
PCR-Auth: Solving Authentication Puzzle
Challenge with Encoded Palm Contact Response

Long Huang, Chen Wang
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

Email: lhuan45@lsu.edu, chenwang1@lsu.edu

Abstract—Biometrics have been widely applied as personally
identifiable data for user authentication. However, existing bio-
metric authentications are vulnerable to biometric spoofing. One
reason is that they are easily observable and vulnerable to
physical forgeries. Examples are the apparent surface patterns of
human bodies, such as fingerprints and faces. A more significant
issue is that existing authentication methods are entirely built
upon biometric features, which almost never change and could
be obtained or learned by an adversary such as human voices. To
address this inherent security issue of biometric authentications,
we propose a novel acoustically extracted hand-grip biometric,
which is associated with every user’s hand geometry, body-fat
ratio, and gripping strength; It is implicit and available whenever
they grip a handheld device. Furthermore, we integrate a coding
technique in the biometric acquisition process, which encodes
static biometrics into dynamic biometric features to prevent data
reuse. Additionally, this low-cost method can be deployed on any
handheld device that has a speaker and a microphone.

In particular, we develop a challenge-response biometric au-
thentication system, which consists of a pair of biometric encoder
and decoder. We encode the ultrasonic signal according to a
challenge sequence and extract a distinct biometric code as
the response for each session. We then decode the biometric
code to verify the user by a convolutional neural network-based
algorithm, which not only examines the coding correctness but
also verifies the biometric features presented by each biometric
digit. Furthermore, we investigate diverse acoustic attacks to our
system, by respectively assuming an adversary could present the
correct code, generate similar biometric features or successfully
forge both. Extensive experiments on mobile devices show that
our system achieves 97% accuracy to distinguish users and rejects
100% replay and synthesis attacks with 6-digit codes.

I. INTRODUCTION

Biometrics such as faces, fingerprints and irises are increas-
ingly exploited to verify users because they are convenient to
use [1]. A recent report estimates that over 1.5 billion people
might use biometrics for authentication by 2023 [2]. However,
biometric security is attracting increasing public concerns.
Due to the increasingly advanced recording technologies,
3D printing, wireless eavesdropping and malware [3], the
user’s biometrics are under two major replay threats, physical
forgeries and authentication data reuse. As reported by recent
studies, an adversary can perform various types of replay
attacks to spoof the user’s face [4], [5], [6], fingerprint [6], [7],
iris [8], [9] and voice [10], [11]. Addressing the replay issues
has become a critical task for ensuring biometric security.

An active research direction for preventing relay attacks is
liveness detection. These approaches require motions to prove
live faces [12] and leverage heatmaps to detect live fingers.

But these methods require the user’s participation to prove
“liveness” or are subject to additional sensor overheads. They
still have not fundamentally solved the two replay threats.
Behavioral characteristics (e.g., gaits) are a rapidly growing
category of biometrics, which can not be physically replicated
like body traits and are hard to imitate. To further address
the data replay issue, behavioral biometrics are increasingly
integrated with Challenge-Response (CR) protocols [13], [14].
Specifically, the user is asked to respond to a random sequence
challenge (e.g., letters and icons) for authentication by typing,
speaking or eye-tracking. The correctly repeated sequence
and the associated behavioral characteristics (e.g., keystroke
dynamics, voices and reflexive eye movements) are verified
as the response. However, the existing biometric CR solutions
all require active participation from the user, such as cognitive
activities and behavioral feedback; They are both intrusive and
time-consuming, which impedes their deployment.

This work aims to develop a biometric-based CR authen-
tication system for handheld devices, which not only solves
the above replay threats but also requires low user efforts. The
hand-grip biometric inherently comes with handheld devices,
and acquiring it requires no more efforts than obtaining a
fingerprint. This biometric was traditionally extracted by an
array of pressure sensors that enclose the handheld device [15],
[16], [17]. We propose to describe this biometric acousti-
cally as Palm Contact Response (PCR) to facilitate dynamic
biometric features. Specifically, when using an ultrasound as
the stimulus signal, it interacts with the user’s contacting
palm and experiences damping, reflection and refraction before
reaching the microphone. These signal impacts are resulted
from both the user’s distinctive physiological traits (e.g.,
hand geometry, palm size and body-fat ratio) and behavioral
characteristics (e.g., gripping strength). While the hand shape
can be physically replicated, the body-fat ratio and gripping
strengths are more implicit and hard to imitate. Moreover,
by manipulating the signal frequencies, we extract different
responses from the palm to make every authentication session
unique and non-repeated. In addition, the proposed biometric
CR authentication can be deployed on any handheld devices
(low-end or high-end) that have a speaker and a microphone.
No dedicated hardware is required.

We devise a novel biometric encoding technique to integrate
the hand-grip biometric with the CR protocol. Based on that
we develop the PCR-Auth system, whose handshake process
is shown in Figure 1. When a user requests an authentication,
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Fig. 1: The handshake process of PCR-Auth.

PCR-Auth generates a challenge (i.e., a random sequence).
The device encodes the challenge into a series of millisecond-
level ultrasonic pulses on different frequencies and plays the
sound to acquire the user’s encoded PCR, which includes the
direct-path signal, reflections and the induced surface vibration
sounds modified by the user’s palm. The encoded PCR is then
decoded, and the access permission is granted only when the
decoded sequence is correct and the biometric measurement
matches with the profile. Our biometric encoding also enables
generating a huge response universe at a minimum training
overhead to support everyday authentication purposes.

The PCR-Auth consists of two components: 1) PCR En-
coder generates a One-Time-Challenge (OTC) Code and trans-
mits the stimulus signals through the narrow-band channels
indexed by each OTC digit, which encodes the user’s hand-
grip biometric into a PCR code. 2) PCR Decoder is a per-user
deep learning model trained at the registration phase, which
verifies both the coding sequence and the PCR. In particular,
we exploit an OTC-guided bandpass filter to extract every
PCR digit from the right channels. The Signal-to-Noise Ratios
(SNRs) of the PCR digits are examined to verify the code
sequence, while incorrectly encoded PCR digits (i.e., on the
wrong channels) are filtered out resulting in low SNRs. Next,
we derive the spectrogram to examine the user’s hand-grip
biometric features carried on each PCR digit. We develop
a Convolutional Neural Network (CNN)-based algorithm to
verify all PCR digits and leverage its multi-class classification
capability to address human behavioral inconsistency. The
CNN scores of each PCR digit are returned. We then apply a
cluster-based method to integrate the CNN scores and SNRs
of all PCR digits to make the authentication decision.
The main contributions are summarized as below:
• Unobtrusive Biometric CR Authentication: We propose

a solution to address the replay issues of biometric authen-
tications by integrating a coding technique with biometric
acquisition. The authentication process requires neither ac-
tive user participation nor additional hardware.

• An Implicit Biometric: We extract the user’s hand-grip
biometric via acoustic sensing, which is a combination of
the physiological and behavioral biometrics of the user’s
gripping hand. We show that this biometric can show
dynamic features under different stimulus signals.

• Biometric Encoding: We encode a user’s biometric into

biometric codes, which creates a huge response pool to
support everyday CR authentications. Moreover, we develop
a CNN-based method to decode the unique biometric code
for each session, which not only verifies the biometric but
also checks the code correctness.

• New Attacks and Extensive Experiments: While the CR
authentication is designed to defeat replay attacks, we take
one step further to investigate new attacks, assuming an
adversary can repeat the code, replicate the biometric or
forge both. The system is then evaluated on multiple devices
under these attacks. Results show that our system verifies
users with 97% accuracy and rejects up to 100% replay and
synthesis attacks with 6-digit PCR codes.

II. BACKGROUND AND SYSTEM MODELS

A. Palm Contact Response
The hand-grip biometric is an extension of the hand ge-

ometry biometric in the handheld device scenarios, which
describes how uniquely a user holds the device. It is tradition-
ally extracted by the pressure sensor-enclosed device surface
(e.g., piezoelectric materials) that captures not only the hand
geometry but also the pressure distributions of the contacting
palm [15], [16], [17]. Due to the high hardware requirement,
such a biometric has not attracted much attention.

Motivated by the recent vibration studies that use vibra-
tion signals to differentiate people’s palms pressing on a
surface [18], [19], we find that the ordinary acoustic sounds
of a handheld device can distinguish people’s palm when it
grips the device. Specifically, after the speaker of the handheld
device generates a stimulus signal s(t), a portion of the signal
propagates in a direct path to reach the microphone (structure-
borne or near-surface air-borne), while other parts of the signal
go through more complicated reflected paths as shown in
Figure 1. The user’s gripping hand impacts these signals in
their propagation paths. Moreover, the speaker’s sounds induce
the device surface to vibrate at the same frequencies, which
serves as a second sound source and creates sounds in the
same frequencies and their harmonics, though losing a few
frequencies [20]. When in contact with a hand, the device
surface vibrations are impeded resulting in modified sounds.
All these sounds affected by the hand carry some biometric
information when they are picked up by the microphone.

We model the impact of a gripping hand on the speaker
sound (input) as a system response H(f). The microphone
signal (output) can thus be expressed as Ŝ(f) = H(f)S(f)
in the frequency domain, where S(f) is the original speaker
sound at frequency f . To show the microphone signal as the
sum of three signal components, the direct-path signal, the
reflected signal and the surface vibration sound, we divide the
system response into three subsystem responses Hd(f), Hr(f)
and Hv(f) accordingly and obtain Equation 1,

Ŝ(f) = Hd(f)S(f) +Hr(f)S(f) +Hv(f)S(f). (1)

We further express each subsystem response in terms of its
amplitude and phase and obtain Equation 2,
Ŝ(f) = |Hd(f)|S(f) + |Hr(f)|S(f)ej2πft + |Hv(f)|S(f)ej2πfτ ,

(2)
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Smartphone speaker’s 

sound stops

Fig. 2: The impact of hand-grip to the smartphone’s sound.

where t and τ are the additional travel time of the reflected
signal and the surface vibration sound, compared to the
direct-path signal. Equation 2 explains how the three signal
components are modified by the gripping hand regarding both
amplitude and phase. In particular, the three types of signals
at frequency f are all damped by the gripping hand with
the scale factors |Hd(f)|, |Hr(f)| and |Hv(f)| respectively,
which are mainly determined by the user’s gripping hand.
The reflected signal and the surface vibration sound further
suffer from phase changes 2πft and 2πfτ , because they
travel longer distances compared to the direct-path signal. The
phase changes are more related to the user’s hand geometry
and holding position. This work is based on the assumption
that people’s gripping hands are distinctive. As a result, the
combined signal at the microphone should present individu-
ally distinctive patterns. Moreover, the hand-grip biometric is
implicit and hard to imitate. Even if an adversary perfectly
replicates the hand geometry and the holding position, he/she
could hardly repeat the body-fat ratio and gripping strength.

It is important to note that all the amplitude attenuation
factors and the phase changes are also related to the signal’s
frequency. Such a frequency-selective nature motivates us to
use the signal with richer spectral points to capture higher
resolution of the user’s hand-grip biometric. Furthermore, we
can use the different combinations of the frequencies to extract
dynamic biometric features for CR authentication. Even if
an adversary eavesdrops on one authentication session, it is
hard to cheat the new session by reusing the previous data.
Therefore, we define Palm Contact Response (PCR) as

pcr = 〈Hd, Hr, Hv, F 〉, (3)
which describes the gripping hand’s biometric with three
signal components regarding the signal frequencies F .

B. Motivational Study

We conduct a feasibility study to show how ultrasonic
signals are impacted by the gripping hand. Specifically, we
play a short 18k-22kHz chirp signal in 25 ms using a smart-
phone’s speaker. Figure 2 shows the received signals at the
smartphone’s microphone, when it is held in the user’s hand
and placed on a table, respectively. From the comparison, we
observe that the user’s gripping hand suppresses the speaker’s
sound by an average of 3 dB. Moreover, when the chirp signal
sweeps from 18k to 22kHz, the signal amplitudes are degraded
by the gripping hand with different scales, which illustrates the
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Fig. 3: Distinguishing users by palm contact responses.

PCR’s frequency-selective nature. Furthermore, we find that
while the direct-path signals dominate the microphone data
before 25ms, the speaker sound reflections and the induced
surface vibration sounds become significant after the speaker’s
sound stops. They degrade over 20 dB after 75 ms. We thus
propose to leverage the 0 − 75ms sounds for the gripping-
hand sensing. It is also worth noting that the sounds in the
25− 75ms range are the residue of the speaker sound, which
are harder to forge via a speaker than direct-path signals.

We then study the feasibility of using PCRs to distinguish
users. Figure 3 shows the spectrograms of the received chirp
signals, when two users grab a smartphone twice, respectively.
It is evident that the time-frequency images are consistent
for the same user but are distinctive between them. Specif-
ically, not only the dominant direct-path chirp signal but also
the sounds after it show distinct patterns between the two
users. All these signals present frequency-selective features.
These results indicate that we can leverage the temporal and
frequential information to achieve robust user authentication.
Furthermore, as mobile devices are usually embedded with
two microphones for noise cancellation and stereo recording,
we can use the two acoustic channels to capture more aspects
of the user’s PCR. When the speaker sounds travel across
different routes to reach the two mics, they are impacted
differently by the gripping hand. Such a spatial diversity also
adds difficulties for an adversary to cheat the system.

C. Challenge-Response Model

Our system model is shown in Figure 4, which is an
integration of a CR protocol and the PCR coding/decoding
modules. The handshake authentication process is between the
handheld device user and the PCR-Auth. The PCR decoder
Duser{} is created for each user, which is pre-trained with all
of the user’s hand-grip biometric features at the registration
phase. The system works in a mechanism that each challenge
expects a unique PCR code for verification. When a user sends
an authentication request, PCR-Auth generates an OTC Code
(i.e., nonce). The handheld device plays the OTC-encoded
stimulus signal using its own speaker, and in the meanwhile,
its microphones record the signals to obtain the encoded
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Fig. 4: Our challenge-response authentication model.

PCR EOTC{PCR}. Next, PCR-Auth applies the PCR decoder
Duser{} to verify the PCR code and make the authentication
decision, which examines both the biometric and the coding
sequence by Duser{EOTC{PCR}}.

D. Biometric Encoding and PCR Code.

As mentioned above, the proposed biometric CR authentica-
tion is achieved based on the encoded PCR. The authentication
function can be expressed by Equation 4,

K̂ = Duser{EOTC{PCR}}. (4)
The decoded result K̂ matches with the OTC code, only when
the presented biometric features and the coding sequence are
both correct. This is more secure than the traditional methods
that only rely on static biometric features. We now introduce
the biometric encoding, which serves as the basis of PCR-Auth
and creates a huge response universe to support everyday CR
authentications. The basic idea is to leverage the frequency-
selective nature of PCR. By using the short stimulus signal
pulses at different frequencies, we obtain n non-overlapped
PCRs and map them to decimal and hexadecimal values (i.e.,
n = 10 or 16) as coding units, which can be used to express
more complicated strings. The PCR encoder EOTC{} selects
the signal pulses in a sequence according to the OTC code.
The PCR Code is then extracted by the encoded signals to be
the biometric representation of an m-digit OTC as

EOTC{PCR} = (pcr1, pcr2, ..., pcrm), (5)
where pcri, i = 1, 2, ...m is the i-th PCR digit.

The PCR decoder Duser{} is trained at the registration
phase with the user’s all n unique PCR digits. During the
authentication, the PCR decoder first examines whether the
PCR digits are all at the correct frequencies indexed by
the OTC code and then verifies the biometric presented by
each PCR digit separately. A successfully verified PCR digit
reconstructs one OTC digit. By encoding the user’s hand-grip
biometric with n coding units into m-digit PCR codes, our
biometric encoding technique expands the biometric response
universe exponentially from n to nm based on the same
training effort of the prior biometric CR method [19]. As
a result, the user does not need to refill the response pool
periodically with new biometric features.

E. Framework Overview

Based on the above CR model, we design the PCR-Auth
framework as shown in Figure 5. Upon each authentication
request, the microphone access permission is acquired, which
is revoked after authentication through auto-reset. The PCR
encoder first detects whether the device is under intentional ul-
trasonic interference by examining the ultrasonic band against
a Sound Pressure Level (SPL) threshold, which is introduced
in Section V-F2. If no dedicated ultrasound is detected, the
PCR encoder generates an OTC, and the OTC-based Stimulus
Signal Modulator selects ultrasonic pulses accordingly to
encode the user hand-grip biometric into a PCR code.

The microphone data is the input of the PCR decoder, which
first performs Data Preprocessing to denoise, synchronize and
segment the audio data. The preprocessed data is fed into the
Channel-Filtering-Based PCR Code Extraction to pick up PCR
digits from the audio. In particular, we derive spectrogram
to describe the PCR code in both the time and frequency
domains. The OTC-controlled Channel Filter sets the cutoff
frequencies according to the OTC-indexed channels to extract
each PCR digit. Any incorrectly encoded PCR digit (i.e., not
on the right channel) is filtered out at this stage, leaving a low
SNR. The obtained PCR digits are sent to the CNN-based PCR
Decoder for verification, which is a per-user model, trained
with the user and a set of other users and stored in the device.

The CNN-based PCR Decoder exploits one CNN model
with five convolutional layers to decode each PCR digit from
its spectrogram. The CNN scores (i.e., probabilities) of all
PCR digits are returned. We further develop a cluster-based
method to verify the PCR code by integrating the CNN scores
and the SNRs of all PCR digits. Based on that, we compute
the PCR code’s Euclidean distance to the user’s cluster and
verify the user using a threshold, which examines both the
user’s biometric features and the coding sequence. The access
permission is granted only when the PCR code successfully
recovers the OTC code.

F. Threat Model

We investigate the potential attacks to PCR-Auth. The ad-
versary’s goal is to cheat PCR-Auth to pass the authentication.
We assume the adversary can physically access the user’s
handheld device when it is left unattended or stolen. But
the adversary can not compromise the device hardware and
software, whose integrity is the minimum requirement for
authentication and is protected via encryption, memory foren-
sics and circuit security. Unfortunately, the acoustic channel
eavesdropping threat is a critical issue for all acoustic systems,
because the acoustic channel is open. This is the major reason
that most acoustic systems suffer from replay attacks. While
it would not be surprising to see our CR authentication defeat
replay attacks, we take one step further to study new attacks.
For example, the adversary could listen via a side-channel to
obtain not only the biometric data but also the chirp signal
frequencies (i.e., OTC digit). In particular, we consider the
following attacks:
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Fig. 5: The architecture of PCR-Auth.

1) Impersonation Attack: In this scenario, the adversary
uses his/her own hand to cheat PCR-Auth. The coding se-
quence is ensured to be correct, and the adversary expects
to further imitate the victim’s biometric features. Specifically,
random impersonation attacker arbitrarily grips the victim’s
device to cheat PCR-Auth; knowledgeable impersonation
attacker has the prior knowledge of how the victim grips
the device, so that he/she can imitate the gripping-hand pose
when in possession of the device; We further consider a
knowledgeable fake-hand attacker, who uses a silicone fake
hand to imitate the victim’s hand with more freedom.

2) Replay Attack: The adversary may have eavesdropped
on the victim’s authentication data and attempt to use the same
data to cheat a new session. To attack, the adversary needs to
mute the target device and use a second speaker to replay
the prior sounds. This type of attack only aims to present the
user’s biometric features. But a challenge is to predict the
precise time to start the replay, which is only a short period
(e.g., 400ms for 4-digit OTC) when the mic is on. A possible
solution is to turn the target device volume to be low to detect
the start of the stimulus signal and then attack immediately.

3) Listen-and-synthesis Attack: We design new attacks
by assuming that the adversary could capture the OTC by
listening to the acoustic channel and immediately stitching
prior PCR digits in a correct sequence. This attack aims to
forge both the code and the biometric. We also assume the
adversary could obtain the victim’s all PCR digits beforehand
to attack with full freedom, which may be achieved through
eavesdropping on the registration process or the disclosure of
the stored biometric data. However, the implementation of this
attack is still challenging. If playing the synthesized sound
after waiting to eavesdrop on all OTC digits, it would be
rejected because the microphone is off just after the speaker
sound stops (e.g., with 80ms delay). So the only way is to
listen and forge each PCR digit separately. In this scenario,
each synthesis digit is still unavoidably delayed by at least
tams because the attacker needs this period for observation
(buffer), A/D and D/A conversions, Fast Fourier Transform

(FFT), cache accesses and the CPU scheduling time. The
last item alone can be over 100ms and unpredictable. But
the success of such attacks requires the short delay (less
than one digit) and the strict synchronization. Otherwise, each
synthesized digit may be corrupted by the speaker’s next digit
or partially segmented due to poor synchronization, resulting
in a rejection.

To our knowledge, no prior work has implemented such
attacks due to the strict real-time synchronization requirement.
But we find that if using a Field Programmable Gate Ar-
ray (FPGA) for the attack system implementation, the CPU
scheduling time can be removed, and a determined delay might
be achieved as low as 10ms for each synthesized digit. While
implementing the FPGA-based attack system is beyond this
paper’s scope, we assume its feasibility and further investi-
gate two new attacks based on simulation: synchronization
disturbance attack overwhelms or replaces each original digit
with louder delayed adversarial digits, which aims to fool the
synchronization method into picking up the delayed adversar-
ial digits for authentication; real-time perturbation attack
attempts to generate perturbation noises based on adversarial
learning and modify the original digit sounds to present correct
biometric features.

4) DoS Attack: The Denial of Service (DoS) attack aims
to cause authentication errors and rejections by overriding the
working frequencies of PCR-Auth via dedicated ultrasounds.

III. APPROACH DESIGN

A. Palm Contact Response Encoder

1) Stimulus Signal Design: The stimulus signal is used
to interact with the user’s palm and extract the PCR for
authentication. In order to acoustically obtain sufficient bio-
metric information, we exploit the upward frequency sweeping
signals to capture the user’s biometric in a frequency range
rather than a single frequency. Intuitively, a wider frequency
band enables describing more aspects of the user’s biometric,
and a longer time period means more audio samples and thus
higher resolutions. However, to facilitate biometric encoding,
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we design the stimulus signals in narrow bands and short
periods. The reasons are two-fold. First, the secure biometric
encoding requires all PCR digits to have non-overlapping
biometric information, making it necessary for us to divide the
available frequency range into a number of exclusive narrow
bands (i.e., channels) and extract the frequency-separable PCR
digit. Second, the time period of the stimulus signal is directly
related to the waiting time and must be short.

Besides the function-level requirements, a critical considera-
tion is that the signal must be non-invasive and do little harm to
humans and animals. Thus, we propose to use the ultrasounds
easily generated by off-the-shelf handheld devices, whose
frequency range complies with the Federal Communications
Commission (FCC) Rules & Regulations Title 47 Part 18 to
ensure low risks to human and animals [21]. In particular, we
apply the signals within the range 17k-22kHz, which has been
demonstrated to be hardly audible [22] and widely applied
in prior ultrasonic sensing work [23], [24], [25], [26]. We
further reduce disturbances by designing the stimulus signal
with millisecond-level short periods, hundred-Hz-level narrow
bands and the low energy (e.g., 50% volume).

To balance the above considerations, we design the stimulus
signals as a number of 25ms long and 350Hz wide chirp
pulses within the range 17k − 22kHz. The signal frequency
bands are 10 times narrower than the prior acoustic sensing
work (i.e., 4 − 6kHz wide [23], [24], [25], [26]), which
means more challenge for our sensing. But we show that
such narrow-band pulse signals are sufficient to distinguish
people’s palms. Moreover, we add a 75ms silent period after
each chirp for leveraging the reflected signals and the induced
surface vibration sounds in this period and reduce the inter-
chirp interference. We further apply a Hamming window to
both ends of each chirp to suppress the spectral leakages
caused by sudden frequency changes and the hardware noises
of the speaker. The complete stimulus signals used for both
the registration and authentication are illustrated in Figure 6.

2) PCR Encoding: The purpose of PCR encoding is to
encode the user’s hand-grip biometric into a unique PCR
code based on the OTC, which can be generated by existing
methods [27], [28], [29]. For simplicity of description, we
select 10 exclusive narrow-band channels from the range 17k-
22kHz to represent decimal digits. These coding channels
are all 350Hz wide and separated by a gap (e.g., 50Hz). It
is important to note that not all channels are suitable for
encoding, and we conduct extensive experiments to identify
the good channels, which is introduced in Section V-A2.

Chirp pulse is used as the basic unit to encode the user’s
PCR onto the corresponding channel. When training the PCR
decoder, the user’s PCRs at all coding channels are collected
as shown in Figure 6 (a). During the authentication, the PCR
encoder scopes down to each coding channel indexed by the
OTC to extract the corresponding PCR digit. Figure 6 (b)
illustrates the stimulus signals for encoding a 4-digit PCR
code, when the OTC code is “9207” and the selected chirp
pulses are 21.6-21.95kHz, 18.8-19.15kHz, 21.6-21.95kHz and
20.8-21.15kHz in a sequence. When the stimulus signals
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Fig. 6: Stimulus signals for training and authentication.

interact with the user’s contacting palm, a unique PCR code
is contained in the received audio. As many as 104 unique 4-
digit PCR codes can be generated, which are disposed of after
being used. A longer code creates an exponentially greater
response universe but at the cost of a longer waiting time.

B. Palm Contact Response Decoder

1) Denoising, Synchronization and Segmentation: The raw
audio data is first preprocessed for denoising, synchronization
and segmentation. In particular, a bandpass filter with the
pass-band 17-22kHz is used to remove the noises out of the
stimulus signals’ frequency range, including the low-frequency
mechanical noises caused by the gripping hand and the audible
ambient noises. Next, the synchronization is performed by
leveraging the evenly spaced chirp pulses. Specifically, we
use the original pulse sequence signal as the reference and
calculate its cross-correlation with the received audio to find
the time shift synch shift that corresponds to the maximum
correlation coefficient as expressed by

synch shift = argmax
d

xcor(d). (6)

We then use this shift to align the two signals and refer to
the reference signal to localize the coding chirps in the audio
for segmentation. Each resulted segment contains one 25ms
coding chirp and a 75ms stop period to represent a PCR digit.

2) PCR Code Extraction: Because each PCR digit is en-
coded onto one of the predefined coding channels by the
OTC, we use a bandpass filter to extract the PCR code by
scoping down to each OTC-indexed channel in a sequence. For
example, the upper and lower frequency bounds of the pass-
band are set as 21.6-21.95kHz, 18.8-19.15kHz, 21.6-21.95kHz
and 20.8-21.15kHz when the OTC code is “9207” as shown
in Figure 6 (b). As a result, only the PCR digits at the
right channels pass the filter, while the incorrectly encoded
PCR digits are filtered out. We detect the coding errors by
examining the SNRs of all coding channels both before and
after filtering. The SNR examination before filtering is to make
sure the coding complies with the rule: only one channel is
encoded at each time slot. The examination after filtering is to
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detect whether there are coding errors. The SNRs of all PCR
digits are used to verify the PCR code as the physical layer
coding features. We next examine the biometric features.

3) PCR Spectrogram Derivation: We derive the spectro-
gram of each PCR digit as biometric features to describe the
PCR defined by Equation 3 in the frequency domain. As shown
in Figure 3, the spectrogram describes the temporal changes
of the resulted signal at each frequency, after the original
speaker signal passes a specific gripping-hand system. It is
a measurement of the three subsystem responses (Hd, Hr and
Hv) regarding the frequencies and the waveform patterns of
the speaker signal. The spectrogram is computed based on the
Discrete-Time Short-Time Fourier Transform (DT-STFT) as

DTSTFT (t, f) =

t+T−1∑
τ=t

s(τ)w(τ − t)e−j2πfτ , (7)

where t and f are the time and frequency indexes, and w(t) is
a window function with length T . Each pixel of the 2D image,
spectrogram, at the coordinate (t, f) is then computed as

spectrogram(t, f) = |DTSTFT (t, f)|2. (8)

4) PCR Spectrogram Time Series: In order to balance the
spectrogram resolution and the decoding algorithm’s com-
plexity, we divide each PCR spectrogram into three pieces,
which separately describe three different stages of the PCR.
Specifically, the first spectrogram (0-25ms) mainly captures
the palm’s impact on the dominant direct-path signal. The
second (25-50ms) and third (50-75ms) focus on the reflected
signals and the induced surface vibration sounds. All of the
three spectrogram pieces show user-distinctive patterns and
are input in 2D-image time series into the PCR decoder for
verification. The 75-100ms subsegment is not utilized, because
the sound degrades over 20dB in this period. Furthermore,
using spectrogram time series also adds difficulties to the PCR
digit forgery. While the direct-path signal can be synthesized,
it is hard to forge the reflections and the surface vibrations
that are byproducts affected by many other factors.

5) CNN-based PCR Digit Verification: When distinguish-
ing people’ hands from each PCR digit, we have the following
considerations for the algorithm design: 1) The algorithm
needs to be powerful to distinguish the minute differences
of the acoustic signals modified by different hands; 2) The
behavioral inconsistency of the user (e.g., the gripping pose
changes) must be addressed; 3) The remaining ambient noises
after denoising need to be tolerated; 4) The algorithm must
have reasonable complexity to be usable for handheld devices.

After testing multiple learning-based algorithms, we find the
Convolutional Neural Network (CNN) model best meets the
above requirements. CNN is a deep-learning model widely
used for finding patterns in images. It is thus good for
capturing a gripping hand’s characteristics from the 2D spec-
trogram images while tolerating ambient noises and behavioral
inconsistency. When using PCR-Auth for the first time, the
user is allowed to define a customized gripping hand pose, and
a floating button on the screen marks the user’s thumb location,
which is displayed later for the user to recall the hand pose.
But when the user grabs the device for different times, the
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Fig. 7: Illustration of the cluster-based PCR Code Verifier.

grabbing actions may result in more than one patterns. We thus
leverage the CNN model’s strong multi-class classification
capability to label multiple hand-grip patterns for each user.
Specifically, when training the CNN model, the user is asked
to re-grab the device multiple times, just as setting up the
finger ID by pressing and lifting a finger multiple times [30].
The per-user CNN model is then created and stored in the
device. Additionally, we design the CNN model with five
convolutional layers and a small number of filters, which is a
CNN architecture widely used for mobile devices [31].

The architecture of our CNN model is shown in Appendix
Table VI. In particular, we use the Rectified Linear Unit
(ReLU) for the activation function to speed up the training,
and each activation layer is followed by a 3× 3 max-pooling
layer to downsample the feature maps. The last max-pooling
layer pools the input feature map globally over time to cope
with the temporal variances of the spectrogram and reduces
the parameter number in the final fully connected layer. In
addition, we apply the batch normalization layers to normalize
the output of each layer and a dropout layer to suppress over-
fitting. The cross-entropy is used as the loss function, and the
softmax layer outputs the final CNN scores of each input.

CNN Scores of the Input. We resize each spectrogram
into a 98 × 40 time-frequency image as the input of our
CNN-based algorithm. Two CNN scores (i.e., probabilities)
are computed, which are associated with two classes, User and
Non-User. A higher CNN score for the User class indicates a
higher confidence to trust the biometric presented by the PCR
digit. Since each PCR digit is divided into three consecutive
spectrogram pieces and the smartphones have two microphone
channels, a PCR digit is decoded into 12 = 2 × 3 × 2 CNN
scores. For each m−digit PCR code, we thus obtain 12m CNN
scores as the biometric features for verification.

6) Cluster-based PCR Code Verifier: We develop a cluster-
based algorithm to verify a PCR code by integrating the
biometric features (12m CNN scores) and the coding features
(2m SNRs), which are projected into a high dimensional space
for binary classification. Moreover, the proposed clustering
algorithm explores the relationships among the m PCR digits
to improve the decoding performance rather than treating each
digit alone. The user’s cluster is learned during the training
phase. Specifically, we generate a large number of random m-

71040



digit PCR codes based on the user’s training data and a non-
user database. We also simulate diverse replay attack cases,
assuming they present 1, 2, ..., m − 1 correct PCR digits.
We then cluster these PCR codes based on their CNN scores
and SNRs to find the user’s cluster and its center and radius.
During authentication, we calculate the Euclidean distance of
the PCR code to the user’s cluster center and verify the user
via a threshold-based method.

Figure 7 illustrates the 2D clustering results of 240 random
4-digit PCR codes in the plane of CNN score distance and
average SNR. We observe that the legitimate user’s PCR code
cluster is clearly separated from the other users, the different
cases of replay attacks and a fake silicone hand. By presenting
more correct digits, the replay-attack clusters are closer to the
user, regarding both CNN score and SNR. For example, the
replayed PCR codes with 1 digit error have the smallest CNN
score distances and the closest average digit SNR to the user.
But 1-digit error is sufficient to identify them as non-valid
inputs. In comparison, the inputs from the other users and the
fake hand are valid as that of the user, which shows the similar
digit SNRs. But their biometric features are distinguished from
the user by our CNN model. We find that though the user
cluster has a wide dispersion along the CNN score distance due
to behavioral inconsistency, it is small enough to be separated
from the other clusters. Figure 7 indicates that only breaking
the coding sequence or replicating the biometric features alone
is hard to attack PCR-Auth. We thus further design two attacks
that can forge both simultaneously in Section V-E3.

IV. METHODOLOGY AND EVALUATION CRITERIA

Experimental Setup. We experiment with six different
mobile device models ranging from $140 to $350, including
Samsung Galaxy Note5 and S8, Xiaomi10, Google Pixel2,
LG K50 and Moto G8. The S8 phone is used in all scenarios.
The stimulus signal is played through the phone speaker at
48kHz. Moreover, only 50% volume is used to reduce power
and disturbances. The signal is recorded by the mobile device’s
two microphones, Mic 1 (i.e., top) and Mic 2 (i.e., bottom)
with 48kHz sampling rate. We recruit 40 participants (26 males
and 14 females) aged from 24 to 40 for experiments. The
participants are formed by graduate students and faculties,
and each is given a $10 gift card for incentive. The data are
anonymized and processed offline. This study is approved by
LSU Institutional Review Board with Application No. 4305.

Data Collection. The participants are asked to grip each
given device for 10 minutes to get familiar with it before data
collection. They are allowed to choose self-defined gripping-
hand pose, and the most comfortable one is suggested. A
floating button is provided to mark the thumb location on
the screen, which is displayed later to recall the participant’s
memory of the gripping-hand pose. Each participant’s data
is collected in two sessions spaced by at least three weeks
apart, with the first only used for training and the second for
testing. A session lasts about 30 minutes. In the first session,
the stimulus signal for training as shown in Figure 6(a) is
repeatedly played 20 times, and the participants are asked

to re-grab the device from a table for each time to present
behavioral inconsistency. re-grab-1 is collected, and we re-
spectively choose each participant as the user and the others
as the non-user to train each per-user model. In the second
session, the same experiment is repeated 40 times, and re-
grab-2 is collected, which is used for the basic PCR analysis
in Section V-A. Moreover, in the second session, the pcr-
code data set is collected for evaluating PCR-Auth, where the
stimulus signal encoded by a set of 40 different OTC codes
is played similar to Figure 6(b). 40 PCR codes are collected
from each participant, when a re-grab is required each time to
imitate an authentication session.

Evaluation Metrics. We first conduct the basic PCR anal-
ysis to examine the accuracy performance of using the bio-
metric PCR to distinguish users, which is defined as the ratio
of accurately classified test instances over all test instances.
We then evaluate the authentication performance of PCR-
Auth using PCR codes. In particular, we compute the False
Rejection Rate (FRR) to examine the ratio that legitimate users
are mistakenly rejected and the False Acceptance Rate (FAR)
to show the success rate of an adversary to attack the system.

V. PERFORMANCE EVALUATION

A. Basic Analysis

1) Stimulus Signal Duration and Bandwidth: When using
a chirp signal for biometric encoding, a question is how to
select its duration and bandwidth. Using coding chirps with
narrower bands allows extracting more different PCR digits for
biometric encoding, and using shorter chirps enables encoding
more digits within the limited time. However, the shorter du-
ration and narrower bandwidth also mean the lower resolution
to describe the user’s PCR. To address the above trade-off, a
critical task is to explore the extent of the stimulus signal’s
duration and bandwidth. We first fix the chirp bandwidth to be
100Hz and examine the chirp lengths from 5ms to 500ms. We
find that the PCRs are distinguished accurately by all the tested
short chirps equaling or greater than 10ms. In particular, the
accuracy performance increases fast from 80% to 92.5% when
the signal duration changes from 5ms to 10ms. After 10ms,
the performance has a slower increasing trend. For example,
when using 20ms and 500ms signals, we achieve 93% and
95% accuracy respectively. The detailed signal duration study
is shown in Appendix Figure 16(a). The results confirm the
feasibility to extract PCR using short-duration signals.

We next fix the chirp duration to be 10ms and examine
the bandwidth by changing it from 100Hz to 4kHz. We
observe that the user’s PCR is verified accurately when the
bandwidth is no less than 100Hz, starting from which the
performance has a slow increasing trend. For example, the ac-
curacy performances are 92.5%, 95.2%, 98%, 98.7% at 100Hz,
200Hz, 350Hz and 500Hz. When the bandwidth is lower than
100Hz, the performance has a drastic drop. The detailed signal
bandwidth study is shown in Appendix Figure 16(b). The
results confirm the feasibility of using narrow-band signals
to distinguish PCRs.
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Fig. 8: Performance of PCR-Auth and coding gains.

2) PCR Coding Channels and Mic1&2: Based on the above
study, we choose 25ms chirps with a 350Hz bandwidth as
coding signals. In the ultrasonic frequency range 17-22kHz,
we find 12 exclusive channels as candidates. We now evaluate
the verification performance of these channels. Table I presents
the accuracy performances of these channels, when Mic1,
Mic2 or both mics of S8 phone are used, respectively. We
find that the 40 participants’ PCRs are distinguished accurately
on 10 channels, which achieve an average of 91.3% accuracy
when two mics are used. We thus choose the 10 channels for
decimal encoding. Moreover, we find that the performances of
coding channels vary. For example, the accuracy achieved by
Channel 2, 4, 6 and 9 is 89.6%, 89.1%, 96.4% and 93.1%,
respectively, when two mics are used. The results confirm the
frequency-diversity nature of PCR.

When comparing the microphones, we find that Mic 2
(bottom) close to the speaker performs better than Mic 1 (top)
for most channels. The result contradicts with the intuition that
the top mic-received signals should present higher accuracies
because they travel across the entire smartphone body and are
more heavily affected by the gripping hand. The reason is that
Mic 2 sounds have much higher SNR and are less sensitive
to the user’s behavioral inconsistency. The integration of the
two mics makes a more robust authentication system.

B. Performance of PCR-Auth

1) Security Gains of PCR Code: We now present the
performance of PCR-Auth with different code lengths and
compare it with a naive decoder, which treats each PCR digit
alone for decoding rather than leveraging their relationships.
Figure 8 (a) shows the user verification accuracy when 1-digit
to 6-digit PCR codes are used respectively. We observe that

TABLE I: Performance at all PCR coding channels (the 25ms
and 350Hz chirp is used).

Ch. Freq. Range Mic 1 Mic 2 Mic 1+2
0 17.2-17.55kHz 0.742 0.847 0.864
1 17.6-17.95kHz 0.716 0.835 0.852
2 18.0-18.35kHz 0.696 0.868 0.896
3 18.4-18.75kHz 0.718 0.908 0.939
- 18.8-19.15kHz 0.653 0.737 0.763
4 19.2-19.55kHz 0.774 0.842 0.891
5 19.6-19.95kHz 0.781 0.887 0.929
- 20.0-20.35kHz 0.599 0.625 0.653
6 20.4-20.75kHz 0.827 0.954 0.964
7 20.8-21.15kHz 0.836 0.870 0.927
8 21.2-21.55kHz 0.902 0.682 0.933
9 21.6-21.95kHz 0.895 0.805 0.931

Average 0.789 0.850 0.913
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Fig. 9: Performance of different device models.

both methods achieve 91.3% accuracy with 1 digit PCR code.
But when using longer PCR codes, the performance of the
naive decoder decreases drastically, because it requires all PCR
digits to pass the verification independently. In comparison, the
accuracy of our cluster-based PCR decoder increases. Specifi-
cally, our method achieves 94.7%, 96.8% and 99.3% accuracy
with 4-digit, 5-digit and 6-digit PCR codes. The reasons why
PCR-Auth achieves higher performances with longer PCR
codes are threefold: First, the longer PCR codes involve more
coding chirps and thus have an increased temporal diversity
to describe the user’s biometric; Second, the PCR digits at
different channels leverage the frequency diversity to capture
different aspects of the biometric; Third, our cluster-based
method exploits the connections and constraints among PCR
digits to decode a PCR code and leverage its coding gain.

The ROC curves of the 4-digit and 6-digit PCR codes in
Figure 8 (b) further confirm the high performance of PCR-
Auth, and both codes achieve a high TAR and a low FAR.
Moreover, the 6-digit PCR code’s ROC curve is above that of
the 4-digit code. In particular, the 4-digit PCR code achieves
94% TAR and 4.6% FAR, while the 6-digit PCR code achieves
close to 99.6% TAR and 1% FAR.

2) Performance of Different Device Models: We next evalu-
ate the performance of our system on six different smartphone
models, when fifteen participants are involved. Figure 9 shows
the FAR and FRR performance of PCR-Auth when 4- and
6-digit codes are used. We observe that all the six devices
achieve a low FAR and a low FRR. When using 6-digit PCR
codes, S8, Mi10 and K50 all achieve 0% FARs, and their FRRs
are 2.1%, 2.9% and 0.8% respectively. Similar to the three
devices, Note 5 and G8 achieve around 2% FAR and 2.5%
FRR. Pixel 2 does not perform as well as the other five devices.
The reason may be that Pixel 2 has the non-smooth or matte
back surface, which impacts the stimulus signal propagation.
But Pixel 2 still achieves 3.8% FAR and 5% FRR. When
using 4-digit PCR codes, the performance degrades slightly.
In particular, S8 achieves 2.9% FAR and 5.4% FRR, and that
of K50 are 2.1% and 2.9% respectively. Additionally, we find
the performance of PCR-Auth is not associated with the device
price. For example, K50 is the cheapest, but it achieves the
best performance. The results show the potential to deploy
PCR-Auth generally on most handheld devices.

3) Long-term Performance: In addition to using the two-
session data, we also continuously collect data from 8 par-
ticipants with S8 in 25 days for the long-term performance
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study. 40 PCR codes are collected for each participant for
each day, which are only used for testing. Figure 10 shows
the performance changes of 4- and 6-digit PCR codes in this
period. We find that both codes have a stable accuracy perfor-
mance along time, which only slightly decreases. Moreover,
we observe some fluctuations and two local minimums on
Day 5 and Day 23. These slight performance changes are
caused by many inconsistent factors on each day, including
hand moisture, mood, body weight and clothes. The results
reflect the robust performance of PCR-Auth over a long term.

C. Impersonation Attack

1) Setup: We perform three types of impersonation attacks.
For random impersonation, each of the participants is treated
as the target user respectively, while the other participants’
data is used for testing. For knowledgeable impersonation, the
authors and four participants act as the skilled adversaries, who
learn how each target user grips the device from videos and
then imitate the gripping hand to attack. For knowledgeable
fake-hand impersonation, we use a silicone fake hand [32] to
replicate each user’s gripping hand. The attackers attempt 40
times for each target user’s OTC.

2) Result: Table II presents the performance of the 4- and
6-digit PCR codes under the three impersonation attacks. We
observe that both PCR codes achieve a low FAR and a low
FRR in the three attacking scenarios. In particular, the 6-
digit PCR code achieves 0.4% FRR and 1% FAR for the
random impersonation, and the Equal Error Rate (EER) is
0.8%. The knowledgeable and the knowledgeable fake-hand
impersonations slightly degrade the performance of the 6-digit
PCR code. But its EERs are still low under the two advanced
impersonation attacks, which are 3.1% and 3.0%, respectively.
The 4-digit PCR code has a lower performance compared to
the 6-digit PCR code, whose EERs are 5.7%, 6.3%, and 6.2%
in the random, knowledgeable, and knowledgeable fake-hand
impersonations, respectively. The results indicate the difficulty
of replicating the user’s PCR via impersonation attacks.

TABLE II: Performance of PCR-Auth under impersonation
and replay attacks.

Code FRR
FAR

Impersonation Attack Replay (#Err Digit)
Rand. Knowl. Fake 1 2 3 4 5 6

4 Digits 0.063 0.046 0.061 0.058 0 0 0 0 - -
6 Digits 0.032 0.010 0.029 0.026 0 0 0 0 0 0

D. Replay Attack

1) Setup: For each participant, we respectively choose each
of his/her 40 PCR codes for the current session and use the
other 39 codes for replay attacks. As these replay codes only
cover a small set of digit combinations, we further use re-
grab-1 data to construct 560 PCR codes for each participant
and replay them. As a result, the replayed codes may have 1,
2, ..., 5, 6 digit differences from the target code. For replay,
we use the target user’s audio data and assume the adversary
precisely predicts the authentication start to launch the attack.

2) Result: Table II shows the performance of PCR-Auth
under replay attacks. We find that both the 4- and 6-digit
PCR codes prevent all replay attacks with 0% FAR, including
the case when there is only 1-digit error. The reason is that
each PCR code is only used once, and coding errors can
be accurately detected based on the physical layer SNR of
each digit. Figure 11 further compares the performance of
PCR-Auth with the traditional method without coding and the
side-channel replay with the software-level replay. We find
that without coding, the traditional biometric method suffers
from 87% FAR and 63% FAR, when the software-level replay
and the side-channel replay are launched, respectively. Even
encoding the biometric with a single decimal digit could
reduce the FAR by a factor of ten. The results confirm the
security of PCR-Auth and indicate that an adversary could not
attack PCR-Auth if not presenting the correct coding sequence.

E. Defending New Synthesis Attacks

1) When to Stop Recording?: PCR-Auth is designed to
work in a way in which the speaker and the microphone should
be turned on and off simultaneously during authentication.
However, in practical implementations, such a concurrency
could not be achieved due to the audio latency [33]. Then,
a critical question is when to stop the mic to improve the
data integrity, block additional inputs and prevent the speech
privacy leakage. While the audio latency is not avoidable for
both users and attackers, it is more important to know whether
this latency is stable, so that we can apply a threshold to
cut off the recordings. We conduct experiments with different
devices to measure the ending time of the recorded PCR
codes. Table III presents the variation range of the ending
time measurements, when two different Android player classes
are used. We find the measured ending time of PCR code is
not fixed, which has up to 78.5ms variations. This is caused
by unpredictable hardware latency and the CPU scheduling
time. Moreover, the variation range is related to the device
and the player class. Because this range is not determined, our
threshold needs to cover its maximum to ensure each entire
PCR code to be recorded. An adversary can also leverage this
additional time to attack PCR-Auth too. As our experiments

TABLE III: The variation ranges of PCR code ending time
(ms) on different devices.

Andorid.Media S8 Note5 K50 G8 Pixel 2
AudioTrack 43.604 39.730 20.538 78.518 28.338
MediaPlayer 60.618 40.067 33.184 45.485 45.705
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(a) User’s one digit sound (b) synchronization disturbance

Fig. 12: Illustration of synchronization disturbance attack.

(a) Synchronized (ideal) (b) Unsynchronized (non-ideal)

Fig. 13: Illustration of adversarial perturbation attack.

show that it is less than one digit’s time (100ms), the adversary
has to launch the attack simultaneously with the phone’s
speaker sound. Additionally, as the audio of a PCR code can be
less than 1 second, which is hard to record the user’s complete
speeches to cause privacy concerns.

2) Listen-and-synthesis Attack Setup: As discussed above,
to present the correct coding sequence to fool PCR-Auth, the
adversary has to listen to each coding chirp of the target
device during authentication and simultaneously sends the
corresponding malicious signal. This process is repeated for
every coding chirp, and in this process, the phone may be on a
table or in the adversary’s hand. We assume the adversary uses
FPGA to remove the CPU scheduling time. By considering
the time required for observation (3ms for 64-sample buffer),
A/D and D/A conversions (2ms), FFT (2ms), bus and signal
propagation time (3ms) [34], we find an adversary needs at
least 10ms to attack each digit. We thus use 10ms as the
delay of adversarial digits for attack simulation. We simulate
the synchronization disturbance attack by replaying the user’s
PCR digit with double loudness, which postpones the entire
synchronization to pick up adversarial digits. As illustrated
in Figure 12, a stronger malicious sound is mixed with the
original speaker sound with a delayed phase. We also simulate
the adversarial perturbation attack by using the perturbation
noises to modify the original speaker sound into the user’s
PCR digit. Due to the delay, the attacking sound can only
modify partial frequencies. This attack has two cases depend-
ing on whether the perturbations are synchronized well with
the speaker sound as illustrated in Figure 13.

3) Results: We evaluate PCR-Auth under the two types of
attacks with two training models, the original one and the one
updated with the attack data. Figure 14(a) shows the 6-digit
PCR code performance under synchronization disturbance
attack, when the entire adversarial PCR code is sent with
different delays. We observe that without attack training, the
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Fig. 14: Under synchronization disturbance attack.
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Fig. 15: Under adversarial perturbation attack.

FARs are already low for all delays. In particular, when the
adversarial digits are delayed by 25ms, which is exactly behind
the speaker’s coding chirp, the attack achieves the highest
FAR, which is 4.6%. When the attack data of all delays are
included in training, the FARs fall to 0% for all cases. We
further examine the impact of code lengths when the delay is
25ms (the worst case). Figure 14(b) shows that a longer code
has a stronger capability to defend this synchronization attack.

We next evaluate the adversarial perturbation attack, and
different synchronization errors are considered. The system
performance of the 6-digit PCR code is shown in Figure 15(a).
We observe that the FARs are all below 4.8% without training
the model with attack data. This highest FAR is obtained when
the synchronization error is 0 sample. When the attack data is
included in training, the 6-digit PCR code achieves 0% FAR
for all the cases of adversarial perturbation attack. We further
present the FARs of different code lengths when there is no
synchronization error (worst case). As shown in Figure 15(b),
the FARs are 9.7%, 7%, and 4.8% when the 1-, 4-, and 6-digit
codes are used without attack training. When the attack data
is trained, the FARs are reduced to 6.1%, 3.4%, and 0%.

F. Under Daily Noises and Dedicated Ultrasonic Interference
While the above results are obtained in the regular office

scenarios with a 40dB noise level, we next evaluate PCR-
Auth by asking 10 participants to further conduct experiments
with eight more different types of noise including the natural
ambient noises and the dedicated ultrasonic interference.

1) Impact of Daily Noises: The daily ambient noises we test
include an open area scenario at a large parking lot (55dB), a
working Air Conditioner (AC) (60dB), regular conversations
(65dB), in-car scenarios (70dB) and a train station (75dB).
We use the Ultrasound Detector App [35] to measure the
SPL at the ultrasound band 17k-22kHz. Table IV shows the
verification accuracy of using each single channel and the 4-
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and 6-digit PCR codes. We find that the 6-digit PCR code
is not impacted by the daily noises for the ten participants,
which has a strong capability to correct the errors caused by
noises. The accuracy of each single channel and that of the
4-digit PCR code slightly decrease under higher SPL noises.
In particular, the average accuracy of all channels is 94.7%,
94.4%, 94.3%, 94%, 93.8% and 93.5% under the noise levels
40dB, 55dB, 60dB, 65dB, 70dB and 75dB. The reason is that
the daily noises have limited capabilities to corrupt the coding
chirps in the ultrasonic frequencies, and the structure-borne
sounds are much stronger than the external ambient noises.

2) Under Ultrasound or DoS Attacks: We are aware of
that an adversary can use dedicated ultrasonic speakers to
generate stronger interference signals to cause authentication
errors or DoS. Thus, we need to know the extent of PCR-
Auth to work under dedicated ultrasonic interference and
exploit defense mechanisms to address this attacking scenario
immediately when the ultrasonic attack exceeds a boundary.
In particular, we use an external loudspeaker to continuously
generate the white Gaussian noise at the frequencies from
17kHz to 22kHz. Table IV presents the performance of PCR-
Auth under three ultrasonic SPLs (17k-22kHz). When the SPL
of the ultrasonic noise increases to 30dB, 40dB and 50dB,
the 4-digit PCR code’s accuracy drops to 96.2%, 95.4%, and
89.1%, and the 6-digit PCR code’s accuracy decreases from
100% to 98.9% and 93.2%. The results indicate the potential
of PCR-Auth to work with good performance under dedicated
ultrasonic interference. We choose 50dB SPL at the ultrasonic
band as the threshold to detect DoS attacks before running
the authentication, which is equivalent to 30cm distance of
ultrasound transmission if using normal mobile devices. If the
ultrasound SPL is greater than this level, PCR-Auth will notify
the user of potential DoS attacks and recommend the user to
change a location to restart PCR-Auth. It is important to note
that the above results are obtained when PCR-Auth uses the
50% volume. We can further push this DoS attack detection
threshold higher when using the phone with higher volumes.

VI. DISCUSSION & FUTURE WORK

While this is the first biometric encoding work to implement
biometric CR authentication, the following are some issues
that could be considered for further improvement.

This work evenly divides the inaudible frequency range
17k-22kHz into 12 channels and selects the 10 best channels
for biometric encoding. After extensive experiments with
40 participants and 6 devices, we find that some channels
perform better than the others. Thus, new ways of selecting
the coding channels to better leverage the “good frequencies”
need to be explored. Moreover, to achieve the optimal system
performance, more efforts are needed to balance the base value
of the coding system, the channel bandwidth and the coding
signal duration. Whether other signal patterns are better than
frequency sweeping signals for biometric encoding is worth
further exploration. We may use the more advanced time-
frequency images and deep learning methods to improve the
performance. Additionally, the impacts of user postures (e.g.,
sitting and laying down), age group and PCR transferability
(e.g., from one device to another) need to be further studied.

To cheat the biometric CR authentication, an adversary must
capture the authentication challenge in addition to obtaining
the user’s all biometric data. This work investigates two new
synthesis attacks that eavesdrop on every challenge digit via a
side-channel and launch attacks immediately to inject each ma-
licious digit. We then discuss the possibility of implementing
these attacks by using an FPGA, which achieves both the short
processing time and the determined delay to meet the strict
synchronization requirement. The detailed implementation of
the two attacks requires future work. Moreover, in our attack
simulations, we assume the adversary needs at least 10ms
to listen, process and attack, by referring to the current
parameters of hardware. The shorter delay may be achieved
by the future FPGA, and we need to further counteract it, such
as by exploring the potential of using shorter coding signals.

VII. RELATED WORK

Biometrics utilized for mobile devices can be classified into
two categories. Physiological biometrics are extracted from
static body traits, such as face, fingerprint and iris. Behavioral
biometrics are a relatively new type of biometrics, which refer
to the inherent dynamic behavioral patterns of human motions,
such as gaits [37], voices [38], keystroke dynamics [39], and
finger gestures [40]. However, due to the advanced mobile
recording techniques (e.g., visual and acoustic), 3D printing
and robotics, the physiological and behavioral biometrics are

TABLE IV: Performance under daily noises and dedicated ultrasonic interference.

Noise Type Office Parking Lot AC Conversation In Car Train Station Dedicated Ultrasonic Noise(Full-band SPL) (40 dB) (55 dB) (60 dB) (65 dB) (70 dB) (75 dB)
Ultrasound SPL 10 dB 15 dB 17 dB 22 dB 25 dB 29 dB 30 dB 40 dB 50 dB

Ch.0 0.920 0.920 0.920 0.920 0.917 0.914 0.916 0.908 0.838
Ch.1 0.962 0.959 0.959 0.952 0.950 0.948 0.951 0.944 0.872
Ch.2 0.944 0.940 0.938 0.935 0.934 0.932 0.934 0.927 0.851
Ch.3 0.931 0.928 0.927 0.926 0.923 0.921 0.925 0.912 0.847
Ch.4 0.958 0.953 0.951 0.948 0.944 0.940 0.940 0.932 0.869
Ch.5 0.929 0.929 0.927 0.925 0.924 0.922 0.921 0.915 0.842
Ch.6 0.973 0.973 0.971 0.970 0.968 0.965 0.962 0.955 0.891
Ch.7 0.932 0.929 0.928 0.924 0.922 0.920 0.925 0.918 0.858
Ch.8 0.961 0.957 0.955 0.952 0.950 0.945 0.947 0.942 0.881
Ch.9 0.957 0.953 0.950 0.945 0.943 0.941 0.939 0.930 0.853

Average 0.947 0.944 0.943 0.940 0.938 0.935 0.936 0.928 0.860
4-digit PCR Code 0.979 0.975 0.973 0.971 0.965 0.962 0.962 0.954 0.891
6-digit PCR Code 1 1 1 1 1 1 1 0.989 0.932
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both under a high risk to be obtained by an adversary [4], [41],
[42], [43]. Furthermore, the biometrics’ static nature makes
them easy to be reused by an adversary for replay attacks.

To improve biometric security, some studies focus on multi-
factor authentication, which combines multiple biometric and
knowledge factors to achieve enhanced security. For example,
the user’s face, teeth and voice can be verified visually and
acoustically for a fused decision [44], [45], [46], [47]. Safe
et al. propose to display a secret icon on the screen during
the face recognition and verify the eye gaze direction as a
second factor [48]. Ometov et al. propose to combine the
user’s biometrics such as voice and face with a PIN entry
for authentication [49]. But adding additional factors requires
multiple entries from the user, which scarifies the usabil-
ity. Some more advanced multi-factor authentication methods
focus on integrating knowledge secrets and biometrics in
one input, such as by extracting keystroke dynamics from a
password entry [50], [51], capturing finger gesture behaviors
from a signature [52], [53] or obtaining vibration signatures
from the user’s secret input on a solid surface [36]. But all
these methods still reuse the same biometric data for every
authentication session, which is vulnerable to replay attacks.

There is active research on liveness detection to defend
against replay attacks during face and voice authentications.
Fathy et al. propose a method, which asks the user to show
some motions during the face recognition and leverages the
video frames to verify a dynamic face [54]. Chen et al. [12]
ask the user to move the camera around the head to construct
a 3D face for authentication, and the liveness detection is
based on the consistency between the camera and the motion
sensor data. Chen et al. [55] detect the magnetic fields emitted
by machine speakers to prevent non-live human sounds from
attacking voice authentications. VoiceLive [56] and VoiceGes-
ture [57] derive the vocal tract movements and articulatory
gestures from human speech sounds to make sure the voice is
live. But these methods either require the user’s participation
to prove the liveness or are subject to additional overheads.
They are still unable to prevent the biometric data replay.

Challenge-response protocols are designed to prevent replay
attacks [58]. The initial success of using the handshake proto-
col to verify humans is based on behavioral biometrics. When
the user responds to a challenge (e.g, a task or a game), the
inherent motion behaviors are verified. For example, Mohamed
et al. design a game challenge for users to select from a

number of icons the preset secret ones. Both the selected
icons and the drag-and-drop behaviors are verified as a re-
sponse [13]. Sluganovic et al. propose to randomly show a dot
on the screen as the challenge and capture the user’s reflexive
eye movements as the response [14]. However, these methods
require cognitive and behavioral activities from the user during
authentication, which is intrusive and demands a long response
time. Moreover, the great variability caused by behavioral
inconsistency leads to high false rejection rates. The recent
work Velody [19] utilizes a vibration motor and receiver to
collect a large number of vibration responses from the user for
authentication, and every used response is disposed of. But this
method requires additional hardware and is thus hard to deploy
on most handheld devices. Moreover, the system demands
high efforts to train and refill a biometric pool periodically
to support daily usage. Differently, PCR-Auth unobtrusively
verifies the user’s PCR with most handheld devices. It creates
a huge biometric response universe at a minimum overhead
and saves the trouble of biometric pool maintenance. The
performance comparison with related work is in Table V.

VIII. CONCLUSION

In this work, we propose a challenge-response user authen-
tication system, PCR-Auth, based on the novel palm contact
response. It is associated with the user’s gripping hand bio-
metric and can be extracted by narrow-band ultrasonic pulses
unobtrusively, when the user holds a handheld device. The
proposed system is designed to verify the user by examining
both the biometric and the coding sequence. In particular, we
devise a biometric encoding technique, which uses acoustic
signals to encode the biometric into biometric codes to re-
spond to the current authentication challenge. The biomet-
ric encoding generates a large biometric response universe
to support massive CR authentication requests and prevent
replay attacks. Furthermore, we develop a deep learning-based
algorithm to decode the biometric code and investigate new
attacks by assuming that the adversary is able to break the
coding sequence, replay the biometric data, or replicate both,
respectively. Extensive experiments show that a 6-digit PCR
achieves a 97% accuracy to distinguish users and reject both
replay and synthesis attacks with 100% accuracy.

Acknowledgments. This work was partially supported by
LEQSF(2020-23)-RD-A-11. We would like to also thank our
anonymous reviewers for helping us improve the paper.

TABLE V: Comparison with related studies.

Work Protocol Modality FNR FPR User Dedicated Response

Impersonation Replay Synthesis Participation Hardware Pool

LivDet [7]
Physiological

FingerPrint 11.96% 1.07% N.A. N.A. Low Yes N.A.
Erdogmus et al. [4] FaceID 5.5% 1.1% N.A. N.A. Medium Yes N.A.
Menotti et al. [6] Iris 0.16% 0.16% N.A. N.A. Medium Yes N.A.

BiLock

Behavioral

Tooth click sound 5% 1.5% 5.6% N.A. High Yes N.A.
BreathPrint Breathing gesture-induced sound 6% 2% 2% N.A. High Yes N.A.

Taprint Tapping-induced vibration 1.74% 1.74% N.A. N.A. High Yes N.A.
VibWrite [36] Vibration response of dynamic gestures 10% 2% N.A. N.A. High Yes N.A.

Eye Movement [14]
Challenge-response

Reflective eye movement 6.3% 6.3% 0.06% N.A. Medium Yes N.A.
Velody [19] Vibration response 5.8% 5.8% 0% 0% Medium Yes n
PCR-Auth Vibration response of palm contact 3.2% 2.9% 0% 0% Low No nm
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APPENDIX

A. The Configuration of The CNN-based PCR Decoder

Table VI shows the detailed architecture of our CNN-based
PCR Decoder to decode the spectrograms of each PCR digit.

TABLE VI: The architecture of our CNN model to verify PCR
spectrograms.

Layer Output Shape Parameter # Activation #

Input: PCR Spectrogram (40,98,1) 0 3920

Conv2D + RecLineU (40,98,12) 120 47070

Max Pooling (20,49,12) 0 11760

Batch Normalization (20,49,12) 24 11760

Conv2D + RecLineU (20,49,24) 2616 23520

Max Pooling (10,25,24) 0 6000

Batch Normalization (10,25,24) 48 6000

Conv2D + RecLineU (10,25,48) 10416 12000

Max Pooling (5,13,48) 0 3120

Batch Normalization (5,13,48) 96 3120

Conv2D + RecLineU (5,13,48) 20784 3120

Conv2D + RecLineU (5,13,48) 20784 3120

Max Pooling (5,1,48) 0 240

Dropout (5,1,48) 0 240

Fully Connected + Softmax (2) 482 2

Output: Probability Distribution (1) 0 0

B. Stimulus Signal Duration and Bandwidth Study

Figure 16 illustrates the impacts of the stimulus signal’s
duration and bandwidth on the PCR verification accuracy.
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Fig. 16: Impact of coding chirp duration and bandwidth.
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