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Abstract— Optimum location of vaccine distribution and 

Emergency Operation Centers (EOCs) is imperative to ensuring 

prompt and efficient vaccination of eligible population in any 

location of interest. The proximity of these vaccination centers is 

likely to positively affect the decision of the target population to 

present themselves for vaccination. In this paper, a computational 

model for optimizing the number and determining the location of 

depots or vaccine distribution centers, and amounts of vaccines to 

be stocked at each center, to satisfy the needs of the local population 

is proposed. A modified K-means++ is used to optimize the number 

of required centers and the approximate locations to ensure the 

usage of the least possible cost. The algorithm allows planners to 

enter two initial specific locations as depots, thereby avoiding the 

usual random selection of initial points. Using geospatial and 

population data, the resulting clusters are divided into two, on each 

iteration. Heap sort is used to select the next centroid. Optimization 

of these locations is iteratively done, until there are no more 

changes. An optimized number of vaccine distribution centers for 

any region of interest can be obtained. It ensures that least possible 

cost is used. Our algorithm avoids the usual random outcomes 

associated with K-means and provides a more efficient clustering 

output, with an improved time complexity. The application of the 

proposed algorithm to a real-world test instance indicates its 

effectiveness. 

Keywords: Facility Location-Allocation, Disaster Management, 

Optimization, Algorithms, COVID-19. 

I. INTRODUCTION

In late 2019, coronavirus disease 2019 (COVID-19) emerged 
in Wuhan, Hubei province of China, causing a pandemic that has 
continued to wreak havoc, through unprecedented global 
spreading.  As of September 1, 2021, over 218 million cases have 
been confirmed in over 219 countries and territories, with an 
average case fatality rate of 5.4% [1][2]. There are concerns that 
the burden and spread of COVID-19 in Low- and Middle- 
Income Countries (LMICs) of Africa and Southeast Asia might 
be substantially more significant than reported. Most countries in 
LMICs are characterized by inadequate health infrastructure and 
low resilience capabilities [3].   Efficient response plans, 

including optimization and pre-positioning of EOCs are required 
to effectively mitigate the impacts of COVID-19 and other public 
health outbreaks. Various vaccines have been approved for 
emergency prophylaxis use by the US Food and Drug 
Administration and similar regulatory agencies in other 
countries, in collaboration with the World Health Organization 
COVID-19 vaccine center. These include vaccines made by 
Pfizer-BioNTech, Moderna, Janssen, Novavax, Johnson and 
Johnson, AstraZeneca-Oxford and others. More than 60 
additional vaccine candidates are also undergoing clinical 
development and testing. There are concerns about distribution 
strategies across the globe. This is one of the core factors 
necessitating the establishment of COVAX, the vaccines pillar of 
ACT Accelerator, co-led by Gavi, the Coalition for Epidemic 
Preparedness Innovations (CEPI) and WHO. It aims to guarantee 
fair and equitable access to COVID-19 vaccine for every country 
in the world. Most LMICs have received considerable doses of 
these vaccines, and are now faced with the issue of equitable 
distribution, amidst raging vaccine hesitancy. 

Generally, comprehensive public health emergency response 
plans include an arrangement for the determination of physical 
locations of delivery centers or depots. This is necessary to avoid 
post-disaster ad-hoc approaches that are usually deployed 
whenever there is an outbreak of diseases, mostly in LMICs. 
Optimizing the number of required depots is particularly useful 
in low-resource countries, to ensure the least possible number of 
depots is used to cover the largest number of individuals or 
communities [4]. Many factors are taken into consideration when 
planning the location of these facilities. These include the 
topography of the location, accessibility to different types and 
capacities of vehicles, road network, and proximity to potential 
end-users. Providing a single facility, to cover a maximum 
number of individuals or demand points is a simple form of 
facility location problem, introduced by studies in [5]. However, 
finding the best locations from multiple candidate sites in a large 
geographical area is an NP-hard problem, as shown by Boonmee 
et al [6]. Existing solutions involve the use of linear or mixed 
integer programming, lagrangian decomposition and genetic 
algorithms, which can be broadly grouped into exact and 
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approximation algorithms as shown in these studies by 
Sahraeian, Adeleke and others [7]–[10]. The depot location-
allocation problem considers the best viable approach to deliver 
post-disaster interventions to the affected population. Time and 
cost are two main factors affect the decision to select a given 
location as a potential response facility. Time to deliver these 
interventions is a prime consideration, while cost is trade-off 
between expenditures for establishing new facility  and 
maintaining an existing one, if it is within the allowed constraints. 
A concise integer programming model for determining the 
approximate locations of emergency response facilities is 
proposed in  Boonmee et al [11]. It includes an objective function 
to maximize the total satisfiable demand within a predetermined 
distance parameter.  

Mathematically, the emergency operation center location 
problem can be formulated, as a variant of the general facility 
location-allocation problem, by a set of integer programming, 
represented by equations (1) through (5). Let 𝑗  represents an 
individual requiring vaccination or other medical counter 
measures and belonging to a set of nodes 𝐽,  (j 𝜖 D). Let  𝑖  
represents a candidate facility site, (i 𝜖 𝐹). Consider the following 
notations and indices: 

 

Decision Variables 

                          𝑦𝑖 =  {
1                  𝑖𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖 𝑖𝑠 𝑜𝑝𝑒𝑛 
0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1) 

 

 

  𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗

𝑗𝜖𝐷

𝑥𝑖𝑗

𝑖𝜖𝐹

 +  ∑ 𝑓𝑗𝑦𝑖

𝑖𝜖𝐹

                   (2) 

Subject to: 

 ∑ 𝑑𝑗𝑥𝑖𝑗

𝑗𝜖𝐷

≤ 𝑆𝑖𝑦𝑖      ⩝ 𝑖 𝜀 𝐹, 𝑗 𝜀 𝐷 (3) 

 

 ∑ 𝑦𝑗𝑥𝑖𝑗

𝑗𝜖𝐷

=  1               ⩝ 𝑖 𝜀 𝐹 (4) 

 
𝑥𝑗 , 𝑌𝑖𝑗  𝜖 {0,1}                   ⩝ 𝑖, 𝑗 (5) 

 

   The first part of the objective function (2) minimizes cost of 

transportation and total distance between demand locations and 

candidate facilities, while the second part optimizes the number 

of facilities and the cost of maintaining the facility. According 

to Constraint (3), the cumulative demands of all sites within a 

facility 𝑖 will be, at most, equal to 𝑆𝑖, the total capacity of the 

facility.  Constraint (4) ensures that each location 𝑗 is assigned 

to at least one open facility. The binary conditions for the model 

variables are maintained by constraint (5). 
Previous studies considered several factors when planning 

real-world emergency facility location, mostly in large-scale 
operations. These include service priorities, redundant facilities 
and the dynamics of candidate locations, according to studies by 
Arabani and Farahani in [7]. They suggested the consideration of 

trade-off between making location changes and cost of relief 
transportation to demand points. Some models are only 
concerned with allocation of facilities to ensure maximum 
coverage, while few of the suggested algorithms include 
consideration for routing. These include approaches suggested by 
Shen et al, Alenezy and Balcik et al in [12], [13] and [14] 
respectively. Maximal covering location models are formulated 
and suggested in Han et al [15] and [16], including some routing 
models for relief distribution. Hence, it can be seen that most 
available approaches for solving facility-location-allocation 
problem employs either GIS techniques or some form of mixed 
integer programming solutions. However, in this paper, the use 
of a data science clustering algorithm, in addition to GIS, is 
proposed. 

The remaining part of the paper is structured as follows: the 
methodology adopted in this study and application of the 
algorithm to a real-life case study are presented in the next 
section. Section 3 presents the results while discussions of the 
results and limitations of the study are presented in section 4. The 
conclusion is presented in section 5. 

 

Algorithm 1: Modified K-Means++ Geo-Clustering Algorithm 

Input:  K = number of potential clusters; 

L = {l1, l2, …, ln}: List of locations to be clustered; 

D = {d1, d2,}: Two initial cluster centroids 

Output: C = {c1, c2,…ck): Cluster centroids 

     𝐸𝑖: { E(i)|i =  1, 2, … n} : A list of clusters 

 1:    𝑁𝑘 = 2 

 2:   foreach d1, d2, do 

 3:       calculate  𝑎𝑟𝑔𝐷𝑖𝑠𝑡1, 𝑎𝑟𝑔𝐷𝑖𝑠𝑡2    ⩝ 𝑑1, 𝑑2 𝜀 𝐷 

 4:       if  𝑎𝑟𝑔𝐷𝑖𝑠𝑡1,  < 𝑎𝑟𝑔𝐷𝑖𝑠𝑡2, then 

 5:              𝑑1( )←   li    ► assign li  to cluster  𝑑1 

 6:      else d2( )←   li  ► assign li  to cluster  𝑑1 

 7:      end if 

 8:   end for 

 9:    foreach li  ϵ L, do  (i =  3,  …n) 

10:           calculate 𝑎𝑟𝑔𝐷𝑖𝑠𝑡𝑖1, 𝑎𝑟𝑔𝐷𝑖𝑠𝑡𝑖2  ⩝ 𝑖, 𝑗 𝜀 𝐶 

 11:          ►Haversine distances from centroids 

12:           call h𝒆𝒂𝒑𝑺𝒐𝒓𝒕(𝑑𝑖, 𝑛) 

13:            𝑁𝑘+= 2    
14:   (𝑑𝑖𝑠𝑡𝑙𝑖) =  largest   ► maximum distance from heapSort 

15:             𝑙𝑖  ←   new cluster centroid  

16:           if  𝑎𝑟𝑔𝐷𝑖𝑠𝑡𝑖2,  < 𝑎𝑟𝑔𝐷𝑖𝑠𝑡𝑗2, then 

17:           di1( )←   li          ► assign the location to cluster 𝑑𝑖1 

18:           else di2( )←   li  ► assign the location to cluster 𝑑𝑖2 

19:         end if 

20:     end for 

21: until K = 𝑁𝑘 

 

Fig. 1: Pseudocode of the clustering algorithm. 

 

-1109-

CoDIT’22 | Istanbul, Turkey / May 17-20, 2022 Technical Co-Sponsors: IEEE CSS, IEEE SMC & IFAC.



  

II. METHODOLOGY 

A. Delineating the Demand Points 

An adapted K-means ++ algorithm is proposed, with the aim 
of improving its output. Generally, K-means algorithm is a 
technique for partitioning  𝑛 locations into 𝑘 clusters in where 
each location belongs to the cluster with nearest mean, and the 
total distance between members of each group and their 
corresponding centroid is minimized. Unlike most traditional 
supervised machine learning algorithms, K-means classifies data 
without some previous training, with labeled classifiers or 
training set. The n entities are grouped into sets, 𝑆𝑖 ,   𝑖 =
 1, 2, … 𝑘,  with the aim of minimizing the within-cluster sum of 
squares (WCSS) or the average squared Euclidean distance. The 
objective function is given in equation (6). The main objective is 
to minimize the sum of distances between the points and their 
respective cluster model. 

𝑗 =  ∑ ∑ || (𝑥𝑖
𝑗

− 𝒄𝒋||2

𝑛

𝑖=1

𝑘

𝑗=1

6 

 

Where the term || (𝑥𝑖
𝑗

− 𝒄𝒋||2 estimates the distance between 

points of dispensing, xi in cluster j,  and the cluster’s centroid, 𝑐𝑗. 

k is the number of clusters while n is the number of cases. A 
centroid is a mean or the central coordinator (depot) of the 
cluster. Usually, outputs from the standard K-means algorithm 
depend greatly on the choice of initial centroid values.  The 
random selection of cluster centroid produces poor clustering and 
centroid locations. The modified algorithm involves selecting 
two locations, 𝑑1and 𝑑2 that are far apart from each other, from 
the list of demand points. Details of these two locations are 
received from the local public health officials and serve as initial 

depots. The coordinates are entered into the algorithm as initial 
centroid values. This avoids the usual random selection and 
ensures adequate coverage of the location of interest. The 
algorithm uses these inputs and initially divides the list of the 
demand points into two groups, with the given points as 
centroids. A demand point is a census tract or a collection of 
communities in rural areas, delineated using population data. 
This produces two initial clusters with each cluster containing 
about half of the demand points. For each of the two clusters, it 
calculates the distance from the centroid to all demand points and 
selects the demand point with the farthest distance(maxDist) as 
the centroid for the new cluster. It then calculates the distance 
from this centroid to each of the demand points  (arg𝐷𝑖𝑠𝑡𝑗2)  and 

compares this with distance to the initial centroid. 

This procedure is similar to the space partitioning algorithm 
proposed by Jimenez et al in  [17]. The possible value of 𝑘 is 
obtained from local planners, and subsequently validated using 
Silhouette analysis. This is done iteratively for each of these new 
clusters until the desired number of clusters, 𝑘 is reached 
(stopping criteria). The standard k-means is then applied to fit the 
clusters around the demand points and output fitted centroid 
values. This is done in Geoda application [18] to ensure the right 
population, corresponding to the number of vaccines required at 
each centroid, is obtained.  The pseudocode of the modified 
algorithm is highlighted in Fig.1, while Fig. 2 presents the Heap 
sort procedure for the centroids. For the clustering, the 
coordinates of selected primary health centers (PHCs) in the 774 
local government areas (LGAs) in Nigeria are obtained as 
demand points. 

B. Study Area 

Nigeria is a diverse tropical country in Central West Africa, 
with a population of 206.14million. It covers an area of 923,768 
km2 square kilometers with population density of 218/km² [19]. 
Like many other countries, Nigeria experiences incessant 
emergencies. However, her emergencies are mostly man-made, 
including civil strife, ethnic crises, domestic terrorism, flooding 
and epidemic outbreaks, such as Lassa Fever, Onchocerciasis, 
Yellow Fever, Ebola Viral Hemorrhage, and fluctuating 
incidences or periodic rise in HIV-induced tuberculosis [20]–
[22].  The current COVID -19 situation in Nigeria and the 
measures put in place by the government and health authorities 
to curtailed the spreading are summarized in this study [23].  
Optimizing the location of these vaccination centers will assist in 
the equitable distribution of the vaccine among all states and local 
government areas, in accordance with the population of the 
locality. Using population and geographical data from all regions, 
the clustering of demand points is performed to obtain potential 
location of depots. A modified clustering approach, as described 
below, is applied. Nigeria has 774 local government areas 
(LGAs) which make up the 36 states and the Federal Capital 
Territory. 

C. Evaluating Clustering Output Using Silhouette 

To evaluate the outputs of the algorithm, a Silhouette 
Analysis (SA) is performed on the resulting number of clusters. 

 
 

Procedure for Sorting Locations in a Cluster 

procedure HeapSort (𝒏[], i) 
1: 𝑛 =  𝐿 = number of locations 
2: size ← 0; 
3: for 𝑖 = 𝑛/2 downto 0 
4:    swap 𝑛(1) with 𝑛(𝑖) 
5:    𝑛. ℎ𝑒𝑎𝑝𝑆𝑖𝑧𝑒 = 𝑛. ℎ𝑒𝑎𝑝𝑆𝑖𝑧𝑒 – 1 
6: end for 
7:  Max-Heapify (L, 1) 
8:  𝑙: = 2i 
9:  𝑟: = 2i+1 
10:  if 𝑙 ≤  𝑛. ℎ𝑒𝑎𝑝𝑆𝑖𝑧𝑒  and (𝑛[𝑙]  >  𝑛[𝑖] 
11: 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 =  𝑙 
12  else 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 =  𝑖 
13   end if 
14:  if 𝑟 ≤  𝑛. ℎ𝑒𝑎𝑝𝑆𝑖𝑧𝑒  and (𝑛[𝑟]  >  𝑛[𝑙𝑎𝑟𝑔𝑒𝑠𝑡] 
15:  𝑙𝑎𝑟𝑔𝑒𝑠𝑡 =  𝑙 
16:  else 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 =  𝑟 
17:  end if 
18:   if 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ≠  𝑖 
19:      swap 𝑛(𝑖) with 𝑛(𝑙𝑎𝑟𝑔𝑒𝑠𝑡) 
20:      Max-Heapify (𝑛[],largest) 
21:  end if 
 

Fig. 2: HeapSort procedure for finding the largest 𝑎𝑟𝑔𝐷𝑖𝑠𝑡 
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SA can be used to validate the consistency of a chosen similarity 
conditions for data points or distance between resulting clusters 
in a clustering algorithm. Aptly put, it is a means of measuring 
how close each node in a cluster is to all other nodes in that cluster 
or the cohesion amongst nodes in a cluster, and their separation 
from other clusters.  Results from Silhouette Analysis are usually 
presented in a graphical plot, representing a succinct graphical 
view of how well each node has been classified. For a node 𝑖 𝜖 𝐿𝑖 
,  Silhouette  value of 𝑖 can be calculated thus:  

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑖), 𝑏(𝑖)
, 𝑖𝑓𝐿𝑖 > 1 (7) 

Where 𝑎(𝑖) is the mean distance between 𝑛𝑜𝑑𝑒 𝑖 and all 
other nodes in the same cluster. 𝑏(𝑖)  is the  mean distance of 
node 𝑖 to all points in any other cluster, of which 𝑖  is not a 
member. Silhouette values lie in the range of [-1, 1]. A value of 
+1 indicates that the location is far away from its neighboring 
cluster and very close to the cluster it is assigned (good 
assignment!). Similarly, the value of -1 indicates that the point is 
close to its neighboring cluster than to the cluster it is assigned. 
A value of 0 indicates that is very close to the decision boundary 
of the distance between the two clusters. Hence, the higher the 

silhouette value, the better is the cluster configuration.  

III. RESULTS 

A. Clustering Demand Points and Distribution Centers 

For the clustering, the coordinates of selected primary health 
centers (PHCs) in the 774 local government areas (LGAs) in 
Nigeria are obtained as demand points. The number of selected 
PHCs per LGA depends on the population of the area. Two 
tertiary federal medical centers, representing the northern and 
southern regions respectively, are used as initial centroids of the 
potential clusters. The algorithm considers the entire country as 
one geographical entity and attempts to divide it into 38 clusters. 
The two initial centroids: University of Maiduguri Teaching 
Hospital in Borno State (with longitude and latitude as 13.1809 

and 11.826038 respectively) and EOC Ikorodu in Lagos state 
(with longitude and latitude as 3.5027 and 6.6232 respectively) 
serve as inputs into our approach. When 36 is used as initial value 
of k, the clustering output shown in the first part of Figure 4 is 
obtained.  After 1000 iterations, the algorithm optimizes 
locations of these clusters and outputs the geographical 
coordinates of the centroids of these new clusters.  The longitudes 
and latitudes of these new centroids (centers of the clusters) are 
plotted in a google earth as shown in Fig. 3.  The nearest Primary 
Health Center or local government headquarters to the given 
coordinate is used as the depot. For example, the first centroid 
(Cluster 1) in table 3 (Longitude: 7.06088; Latitude: 5.8911) is 
Akokwa Medical Centre in Ideato South of Imo State (Eastern 
Nigeria), while the centroid for Cluster 38 is Gulani Local 
Government Headquarters in Yobe State (Northern Nigeria). A 
second level clustering of locations in a state and local 
government areas can also be done by applying the adapted 
algorithm to these resultant clusters. 

B.  Silhouette Analysis of the Clustering Output  

Silhouette Analysis is used to evaluate the outputs of a 
clustering algorithms. The visualization of the silhouette analysis 
outcomes using 𝑘 = 36, 38 and 40 are presented in Fig. 4. As seen 
on the plot, when 𝑘 = 36, some of the clusters are not optimally 
filled. The equitable distribution of the clusters (assignment of 
demands points to specific groups) is prominent when 𝑘 = 38. 
When 𝑘 = 40, many of the clusters are superimposed on the other. 
This implies that too many clusters are being proposed for a 
comparatively smaller geographical area. 

IV. DISCUSSION 

This amended K-means ++ clustering procedure posts a 
higher quality result, with respect to the physical allocation of 
demand points.  can be seen from the output of the Silhouette 
analysis of the clustering result. The time complexity of the 
standard K-means algorithm has been proven to be  𝑂(𝑛𝑘𝑡) and 
could get up to    𝑂(𝑛2) in worst case scenario., where 𝑛, 𝑘 and 
𝑡 are number of demand points, desired number of clusters and 

number of iterations respectively.  For large datasets, it has been 
observed that 𝑡 approximates 𝑛,  𝑡 ∝ 𝑛. Hence the effective time 
complexity becomes 𝑂(𝑛2). However, the modified K-means ++ 
algorithm performs better, compared to the standard algorithm, 
in terms of memory and time complexity. The analysis yields a 

 

 

Fig. 4: Silhouette Analysis: Visual Representations and 

Comparison of k values 
 

 

Fig. 3: The national map, showing the locations of the 

cluster depots 
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time complexity of 𝑂(𝑛 𝑙𝑜𝑔(𝑛)), where n is the number of 

demand points. This can be shown by mathematically analyzing 
the cost of each operation in the pseudocode in algorithm 1. A 
heapsort approach is used for sorting the list of demand points 
and calculating distances, arg𝐷𝑖𝑠𝑡1 and    arg𝐷𝑖𝑠𝑡2 using 
haversine metric.  Each demand point is assigned to the cluster 
having the closest centroid.  During the iteration process, some 
demand points remain in the original cluster while some are 
moved, in accordance with their relative distance to the new 
centroid. If the demand point stays in the same sub cluster, then 
the required complexity is 𝑂(1), otherwise, it is 𝑂(𝑘). After each 
iteration, the number of relocation operations of demand points 
to other clusters decreases. Assuming half of the demand points 
move to the other clusters from their present clusters, until the 
convergence condition is met, time complexity of 𝑂(𝑛𝑘/2) will 
be required. The total time complexity for assigning demand 
points to new clusters will be 𝑂(𝑛𝑘).Therefore, the total time 
complexity of the proposed algorithm becomes 𝑂(𝑛𝑙𝑜𝑔𝑛). 
However, one of the limitations of this approach is on the 
resulting number of clusters. The algorithm can only be applied 
to obtain an even number of clusters. The equitable distribution 
of clusters ensures adequate geographical coverage of demand 
points. A demand point is a census tract or a collection of 
communities in rural areas, delineated using population data. 
They are initially created with population data from the 
constituent communities. The algorithm is used to delineate these 
demand points. The population data of all LGAs in a cluster 
would be used to determine the quantity of vaccines needed at 
each center. The local public health planners can therefore make 
informed decision about where to locate the vaccination centers, 
to ensure accessibility to the population, within the limit of 
available resources. At a later stage of the vaccination campaign, 
if vaccine hesitancy persists, the health personnel may decide to 
deliver the vaccines to the end-users. This can be done using the 
routing optimization algorithm proposed by Akwafuo et al in 
[24]. Due to limited resources, application of emergency and 
vulnerability ranking can be applied.  

 

V. CONCLUSION 

In this paper, a modified version of the K-means ++ algorithm 
was applied to solving the public health facility location problem. 
In most LMICs, efficiently locating COVID-19 vaccine 
distribution centers is a challenging problem. Due to inadequate 
infrastructure and low resources, traditional health centers are 
always far away from the rural communities. Our algorithm takes 
the geo-spatial population data of the region of interest and 
optimizes the number of vaccination centers needed, such that 
least possible cost is used. It improves on the usual random 
outcome experienced when k-means is used in clustering, by 
requiring the planners to enter geo-spatial details of two initial 
locations. Mathematically, the amended algorithm delivers 
improved time complexity. However, the algorithm can be 
further improved to optimize any number of inputs, as opposed 
to the current status of optimizing even number of regions only.   
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