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Abstract—This paper presents a system mmSpy that shows
the feasibility of eavesdropping phone calls remotely. Towards
this end, mmSpy performs sensing of earpiece vibrations using
an off-the-shelf radar device that operates in the mmWave
spectrum (77 GHz, and 60 GHz). Given that mmWave radars
are becoming popular in a number of autonomous driving,
remote sensing, and other IoT applications, we believe this is a
critical privacy concern. In contrast to prior works that show
the feasibility of detecting loudspeaker vibrations with larger
amplitudes, mmSpy exploits smaller wavelengths of mmWave
radar signals to detect subtle vibrations in the earpiece devices
used in phonecalls. Towards designing this attack, mmSpy solves
a number of challenges related to non-availability of large scale
radar datasets, systematic correction of various sources of noises,
as well as domain adaptation problems in harvesting training
data. Extensive measurement-based validation achieves an end-
to-end accuracy of 83− 44% in classifying digits and keywords
over a range of 1-6 ft, thereby compromising the privacy in
applications such as exchange of credit card information. In
addition, mmSpy shows the feasibility of reconstruction of the
audio signals from the radar data, using which more sensitive
information can be potentially leaked.

Keywords: side channel attacks, mmWave radars, speech privacy

I. INTRODUCTION

Millimeter wave (mmWave) communication technology is
being increasingly adopted for next generation networking
applications that require low latency and high throughput such
as virtual/augmented reality [47], vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) networking [102] in au-
tonomous driving, machine type communications in industrial
IoT [9] etc. In addition to networking, mmWave technology
is also becoming increasingly popular in a number of remote
sensing applications in the areas of material detection, au-
tonomous driving, precision agriculture, vibration sensing in
industries, robotics, etc. [62], [45], [55], [53].

Motivated by these applications, mmWave communication has
been incorporated in 5G and other networking standards,
thereby increasing the proliferation of mmWave sensing and
networking devices in a number of IoT applications. The
technology is readily available on newer smartphones, vir-
tual/augmented reality (VR/AR) headsets, as well as several
off-the-shelf radar devices for autonomous driving applica-
tions. While other exciting applications are around the corner,
this paper takes a step back and exposes a critical capability
in mmWave devices that can enable a malicious adversary to
passively overhear phone calls.

This paper proposes mmSpy, a system that uses off-the-shelf
mmWave radar devices for eavesdropping the audio spoken
by the remote caller during phone calls. The core intuition

is that the earpiece1 device that users listen to during phone
calls generate minute vibrations in the order of 7 µm. mmSpy
senses these vibrations by detecting the changes in phases of
mmWave signals reflected from the body of the phone. This
opens up the possibility of eavesdropping the audio content of
the remote caller during a phone conversation. In particular,
mmSpy can eavesdrop the contents of the audio even when the
audio is completely inaudible to both humans and microphones
nearby. In addition, since the audio is detected directly from
the source of vibrations, mmSpy’s spying capabilities are
immune to ambient noise, which makes the attack suitable in
noisy and crowded spaces where suspicion is low. This opens
up an interesting attack scenario. An attacker can eavesdrop on
nearby users on phone calls, especially in a social setting like
conferences, or parties and spy on users who might be seated
and engaged in a phone conversation. Credit card numbers,
one-time passwords, SSN numbers, etc. can be stolen within
the capabilities of mmSpy.

Such an attack is challenging for a number of reasons (i) The
vibrations are extremely small (≈ 7 um) in comparison to
the hardware noise floor (ii) The ramping and settling time of
the frequency oscillator used to generate frequency modulated
carrier wave (FMCW) signals introduces a characteristic noise
pattern into phase measurements. (iii) The vibration needs to
be decoupled from other ambient multipath signals in the
environment (iv) Because of the hardware limitations, the
sampling rate of the sensed vibration tends to be non-uniform
(v) Finally, while robustness of audio/speech processing algo-
rithms depend on large high quality training data, such large
datasets are not available for our problem domain.

mmSpy exploits a number of opportunities to handle the
above challenges. The opportunities listed below map to
the above enumerated challenges in the same order. (i) The
peaks corresponding to multipath components are tracked over
time in order to identify stable reflections and ignore noisy
peaks. (ii) We employ statistical error correction techniques to
model the noise due to ramp/settle times in the oscillator and
systematically subtract it from the phase data corresponding
to vibrations (iii) The reflection from a static object such as
a wall will have low variation in the phases. In contrast, the
reflection from the phone will have higher variation in the
phases because of high frequency audio vibrations. mmSpy
isolates phone reflection from ambient multipath by exploiting
this variation. (iv) The system parameters such as the chirp

1Earpiece speaker is used to listen to incoming calls, which is different from
inbuilt loudspeakers. This paper focuses on eavesdropping earpiece devices
whose vibrations are much smaller than loudspeakers
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Fig. 1: Overall architecture of mmSpy for spying on phone calls. Synthetic training data generated from speech datasets is combined with
small scale training data from real radars – this generates mmSpy’s audio reconstruction and speech classification models.

and frame rates of the FMCW signal, and the duty cycle
etc., are carefully selected to balance the non-uniform radar
sampling rate with a uniform phase sampling rate for audio.
(v) We model the transformation between high quality audio
to low quality vibration data. Such a modeling allows us to
convert existing large-scale speech processing datasets into
synthetic radar datasets. We use such synthetic datasets to
train machine learning (ML) algorithms for classifying digits,
keywords, as well as performing end-to-end reconstruction
of audio samples. Finally, mmSpy performs fine-tuning of
the models with small-datasets of sensor-data to enhance the
accuracy of audio classification and reconstruction.

Prior works in the area of speech analysis with radar signals
include wireless vibrometry [92] that can detect audio from
loudspeakers using WiFi signals. Similarly, WaveEar [95] can
detect speech signals using mmWave hardware based on re-
flection from a human throat. UWHear [90] uses UWB radios
for separating speech signals from multiple loudspeakers. In
contrast to these works, mmSpy differs in the following ways:
(i) mmSpy shows the feasibility of eavesdropping on earpieces
used during phone calls – the first such attempt to our best
knowledge. (ii) Prior works focus on detecting vibrations from
a loudspeaker, humans, or other sound sources which can also
be heard by a colocated microphone. In contrast, by exploiting
shorter wavelengths of mmWave signals, mmSpy shows the
feasibility of detecting minute vibrations of an earpiece that
cannot be heard by a microphone co-located with the radar.

mmSpy is implemented using off-the-shelf radar devices at
two different frequencies – TI AWR1843 BOOST in 77 GHz,
and IWR6843ISK in 60 GHz – which use FMCW signals.
The attack is performed on two models of smartphones with
contrasting material properties – Google Pixel 4a, and Samsing
Galaxy S20. The radar sensor data is pre-processed offline
with MATLAB/python modules, and fed to machine learning
modules implemented in PyTorch for various applications of
speech processing. The accuracy varies between 83−44% over
a distance of 1-6 feet for applications in digit classification
and keyword recognition. The spectrograms of reconstructed
audio from the spying attack match closely with the ground

truth which is of critical concern from a privacy perspective.

In achieving the above reported levels of attack accuracy
on smartphones with off-the-shelf radar devices, we briefly
enumerate our contributions below: (i) Identification of secu-
rity threats related to eavesdropping of the earpiece devices
used in phone-calls with mmWave radars; (ii) Systematic
preprocessing techniques for subtraction of hardware related
noise and artifacts; (iii) Synthetic training data generation for
training high precision machine learning models for speech
classification and audio reconstruction; (iv) Domain adaptation
techniques for coping up with the domain shift between
synthetic training data and real sensor data; (v) Implemen-
tation and evaluation under various attack scenarios related to
word/digit classification.

Fig. 1 depicts the overall architecture of mmSpy. A synthetic
model in mmSpy is first created with large-scale synthetic
training data generated using popular speech datasets. Towards
handling the residual differences between synthetic and real
radar data, the model is later adapted by using small-scale
training datasets from real radar. The model thus generated is
used for launching the eavesdropping attack. The rest of the
paper will expand upon this idea.

II. BACKGROUND

A. Earpiece Vibrations
Fig. 2 depicts the locations of earpieces in popular phone
models such as iPhone-12, Google Pixel 4a, and Samsung
Galaxy S4. The vibrations of the earpiece are much smaller
than that of loudspeakers. Therefore, the users need to place
their ears in direct contact with the earpiece to be able to
hear the sound clearly. Because of direct physical contact,
the sound waves propagate directly from one solid surface
(earpiece) to another solid surface (ears), thus providing a high
quality sound reception within human ears in comparison to
the case where there is no physical contact with the earpiece.
As a result, the leakage of the earpiece vibrations over the air
is also much weaker compared to that of a loudspeaker.

However, mmSpy uses reflections of mmWave signals to
directly track the vibrations produced by the earpiece. The
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Earpiece

(a) (b) (c)

Fig. 2: Earpiece locations in popular phone models (a) iPhone 12 (b)
Google Pixel 4a (c) Samsung Galaxy S20

(a)

(b)

Fig. 3: (a) An FMCW signal with linearly increasing frequency (b)
The reflected FMCW signals from objects in the environment main-
tain a constant frequency difference with respect to the transmitted
FMCW signal. The distance of the reflector can be measured from
this frequency difference.

earpiece vibrations will also induce vibrations in the body
of the phone. mmSpy detects vibrations from the back of
the phone which is not facing the user’s ears. This enables
eavesdropping of earpiece vibrations even if the leakage of
sound over the air is significantly weaker. We next elaborate
details on the mmWave hardware that enables this capability.

B. Overview of FMCW

mmSpy adopts an FMCW radar that works by emitting chirps2.
The chirp is reflected back by objects in the environment of the
radar and based on the time differences between transmission
and reception of chirps and the doppler shifts, the radar can
estimate the range (distance) of these objects as well as their
velocities.

A chirp and the working principle of FMCW radars is vi-
sualized in Fig. 3. The signal visualized in Fig. 3(a) is a
sinusoidal signal with a linearly increasing frequency which is
a popular type of chirp. The radar modules used in this paper
(TI AWR1843BOOST [8], TI IWR6843ISK [12]) employ such
chirps with linearly increasing frequency. Since the transmitted

2chirps are signals with varying frequency, usually increasing frequency or
decreasing frequency

signals are frequency-modulated signals, the reflected com-
ponents will also be frequency modulated signals. However,
because they are delayed, at any given point in time, there is
a constant frequency difference between the transmitted and
reflected chirp as depicted in Fig. 3(b). By computing the
frequency difference ∆F between the transmitted and received
chirps, the distance of the reflecting object can be computed.
The below equation precisely converts the frequency differ-
ence into the range (r) of the object from the radar.

r =
∆F

Slope
(1)

where Slope refers to the rate at which the chirp frequency is
linearly modulated.

As depicted in Fig. 3(b), multiple reflected chirps correspond-
ing to different multipath components in the environment can
be received at the transmitter. By performing an FFT oper-
ation at the receiver (called range FFT), different multipath
components, as well as their ranges can be determined.

The resolution at which distances can be computed using such
a method can be expressed as a function of the chirp sweeping
bandwidth B as follows [83]:

∆R =
c

2B
(2)

where c is the speed of light. In the best case scenario where
the entire working bandwidth of the radar is effectively swept
by a chirp, the above equation predicts a range resolution of
the radar of about 3.75cm. While this is good for a number
of applications such as human activity recognition where
the motion of objects are at larger scales, the resolution is
not sufficient for tracking minute micrometer-level vibrations
needed for capturing the earpiece vibrations during a phone
call. Towards capturing a higher resolution range information,
mmSpy exploits the phase of each reflected signal.

The phase variations can capture minute changes in motion of
the reflector, as per the equation below.

∆ϕ =
2π∆r

λ
(3)

Given the wavelength is in the order of millimeters (≈ 4mm),
and a typical phase noise of 0.057◦, extremely small changes
in range (∆r ≈ 0.63 um) can be tracked by exploiting the
phase variations. mmSpy tracks such variations to eavesdrop
on the contents of a phone call. Fig. 4 depicts extraction of
continuous phase changes from the FMCW radar. A range-
FFT operation will result in multiple peaks corresponding to
reflections in the environment. Among these peaks, the peak
corresponding to reflection from the phone is first isolated
(Section IV-A). By measuring the phase of this FFT peak,
and tracking its variations continuously over time will facilitate
eavesdropping of earpiece vibrations.

C. System Parameters

mmSpy uses a commodity off-the shelf (COTS) radar to
demonstrate radar-based cellphone eavesdropping. While the
phase data can be noisy because of practical constraints,

3
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Fig. 4: A range-FFT will result in multiple peaks corresponding to
objects in the environment. Tracking the phase of the peak due to
phone’s reflection will facilitate eavesdropping.

mmSpy chooses an appropriate set of parameters in the design
space so as to facilitate high quality measurements with a high
sampling rate. We elaborate below on the deliberations.

(a)

(b)

Fig. 5: (a) A series of FMCW chirps are grouped into frames (b) Key
parameters involved in the cycle of a single chirp. Fig. from [16].

We begin by briefly explaining the cycle of operations in the
radar for transmission of chirps. Illustrated in Fig. 5(a), The
TI radar modules transmit a series of chirps continuously. Fig.
5(b) provides a zoomed-in view of a single chirp. Performing
range FFT on each chirp, and isolating the reflection from the
phone (discussed in Section IV-A), provides one phase sample
per chirp – we call this the phase sampling rate. The chirps
are grouped into frames as depicted in the figure. Each frame
enforces a duty cycle of less than 100% so as to provide the
radar enough time to settle down between frames. This leads
to power fluctuations within the hardware due to discontinuous
operation. While a higher duty cycle provides more samples, it
comes with a tradeoff of noisier sensor data. Similarly, there is
an inter-chirp separation time so as to let the hardware switch
from the highest frequency at the end of a chirp back to the
lowest frequency to begin a new chirp. The slope of the chirp
also offers a tradeoff between sampling rate of sensor data and
the hardware noise. While faster slope produces more chirps
per second, the power fluctuations in the hardware can lead to

low quality phase data. Keeping the above discussed tradeoffs
in consideration, Appendix B expands on the details on the
chosen system parameters in mmSpy.

III. THREAT MODEL

Fig. 6: Threat model of mmSpy. The attacker transmits mmWave
signals towards a victim’s phone and measures reflections. By analyz-
ing the phases of reflections, the earpiece vibrations can be detected
leading to reconstruction of the audio as well as speech classification.

Fig. 6 depicts the threat model in mmSpy. A malicious
adversary with an mmWave radar attempts to spy on the audio
contents of a phone call made by a nearby victim. Towards this
end, the attacker shines mmWave signals on the victim’s phone
and captures the reflections. We assume that the captured
reflections come from the back of the phone opposite to the
side of the earpiece that faces the user’s ear. By analyzing the
phases of the reflection, the vibration of the earpiece device of
the phone can be detected. We do not assume that the attacker
has training data for domain adaptation (Section IV) from the
victim’s phone. The attacker generates such training data from
his own phone (which is assumed to be of the same make
and model as the victim’s phone) for developing the speech
recognition ML models (alternatives such as training from a
different phone model is evaluated in Section V). mmSpy’s
ML models are designed to perform audio reconstruction as
well as speech recognition tasks from the noisy vibration
data captured from reflection from the phone. Following is an
example setting where such an attack is feasible. Consider a
setting like a research conference or a social party. An attacker
can eavesdrop on phone calls received by a nearby victim who
might be seated on a chair. Given that mmWave radars can
track vibrations directly from the earpiece, this is particularly
effective in noisy and crowded spaces where the victim might
be less suspicious of eavesdropping. Within the capabilities
of mmSpy, the sensitive information that can be eavesdropped
include credit card information, one time passwords, social
security numbers, etc.

IV. TECHNICAL MODULES

A. Isolation of phone reflection:

As discussed in Section II, a given range-FFT window
will include reflection from the phone as well as multipath
reflections from other objects in the environment. We face
two main challenges in isolating the phone reflection: (i)
Several noisy peaks show up in the range-bin which do not
correspond to multipath reflections. (ii) In addition to the noisy
peaks, there will be peaks corresponding to static reflectors in
the environment such as walls and furniture. Towards better
isolation of signal of interest from the above sources, mmSpy

4
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tracks consistent peaks across successive frames. Since the
noisy peaks do not consistently appear at a given distance,
they are eliminated. Fig. 7 shows an example where the
phone reflection is consistently tracked over time. In addition

Fig. 7: Tracking of FMCW peaks over time helps eliminate noisy
peaks. The phase data corresponding to the peak from phone’s
reflection is used to eavesdrop the audio.

to phone reflections, reflections from other objects in the
environment can be seen in the figure. However, the phase of
the reflection from the phone would oscillate (due to vibrations
from the audio) whereas phase from other reflectors will not
oscillate. By exploiting this property, mmSpy designs a shallow
convolutional neural network based model to first classify
reflections due to audio vibrations and reflections from static
reflectors such as walls. The classifier provides a high accuracy
of 99.4%, thus facilitating elimination of static reflectors like
walls, furniture etc. Once the peak corresponding to the
reflection from the phone has been identified, the phase of
this peak is used for reconstruction of the earpiece audio as
well as performing speech classification tasks (more details in
Appendix B). Given that the receiver has four receiver anten-
nas, the phase values are averaged across all four antennas to
minimize the Gaussian noise in the extracted audio.

B. Statistical error correction:

The vibrations induced on the body of the phone by the ear-
piece is, by nature, of a very low magnitude. As a consequence
of this, the variation in the phase of the range-FFT peaks is
also very low and noise can supersede the magnitude of the
phase changes that are useful for vibration detection.

The mmWave radio transmits and receives chirps in a discon-
tinuous manner in the form of frames. We observe that at the
beginning of every frame, there is a spike in the magnitude
of the phase values (as shown in Fig. 8 (a)). Additionally,
there is also a continuous noise component that fluctuates more
smoothly with time. In order to eliminate this, we assume that
within each frame of chirps, a smooth enveloping component
exists and we eliminate it.

This is done by estimating the fluctuation within a frame using
a polynomial of degree 2. To avoid the effect of the spikes at
the beginning of each frame, we also eliminate the first two
data points received in a frame. Since the frame size in mmSpy

(a)

(b)

Fig. 8: Statistical error correction: (a) Noisy phase data (b) Phase
data after elimination of noise.

is 128, we effectively work with 126 points within each frame
to offset the fluctuations.

If a frame is represented as (X,Y ), where X is the index of
chirps and Y is the magnitude of the phase extracted from
the chirps, then the smooth fluctuation is estimated using the
following model:

Ŷ = a0X
2 + a1X + c (4)

where X2 refers to each element of X being raised to a power
of 2. This is similar to a linear regression of order 2 on (X,Y ).
Here, the parameters a0, a1 and c are the estimated parameters
in the polynomial fitting model. Once Ŷ has been estimated,
the corrected frame is obtained by subtracting Ŷ from Y :

Y ′ = Y − Ŷ (5)

where Y ′ is the corrected frame.

The effect of the error correction is demonstrated in Fig. 8.
The spikes are eliminated, and the signal is zero centered, as
we expect audio signals to be, due to the elimination of the
fluctuating components.

C. Preprocessing and Signal Filtering

We perform a number of preprocessing and filtering techniques
on the extracted raw audio from the radar as outlines below.

Bandpass Filtering: mmSpy tracks sound via material vi-
brations. It is known from literature that materials attenuate
vibrations at higher frequencies [41], [86], [85]. Therefore,
the spectrum measured at higher frequencies mostly consists
of noise which can be eliminated by applying a low pass filter
at 2000 Hz [73]. Also, the fundamental frequency of the voiced
speech of a typical adult male will vary from 85 to 180 Hz,
and that of an adult female from 165 to 255 Hz [87], [34].
Thus, we apply a high pass filter at 80 Hz to eliminate the
DC offsets and low frequency noise without affecting speech
recognition.

Spectral Subtraction: We perform background noise elimi-
nation using spectral subtraction techniques popular in speech
processing [38]. At a high level, the average signal spectrum
and the average noise spectrum are first estimated and then

5
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subtracted from each other, which is shown to eliminate
additive stationary noise [88], [85], [78].

Fig. 9 depicts an audio signal before and after preprocessing
techniques. Evidently, the voice part of the signal has been
enhanced in comparison to hardware noise.

(a) (b)

-100

-80

-60

-40

-20

(c)

Fig. 9: Preprocessing and noise subtraction (the word spoken is
”two”) – (a) Raw signal (b) After bandpass filtering (c) After spectral
subtraction.

D. Synthetic training data generation:

Speech processing algorithms have to be robust to speaker
patterns, dialects, gender, etc. However, developing robust
models require large scale training data accumulated over
years across diverse users. While large scale datasets are
available for speech and vision domains, the unfortunate lack
of availability of similar radar datasets makes it challenging
to develop robust models. Towards minimizing the overhead
of training data collection, mmSpy generates synthetic training
data to bootstrap the training of ML models.

The synthetic data is created from the existing datasets
(AudioMNIST [36] and Speech Commands [91]) using two
main operations: scaling and noising. In order to scale the
existing datasets, radar samples were collected and moments
of speech were identified. Whenever words are being spoken,
the phase magnitudes vary in the range of -0.024 and 0.024
(after statistical error correction). We assume that the noise
in the sensor data is normally distributed and estimate the
parameters of the noise distribution from samples where no
sounds are played on the phone. The mean and the standard de-
viation of the noise distribution are 0 and 0.0035 respectively.
Thus, the audio datasets were scaled in the range of [-0.024,
0.024] and random noise sequences with a normal distribution
N(0, 0.0035) were added to create synthetic training data.

Although the synthetic data attempts to match the distribution
of real radar data well at a high level, there will still be
residual differences in distribution. Towards eliminating such
differences, mmSpy later performs domain adaptation based on
a small set of real training data, thus achieving a sweet-spot
in the trade-off between training data overhead and robustness
of the ML model.

E. Audio Reconstruction:

Towards reconstruction of the original audio from the noisy
radar data, we design a redundant convolutional encoder
decoder (RCED) architecture [79] as illustrated in Fig. 10.
The audio and radar samples are downsampled to a sampling
rate of 8kHz – this sampling rate is adequate to capture audible

frequencies from human speech. The input Xi to the network
are the mel-spectrograms of 1-second audio samples. The
dimensions of the spectrograms are 128×81. We refer to each
column of this input matrix as a segment. Towards generating
an enhanced segment at time t, the network accepts input
segments from times t to t−7, thus accepting an input of size
128×8, and producing an output of size 128×1. This allows
the network to exploit temporal locality in performing the
enhancement. Also, the network consists of skip connections
that help in training and convergence [46], [61], [29]. The
network outputs one segment at a time, and after passing
through the entire input, it produces an output matrix O
of size 128 × 73 3. After performing the enhancement, we
exploit masking techniques [51] as an alternative enhancement
option. While the enhanced output O eliminates noise, it
may distort the voiced segments of the audio as well. The
masking can potentially help eliminate such distortions. After
performing the enhancement with RCED network, the output
spectrogram O is divided into 8 evenly spaced frequency
ranges in the mel scale. Within each frequency range, a
threshold is decided adaptively based on Otsu’s method [67].
Based on the thresholding, a 0/1 binary mask is computed from
spectrogram O. The 0/1 masked values are further smoothed
based on Gaussian blurring [72] with a kernel of size 3 × 3
resulting in a masking matrix M with values between 0 and
1. The enhanced output O′ is then calculated as O′ = I ⊙M .
We compare the performance of both O, and O′ in Section V.

Fig. 10: Architecture of audio reconstruction network.

Loss Functions and Optimization: The loss function used
to train the audio reconstruction model is the mean-squared
error (MSE) loss function. If Xi and Zi are the ith input and
output spectrograms respectively, the MSE is defined as:

MSE =
1

n

n∑
i=1

||Xi − Zi||22 (6)

Since the inputs and outputs are spectrograms, the MSE loss
function is used to make the input and output spectrograms
resemble each other as much as possible.

The Adam optimizer was used to minimize the loss function
with a learning rate of 0.001 and L2 regularization loss with
weight decay of 10−5.

3Due to the overlapping windows used in creating spectrograms, this creates
a truncation of approximately 5.48% of the final time domain output with
respect to the size of the input, which we ignore in this paper.
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Hyperparameter Selection: The hyperparameters were the
number of skip connections between the encoder and the
decoder sections, the learning rate, the L2 regularization factor.
The optimal set of hyperparameters were selected using a
grid search: all combinations of skip connections (that were
dimensionally compatible) between the encoder and decoder
were tried, the learning rate and L2 regularization rate were
varied in the set {0.001, 0.005, 0.01, 0.05}.

Bootstrapping the Training: The synthetic data generated
as described in Section IV-D and the true data samples
corresponding to each synthetic sample were treated as the
input-output pairs (Xi, Zi), to train a synthetic model. The
goal of the audio reconstruction model is thus to denoise
and appropriately scale the noisy inputs to resemble the true
outputs.

Domain Adaptation: The synthetic model is adapted using
a small sensor data sample (5% of the size of the synthetic
dataset for Audio MNIST, and speech commands). We perform
fine-tuning of the model where we simply update the weights
of all parameters with real sensor data. The amount of domain
adaptation data was sufficient to achieve convergence even
though none of the layers were frozen. Based on a cross-
validation approach, we verified that such a fine-tuning ap-
proach provided us best results for this architecture instead
of performing domain adaptation only on a few layers and
freezing the rest.

F. Speech Recognition via Classification:
Towards performing speech recognition, we develop models
based on convolutional neural networks that take spectrograms
as inputs and estimate class labels corresponding to digits and
speech-commands as outputs. The high level architecture of
the classification model is depicted in Fig. 11. Similar to
the network for audio reconstruction, skip connections are
exploited for benefits in training and convergence.

Fig. 11: Architecture of speech classification network.

Loss functions and optimizations: The model is trained using
a cross-entropy loss function. The cross entropy loss function
is commonly used in classification problems. It is given as:

CE = −
N∑
i=1

M∑
c=1

yi,clog(pi,c) (7)

where N is the number of data samples, M is the number of
classes, yi,c is 1 if sample i belongs to class c and 0 otherwise,
and p is the predicted probability that sample i is of class c.

Bootstrapping the Training: The synthetic data that was
generated as described in Section IV-D and the labels corre-
sponding to each synthetic sample were treated as the input-
output pairs (Xi, yi), to train a synthetic model. The goal
of the classifier is to best estimate the word that is being
spoken, given the spectrogram of the vibration (sensed using
the mmWave radar) as the input.

Hyperparameter Selection: The hyperparameters include
learning rate, L2 regularization factors, kernel sizes for con-
volutional layers, dropout rates, the number of resnet blocks,
and the number of nodes per fully connected layer. The above
parameters were varied using a grid search as follows: learning
rate in the set of {0.001, 0.005, 0.01, 0.05}, square kernel
sizes {3, 5, 7}, number of resnet blocks 1 − 3, number of
filters per convolutional layer in the resent blocks as {64, 128,
256}, number of convolutional filters in the deep convolutional
layers as {64, 128, 256, 512}, the number of nodes per fully
connected top layer as {128, 256, 512}. We use randomized
cross-validation to tune the hyperparameters for the model,
and run multiple cross-validation programs on a campus GPU
cluster concurrently.

Domain Adaptation: In order to adapt the synthetic model
to the sensor data, the last layers (indicated in Fig. 11) are
retrained using sensor data as inputs and the corresponding
true data samples as outputs. All the layers excepting the last
few layers are frozen so that their weights do not change
when the model is adapted. This is done so that the model
can learn the same representation as the synthetic model by
relearning only the last layers. Such a strategy is popular
in other domain adaptation and transfer-learning applications
[60], [74], [44]. Approximately 5% of synthetic data is used
for domain adaptation for both AudioMNIST and speech
commands datasets.

V. EVALUATION

Implementation: The experimental setup is depicted in
Fig. 12. mmSpy’s frontend includes Texas Instruments
AWR1843BOOST [8] and IWR6843ISK [12] mmWave radars
as introduced in Section II operating in the spectrum of 77
GHz and 60 GHz respectively. Operating with a FMCW
bandwidth of 1798.92GHz (Appendix B), we use the
DCA1000EVM [17] platform to extract samples at 10 Msps,
and obtain reflections from the phone vibrations. We use
Samsung Galaxy S20 (S20) and Google Pixel 4a (Pixel) phone
models in our evaluation. The phases of the reflections from
phone vibrations are used to extract audio content as well as
train the ML models in mmSpy for speech recognition. We
capture the reflections from the back of the phone opposite
to the side of the earpiece. The ML model is implemented
with PyTorch [80] packages and the training is performed on
a desktop with Intel i7-8700K CPU, 16GB RAM memory, and
NVIDIA Quadro RTX 8000 GPU.
Datasets: We validate the attack capability of mmSpy with two
diverse speech recognition tasks: (i) We use the AudioMNIST
dataset for validating a task in digit recognition. AudioMNIST
[36] dataset consists of 30000 audio samples of spoken digits
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Fig. 12: Experimental setup in mmSpy. Off the shelf mmWave radar
device is used to detect earpiece vibrations from a smartphone.

(0-9) of 60 different speakers consisting of 48 males and 12
females from all age groups. Each audio sample is less than
one second long, captured in a controlled environment at a
sampling rate of 8kHz. The AudioMNIST dataset is a popular
benchmark for testing several techniques in the literature of
speech recognition including an attack on the accelerometer
sensor [33], [48]. (ii) Towards validating a task in recognition
of words, we use the speech command dataset [91]. The
dataset consists of 38546 samples of the following speech
commands: [‘down’, ‘go’, ‘left’, ‘no’, ‘off’, ‘on’, ‘right’,
‘stop’, ‘up’, ‘yes’]. This dataset is completely anonymous
and does not come with any information about age groups,
genders, etc. Additionally, this dataset was crowdsourced and
prepared so it includes samples from phone, laptop and tablet
microphones. Each sample is converted to a 16kHz WAV file
and is 1-second long.

Training Data: About 90% of samples from the datasets
described above were converted into synthetic radar data (as
discussed in Section IV-D) to bootstrap the training process.
This includes data from all speakers, regardless of gender, age,
etc. A synthetic model is first created, which is later adapted
with small sets of real sensor data as elaborated next.

Data for Domain Adaptation: The data used for domain
adaptation is approximately 5% of the size of the synthetic
training data. We play the audio samples corresponding to this
data on the smartphone and record the radar measurements.
This generates labelled training dataset with radar recordings
and their respective audio classes. We used two phones of each
of these models – Google Pixel 4a and Samsung S20 – a total
of four smartphones. This allows us to perform the domain
adaptation and testing on different phones. We use an app,
Stealth Audio Player [18] that plays the audio contents of the
domain adaptation data on the smartphone’s earpiece.

Test Data: In order to test the model, separate training,
validation, and test sets are collected. Testing is done on a
different smartphone (victim’s phone) than the one from which
training data for domain adaptation was generated (attacker’s
phone). The domain adaptation dataset was roughly split into
80:20 ratio for cross-validation while ensuring that the train
and test data comes from different phones. There are no
samples in common between training, testing, and the domain
adaptation dataset. Similar to the domain adaptation above, we

use Stealth Audio Player for playing audio contents of the test
data on the earpiece device.

Metrics of Evaluation: We consider the following two metrics
of evaluation. (i) For the audio reconstruction model, we report
the reconstruction loss between the recovered audio from the
radar and the original audio played on the phone. A MSE error
is used to quantify this. (ii) For speech recognition with digits
and speech commands dataset, we report the classification
accuracy (or simply the accuracy), which is the ratio of
number of correct classifications over the total number of test
cases. In addition to the above, we provide qualitative results
such as spectrograms and an audio demo. We now present
results from a systematic measurement study.

Terminology: Since we consider multiple phones, multiple
datasets, and multiple frequency bands in this paper, the num-
ber of different combinations can be exhaustive. Therefore,
we choose the following subset of combinations that provide
a good representation of the variation across different factors.
Accordingly, we use the following terminology to represent
these cases. (a) “S20 (77 GHz)” – results from Samsung S20
at 77 GHz with AudioMNIST. (b) “S20 (60 GHz)” – results
from Samsung S20 at 60 GHz with AudioMNIST. (c) “Pixel
(77 GHz)” – results from Google Pixel 4a at 77 GHz with
AudioMNIST. (d) S20 (Sp, 77 GHz)” – results from Samsung
S20 at 77 GHz with Speech commands dataset.

Qualitative Reconstruction Results: Figures 13, 14 depict
the spectrograms from a qualitative reconstruction of the
audio. The y-axis of the spectrograms varies from 0 to 4KHz.
Representative samples from each class are presented for both
AudioMNIST and speech commands datasets. The raw capture
from the sensor (top row), as well as mmSpy’s reconstruction
of the original audio from the raw sensor data is shown.
Second row shows the output before masking whereas the
third row shows the output after masking (discussed in Section
IV-E). The bottom row shows the spectrograms of ground truth
audio. Evidently, mmSpy’s reconstruction agrees well visually
with the ground truth. While the raw sensor data looks mostly
noisy, mmSpy’s audio reconstruction is able to highlight the
key spectro-temporal trends in the audio resulting in a good
recovery of the original audio.

Audio Demo: Sample audio files from the raw sensor, mm-
Spy’s reconstruction from the raw sensor data, as well as the
ground truth is included in the following anonymous url [5].
Headphones are recommended for listening. While the raw
sensor data is incomprehensible, evidently, an adversary can
roughly decipher the contents of the ground truth audio from
mmSpy’s reconstruction. mmSpy uses Griffin-Lim algorithm
for reconstructing audio from spectrograms [52].

Quantitative Reconstruction Results: Fig. 15 depicts the
MSE error of audio reconstruction. The spectrograms are
normalized within a range of [-1,1] for a uniform comparison.
As depicted, the difference in MSE between the enhanced and
the true audio is lower than the MSE between the raw sensor
data and the true audio. Fig 15(b) shows the MSE averaged
over 1-6 ft for various settings. This shows the effectiveness
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Fig. 13: Qualitative Results (at 3ft range): Speech commands. While the raw sensor data (top row) is noisy, mmSpy’s reconstruction (second
row) is able to extract the key spectro-temporal trends in the noisy sensor data. The masking ideas (third row) allows focusing on distortion
free voiced components from the input. The enhanced outputs looks visually similar to the true audio spectrograms (bottom row).

Fig. 14: Qualitative Results (at 3ft range): Audio MNIST. Similar to speech commands, the audio reconstruction model is able to extract
the key spectro-temporal trends from noisy sensor data.

of the ML algorithms in mmSpy in reducing the MSE.
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Fig. 15: Reconstruction error (a) MSE vs Range (S20, 77 GHz) (b)
Average MSE across settings.

Power vs Range: Fig. 16 depicts the power levels of sound
vibrations as a function of the distance of the phone from the
radar device. The power levels are measured in dB in reference
to the noise power levels when there is no sound being played
on the earpiece device. As expected, the power levels drops

linearly as a function of distance. At a distance of 6ft ft,
the power starts getting closer to noise levels. Beyond this,
accurate detection of the phone reflection becomes hard. The
variation is consistent for different phone models (Pixel vs.
S20) as well as different frequencies (77 vs. 60 GHz). The
power levels with speech commands is slightly lower than
AudioMNIST mainly due to a corresponding lower quality
(volume) of the data in comparison to AudioMNIST data.
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Fig. 16: Power Levels vs Range

Speech Recognition Accuracy vs Range: Table. I depicts
the accuracy of mmSpy as a function of range for different
phone models and frequency range. Evidently, the accuracy
only degrades gracefully over distances upto 6 ft which
suggests the potential for a successful attack under conditions
identified in the threat model in Section III. The performance is
consistent across multiple phone models and frequency bands.

9

1219



The performance with speech commands is slightly lower than

Setting Distance
1ft 2ft 3ft 4ft 5ft 6ft

S20 (77 GHz) 83.33 73.10 65.09 60.66 50.14 47.99
S20 (60 GHz) 78.35 70.05 62.37 60.11 50.91 49.92
Pixel (77 GHz) 80.11 70.94 66.30 58.33 49.09 46.60

S20 (Sp, 77 GHz) 69.37 63.81 60.74 56.70 48.62 44.56

TABLE I: Accuracy vs distance under different settings

the performance with AudioMNIST data which follows the
trend in power levels observed in Fig .16. The confusion
matrices (Fig. 29), precision, and recall values (Table III) for
a representative setting is depicted in the appendix.

Accuracy vs Users: Fig. 17 shows the accuracy as a function
of different users. The results are averaged over the entire
range of 1 − 6ft where the power level related to noise
varies between 4.4− 0.2dB. These results are only based on
AudioMNIST dataset since the speech command dataset is a
crowd-sourced dataset that does not have classes organized by
users. Given that the model has been trained from a diverse
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Fig. 17: Accuracy vs Users

distribution of users including males and females, the model
is overall robust across a variety of users. We notice that the
variation in accuracy across users is roughly correlated with
the volume of their voice. The accuracy is also consistent
across different genders with a 66.39% and 63.02% accuracy
for male and female users respectively.

Performance in the 60 GHz spectrum: Table I also depicts
the performance at 60 GHz frequencies in comparison with
the 77 GHz spectrum. Evidently, the performance is consistent
across both frequency spectrums. This is mainly because the
propagation path loss does not change much between the two
frequencies. Therefore, we observe a similar trend in SNR as
well as the accuracies across both spectrums.

The Role of Domain Adaptation: Fig. 18 depicts the breakup
of the gain in accuracy due to domain adaptation. The results
are averaged over the entire range of 1−6ft where the power
level varies between 4.4−0.2dB. mmSpy trained with synthetic
radar data helps bootstrap the process of training. While the
average accuracies (≈ 30%) with synthetic data is a modest
start, mmSpy boosts the accuracy by adapting the model with
small scale training data from real sensor. Evidently, with only
5% of real sensor data in comparison with original source of
training dataset, the performance of mmSpy is substantially
enhanced resulting in accuracy levels of 58− 69%.
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Fig. 18: While synthetic data bootstraps the training, domain adap-
tation substantially boosts the accuracy with small real training data.

Earpiece Signal Levels and Performance under Noisy
Setting: Fig. 19 depicts earpiece power levels measured by a
high fidelity microphone under two settings: (i) Ambient noise
in an indoor lab, approximately estimated at 32dB with respect
to a complete silence. (ii) Loudspeaker playing white noise
with approximately 58dB relative to silence, thus simulating
a crowded setting. The measurements were conducted using
a high fidelity microphone model Zoom H1 [27]. For each
case, we report the overall power levels (earpiece audio +
ambient/external noise) in comparison with ambient/external
noise levels when the earpiece is silent. Evidently, the earpiece
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Fig. 19: Earpiece vs radar power levels in normal and noisy setting

audio is feeble and becomes easily buried under the noise floor.
The power levels when the earpiece is playing is close to 0dB
relative to ambient power levels, thus it is hard to distinguish
whether the earpiece is playing sound or silent. The figure
also depicts the performance of radar under both conditions.
Evidently, the existence of external noise does not interfere
with the signal strength of detection by the radar since the
radar picks up the vibrations directly from the source of the
vibration. In addition, Fig 20 shows samples of spectrograms
from testing in the noisy environment with the loudspeaker.
The microphone spectrum mainly consists of white noise

Fig. 20: Audio spectrograms (range = 3ft) from (a) Raw radar data
(b) Reconstructed audio by mmSpy before masking (b) Reconstructed
audio by mmSpy after masking (c) Ground truth (d) Microphone co-
located with the radar. mmSpy’s spectra closely match the ground
truth whereas a co-located microphone only detects noise.

whereas the detection from mmSpy matches closely with true
audio. mmSpy detects vibrations from the source (earpiece),
thus free of interference from ambient sound.
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Robustness to Electromagnetic Interference: We evaluate
the robustness with respect to four kinds of interference
(i) Interference in the microwave spectrum as generated by
software defined radios USRP N210 [24] in 2.4 GHz spectrum
with a bandwidth of 5 MHz. This can emulate interference due
to a number of real world electronic devices such as microwave
Owens, Bluetooth streaming, Zigbee sensors etc. (ii) Interfer-
ence in the 2.4 GHz and 5 GHz spectrum using off the shelf
WiFi hardware (MacBook Pro 15) that generates video traffic.
(iii) Interference in the mmWave spectrum using network de-
vices based on 802.11ad protocol with Netgear XR700 router
[26] and a MG360 network adapter [14] that generate video
traffic. (iv) Interference in the mmWave spectrum caused by
other radar devices (IWR6843ISK). In all cases, the interferer
was co-located with the radar so as to measure the performance
under the most challenging case. Fig. 21 summarizes the
results. The results are taken from IWR6843ISK radar placed
at a distance of 3ft from the phone (“S20 (60 GHz) setting”).
As expected, the microwave spectrum effectively does not have
any influence on the mmWave radars since they operate in
different frequency bands. On the other hand, even though the
mmWave interference can happen in the same frequency band
as the radar, our experiments reveal that this does not affect
the accuracy in any significant way. This is because of the
following reasons (i) The networking protocols use traditional
modulation schemes such as OFDM [65], whereas radar uses
FMCW. Because of the difference in modulation, the OFDM
or other non-FMCW signals will have less interference on a
FMCW radar that primarily latches onto chirps. (ii) Another
FMCW radar ceases to have any interference. The lack of
clock synchronization will create an interference peak at the
radar at a different position than the reflection from phone.
This is automatically eliminated by the static multipath elim-
ination algorithms in mmSpy. Moreover, automatic filtering at
the hardware level can typically happen even for a small clock
offset. This observation is consistent with the documentation
by Texas Instruments [13].
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Fig. 21: Accuracy under various interference settings (range = 3ft)

Train/Test split across Phone Models and Frequency
Bands: We discuss the feasibility of training and testing on
different brands of phones in Appendix A.

Effect of Hand Coverage of Phone: We have been able to
extend the evaluation to include humans holding the phone in
the hand (as if engaged in a casual conversation) as depicted
in Figure 22. The distance between the phone and the radar is
approximately 3ft. Our results indicate that a sufficient amount
of information still exists despite two interfering factors: (i)

Fig. 22: A test subject holding the phone at a distance of 3 ft from
the radar device.

Partial coverage of the body of the phone by the human hand.
(ii) Any micro-motion (due to breathing, heartbeats, muscular
twitches, etc.) in the human body which interferes with the
audio sensing. Figure 23a shows the raw audio captured when
the phone is held in the hand, with the audio content on the
phone being “four”. The artifacts due to body motion and
vibrations are evident from the figure. Figure 23b shows the
zoomed-in version of Figure 23a where the audio contents
are now visible. We apply a simple threshold to eliminate the
body motion artifact (caused due to micro-motions), as well
as interpolation to fill out the gap after eliminating the body
motion artifacts. The recovered audio is depicted in Figure
23c. We process the recovered audio with the classification
model presented in Figure 11 (from the paper submission).
The accuracy under “S20 (77 GHz)” setting (the dataset being
AudioMNIST) is 58.8%. In contrast, when the phone was held
on a tripod, the corresponding accuracy at the same distance
was 65.09%. Similarly, for the case of “S20 (Sp, 77GHz)”
(the dataset being Speech Commands), the accuracy with hand
coverage is “52.74%”, whereas when the phone was held on
a tripod, the corresponding accuracy was “60.74%”.

Experiments on Longer Speech Sentences including Songs
and Music: We have been able to capture multi-word sen-
tences, and even music, in order to demonstrate the capabilities
of mmSpy. The performance of the audio reconstruction model
in Fig. 10 is independent of the length of the audio. Therefore,
we can readily use the model to extract audio even if the
audio includes multiple words or sentences. We have used
the network to extract audio from actual sentences including
speech, music, and song. A few examples of spectrograms as
well as the corresponding sound recordings (headphones are
recommended to listen to the recordings) are included in this
document, for three categories: (i) Speech – “I have a dream ..
” speech by Dr. Martin Luther King Jr. in Figure 26 (ii) Song
with background music – “Twinkle Twinkle little star .. ” in
Figure 27, and (iii) Music (Turkish March) in Figure 28. We
believe the speech content is evident from the recordings.

Cost of Model Training: Training the classifier using syn-
thetic data takes 10.29 minutes on average. Since the domain
adaptation is done on a smaller set of real examples, the
adaptation for the classifier takes 43.8 seconds on average.
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Fig. 23: Hand Coverage Experiments (a) Body motion artifacts can be seen in the raw audio (b) Zoomed in version of the raw audio. The
recording is here [7] (c) The recovered audio after body motion filtering. The recording is here: [6].

After the network is adapted, the inference per sample takes
15.3ms on average. Training the enhancer took longer since
each sample is converted into multiple inputs – the training
time using synthetic data on an average is 17.2 minutes.
The adaptation of the enhancer took longer as well – 2.17
minutes on average, and finally, the inference per spectrogram
takes 54.7ms. All evaluation was done on the desktop whose
configuration is specified in the implementation subsection.

VI. RELATED WORK

Sensing Applications with RF: There is a lot of recent inter-
est in using WiFi-like communication devices for RADAR-
like sensing applications in addition to more conventional
applications in communication and networking. LiquID [45]
identifies permittivties of liquid materials by measuring the
slow-down and attenuation of UWB RF signals. RF-EATS [55]
can sense food materials in containers by measuring reflection
of backscattered RFID stickers attached on the container. RF-
avatar [101] shows capabilities of beyond-the-wall 3D imaging
using RF signals. While the above works use microwave
frequencies, with the proliferation of 5G, there has been a lot
of recent interest in using mmWave frequencies for sensing
applications. mSense [93] can classify upto 21 liquids by
measuring reflection of mmWave signals. mmVib can detect
vibrations for classifying machines as well as monitoring their
health in a number of industrial IoT applications [62]. Pointil-
lism [35] can detect objects such as cars for applications in
autonomous driving. Osprey [81] uses mmWave technologies
for geometry sensing. Osprey estimates the depth of tire by
utilizing concepts of synthetic aperture radars to create an
image of the tire thread being placed over tires of cars. By
identifying anomalies in the tire image, debris, and the wear
and tear is detected. In contrast to the above applications
mmSpy exploits the high precision sensing capabilities of
the small wavelength of mmWave spectrum for exposing a
security vulnerability. WaveSpy [66] spies apps running on
a system by analyzing reflections from its screen. Material
properties such as permittivity change with on-screen color
patterns used by apps. This manifests as SNR/phase changes
in reflected mmWave signals. In contrast to detecting material
properties, mmSpy analyzes vibrations of a known material.

Speech Sensing with RF: Acoustic eavesdropping of loud-
speakers have been shown in [92], where phase variations of
radio frequency (RF) reflections in the microwave frequencies
collected from a large antenna array are exploited to detect
digits. In a similar spirit, UWHear [90] uses high resolution

UltraWideBand (UWB) RF reflections for detecting multiple
speakers in the environment, and shows the feasibility on
a problem on digit classification. WaveEar [95] can detect
speech signals using custom mmWave hardware based on
reflection from a human throat. More recently, RadioMic [77]
uses mmWave to detect speech signals from loudspeakers,
humans, and objects. In contrast to these works, mmSpy shows
the feasibility of eavesdropping earpiece devices used in phone
calls. While loudspeaker or human throat vibrations can be
stronger, thus can also be eavesdropped by a co-located micro-
phone, the earpiece vibrations are very minute and inaudible
to a microphone co-located with the attacking radar device.
Nevertheless, mmSpy exploits small wavelength of mmWave
signals to show the capability of audio reconstruction as well
as speech classification.

Eavesdropping with cameras and lasers: Works in [41], [42]
detect sounds played in a room using camera. In particular,
sound waves induce vibration in objects (paper bags, bottles
etc). By capturing such vibration patterns using a high speed
camera, feasibility of recovering sound is shown even from the
outside of a sound-proof room. In contrast to the above works,
which detect stronger vibrations from loudspeakers, mmSpy
detects minute vibrations from an earpiece device. Similarly,
laser microphones have been popularly used for eavesdropping
in a passive manner. However mmWave antennas are much
smaller in size in comparison to laser microphones thus
making them easier to conceal. Additionally, the presence of
laser microphones is detectable [4], while mmWave signals
can conceal themselves within ambient mmWave signals.
Given that mmWave based 5G is a popular communication
technology, this allows the adversary to conceal themselves
among ambient mmWave signals. Lamphone [73] can eaves-
drop acoustic vibrations that are are already in the air by
analyzing vibrations of a light bulb. However, the sound is also
audible to a colocated microphone near the bulb. In contrast,
mmSpy detects weaker sound sources by picking up vibrations
directly from the source, even if it us inaudible to a colocated
microphone near the mmWave hardware.

Motion Sensor based Attacks: Gyrophone [69] detects
the speech content from an external loudspeaker (subwoofer)
using smartphone gyroscope sensors placed on the same
surface (for example, shared table). Classification of 11 digits
(0-9 and ”oh”) is shown feasible. Speechless [30] shows
the sensitivity of smartphone accelerometers to eavesdrop on
speech content from a loudspeaker source sharing the same
surface as the phone (subwoofers, laptops etc). Spearphone
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[31] performs gender and speaker classification, and detection
of keywords by spying on smartphone speech content with
builtin accelerometers. AccelEve [33] proposes an attack in a
similar setting to Spearphone. Apart from gender and speaker
classification, they perform digit and alphabet classification.
AccelWord [100] shows the feasibility of detecting the wakeup
keywords of voice commands such as ”Okay Google”, and
”Hi Galaxy” using accelerometers. PitchIn [59] shows the
feasibility of eavesdropping ambient speech by fusing data
from multiple non-acoustic sensors (accelerometers, gyro-
scope, geophone etc) with low sampling rate. In contrast to
such works that exploit motion sensors, mmSpy launches a
remote attack with mmWave devices.

Attacks on mobile sensors: Ghosttalk [64] shows the
capability of injecting fake data into analog sensors by directly
inducing voltages into the circuitry by an external RF excita-
tion, thus critically compromising IoT systems including heart
monitors. DolphinAttack [98] shows the feasibility of injecting
inaudible voice commands to attack voice assistants. Mole [89]
uses a smartwatch accelerometer to spy on the contents of a
user’s typing. S3 [49] detects drawings on a tablet using an
apple pencil by exploiting variations in magnetic fields sensed
by the magnetometer. Accelerometer sensors are also known
to reveal passwords as entered on the touchscreen of a phone
[76]. The smartphone magnetometers are even shown to be
capable of identifying the operating systems and the pattern
of applications in a nearby desktop by monitoring the spinning
of hard-drives which are made of magnetic materials [37]. In
contrast, mmSpy performs an attack on spying speech contents
based on radar reflections.

Domain adaptation: Transfer-learning based domain adapta-
tion is popular in vision and speech processing. For example,
AlexNet model [63] pretrained on ImageNet database [43] was
fine-tuned for classifying images in the medical domain[103],
remote-sensing [60] and breast-cancer [74]. Similarly, a pre-
trained BERT language model [44] was fine-tuned for tasks
such as text-summarizing [99], question answering [82] etc.
This significantly reduces the burden of training for a new task.
In a similar spirit, we use pre-trained model from synthetic
radar data. While this provides a good enough synthetic model
to begin with, we adapt the model with real radar data. Noted
in Section IV, our domain adaptation trains only a few layers
such that it significantly decreases the overhead of training.

VII. DISCUSSION, LIMITATIONS, AND FUTURE WORK

Eavesdropping a User under Mobility: Results in Fig. 23
show that enough information for the attack exists despite
partial coverage of the phone by the human hand. However,
not being able to attack a user who is in motion (such as
walking) is a limitation of the current work. While sufficient
vibration information still exists, the motion of the user might
create interference which needs to be eliminated. We have
some preliminary ideas for canceling body motion based
on emerging recent works. Wistress [56] uses self-similarity
matrices to identify and cancel out artefacts that are caused
by small muscular movements to extract heartbeat signals. We
will explore such opportunities in the future.

Relevance of the Attack in Context of 5G Applications:
Table II outlines applications (both current and future) that
reply on 5G technology. We believe the attack is relevant in
the context of applications outlined in the table.

Application Frequency Band
Autonomous Driving 77-81GHz [50], [68], 76GHz [102], [15]
Industrial IoT 77-81GHz [62]
Healthcare 76GHz [96], 77-81GHz [56]
5G Communication 60GHz [75], [19], [2]
Augmented and Virtual Reality 77-81GHz [97], [54], 60GHz ([47], Google Soli)
Remote Sensing 60GHz [94]
Smart Cities [2], [3], [1]

TABLE II: Use of mmWave bands in various applications.

Defense: The vibration sensor on the phone can be used to
produce noisy vibrations [84] such that the accuracy of vibra-
tion detection in mmSpy using the phases of the reflections is
reduced. Similar to white box adversarial attacks on machine
learning models [39], we can generate minimal noise using
vibrations that is enough to confuse mmSpy’s models, while
still having negligible impact on user experience. Another
possible defense against mmSpy is to surround the end of the
earpiece that is not facing the ears with a vibration dampening
material. For example, materials such as q-pads, or borosilicate
paints are commonly used in the music industry to eliminate
unwanted vibrations [25]. Evaluation of the above ideas for
defense would be a part of our future work.

Automatic Speech Recognition: While mmSpy demonstrates
the feasibility of the attack on isolated speech recognition, we
plan to extend to recognition of continuous speech. Automatic
speech recognition (ASR) models based on LSTM, attentions,
and language modeling [40] are popular in continuous speech
recognition where the boundaries between successive words
can be blurred. While training such deep learning based
models requires an extensive amount of datasets, we plan to
adopt a procedure similar to synthetic training data proposed
here to bootstrap the training process.

VIII. CONCLUSION

This paper shows the feasibility of eavesdropping phone calls
by detecting minute vibrations produced by the earpiece device
used in phone calls using mmWave radars. While the sensor
data is very noisy, mmSpy proposes a range of techniques from
statistical noise correction, machine learning based modeling,
as well as domain adaptation to develop robust models for
speech recognition with low overhead of training. Extensive
measurements demonstrate the feasibility of the attack. The
proliferation of off-the-shelf mmWave devices both for 5G
networking as well as in sensing applications makes this attack
of critical concern in the context of speech privacy.
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APPENDIX

A. Train/Test split across Phone Models and Frequency Bands

Fig. 24 depicts the accuracy in mmSpy across several com-
bination of train/test split were explored where training and
test data come from different phone models. The y-labels
indicate the source of training data whereas the labels on
each bar indicate the source of test data. The results include
data averaged from 1-6 ft for AudioMNIST dataset. Note that
we do not assume access to training data from the victim’s
phone in any of the above cases. For cases where training
and testing data is coming from the same phone model, they
are generated from two different phones of the same model.
Evidently the accuracy levels with train/test data split across
different phone models are lower than the overall accuracy
levels where training data incorporates data from the same
phone model. We hypothesize the difference comes because
of the difference in material properties among smartphones
which affect the properties of acoustic vibrations. Nevertheless
the accuracy levels are still substantially higher than random
guessing (10%) which can result in leakage of information.
Training and test split across 60 and 77 GHz spectrum also
shows a similar trend because the phase variations are a
function of the wavelength. Fig. 25 further depicts cases where
training data is derived from two settings and tested on a third
different setting. These accuracies are higher in comparison
to cases where training data is derived from only a single
setting. This indicates that accumulating more training data
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from diverse phone models can improve the robustness when
testing is conducted on a new phone model not included in
the training dataset.
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Fig. 24: Train/Test split across different phones and spectrum.
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Fig. 25: Train/Test split across different phones and spectrum.

(a) Raw audio spectrogram (distance = 3ft, Recording [11])

(b) Enhanced audio spectrogram (distance = 3ft, Recording [10])

Fig. 26: “I Have A Dream” – speech by Dr. Martin Luther King Jr.

(a) AudioMNIST

Class Precision Recall F1-Score
0 0.79 0.83 0.83
1 0.65 0.66 0.66
2 0.6 0.51 0.51
3 0.49 0.55 0.55
4 0.72 0.71 0.71
5 0.76 0.68 0.68
6 0.82 0.78 0.78
7 0.75 0.88 0.88
8 0.66 0.72 0.72
9 0.69 0.61 0.61

(b) Speech Commands

Class Precision Recall F1-Score
yes 0.67 0.68 0.68
no 0.52 0.66 0.66
go 0.74 0.63 0.63

stop 0.47 0.46 0.46
on 0.64 0.62 0.62
off 0.51 0.47 0.47
left 0.44 0.54 0.54

right 0.53 0.56 0.56
up 0.51 0.45 0.45

down 0.51 0.48 0.48

TABLE III: Descriptive statistics for S20 at 77 GHz with data from
1-6 ft distance combined.

B. System Parameters

Expanding on the high level overview in Section II-C, we
provide a detailed description of the system parameters

(a) Raw audio spectrogram (distance = 3ft, Recording [23])

(b) Enhanced audio spectrogram (distance = 3ft, Recording [22] )

Fig. 27: “Twinkle Twinkle Little Star” – sung by a child, with light
music in the background.

(a) Raw audio spectrogram (distance = 3ft, Recording [21])

(b) Enhanced audio spectrogram (distance = 3ft, Recording [20])

Fig. 28: “Rondo Alla Turca” (“Turkish March”) – composition by
Mozart.

in this section. From each chirp, we select the FFT-peak
corresponding to the reflection from a phone and extract the
phase. Thus, every chirp results in a single sample that can be
converted to audio. To be more specific, the variation in phase
of the FFT-peak from the reflection of the phone is the raw
audio signal extracted from the radar. We term the frequency
of chirp transmission as the phase sampling frequency since
the phase of the FFT peak is selected and converted to audio.
The necessary chirp parameters that determine the phase
sampling frequency are:

1 Start Frequency: The starting frequency is the initial fre-
quency at which the radar starts emitting a signal. In our
system, the starting frequency is set as 77GHz.

2 Frequency Slope (MHz/µs): The TI AWR1843BOOST can
modulate the chirp frequency linearly. The frequency slope
determines the rate at which the frequency changes. In
mmSpy, we set the frequency slope as 30MHz/µs. There are
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(a) AudioMNIST

(b) Speech Commands

Fig. 29: Confusion Matrices for S-20 at 77 GHz with data from 1-6
ft combined.

practical limitations with setting a slope higher than this. For
chirps with a small cycle time, if the slope is really high,
the received signals become noisy as the system requires
some time to cool down when transitioning quickly from
the highest to the lowest frequency.

3 Idle Time: At the end of each chirp, the system is required
to stay idle for sometime in order to avoid noise due to heat.
The idle time in mmSpy is a low 20µs.

4 TX Start Time: The TX start time determines the time the
transmitter takes to begin transmitting with respect to the
start of a cycle. In our system, this is set as a low 10µs.

5 ADC Start Time: The ADC start time determines the time
the ADC (at the RX) takes to begin converting received
chirps. Note that the TX and ADC begin at the same
instance of time but the TX start time can be earlier than
the ADC start time. However, in mmSpy, the TX start time
and the ADC start time are both set to 10µs in order to
avoid further overhead and time delays and maximize the
resolution of sensing.

6 ADC Samples: The number of ADC samples collected at the
receiver is determined by this parameter. The ADC begins
sampling at the the ADC start time and ends when this
fixed number of samples have been collected. In mmSpy,
the number of ADC samples is set to 256.

7 Sample Rate: The sample rate determines the rate at which
discrete ADC samples are collected at the receiver. The TI
AWR1843BOOST has an upper limit of 25Msps for real-
valued data, and 12.5Msps for complex in-phase/quadrature
(IQ) data. mmSpy collects IQ data and the sample rate is
set as 10Msps.

8 Ramp End Time: The ramp end time determines the du-
ration for which a chirp is emitted. It also determines the
bandwidth of the transmitted signal, and consequently, the
maximum range that can be detected. The ramp end time
was set as 60µs.

9 Chirp Cycle Time: This is the sum of the idle time and the
ramp up time. One value of phase is extracted per cycle.

The important parameters for the frames are:
• No. of Chirp Loops: The number of chirp loops deter-

mines the number of chirps within a frame. It is set as
128 in our system.

• No. of Frames: The number of frames that are transmitted
and received is set as 800.

• Periodicity (ms): The periodicity of a frame is the total
duration over which a frame is transmitted and received.
In mmSpy, this is set as 10.64 milliseconds.

• Duty Cycle (%): The duty cycle of a frame is the
amount of time for which frames are actively transmitted
and received. The TI AWR1843BOOSTe requires that the
device not be used on a 100% duty cycle, so as to allow
it to cool down between frames. We use a duty cycle of
96.2%.

A few key considerations are made in setting the periodicity.
First, the lower the periodicity, the better, as that allows us to
capture more chirps within a given time period. Second, since
there is a discontinuity between frames in order to allow the
device to settle down (duty cycle is < 100). We decide to pad
phase values due to such discontinuity between two frames
with zeros. So the periodicity should be set such that the device
is able to function at the assigned periodicity and that the
number of zeros padded between frames is a discrete number.
Additionally, we decided to use the same radar parameters
for both the AWR1843 and IWR6843ISK, and we find that
the settings we have mentioned work for both. We set the
periodicity to 10.64ms as it is the smallest periodicity for
which a discrete number of zeros can be padded between
frames captured from both radars. The below equations further
elaborate on the interrelationships between various system
parameters as well as the computation of the final sampling
rate based on the chosen parameter setting.

tramp = tadc-start + tadc-sampling + tmisc (8)

where tmisc is the time spent transmitting at the end of a chirp
cycle that is not sampled by the receiver.

tcycle = tidle + tramp (9)
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In mmWave studio, we can specify the values of tramp and
tidle.
Let the number of chirps be given by nchirps and the number
of zero skips between two frames be given by nskips. Thus, the
frame periodicity (p) is given by:

p = (nchirps + nskips)× tcycle (10)

In mmSpy, we set nchirps = 128 and nskips = 5. This implies,

p = (128 + 5)× tcycle = 133 · tcycle (11)

Since one phase value is extracted from each chirp cycle, the
sampling rate Fs is given as:

Fs =
1

tcycle
(12)

We need to set tramp and tidle such that the radar can success-
fully transmit and receive. In mmSpy, we set the values as
tramp = 60µs and tidle = 20µs. Thus, tcycle = 80µs.
This implies,

Fs =
1

tcycle
= 12500Hz = 12.5kHz (13)

and

p = 133 · 80µs = 10.64ms (14)

Thus, the values of frame periodicity is set as 10.64ms in
mmSpy, ramp end time is set as 60µs and idle time is set
as 20µs. This results in a total bandwidth of 1798.92MHz.
For mmSpy, we downsample the audio from 12.5kHz to 8kHz.
Based on the Nyquist sampling theorem, the highest frequency
audio signal that can thus be captured is 4kHz, which is
adequate for speech recognition tasks.

C. Size of Attack Equipment

The current experimental setup is bulky. However, we note
that the actual mmWave chip as highlighted in Figure 31 is
only 2cm×2cm in size, and the dimensions of the antenna
is 2.5cm×3cm. This can be integrated into a concealed PCB
to enforce wireless wiretapping [57] and the raw data can be
streamed to a smartphone with powerful GPU via 5G com-
munication which can support Gbps data rates [28] sufficient
for streaming the raw data at 25 MHz sampling rate (same as
the sampling rate of our data acquisition device DCA1000).
The development board shown in the figure is only used in the
‘prototypying phase’ as this is the standard procedure in many
IoT applications to extensively test the prototype before rolling
out on a compact PCB [32]. Our future work will include
testing the feasibility of such a fabrication to create a smaller
attack device.

Fig. 30: Scale of development arrangement.

Fig. 31: Scale of chip and antenna.

D. Attack with 5G routers

At a high level, if an adversary gains access to the physical
layer of a 5G router, or use a software-defined 5G radios
which are becoming popular [70], [71], then they can modulate
emitted radio waves. In such a scenario, it might be possible
to modulate and mix sent and received signals to replicate
an attack like mmSpy. At this point in time, this is a pre-
emptive estimate of the possibility of such an attack; one of the
reasons is that 5G has not yet fully proliferated as a popular
technology. One of the key aspects of mmSpy is the short
wavelength of the carrier wave used (which is of the order of
millimeters), which makes tiny phase changes easy to detect:
and this is a commonality that automotive radars share with
commercial 5G appliances. We already have various hardware
and open source software tools that can allow end users to
build custom WiFi hardware [58]. We believe that with time,
it will be possible to build adversarially-capable 5G hardware
based on the same prototyping tools that enable their usual
functionality.
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