t∗k(x

∗) = −Lk

|D|∑
n=1

∑
(vi,vj)∈En

xn∗

ij

d

dαk

∂Ck

∂xn
i,j

(x∗),

which is negative since d
dαk

∂Ck

∂xn
i,j
(x∗) > 0 and since ∃Dn s.t.

xn∗

i,j > 0 for at least one edge (vi, vj).

C. Proof of Proposition 3

Proof. We prove this impossibility by the following counter
example with one family of instance game as shown below.
Example 4. Consider the instance of interdependent security
game of k rational defenders on the attack graph shown in
Figure 15. We now show the details of taxes calculation.

First the PNE solution is given by x =[∑k
i=1 Bi

2

∑k
i=1 Bi

2 0 · · · 0

]
. In other words, the

total budget, which is the sum of the budgets of all defenders,
would be distributed equally between the two min-cut edges
(vs, v1), and (vs, v2). For each defender Di, the total social
cost (not counting Di) is given by

k∑
j=1,j ̸=i

Cj(x) =

∑
j ̸=i

Lj

×
(
e−

∑k
j=1 Bj

2

)
.

Now, if defender Di was not a member of the society, the
equilibrium without defender Di, denoted by x∗

−i is given by

x∗
−i =

[∑k
j=1,j ̸=i Bj

2

∑k
j=1,j ̸=i Bj

2 0 · · · 0

]
. Therefore,

the amount of tax paid by defender Di is given by

t∗i =
∑
j ̸=i

Cj(x)−
∑
j ̸=i

Cj(x
∗
−i)

=

∑
j ̸=i

Lj

×
(
e−

∑k
j=1,j ̸=i Bj

2

)
×
(
e−

Bi
2 − 1

)
,

which is negative for each defender Di with a positive security
budget (with Bi > 0). Therefore, summing the taxes of all
players yields that t∗i < 0.

This shows the budget deficit under VCG mechanism. Note
that we assume that all defenders have finite budget (when
securing real-world interdependent systems).

vs v2 v4 v6 vk−1

v1 v3 v5 v7 vk

L1 L2 L3 Lk

Fig. 15: An example for a graph structure (with k defenders) in
which the VCG mechanism achieves the socially optimal allocation
but has a budget deficit.

D. Proof of Proposition 4

Proof. From the Proposition statement, the socially optimal
solution would put all the budget B on the first edge (vs, v1),
so that all nodes have a probability of successful attack given
by exp(−B). Now, we prove the first part (i) as follows.

The PNE for behavioral defenders is given by the investment
profile where each defender Dk puts their entire budget B

K on
the edge coming into their node vk (similar to analysis in
Example 2). Therefore, the true cost of defender D1 under
this PNE is L1 exp(−B

K ).
Now, to have defender D1 participate in the mechanism we

must have

C1(x
∗) + t1 ≤ C1(x̄)

⇐⇒ L1 exp(−B) + t1 ≤ L1 exp(−
B

K
)

⇐⇒ t1 ≤ L1

[
exp(−B

K
)− exp(−B)

]
.

For defenders D2, D3, · · · , DK−1, defender Di would
participate in the mechanism if

Ci(x
∗) + ti ≤ Ci(x̄) ⇐⇒ Li exp(−B) + ti ≤ Li exp(−

iB

K
)

⇐⇒ ti ≤ Li

[
exp(− iB

K
)− exp(−B)

]
.

This concludes the proof of the first part.
Now, we prove the second part (ii) From part (i), a defender

Di ∈ D can participate while paying at most the max amount
of tax tmax

i = Li

[
exp(− iB

K )− exp(−B)
]
. Differentiating

tmax
i w.r.t the defender index i yields

∂tmax
i

∂i
= Li × exp(− iB

K
)× −B

K
,

which is negative since the exponential function range is
(0,∞), Li is the non-negative financial loss when defender
Di’s asset is compromised, and B

K is the non-negative security
budget of each defender Di ∈ D. This concludes the proof of
the second part.

E. Estimation of Baseline Probabilities of Successful Attack

We show the estimation of baseline probability of successful
attack in Table II. The first column represent the vulnerability
CVE-ID (from real-world vulnerabilities reported in CVE
database). The second column represent the corresponding
edge(s) in the attack graph. The third column represents the
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attack vector type (physical, local, or network). The fourth
column is the score generated following the seminal work [34].

TABLE II: Baseline probability of successful attack for
vulnerabilities in SCADA and DER.1 systems.

Vulnerability (CVE-ID) Edge(s) Attack Vector Score
SCADA application
Control Unit (CVE-2018-5313) (Vendor,Control1),(Vendor,Control2) Local 0.78
Remote authentication (CVE-2010-4732) (S, Vendor) Network 0.9
Remote cmd injection (CVE-2011-1566) (Control,RTU1),(Control,RTU2) Network 1.0
Authentication bypassing (CVE-2019-6519) (Corp,DMZ1),(Corp,DMZ2) Network 0.75
DER.1 application
Physical access (CVE-2017-10125) (w9, w7),(w18, w16) Physical 0.71
Network access (CVE-2019-2413) (w9, w8),(w18, w17) Network 0.61
Software access (CVE-2018-2791) (w7, w6),(w8, w6) Network 0.82
Sending cmd (CVE-2018-1000093) (w6, w5),(w15, w14) Network 0.88
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Fig. 16: Total loss (in Millions) as a function of the number of
defenders. We observe that the loss increases super-linearly (i.e.,
the per-defender loss is increasing as system size grows). This is
due to the increased risks resulting from interdependencies in the
defenders’ critical assets.

F. Evaluation-Extended

Here, we extend our evaluation presented in Section V.
Specifically, we study the effect of the asymmetry in
behavioral cognitive bias and asymmetry in edges sensitivities
to security investments across different defenders.

Asymmetry in Cognitive Bias across Defenders: We study
the effect of the asymmetry in behavioral level (cognitive bias)
across different defenders and its effect on the social cost, for
the four case studies we consider in our evaluation. Figure 17a
and Figure 17b shows the result for such experiment for the
DER and SCADA systems, respectively. We observe that the
difference in the social cost is more pronounced with very high
bias asymmetry, e.g., the social cost with α1 = 1, α2 = 0.4
is about 2X the social cost with α1 = 1, α2 = 1 for DER. A
similar insight observed for the SCADA systems. Moreover,
we notice that two defenders with moderate behavioral levels
(α1 = 0.6, α2 = 0.6) would invest better and consequently
better protect the overall system compared to two defenders
with one less behavioral and one more behavioral (with
α1 = 0.8, α2 = 0.4), although the mean behavioral level is
the same in these two cases. This sheds the light on the effect
of suboptimality of behavioral defender on the overall system.

Sensitivity of Edges to Investments: Finally, we consider
the effects of different sensitivities of edges to security
investments. Recall from (2) that edges with higher sensitivity
are those for which the probability of successful attack
decreases faster with each unit of security investment. In
this experiment, for both DER and SCADA systems, we

assume that the defender D1 has lower edges’ sensitivities
to her investments compared to the defender D2. Formally,
we let s1i,j = 0.5 (for D1) and s2i,j = 1 (for D2). That
can be mapped into realistic scenario where D1’s methods for
investing on edges are less effective in reducing the probability
of successful attack compared to D2.

For DER system, we show the effect of edges’ sensitivity to
investments on each defender’s real expected loss for different
behavioral levels in Figure 18a. We observe that the defender
with the higher edges’ sensitivity (here, D1) would have
much lower expected loss compared to the defender with
the lower edges’ sensitivity (here, D2) irrespective of the
behavioral level of the defender. However, both defenders
pay zero amount of taxes under all behavioral levels due to
loose interdependency across the two defenders’ subnetworks
in DER (as explained earlier in Section VI).

For SCADA system, we show the effect of sensitivity of
edges to investments on the amount of taxes paid by each
defender under the VCG mechanism. Figure 18b shows that
D2 would receive more amount of payments compared to
D1 for all behavioral levels. The intuition here is that D2

is more beneficial to the society as her investments reduce the
social cost more compared to the investments of D1 (since the
sensitivity of edges to D2’s investments is twice the sensitivity
of edges to D1’s investments). Therefore, under the VCG
mechanism, D2 would receive much more amount due to her
contribution to the society. Moreover, we note that the effect of
edges’ sensitivity is more pronounced under higher behavioral
bias (i.e., less α) and therefore the difference in the amount of
taxes among the two defenders increases as defenders become
more behavioral (since D1 even wastes her budget on edges
that has less sensitivity to those non-critical edges).
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Fig. 17: The effect of asymmetry in behavioral cognitive bias across
defenders on the social cost.

Effect of Egdes' Sensitivity to Investmetns on Defender's Loss
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(a) Effect of asymmetry in edges’
sensitivity to investments across the
two defenders on the loss of each
defender on DER system.

Effect of Egdes' Sensitivity to Investmetns on Tax Amount
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Fig. 18: The effect of asymmetry in edges’ sensitivity to investments
across the two defenders on the loss of each defender and the
amount of taxes paid by the defender under the VCG mechanism.
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