2022 IEEE Symposium on Security and Privacy (SP) | 978-1-6654-1316-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/SP46214.2022.9833564

2022 IEEE Symposium on Security and Privacy (SP)

PCR-Auth: Solving Authentication Puzzle
Challenge with Encoded Palm Contact Response

Long Huang, Chen Wang
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
Email: Thuan45@lsu.edu, chenwangl @Isu.edu

Abstract—Biometrics have been widely applied as personally
identifiable data for user authentication. However, existing bio-
metric authentications are vulnerable to biometric spoofing. One
reason is that they are easily observable and vulnerable to
physical forgeries. Examples are the apparent surface patterns of
human bodies, such as fingerprints and faces. A more significant
issue is that existing authentication methods are entirely built
upon biometric features, which almost never change and could
be obtained or learned by an adversary such as human voices. To
address this inherent security issue of biometric authentications,
we propose a novel acoustically extracted hand-grip biometric,
which is associated with every user’s hand geometry, body-fat
ratio, and gripping strength; It is implicit and available whenever
they grip a handheld device. Furthermore, we integrate a coding
technique in the biometric acquisition process, which encodes
static biometrics into dynamic biometric features to prevent data
reuse. Additionally, this low-cost method can be deployed on any
handheld device that has a speaker and a microphone.

In particular, we develop a challenge-response biometric au-
thentication system, which consists of a pair of biometric encoder
and decoder. We encode the ultrasonic signal according to a
challenge sequence and extract a distinct biometric code as
the response for each session. We then decode the biometric
code to verify the user by a convolutional neural network-based
algorithm, which not only examines the coding correctness but
also verifies the biometric features presented by each biometric
digit. Furthermore, we investigate diverse acoustic attacks to our
system, by respectively assuming an adversary could present the
correct code, generate similar biometric features or successfully
forge both. Extensive experiments on mobile devices show that
our system achieves 97 % accuracy to distinguish users and rejects
100% replay and synthesis attacks with 6-digit codes.

I. INTRODUCTION

Biometrics such as faces, fingerprints and irises are increas-
ingly exploited to verify users because they are convenient to
use [1]. A recent report estimates that over 1.5 billion people
might use biometrics for authentication by 2023 [2]. However,
biometric security is attracting increasing public concerns.
Due to the increasingly advanced recording technologies,
3D printing, wireless eavesdropping and malware [3], the
user’s biometrics are under two major replay threats, physical
forgeries and authentication data reuse. As reported by recent
studies, an adversary can perform various types of replay
attacks to spoof the user’s face [4], [5], [6], fingerprint [6], [7],
iris [8], [9] and voice [10], [11]. Addressing the replay issues
has become a critical task for ensuring biometric security.

An active research direction for preventing relay attacks is
liveness detection. These approaches require motions to prove
live faces [12] and leverage heatmaps to detect live fingers.

But these methods require the user’s participation to prove
“liveness” or are subject to additional sensor overheads. They
still have not fundamentally solved the two replay threats.
Behavioral characteristics (e.g., gaits) are a rapidly growing
category of biometrics, which can not be physically replicated
like body traits and are hard to imitate. To further address
the data replay issue, behavioral biometrics are increasingly
integrated with Challenge-Response (CR) protocols [13], [14].
Specifically, the user is asked to respond to a random sequence
challenge (e.g., letters and icons) for authentication by typing,
speaking or eye-tracking. The correctly repeated sequence
and the associated behavioral characteristics (e.g., keystroke
dynamics, voices and reflexive eye movements) are verified
as the response. However, the existing biometric CR solutions
all require active participation from the user, such as cognitive
activities and behavioral feedback; They are both intrusive and
time-consuming, which impedes their deployment.

This work aims to develop a biometric-based CR authen-
tication system for handheld devices, which not only solves
the above replay threats but also requires low user efforts. The
hand-grip biometric inherently comes with handheld devices,
and acquiring it requires no more efforts than obtaining a
fingerprint. This biometric was traditionally extracted by an
array of pressure sensors that enclose the handheld device [15],
[16], [17]. We propose to describe this biometric acousti-
cally as Palm Contact Response (PCR) to facilitate dynamic
biometric features. Specifically, when using an ultrasound as
the stimulus signal, it interacts with the user’s contacting
palm and experiences damping, reflection and refraction before
reaching the microphone. These signal impacts are resulted
from both the user’s distinctive physiological traits (e.g.,
hand geometry, palm size and body-fat ratio) and behavioral
characteristics (e.g., gripping strength). While the hand shape
can be physically replicated, the body-fat ratio and gripping
strengths are more implicit and hard to imitate. Moreover,
by manipulating the signal frequencies, we extract different
responses from the palm to make every authentication session
unique and non-repeated. In addition, the proposed biometric
CR authentication can be deployed on any handheld devices
(low-end or high-end) that have a speaker and a microphone.
No dedicated hardware is required.

We devise a novel biometric encoding technique to integrate
the hand-grip biometric with the CR protocol. Based on that
we develop the PCR-Auth system, whose handshake process
is shown in Figure 1. When a user requests an authentication,
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PCR-Auth generates a challenge (i.e., a random sequence).
The device encodes the challenge into a series of millisecond-
level ultrasonic pulses on different frequencies and plays the
sound to acquire the user’s encoded PCR, which includes the
direct-path signal, reflections and the induced surface vibration
sounds modified by the user’s palm. The encoded PCR is then
decoded, and the access permission is granted only when the
decoded sequence is correct and the biometric measurement
matches with the profile. Our biometric encoding also enables
generating a huge response universe at a minimum training
overhead to support everyday authentication purposes.

The PCR-Auth consists of two components: 1) PCR En-
coder generates a One-Time-Challenge (OTC) Code and trans-
mits the stimulus signals through the narrow-band channels
indexed by each OTC digit, which encodes the user’s hand-
grip biometric into a PCR code. 2) PCR Decoder is a per-user
deep learning model trained at the registration phase, which
verifies both the coding sequence and the PCR. In particular,
we exploit an OTC-guided bandpass filter to extract every
PCR digit from the right channels. The Signal-to-Noise Ratios
(SNRs) of the PCR digits are examined to verify the code
sequence, while incorrectly encoded PCR digits (i.e., on the
wrong channels) are filtered out resulting in low SNRs. Next,
we derive the spectrogram to examine the user’s hand-grip
biometric features carried on each PCR digit. We develop
a Convolutional Neural Network (CNN)-based algorithm to
verify all PCR digits and leverage its multi-class classification
capability to address human behavioral inconsistency. The
CNN scores of each PCR digit are returned. We then apply a
cluster-based method to integrate the CNN scores and SNRs
of all PCR digits to make the authentication decision.

The main contributions are summarized as below:

« Unobtrusive Biometric CR Authentication: We propose
a solution to address the replay issues of biometric authen-
tications by integrating a coding technique with biometric
acquisition. The authentication process requires neither ac-
tive user participation nor additional hardware.

o An Implicit Biometric: We extract the user’s hand-grip
biometric via acoustic sensing, which is a combination of
the physiological and behavioral biometrics of the user’s
gripping hand. We show that this biometric can show
dynamic features under different stimulus signals.

« Biometric Encoding: We encode a user’s biometric into

biometric codes, which creates a huge response pool to
support everyday CR authentications. Moreover, we develop
a CNN-based method to decode the unique biometric code
for each session, which not only verifies the biometric but
also checks the code correctness.

« New Attacks and Extensive Experiments: While the CR
authentication is designed to defeat replay attacks, we take
one step further to investigate new attacks, assuming an
adversary can repeat the code, replicate the biometric or
forge both. The system is then evaluated on multiple devices
under these attacks. Results show that our system verifies
users with 97% accuracy and rejects up to 100% replay and
synthesis attacks with 6-digit PCR codes.

II. BACKGROUND AND SYSTEM MODELS
A. Palm Contact Response

The hand-grip biometric is an extension of the hand ge-
ometry biometric in the handheld device scenarios, which
describes how uniquely a user holds the device. It is tradition-
ally extracted by the pressure sensor-enclosed device surface
(e.g., piezoelectric materials) that captures not only the hand
geometry but also the pressure distributions of the contacting
palm [15], [16], [17]. Due to the high hardware requirement,
such a biometric has not attracted much attention.

Motivated by the recent vibration studies that use vibra-
tion signals to differentiate people’s palms pressing on a
surface [18], [19], we find that the ordinary acoustic sounds
of a handheld device can distinguish people’s palm when it
grips the device. Specifically, after the speaker of the handheld
device generates a stimulus signal s(t), a portion of the signal
propagates in a direct path to reach the microphone (structure-
borne or near-surface air-borne), while other parts of the signal
go through more complicated reflected paths as shown in
Figure 1. The user’s gripping hand impacts these signals in
their propagation paths. Moreover, the speaker’s sounds induce
the device surface to vibrate at the same frequencies, which
serves as a second sound source and creates sounds in the
same frequencies and their harmonics, though losing a few
frequencies [20]. When in contact with a hand, the device
surface vibrations are impeded resulting in modified sounds.
All these sounds affected by the hand carry some biometric
information when they are picked up by the microphone.

We model the impact of a gripping hand on the speaker
sound (input) as a system response H(f). The microphone
signal (output) can thus be expressed as S(f) = H(f)S(f)
in the frequency domain, where S(f) is the original speaker
sound at frequency f. To show the microphone signal as the
sum of three signal components, the direct-path signal, the
reflected signal and the surface vibration sound, we divide the
system response into three subsystem responses Hy(f), H,.(f)
and H,(f) accordingly and obtain Equation 1,

S(f) = Ha(f)S(f) + Hr-(£)S(f) + Ho(f)S(F)- M
We further express each subsystem response in terms of its
amplitude and phase and obtain Equation 2,

S(f) = [Ha(PIS(f) + [H()IS(f)e*™ " + |Hv(f)|5(f>ej2"f( ; ,)
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Fig. 2: The impact of hand-grip to the smartphone’s sound.

where ¢ and 7 are the additional travel time of the reflected
signal and the surface vibration sound, compared to the
direct-path signal. Equation 2 explains how the three signal
components are modified by the gripping hand regarding both
amplitude and phase. In particular, the three types of signals
at frequency f are all damped by the gripping hand with
the scale factors |Hg(f)|, |H-(f)| and |H,(f)| respectively,
which are mainly determined by the user’s gripping hand.
The reflected signal and the surface vibration sound further
suffer from phase changes 27 ft and 27 f7, because they
travel longer distances compared to the direct-path signal. The
phase changes are more related to the user’s hand geometry
and holding position. This work is based on the assumption
that people’s gripping hands are distinctive. As a result, the
combined signal at the microphone should present individu-
ally distinctive patterns. Moreover, the hand-grip biometric is
implicit and hard to imitate. Even if an adversary perfectly
replicates the hand geometry and the holding position, he/she
could hardly repeat the body-fat ratio and gripping strength.
It is important to note that all the amplitude attenuation
factors and the phase changes are also related to the signal’s
frequency. Such a frequency-selective nature motivates us to
use the signal with richer spectral points to capture higher
resolution of the user’s hand-grip biometric. Furthermore, we
can use the different combinations of the frequencies to extract
dynamic biometric features for CR authentication. Even if
an adversary eavesdrops on one authentication session, it is
hard to cheat the new session by reusing the previous data.
Therefore, we define Palm Contact Response (PCR) as

pcr = <Hd7HraHv7F>7 3)

which describes the gripping hand’s biometric with three
signal components regarding the signal frequencies F'.

B. Motivational Study

We conduct a feasibility study to show how ultrasonic
signals are impacted by the gripping hand. Specifically, we
play a short 18k-22kHz chirp signal in 25 ms using a smart-
phone’s speaker. Figure 2 shows the received signals at the
smartphone’s microphone, when it is held in the user’s hand
and placed on a table, respectively. From the comparison, we
observe that the user’s gripping hand suppresses the speaker’s
sound by an average of 3 dB. Moreover, when the chirp signal
sweeps from 18k to 22kHz, the signal amplitudes are degraded
by the gripping hand with different scales, which illustrates the
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Fig. 3: Distinguishing users by palm contact responses.

PCR’s frequency-selective nature. Furthermore, we find that
while the direct-path signals dominate the microphone data
before 25ms, the speaker sound reflections and the induced
surface vibration sounds become significant after the speaker’s
sound stops. They degrade over 20 dB after 75 ms. We thus
propose to leverage the 0 — 75ms sounds for the gripping-
hand sensing. It is also worth noting that the sounds in the
25 — 75ms range are the residue of the speaker sound, which
are harder to forge via a speaker than direct-path signals.

We then study the feasibility of using PCRs to distinguish
users. Figure 3 shows the spectrograms of the received chirp
signals, when two users grab a smartphone twice, respectively.
It is evident that the time-frequency images are consistent
for the same user but are distinctive between them. Specif-
ically, not only the dominant direct-path chirp signal but also
the sounds after it show distinct patterns between the two
users. All these signals present frequency-selective features.
These results indicate that we can leverage the temporal and
frequential information to achieve robust user authentication.
Furthermore, as mobile devices are usually embedded with
two microphones for noise cancellation and stereo recording,
we can use the two acoustic channels to capture more aspects
of the user’s PCR. When the speaker sounds travel across
different routes to reach the two mics, they are impacted
differently by the gripping hand. Such a spatial diversity also
adds difficulties for an adversary to cheat the system.

C. Challenge-Response Model

Our system model is shown in Figure 4, which is an
integration of a CR protocol and the PCR coding/decoding
modules. The handshake authentication process is between the
handheld device user and the PCR-Auth. The PCR decoder
Dyser{} is created for each user, which is pre-trained with all
of the user’s hand-grip biometric features at the registration
phase. The system works in a mechanism that each challenge
expects a unique PCR code for verification. When a user sends
an authentication request, PCR-Auth generates an OTC Code
(i.e., nonce). The handheld device plays the OTC-encoded
stimulus signal using its own speaker, and in the meanwhile,
its microphones record the signals to obtain the encoded
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PCR Eorc{PCR}. Next, PCR-Auth applies the PCR decoder
Dyser{} to verify the PCR code and make the authentication
decision, which examines both the biometric and the coding
sequence by Dyser {Eorc{PCR}}.

D. Biometric Encoding and PCR Code.

As mentioned above, the proposed biometric CR authentica-
tion is achieved based on the encoded PCR. The authentication
function can be expressed by Equation 4,

K =Dyser{Eorc{PCR}}. “)
The decoded result K matches with the OTC code, only when
the presented biometric features and the coding sequence are
both correct. This is more secure than the traditional methods
that only rely on static biometric features. We now introduce
the biometric encoding, which serves as the basis of PCR-Auth
and creates a huge response universe to support everyday CR
authentications. The basic idea is to leverage the frequency-
selective nature of PCR. By using the short stimulus signal
pulses at different frequencies, we obtain n non-overlapped
PCRs and map them to decimal and hexadecimal values (i.e.,
n = 10 or 16) as coding units, which can be used to express
more complicated strings. The PCR encoder Eorc{} selects
the signal pulses in a sequence according to the OTC code.
The PCR Code is then extracted by the encoded signals to be
the biometric representation of an m-digit OTC as

Eorc{PCR} = (pcri,pera, ..., pcrm ), %)
where per;, ¢ = 1,2,...m is the i-th PCR digit.

The PCR decoder Dy.-{} is trained at the registration
phase with the user’s all » unique PCR digits. During the
authentication, the PCR decoder first examines whether the
PCR digits are all at the correct frequencies indexed by
the OTC code and then verifies the biometric presented by
each PCR digit separately. A successfully verified PCR digit
reconstructs one OTC digit. By encoding the user’s hand-grip
biometric with n coding units into m-digit PCR codes, our
biometric encoding technique expands the biometric response
universe exponentially from n to n'™ based on the same
training effort of the prior biometric CR method [19]. As
a result, the user does not need to refill the response pool
periodically with new biometric features.

E. Framework Overview

Based on the above CR model, we design the PCR-Auth
framework as shown in Figure 5. Upon each authentication
request, the microphone access permission is acquired, which
is revoked after authentication through auto-reset. The PCR
encoder first detects whether the device is under intentional ul-
trasonic interference by examining the ultrasonic band against
a Sound Pressure Level (SPL) threshold, which is introduced
in Section V-F2. If no dedicated ultrasound is detected, the
PCR encoder generates an OTC, and the OTC-based Stimulus
Signal Modulator selects ultrasonic pulses accordingly to
encode the user hand-grip biometric into a PCR code.

The microphone data is the input of the PCR decoder, which
first performs Data Preprocessing to denoise, synchronize and
segment the audio data. The preprocessed data is fed into the
Channel-Filtering-Based PCR Code Extraction to pick up PCR
digits from the audio. In particular, we derive spectrogram
to describe the PCR code in both the time and frequency
domains. The OTC-controlled Channel Filter sets the cutoff
frequencies according to the OTC-indexed channels to extract
each PCR digit. Any incorrectly encoded PCR digit (i.e., not
on the right channel) is filtered out at this stage, leaving a low
SNR. The obtained PCR digits are sent to the CNN-based PCR
Decoder for verification, which is a per-user model, trained
with the user and a set of other users and stored in the device.

The CNN-based PCR Decoder exploits one CNN model
with five convolutional layers to decode each PCR digit from
its spectrogram. The CNN scores (i.e., probabilities) of all
PCR digits are returned. We further develop a cluster-based
method to verify the PCR code by integrating the CNN scores
and the SNRs of all PCR digits. Based on that, we compute
the PCR code’s Euclidean distance to the user’s cluster and
verify the user using a threshold, which examines both the
user’s biometric features and the coding sequence. The access
permission is granted only when the PCR code successfully
recovers the OTC code.

F. Threat Model

We investigate the potential attacks to PCR-Auth. The ad-
versary’s goal is to cheat PCR-Auth to pass the authentication.
We assume the adversary can physically access the user’s
handheld device when it is left unattended or stolen. But
the adversary can not compromise the device hardware and
software, whose integrity is the minimum requirement for
authentication and is protected via encryption, memory foren-
sics and circuit security. Unfortunately, the acoustic channel
eavesdropping threat is a critical issue for all acoustic systems,
because the acoustic channel is open. This is the major reason
that most acoustic systems suffer from replay attacks. While
it would not be surprising to see our CR authentication defeat
replay attacks, we take one step further to study new attacks.
For example, the adversary could listen via a side-channel to
obtain not only the biometric data but also the chirp signal
frequencies (i.e., OTC digit). In particular, we consider the
following attacks:
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Fig. 5: The architecture of PCR-Auth.

1) Impersonation Attack: In this scenario, the adversary
uses his/her own hand to cheat PCR-Auth. The coding se-
quence is ensured to be correct, and the adversary expects
to further imitate the victim’s biometric features. Specifically,
random impersonation attacker arbitrarily grips the victim’s
device to cheat PCR-Auth; knowledgeable impersonation
attacker has the prior knowledge of how the victim grips
the device, so that he/she can imitate the gripping-hand pose
when in possession of the device; We further consider a
knowledgeable fake-hand attacker, who uses a silicone fake
hand to imitate the victim’s hand with more freedom.

2) Replay Attack: The adversary may have eavesdropped
on the victim’s authentication data and attempt to use the same
data to cheat a new session. To attack, the adversary needs to
mute the target device and use a second speaker to replay
the prior sounds. This type of attack only aims to present the
user’s biometric features. But a challenge is to predict the
precise time to start the replay, which is only a short period
(e.g., 400ms for 4-digit OTC) when the mic is on. A possible
solution is to turn the target device volume to be low to detect
the start of the stimulus signal and then attack immediately.

3) Listen-and-synthesis Attack: We design new attacks
by assuming that the adversary could capture the OTC by
listening to the acoustic channel and immediately stitching
prior PCR digits in a correct sequence. This attack aims to
forge both the code and the biometric. We also assume the
adversary could obtain the victim’s all PCR digits beforehand
to attack with full freedom, which may be achieved through
eavesdropping on the registration process or the disclosure of
the stored biometric data. However, the implementation of this
attack is still challenging. If playing the synthesized sound
after waiting to eavesdrop on all OTC digits, it would be
rejected because the microphone is off just after the speaker
sound stops (e.g., with 80ms delay). So the only way is to
listen and forge each PCR digit separately. In this scenario,
each synthesis digit is still unavoidably delayed by at least
t,ms because the attacker needs this period for observation
(buffer), A/D and D/A conversions, Fast Fourier Transform

(FFT), cache accesses and the CPU scheduling time. The
last item alone can be over 100ms and unpredictable. But
the success of such attacks requires the short delay (less
than one digit) and the strict synchronization. Otherwise, each
synthesized digit may be corrupted by the speaker’s next digit
or partially segmented due to poor synchronization, resulting
in a rejection.

To our knowledge, no prior work has implemented such
attacks due to the strict real-time synchronization requirement.
But we find that if using a Field Programmable Gate Ar-
ray (FPGA) for the attack system implementation, the CPU
scheduling time can be removed, and a determined delay might
be achieved as low as 10ms for each synthesized digit. While
implementing the FPGA-based attack system is beyond this
paper’s scope, we assume its feasibility and further investi-
gate two new attacks based on simulation: synchronization
disturbance attack overwhelms or replaces each original digit
with louder delayed adversarial digits, which aims to fool the
synchronization method into picking up the delayed adversar-
ial digits for authentication; real-time perturbation attack
attempts to generate perturbation noises based on adversarial
learning and modify the original digit sounds to present correct
biometric features.

4) DoS Attack: The Denial of Service (DoS) attack aims
to cause authentication errors and rejections by overriding the
working frequencies of PCR-Auth via dedicated ultrasounds.

III. APPROACH DESIGN
A. Palm Contact Response Encoder

1) Stimulus Signal Design: The stimulus signal is used
to interact with the user’s palm and extract the PCR for
authentication. In order to acoustically obtain sufficient bio-
metric information, we exploit the upward frequency sweeping
signals to capture the user’s biometric in a frequency range
rather than a single frequency. Intuitively, a wider frequency
band enables describing more aspects of the user’s biometric,
and a longer time period means more audio samples and thus
higher resolutions. However, to facilitate biometric encoding,
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we design the stimulus signals in narrow bands and short
periods. The reasons are two-fold. First, the secure biometric
encoding requires all PCR digits to have non-overlapping
biometric information, making it necessary for us to divide the
available frequency range into a number of exclusive narrow
bands (i.e., channels) and extract the frequency-separable PCR
digit. Second, the time period of the stimulus signal is directly
related to the waiting time and must be short.

Besides the function-level requirements, a critical considera-
tion is that the signal must be non-invasive and do little harm to
humans and animals. Thus, we propose to use the ultrasounds
easily generated by off-the-shelf handheld devices, whose
frequency range complies with the Federal Communications
Commission (FCC) Rules & Regulations Title 47 Part 18 to
ensure low risks to human and animals [21]. In particular, we
apply the signals within the range 17k-22kHz, which has been
demonstrated to be hardly audible [22] and widely applied
in prior ultrasonic sensing work [23], [24], [25], [26]. We
further reduce disturbances by designing the stimulus signal
with millisecond-level short periods, hundred-Hz-level narrow
bands and the low energy (e.g., 50% volume).

To balance the above considerations, we design the stimulus
signals as a number of 25ms long and 350Hz wide chirp
pulses within the range 17k — 22kHz. The signal frequency
bands are 10 times narrower than the prior acoustic sensing
work (i.e., 4 — 6kHz wide [23], [24], [25], [26]), which
means more challenge for our sensing. But we show that
such narrow-band pulse signals are sufficient to distinguish
people’s palms. Moreover, we add a 75ms silent period after
each chirp for leveraging the reflected signals and the induced
surface vibration sounds in this period and reduce the inter-
chirp interference. We further apply a Hamming window to
both ends of each chirp to suppress the spectral leakages
caused by sudden frequency changes and the hardware noises
of the speaker. The complete stimulus signals used for both
the registration and authentication are illustrated in Figure 6.

2) PCR Encoding: The purpose of PCR encoding is to
encode the user’s hand-grip biometric into a unique PCR
code based on the OTC, which can be generated by existing
methods [27], [28], [29]. For simplicity of description, we
select 10 exclusive narrow-band channels from the range 17k-
22kHz to represent decimal digits. These coding channels
are all 350Hz wide and separated by a gap (e.g., 50Hz). It
is important to note that not all channels are suitable for
encoding, and we conduct extensive experiments to identify
the good channels, which is introduced in Section V-A2.

Chirp pulse is used as the basic unit to encode the user’s
PCR onto the corresponding channel. When training the PCR
decoder, the user’s PCRs at all coding channels are collected
as shown in Figure 6 (a). During the authentication, the PCR
encoder scopes down to each coding channel indexed by the
OTC to extract the corresponding PCR digit. Figure 6 (b)
illustrates the stimulus signals for encoding a 4-digit PCR
code, when the OTC code is “9207” and the selected chirp
pulses are 21.6-21.95kHz, 18.8-19.15kHz, 21.6-21.95kHz and
20.8-21.15kHz in a sequence. When the stimulus signals
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Fig. 6: Stimulus signals for training and authentication.

interact with the user’s contacting palm, a unique PCR code
is contained in the received audio. As many as 10* unique 4-
digit PCR codes can be generated, which are disposed of after
being used. A longer code creates an exponentially greater
response universe but at the cost of a longer waiting time.

B. Palm Contact Response Decoder

1) Denoising, Synchronization and Segmentation: The raw
audio data is first preprocessed for denoising, synchronization
and segmentation. In particular, a bandpass filter with the
pass-band 17-22kHz is used to remove the noises out of the
stimulus signals’ frequency range, including the low-frequency
mechanical noises caused by the gripping hand and the audible
ambient noises. Next, the synchronization is performed by
leveraging the evenly spaced chirp pulses. Specifically, we
use the original pulse sequence signal as the reference and
calculate its cross-correlation with the received audio to find
the time shift synch_shi ft that corresponds to the maximum
correlation coefficient as expressed by

synch_shift = argmaz xcor(d). (6)
d

We then use this shift to align the two signals and refer to
the reference signal to localize the coding chirps in the audio
for segmentation. Each resulted segment contains one 25ms
coding chirp and a 75ms stop period to represent a PCR digit.

2) PCR Code Extraction: Because each PCR digit is en-
coded onto one of the predefined coding channels by the
OTC, we use a bandpass filter to extract the PCR code by
scoping down to each OTC-indexed channel in a sequence. For
example, the upper and lower frequency bounds of the pass-
band are set as 21.6-21.95kHz, 18.8-19.15kHz, 21.6-21.95kHz
and 20.8-21.15kHz when the OTC code is “9207” as shown
in Figure 6 (b). As a result, only the PCR digits at the
right channels pass the filter, while the incorrectly encoded
PCR digits are filtered out. We detect the coding errors by
examining the SNRs of all coding channels both before and
after filtering. The SNR examination before filtering is to make
sure the coding complies with the rule: only one channel is
encoded at each time slot. The examination after filtering is to
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detect whether there are coding errors. The SNRs of all PCR
digits are used to verify the PCR code as the physical layer
coding features. We next examine the biometric features.

3) PCR Spectrogram Derivation: We derive the spectro-
gram of each PCR digit as biometric features to describe the
PCR defined by Equation 3 in the frequency domain. As shown
in Figure 3, the spectrogram describes the temporal changes
of the resulted signal at each frequency, after the original
speaker signal passes a specific gripping-hand system. It is
a measurement of the three subsystem responses (H,, H, and
H,) regarding the frequencies and the waveform patterns of
the speaker signal. The spectrogram is computed based on the
Discrete-Time Short-Time Fourier Transform (DT-STFT) as

t+T—1
DTSTFT(t,f) = Y s(r)w(r —t)e >/, (7
T=t
where ¢ and f are the time and frequency indexes, and w(t) is
a window function with length 7'. Each pixel of the 2D image,
spectrogram, at the coordinate (¢, f) is then computed as

spectrogram(t, f) = |DTSTFEFT(t, f)|>. (8)

4) PCR Spectrogram Time Series: In order to balance the
spectrogram resolution and the decoding algorithm’s com-
plexity, we divide each PCR spectrogram into three pieces,
which separately describe three different stages of the PCR.
Specifically, the first spectrogram (0-25ms) mainly captures
the palm’s impact on the dominant direct-path signal. The
second (25-50ms) and third (50-75ms) focus on the reflected
signals and the induced surface vibration sounds. All of the
three spectrogram pieces show user-distinctive patterns and
are input in 2D-image time series into the PCR decoder for
verification. The 75-100ms subsegment is not utilized, because
the sound degrades over 20dB in this period. Furthermore,
using spectrogram time series also adds difficulties to the PCR
digit forgery. While the direct-path signal can be synthesized,
it is hard to forge the reflections and the surface vibrations
that are byproducts affected by many other factors.

5) CNN-based PCR Digit Verification: When distinguish-
ing people’ hands from each PCR digit, we have the following
considerations for the algorithm design: 1) The algorithm
needs to be powerful to distinguish the minute differences
of the acoustic signals modified by different hands; 2) The
behavioral inconsistency of the user (e.g., the gripping pose
changes) must be addressed; 3) The remaining ambient noises
after denoising need to be tolerated; 4) The algorithm must
have reasonable complexity to be usable for handheld devices.

After testing multiple learning-based algorithms, we find the
Convolutional Neural Network (CNN) model best meets the
above requirements. CNN is a deep-learning model widely
used for finding patterns in images. It is thus good for
capturing a gripping hand’s characteristics from the 2D spec-
trogram images while tolerating ambient noises and behavioral
inconsistency. When using PCR-Auth for the first time, the
user is allowed to define a customized gripping hand pose, and
a floating button on the screen marks the user’s thumb location,
which is displayed later for the user to recall the hand pose.
But when the user grabs the device for different times, the
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grabbing actions may result in more than one patterns. We thus
leverage the CNN model’s strong multi-class classification
capability to label multiple hand-grip patterns for each user.
Specifically, when training the CNN model, the user is asked
to re-grab the device multiple times, just as setting up the
finger ID by pressing and lifting a finger multiple times [30].
The per-user CNN model is then created and stored in the
device. Additionally, we design the CNN model with five
convolutional layers and a small number of filters, which is a
CNN architecture widely used for mobile devices [31].

The architecture of our CNN model is shown in Appendix
Table VI. In particular, we use the Rectified Linear Unit
(ReLU) for the activation function to speed up the training,
and each activation layer is followed by a 3 x 3 max-pooling
layer to downsample the feature maps. The last max-pooling
layer pools the input feature map globally over time to cope
with the temporal variances of the spectrogram and reduces
the parameter number in the final fully connected layer. In
addition, we apply the batch normalization layers to normalize
the output of each layer and a dropout layer to suppress over-
fitting. The cross-entropy is used as the loss function, and the
softmax layer outputs the final CNN scores of each input.

CNN Scores of the Input. We resize each spectrogram
into a 98 x 40 time-frequency image as the input of our
CNN-based algorithm. Two CNN scores (i.e., probabilities)
are computed, which are associated with two classes, User and
Non-User. A higher CNN score for the User class indicates a
higher confidence to trust the biometric presented by the PCR
digit. Since each PCR digit is divided into three consecutive
spectrogram pieces and the smartphones have two microphone
channels, a PCR digit is decoded into 12 = 2 x 3 x 2 CNN
scores. For each m—digit PCR code, we thus obtain 12m CNN
scores as the biometric features for verification.

6) Cluster-based PCR Code Verifier: We develop a cluster-
based algorithm to verify a PCR code by integrating the
biometric features (12m CNN scores) and the coding features
(2m SNRs), which are projected into a high dimensional space
for binary classification. Moreover, the proposed clustering
algorithm explores the relationships among the m PCR digits
to improve the decoding performance rather than treating each
digit alone. The user’s cluster is learned during the training
phase. Specifically, we generate a large number of random m-
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digit PCR codes based on the user’s training data and a non-
user database. We also simulate diverse replay attack cases,
assuming they present 1, 2, ..., m — 1 correct PCR digits.
We then cluster these PCR codes based on their CNN scores
and SNRs to find the user’s cluster and its center and radius.
During authentication, we calculate the Euclidean distance of
the PCR code to the user’s cluster center and verify the user
via a threshold-based method.

Figure 7 illustrates the 2D clustering results of 240 random
4-digit PCR codes in the plane of CNN score distance and
average SNR. We observe that the legitimate user’s PCR code
cluster is clearly separated from the other users, the different
cases of replay attacks and a fake silicone hand. By presenting
more correct digits, the replay-attack clusters are closer to the
user, regarding both CNN score and SNR. For example, the
replayed PCR codes wi