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Abstract—Information flow control is a canonical approach
to access control in systems, allowing administrators to
assure confidentiality and integrity through restricting the
flow of data. Decentralized Information Flow Control (DIFC)
harnesses application-layer semantics to allow more pre-
cise and accurate mediation of data. Unfortunately, past
approaches to DIFC have depended on dedicated instru-
mentation efforts or developer buy-in. Thus, while DIFC
has existed for decades, it has seen little-to-no adoption in
commodity systems; the requirement for complete redesign
or retrofitting of programs has proven too high a barrier.

In this work, we make the surprising observation that de-
velopers have already unwittingly performed the instrumen-
tation efforts required for DIFC — application event logging,
a software development best practice used for telemetry and
debugging, often contains the information needed to identify
application-layer event processes that DIFC mediates. We
present T-DIFC, a kernel-layer reference monitor framework
that leverages the insights of application event logs to per-
form precise decentralized flow control. T-DIFC identifies
and extracts these application events as they are created by
monitoring application I/O to log files, then references an
administrator-specified security policy to assign data labels
and mediate the flow of data through the system. To our
knowledge, T-DIFC is the first approach to DIFC that does
not require developer support or custom instrumentation.
In a survey of 15 popular open source applications, we
demonstrate that T-DIFC works seamlessly on a variety of
popular open source programs while imposing negligible
runtime overhead on realistic policies and workloads. Thus,
T-DIFC demonstrates a transparent and non-invasive path
forward for the dissemination of decentralized information
flow controls.

1. Introduction

Modern applications are growing increasingly complex,
to the point where security vulnerabilities are inevitable
despite large, dedicated security development teams [40].
While identifying and patching such vulnerabilities are
important, access control plays an important role in
mitigating the harmful effects of these vulnerabilities
by restricting the resources available to a compromised
application. In particular, the notion of Information Flow
Control (IFC) has received considerable attention over
the years [5], [6], [35], [9], [2], [3], [23], [10]. In an

IFC system, administrators can enforce confidentiality or
integrity guarantees by restricting the flow of sensitive data.
Today, IFC is supported by a variety of popular security
models, including SELinux [24], [19], [17]. A key feature
of such frameworks is that security policies can be specified
by system administrators without explicit support from
developers or software vendors. This is possible because
the policies describe generic system-level abstractions that
can be mediated at the operating system interface.

However, the generalizability of traditional IFC comes
at a cost — because the protection state is defined over sys-
tem objects, the security model is oblivious to application-
layer semantics and is unable to mediate accesses at finer
granularities. IFC views each program as an opaque black
box, making it impossible to reason about higher-level
abstractions such as website user accounts or key-value
pairs in a datastore. For example, consider a web server
that uses an event handling loop to accept new connections.
Each time a new client connects, they authenticate to the
web application using a site-specific user account and are
granted access to client-specific resources on the machine.
However, from the perspective of IFC, the protection
domain of the process remains unchanged regardless of
which client is connected. As a result, if the application
is compromised, the attacker has immediate access to
all clients’ data, creating a lucrative opportunity for data
exfiltration [33].

Decades after the advent of information flow control,
Decentralized Information Flow Control (DIFC) [30] was
proposed as a means of addressing this shortcoming. In
a DIFC system, programs can emit their own additional
labels that can be appended to the security context of
data objects, allowing individual programs to specify
a finer-grained data flow policy. Such an approach is
“decentralized” because it enables many stakeholders in
the system to contribute to the policy; further, since these
additional labels only further restrict the protection state
of the system, it is possible to achieve classic information
flow control assurances at the operating system layer while
still enjoying the fine-grained protections of DIFC. Initial
implementations of DIFC restricted information flow at
the language level [30], [32], with proposals for OS-level
support following shortly thereafter [8], [48], [21], [34].

Unfortunately, despite its ability to produce expressive
access control policies, DIFC’s adoption in real systems
remains extremely limited. Why hasn’t DIFC become a
prominent approach to securing complex systems? A major
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factor limiting the proliferation of DIFC is the tremendous
development costs of its adoption — to date, all DIFC
implementations have assumed that programs are rewritten
or instrumented in order to add and remove labels from data
objects. If programs are working in concert to achieve more
complex DIFC policies, this requires multiple independent
development teams to coordinate these changes, to say
nothing of the modifications required to the operating
system or language runtime.

We argue that this burden has prevented the further
proliferation of DIFC technologies; thus, a DIFC approach
that was fully transparent to the applications it mediates
would be highly useful. However, the design of such a
system poses several obstacles: how can an application emit
custom security labels or declassify data without changes to
source code, and how could the operating system detect that
the program has changed context to avoid overpropagating
existing labels (i.e., taint explosion)?

In this work, we make the surprising observation that
developers have already provided cues to the active security
context of their applications in the form of application event
logs. For example, consider a server that is receiving a
new request from client u. Common best practices dictate
that the developer should create a record of this event to
facilitate debugging and fault detection. This log event
is likely to contain the client name u, which is precisely
the information needed to meet classic DIFC goals —
while handling a request from client u, the server should
propagate the label u to data it writes to, and it should
not be able to read data from non-u clients. Further, when
a log event marks the handling of a new request for client
v, this could serve as a cue to the DIFC system to stop
propagating label u and to start propagating v. Put another
way, the information needed to support event processes [8],
a method of compartmentalizing application data flows
that is a prerequisite to performing DIFC at the operating
system layer, is already present in the application event
logs [14].

Building on these insights, this work presents the design
of T-DIFC, an operating system extension that permits
administrators to transparently define DIFC policies based
on applications’ innate logging behaviors. To operate
T-DIFC, administrators define a simple security policy
through inspecting the log events of target applications. At
runtime, T-DIFC interposes on write events associated
with applications logs and is activated if a new event trigger
matches a regular expression in the security policy. On a
match, T-DIFC updates security labels based on a classic
DIFC tagging model. Finally, T-DIFC mediates accesses to
labeled data to enforce the administrator’s security goals.

Our contributions can thus be summarized as follows:
Transparent Decentralized Information Flow. We

present the design of a novel DIFC operating system
extension that leverages innate application logging instead
of custom instrumentation. To our knowledge, T-DIFC is
the first DIFC system to boast transparent specification and
enforcement of application-layer information flows. We
implement T-DIFC as a stackable Linux Security Module
that is compatible with SELinux, further simplifying its
operation.

No-Hassle Policy Specification. Through a series of
application case studies, we demonstrate the ease with
which an administrator can specify a T-DIFC policy without

developer cooperation. For example, we provide a policy
for ProFTPD that enforces access control for arbitrarily
many application-level users stored in LDAP or SQL
databases, which is otherwise infeasible with standard
UNIX access control primitives.

Efficient Mediation of Information Flow. We exhaus-
tively evaluate the performance of T-DIFC through standard
operating system benchmarks and representative applica-
tion workloads. When benchmarking the performance of
ProFTPD with a realistic and useful security policy loaded,
we were unable to observe any overhead of T-DIFC under
a variety of different workloads. Such a feat is possible
due to the efficient design of T-DIFC’s label propagation
mechanism, as well as the infrequency with which new
application event messages trigger a change in security
context (relative to other application activity).

2. DIFC Preliminaries

In traditional IFC, a reference monitor mediates data
flow according to a pre-defined confidentiality or integrity
lattice of security classes. The IFC policy restricts flow of
information from higher-level security class to lower-level
security class (confidentiality), or vice versa (integrity).
However, traditional IFC policies do not consider the
semantics of data accesses by the underlying programs.
For example, consider a web server that uses an event
handling loop to accept new connections. Each time a new
client connects, they authenticate to the web application
using a site-specific user account and are granted access to
client-specific resources on the machine. However, from
the perspective of IFC, the protection domain of the
process remains unchanged regardless of which client is
connected. Thus, a compromised application grants the
attacker immediate access to all clients’ data [33].

DIFC addresses this limitation by allowing each pro-
gram to specify its own finer-grained data flow policy
by creating additional security labels for data handling
within the program. The reference monitor then enforces
all applications’ flow policies as information propagates
through the system. Myers and Liskov’s original formal-
ization of DIFC [30] defines the label of each data object
as a set of owner-readers pairs. Each owner of the data
could specify a set of allowed readers. For example, let L
represent labels, O(L) represent the set of all owners in
L, and R(L, o) represent the readers allowed by owner o
in L.

Let us consider a confidentiality lattice for this original
DIFC formalization. Data flows from label L1 to L2 require
that L1 is at least as permissive as L2 (L1 � L2); if not,
L2 could either be updated to be less permissive, or the
flow could be rejected. To be as permissive, L2 must at
least have the all the owners in L1, and each owner in
L2 cannot designate extra readers relative to L1. This
restriction relationship is defined as

L1 � L2 ⇐⇒ O(L1) ⊆ O(L2) ∧
∀o ∈ O(L1) : R(L1, o) ⊇ R(L2, o)

If the data flow is allowed, we must also ensure that
L2 reflects the potential new owners in L1. This can be
achieved by setting the label L2 to be the join, or least
upper bound, of labels L1 and L2, L1 
 L2. The join is
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the lowest-level label that is at least as permissive as both
L1 and L2; i.e., L1 � L1 
 L2 and L2 � L1 
 L2. The
join is defined as

O(L1 
 L2) = O(L1) ∪O(L2)

R(L1 
 L2, o) = R(L1, o) ∩ R(L2, o)

3. Motivation

Of course, in order for the above formulation to
work, it is necessary for applications to participate in
the DIFC protocol. As OS-based approaches to DIFC
began to emerge, a central challenge became reconciling
operating system abstractions with the notion of finer-
than-process principals. Efstathopoulos et al.’s Asbestos
system presented a solution in the form of “Event Processes”
[8], which decompose a long-lived traditional processes
into a set of autonomous sequential subprocesses.1 By
associating security labels with event processes, rather than
processes, it became possible for the reference monitor to
track information flow more precisely and avoid problems
with overtainting. While Asbestos defined a custom syscall
interface that was incompatible with existing systems, later
systems (e.g., HiStar [48], Flume [21]) adapt these ideas to
UNIX environments, allowing the system to run existing
programs and utilities.

However, while event processes solve the problem
of finer-than-process flow tracing, they have traditionally
exacerbated of invasiveness of program instrumentation
required by DIFC. In addition to defining a security policy
and performing runtime labeling, application developers
also needed to explicitly identify event processes in source
code and insert the appropriate logic. Thus, while OS-based
approaches made it possible for DIFC-aware programs to
interact with traditional UNIX programs, the difficulty of
creating DIFC-aware programs remained comparable to
language-based approaches.

The present study is motivated by the observation that,
often, a dedicated instrumentation effort is not necessary to
extract DIFC security context from programs. For example,
consider the MoinMoin Wiki service that is instrumented
by Krohn et al. in evaluation of the Flume system [21]. The
“flumed” version of MoinMoin defines an extended security
policy that assures integrity against application plug-ins.
To achieve this, the authors treat httpd as an endpoint
where all data is declassified and wrap wiki.py in a
custom security module that retrieves the client’s security
context from the reference monitor and applies labels to
the core application logic.

Interestingly, however, the vanilla version of MoinMoin
has its own way of tracking a client’s context, shown in
the following application log event:

[Wed Sep 23 11:59:59.061504 2022]...
[pid 66913:tid 139754678122240]...
MoinMoin.util.abuse INFO :...
auth/login (moin): status success:
username "Alice": ip 127.0.0.1...

Here, it can see that MoinMoin has recorded the
successful login attempt for a subject with username Alice

1. The notion of event processes has re-emerged more recently in the
system auditing literature, where process activities are decomposed via
various “execution partitioning” strategies, e.g., [22], [25], [14], [26].

at 127.0.0.1, and that Alice’s session is being managed
by process id 66913 on thread 139754678122240.
We make several observations about this log event. First,
MoinMoin has implicitly defined a security context for this
web session (username Alice) and associated with a system
process (pid 66913). Second, whenever an application event
of this format appears, it implicitly marks the boundary
of a new event process in the MoinMoin service; this
is evidenced by the fact that application event logs can
be used to retroactively perform execution partitioning
of system log events [14]. Third, because MoinMoin
writes this application event to disk via a system call,
it is actually the case that MoinMoin is already implicitly
communicating its current security context to the reference
monitor (i.e., the OS kernel). Fourth, we can configure
httpd in pre-forked mode to prevent server threads from
handling multiple clients’ data. Finally, given that the
reference monitor already knows the application’s security
context and associated process identity, it is not necessary
for MoinMoin to have a dedicated security module because
the reference monitor can perform the labeling itself.

In the present study, we attempt to operationalize these
insights in the form of a transparent OS-based DIFC system.
While it would appear that the necessary security context
is innately exposed by MoinMoin, several challenges
stand in the way of harnessing this information: How
can we identify and extract security contexts from innate
application log events?, How can a reference monitor
simulate DIFC labeling and event process decomposition
without the cooperation of the application?, How can
a reference monitor access the information contained in
application log events?, and How can a machine operator
define a DIFC security policy without the cooperation of
the application developers? In what follows, we explore
the answers to these questions.

4. Threat Model

This work considers an adversary that is attempting
to access system resources through a network-facing
program. The program handles data from many clients,
but the distinction between these clients and data objects
is opaque to the operating system. Thus, when considering
application semantics, the system-layer security policy
permits the program to run in an overprivileged state.

We make the following assumptions about this en-
vironment. First, we assume the kernel and associated
system utilities are correct and cannot be compromised by
the attacker. This is a standard assumption for operating
system access control (e.g., Linux Security Modules [7])
and is made more reasonable using known platform hard-
ening techniques [19]. Further, we also make a standard
assumption from the DIFC literature, namely, that the
runtime integrity of the target application is also assured.
This is necessary because programs can specify their own
security policies in DIFC models; if the target application
is compromised, it logically follows that any policies it is
allowed to write to are also compromised. However, this
does not rule the possibility that the application contains
vulnerabilities that permit the attacker to trick the program
into acting on their behalf (e.g., command injection).
Further, it is not necessary for the target application to
trust other programs; therefore, other applications are still
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foo.dp

foo.dbp

tdpc

External Policy

Userspace
Kernelspace

dbp_load Reference
Monitor

foo

foo label

Labeling System

bar.txt label

bar.txtlog write

update label

write to bar.txt

propagate foo label

permitted write to bar.txt

Figure 1: Overview of T-DIFC’s design. External policies
(e.g., for program foo) are created in userspace, compiled
with tdpc, the T-DIFC policy compiler, and loaded into
the kernel at runtime via the dbp_load interface. The
reference monitor updates process labels on log writes
(shown in blue) and allows or denies information flows ac-
cording to external policies, propagating labels on allowed
flows (shown in green).

permitted to be under full attacker control. Lastly, and
as discussed in Section 8.1, we assume that the target
application is emitting standard event logs that describe
its activities.

5. Design

Our design is driven by the following goals:
Decentralized information flow control. Our solution

must be able to express classical decentralized information
flow guarantees (Sec. 2) and ensure their enforcement at
the operating system layer.

Finer-than-process granularity. While DIFC does not
strictly require event processes, issues of overtainting and
taint explosion quickly emerge without it. To fully enable
the advantages of DIFC beyond what is possible with non-
decentralized flow control, our solution must be able to
track information flows at a finer-than-process granularity.

Transparency. Unlike existing DIFC systems, our so-
lution must be deployable on a target application without
instrumentation or the developers’ assistance. Specifically,
our solution must permit a machine operator to specify
external DIFC policies on behalf of the target application.

Reference monitor guarantees. Our solution must
reasonably satisfy the reference monitor concept [1]. In
other words, our solution’s enforcement mechanism must
be tamperproof, be able to offer complete mediation of
relevant system activities, and be verifiable.

5.1. Overview

We present T-DIFC, a transparent approach to decen-
tralized information flow control within operating systems.
An overview of T-DIFC is displayed in Figure 1. T-
DIFC consists of three major components: the kernelspace
labeling system, the kernelspace reference monitor, and
the userspace external policy language and compiler.

Labeling system. This component maintains the labels,
comprised of a set of tags, associated with data on the
system. While the semantics of tags ultimately depend
on their logical use according to external policies, tags
generally represent the sources of data used by programs.
All objects in the system that manipulate data require a
corresponding tag; this includes both processes and files.

Reference monitor. The T-DIFC reference monitor is
responsible for mediating information flows by propagating
labels and performing enforcement checks as specified by
the security policy. Whenever an information flow occurs
between two objects, the reference monitor will either
permit or deny the flow depending on the types of object
(files, processes, sockets), the labels of the object, and the
relevant policies statements. When a flow is permitted, the
reference monitor propagates any labels carried by source
of the flow to its destination.

External policy language and compiler. The external
policy language allows machine operators to specify DIFC
policies for target applications without requiring modifi-
cations to program source code. External policies specify
which logs the labeling system should intercept to modify
a process’s labeling state, and which information flows
involving the policy’s tags the reference monitor should
permit. These policies can then be compiled in userspace
before being loaded by T-DIFC.

5.2. Labeling System

We adapt the labeling system introduced by Flume
[21]. Tags are basic primitives used to denote ownership
or information sources of data. The set of all tags, or
the label, associated with some data indicates all sources
of this data. To control where information may flow,
application policies control which capabilities associated
with each tag other applications may possess. For tag t,
the + capability t+ allows an application to add t to its
label, roughly corresponding to reading data owned by t.
The − capability t− allows an application to remove t
from its label, declassifying the data.

As tags are created dynamically, the first program to
create a tag t gets ownership of the tag, and controls which
of t’s capabilities other programs have. The first program
defines a default capability set that all other programs
begin with; other programs may voluntarily relinquish
any capabilities from this set using a capability mask, but
they can never add capabilities that are not granted in the
default set. Specifically, if the default capability set is C
and a program’s capability mask is Mp, then the program’s
effective capability set Cp = C \Mp. Regardless of the
default capabilities specified, the owner of a tag always
has all capabilities by default unless they are explicitly
masked.

5.3. Reference Monitor

In the T-DIFC labeling system, the classical restric-
tion and join relations are simply � = ⊆ and

 = ∪ . However, there are additional constraints on
whether information flows are allowed, as label propagation
may require adding or removing tags from labels, which
requires the corresponding capabilities as described above.
Specifically, any data with label L flowing to a process p
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〈string〉 ::= ‘"’ [^"]* ‘"’

〈capture-group〉 ::= ‘<’ [1-9] ‘>’

〈tag-fragment〉 ::= 〈string〉 | 〈capture-group〉
〈tag〉 ::= ‘tag’ ‘(’ 〈tag-fragment〉+ ‘)’

〈cap〉 ::= ‘+’ | ‘-’

〈tag-cap〉 ::= 〈cap〉* 〈tag〉
〈statement〉 ::= ‘settags’ 〈tag-cap〉* (* set process label tags *)

| ‘addtags’ 〈tag-cap〉+ (* add tags to process label *)
| ‘deltags’ 〈tag〉+ (* remove tags from process label *)
| ‘setcaps’ 〈tag-cap〉* (* set default tag caps *)
| ‘addcaps’ 〈tag-cap〉+ (* add tag cap to default *)
| ‘delcaps’ 〈tag-cap〉+ (* remove tag cap from default *)
| ‘setmask’ 〈tag-cap〉* (* set process cap mask *)
| ‘addmask’ 〈tag-cap〉+ (* add cap to process cap mask *)
| ‘delmask’ 〈tag-cap〉+ (* remove cap from process cap mask *)

〈pid〉 ::= ‘self’ | ‘parent’ | ‘children’ | 〈capture-group〉
〈process-block〉 ::= ‘process’ 〈pid〉+ ‘{’ (〈statement〉 ‘;’)+ ‘}’

〈init-block〉 ::= ‘init’ ‘{’ 〈process-block〉+ ‘}’

〈match-block〉 ::= ‘match’ 〈regex〉 ‘{’ 〈process-block〉+ ‘}’

〈log-location〉 ::= ‘stdout’ | ‘stderr’ | 〈string〉
〈config〉 ::= ‘id’ [0-9]+ (* policy ID *)

| ‘logfile’ 〈log-location〉 (* writes to these files are logs *)
| ‘max_process_label’ [0-9]+ (* max process label size *)
| ‘max_socket_label’ [0-9]+ (* max socket label size *)

〈top-statement〉 ::= 〈config〉 | 〈init-block〉 | 〈match-block〉
〈policy〉 ::= 〈top-statement〉*

Figure 2: Grammar for the T-DIFC policy language. Some
productions, such as <regex>, are omitted for brevity.

with current label Lp results in the process label updating
to L′p = Lp 
 L if and only if

∀t ∈ L′p : t ∈ Lp =⇒ t+ ∈ Cp;

otherwise, the flow is denied. Because files have no
associated capabilities, flows from a process p to a file
f are always permitted, with the file label updating to
Lf 
 Lp.

To enforce all these requirements, we must insert
checks and label propagation logic at any information flow
mediated by the kernel. Our reference monitor design is
influenced by the hooks made available for Linux Security
Modules (see Section 6). Kernel-traceable information
flows include any mechanisms for file I/O, network I/O
and interprocess communication (IPC).

Socket writes are an exception to the general rule
above, because flows to sockets leave the system and
are thus no longer enforceable by T-DIFC thereafter. We
adopt the same policy as existing DIFC systems, and
require sockets to always have an empty label, which forces
applications to explicitly declassify all data that is sent out
a socket. However, because T-DIFC is instrumentation-free,
we cannot guarantee that policies can explicitly declassify
data prior to socket writes if there is no log to intercept.
As an alternative, we also allow a process p to write to a
socket if Lp has at most n tags, where n is configurable
by p’s policy, and ∀t ∈ Lp : t− ∈ Cp; essentially, p can

specify that labels below a certain size may be implicitly
declassified before socket writes, so long as p is actually
allowed to declassify all the tags in Lp. Even if this implicit
declassification occurs and the write is allowed, Lp remains
unchanged; it is not updated to an empty label.

5.4. External Policy Language

A key feature of T-DIFC is the ability for machine
operators or administrators to define external DIFC policies
such that the application does not need to be modified to
cooperate with the DIFC system. The grammar for the
external policy language is given in Figure 2. At a high
level, each policy is defined by a configuration preamble
(config) and blocks of actions to modify the labeling
state when initializing a program (in the init-block)
or upon matching a log write (in a match-block).

Configuration. The mandatory id option declares a
unique integer policy ID used to associate applications
with their policies at runtime. The logfile option,
which can be specified multiple times, defines which
write syscalls will be considered log writes by listing
specific output locations as log locations; they can either
name file descriptors (e.g., stderr) or file paths (e.g.,
/var/log/foo.log). The namespace option defines
how the policy will interact with other policies on the
same system; policies within the same namespace will
see the same tags. The “unique” namespace ensures a
policy will have sole ownership over its own tags; other
policies will be unable to reference these tags, although the
reference monitor will still enforce the same propagation
rules. Shared namespaces allow policies to be cooperatively
designed; e.g., an upstream program could initially tag
data, while a downstream program can enforce some
dataflow policy according to the incoming tagged data.
The policy can also specify a process maximum label
size with max_process_label as a mechanism to
mitigate taint explosion by restricting access to certain
data; e.g., a maximum label size of 1 could prevent a client
from reading files other than their own. The maximum
socket label size, as described in Section 5.3, is given by
max_socket_label.

Modifying labeling state. The policy state can be
modified by adding, removing, or setting the current
label’s tags. Any statement that could add tags needs to
additionally define the default capabilities for the tag in
case the policy becomes the tag owner; it is also possible
to later adjust the default capabilities for owned tags. The
current capability mask can be modified in a similar way
by specifing tag capabilities to change.

Where and when to modify the labeling state. State-
ments to modify the current labeling state can either occur
when a program is launched in an init-block, or
when matching a specific log message identified by a
match-block. We envision the init-block being
potentially useful for dropping unneeded capabilities at the
start of a program. For match blocks, it is further possible
to extract substrings from the matched log using “capture
groups” denoted by angled brackets (“<>”).

The process whose state is modified must additionally
be specified as either the current process (self), its parent
(parent), its children (children), or a specific process
identified by PID. In match blocks, the PID may be a
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captured substring of the matched log. These options exist
to allow T-DIFC to correctly operate regardless of where a
log is emitted; i.e., if a process forks a handler that needs
to be labeled, the parent process is still able to correctly
label the forked child.

6. Implementation

We implement the T-DIFC reference monitor as a non-
exclusive Linux Security Module (LSM) [44] for Linux
v5.4 in 3142 lines of C. T-DIFC is a non-exclusive LSM:
it can be stacked with other LSMs, so T-DIFC can focus
purely on its own DIFC policy.2 Thus, if an administrator
also requires a traditional MAC system like SELinux [38],
it is possible to run T-DIFC concurrently with other Linux
LSMs. We note that it is important for T-DIFC to be the
final LSM in the stack when performing permission checks;
otherwise, if T-DIFC permits an operation (e.g., a read) but
some other LSM later denies the operation, then T-DIFC’s
label state will become inconsistent, as it assumes the
operation actually occurred and may update file or process
labels according to the DIFC policy.

We implement the external policy compiler in 1301
lines of OCaml 4.08.1. Having a userspace compilation step
minimizes the amount of complex parsing and validation
code that must run within the kernel. Furthermore, we can
more easily iterate on the frontend language while keeping
the same binary format later read by the kernel.

Associating Programs and Policies. At runtime, the
system must load all external policies via a sysfs
interface into T-DIFC. At runtime, we use the policy ID to
associate programs with their loaded policies: any program
that should be associated with policy i must have an
extended attribute (xattr) set on its binary file containing
i. Processes without any active policy (i.e., either the binary
had no policy ID xattr, or no loaded policy was found)
will still propagate labels as specified in Section 5.3.

Intercepting Log Writes. We use LSM hooks to
perform both permission checks and label propagation.
However, the interface of the file_permission hook
is unfortunately too restricted to perform log regex match-
ing, as we need access to the written string. Thus, T-DIFC

also directly wraps the write and writev syscalls. The
wrapper first checks if the output file is a log file according
to the policy’s log locations. If so, then the wrapper matches
each regex stored in the policy’s data with the written
string. For any successful match, the wrapper extracts any
captured strings from the regex and runs the corresponding
bytecode, referring to the captured strings when needed.
Finally, the wrapper then continues to the original write
code that actually performs the write.

Label Implementation. T-DIFC’s design logically rep-
resents tags as strings, so tags can be generated from
fragments of log messages at runtime. However, T-DIFC

must also frequently compare tags to check whether a tag
is being added to a label or not, as adding a tag requires
the corresponding capability. To mitigate the impact of
frequent string comparisons, T-DIFC instead builds a hash
table of integer tag IDs at runtime. Whenever a tag t is

2. The desirable ability to deploy DIFC in tandem with other MAC
systems motivated our decision to not build T-DIFC over top of legacy
systems such as Flume [21].

referenced by a policy, T-DIFC looks up the tag’s ID by
hashing the tag string. If an entry for t is found, then T-
DIFC uses the existing ID, and also knows that t has already
been allocated; otherwise, T-DIFC generates a unique ID
for t, implemented via a counter, and makes the current
process the owner of t. The tag ID is then used in the
label to represent the tag, allowing T-DIFC to compare
integers instead of strings at runtime.

Because the tag ID table is built at runtime, tag IDs
cannot be used on labels that persist across power cycles,
which includes file labels. Instead, whenever a file is
labeled, T-DIFC looks up the tag string corresponding to
the tag ID for each ID in the label, and serializes the set of
tag strings to the file’s extended attributes along with some
additional metadata. We also do not want other policies
to unexpectedly read the file if they are not permitted to,
or allow them to take ownership of the tags in the file,
so we also store each tag owner’s policy ID and default
capabilities. If T-DIFC encounters a new tag when reading
a file, it sets the owner of the tag as specified by this stored
owner ID instead of defaulting to the current process, which
both prevents a different policy from stealing ownership
of the tag, and allows T-DIFC to correctly set some owner
of the tag if the current running process does not actually
have an associated T-DIFC policy.

7. Security Analysis

In this section, we will consider how T-DIFC satisfies
the design goals outlined in Section 5.

Decentralized Information Flow Control. DIFC al-
lows any application to take the ownership of and impose
access control restrictions on information handled within
the application, rather than having a central authority
control the flow control policy. T-DIFC fulfills this classical
goal of DIFC. Tags in T-DIFC handle the ownership of
information while capabilities handle enforcing access
control. Any program p can allocate a tag t, as long as
t has not already been allocated by some other program.
p then becomes the owner of t and has complete control
over the access control policy for t. p can restrict access
to data tagged with t by removing t+ from the default
capability set. This ensures no program other than p will
be able to read any data tagged with t. Once data has been
tagged with t, the data will retain t until t is explicitly
declassified, which requires the declassifying process to
hold the t− capability. Thus, if p chooses not to add t−
(i.e., capability to remove t) to the default capability set,
then t can never be declassified by any program other than
p itself, guaranteeing that t’s access control restrictions
will always hold for any data initially tagged with t, even
as this data is manipulated in the system.

Finer-Than-Process Granularity. T-DIFC provides
finer-than-process granularity flow tracking by inferring the
boundaries of event processes. Rather than having programs
explicitly transition to a new event process like Asbestos
[8], T-DIFC’s reference monitor updates the program’s
security label automatically when a new event process
boundary is detected. Note that, unlike past approaches
that required dedicated program instrumentation, T-DIFC’s
ability to trace at this granularity depends on the presence
of innate application event logs that mark the boundaries
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of event processes. In Section 8.1, we demonstrate that this
practice is commonplace in mature open source projects.

Transparency. T-DIFC achieves the goal of trans-
parency through the use of the external policy language
and compiler. Instead of instrumenting an application’s
source code to enforce DIFC policies, T-DIFC offers a
policy language for machine operators to specify DIFC
policies. This external policy can then be loaded into
kernelspace by the T-DIFC reference monitor to control a
program’s labeling decisions and access control policy (via
capabilities) transparently to the monitored applications.

Reference Monitor Guarantees. For T-DIFC to satisfy
the reference monitor concept, it must be tamperproof,
assure complete mediation of system activity, and be
verifiable [1]. Our argument for satisfying these proper-
ties follows from our decision to implement T-DIFC as
stackable module that is interoperable with SELinux.

Tamperproof. The T-DIFC enforcement mechanism runs
in Ring 0 (kernelspace) and cannot be directly accessed or
modified from Ring 3 (userspace) code. If an attacker is
able to modify critical system resources, it may be possible
for them to escalate privilege and disable the module.
Running T-DIFC alongside SELinux with the SELinux
reference policy activated hardens the kernels and provides
some protection from integrity violations. We also rely on
an SELinux policy module to protect the integrity of T-
DIFC’s userspace dependencies (external policy, log files).
This is because expressing these kinds of restrictions using
type enforcement is much simpler than through DIFC. Of
course, the Linux kernel can still be compromised even
with SELinux enabled, which allow an attacker to disable
T-DIFC. That said, our system is at least as tamperproof
as Linux’s canonical reference monitor.

Complete Mediation. Similarly, our argument for sat-
isfying complete mediation follows from our use of the
Linux Security Modules framework. LSM’s authorization
hooks were placed to mediate all security-sensitive access
to controlled data types [49], making it possible to achieve
complete mediation using a security module. T-DIFC uses
these hooks to assure that decentralized flow control is
guaranteed both local flows and outbound flows. For local
flows, T-DIFC can continue to monitor the flow from source
to destination, so it is sufficient to simply ensure that the
tags of all potentially written information are propagated.
Because the T-DIFC reference monitor tracks information
purely at file- and process-level granularity, it conserva-
tively assumes that any information contained in the source
could have flowed during I/O. For outbound flows, T-DIFC

is no longer able to propagate tags. Therefore, the system
guarantees that all information must be declassified prior to
transmission. In practice, our implementation only defines
a subset of the authorization hooks that would be necessary
to satisfy this property; our design can viably provide this
assurance.

Verifiable. While a formal verification of our proof-
of-concept implementation is not practical or worthwhile,
we consider the eligibility of an idealized version of our
design for verification efforts. As noted above, T-DIFC’s
claim to tamperproofness and complete mediation is rooted
in past verification efforts of Linux. The Linux Security
Modules framework has been subject to rigorous study in
order to assure the correct placement of its authorization
hooks (e.g., [12], [18], [7], [49]), and SELinux policies

1 id 21;
2 namespace unique;
3 logfile "/var/log/proftpd/proftpd.log";
4

5 max_process_label 1;
6

7 match ".*proftpd\[<[0-9]+>\].*: USER <[^:]+>:
Login successful.\n" {

8 process <1> {
9 settags tag(<2>);

10 }
11 }

Figure 3: T-DIFC policy for ProFTPD. Whenever a client
process is forked, the log message contains the client’s
PID and username. The policy extracts these values as
captured groups <1> and <2>, respectively, from the log
message, then sets the label of the process with PID <1>
to <2>, the given username, with no default capabilities.
The policy also sets the maximum label size of the running
process to 1, which prevents a user’s client from reading
other users’ data.

1 id 2;
2 namespace "";
3 logfile stderr;
4

5 max_process_label 1;
6

7 match "Logging in as <.+> \.\.\. Logged in!" {
8 process self {
9 settags +-tag(<1>);

10 }
11 }

Figure 4: T-DIFC policy for Wget. The policy sets the
current process label to the authenticated user’s username
<1> with both the + and − capability; any downloaded
files will then be assigned this label.

have likewise been verified for correctness (e.g., [17], [19]).
While T-DIFC policies are short enough to be candidates
for verification, one obstacle is that the policy’s target
application also falls within the trusted computing base of
T-DIFC. Thus, it would be necessary to demonstrate the
correctness of the target program and its logging behaviors
to formally verify the correctness of T-DIFC.

8. T-DIFC Application Policies

We now evaluate the practical utility of T-DIFC by
exploring the potential security context that is available in
application logs, as well as how T-DIFC policies could be
defined to meet the needs of specific applications.

8.1. Survey of Application Logging Behavior

T-DIFC’s ability to achieve finer-than-process granular-
ity depends on the presence of innate application event logs
that mark the boundaries of event process. In other words,
T-DIFC depends on applications periodically recording
log events that describe the subjects and data objects
being operated upon. To demonstrate the generality of
our approach, we conducted a representative survey of
logging behavior in popular open source applications.
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“Useful”
Program Log Level Subject Labels Objects Policy? Sample Log

HTTP Servers

Apache INFO App. Users (HTTP) Files, Databases � host - user ...
Lighttpd Configurable App. Users (HTTP) Files, Databases � Format %u: username
nginx Configurable App. Users (HTTP) Files, Databases � See Apache

Other Servers

cupsd INFO App. Users Intermediate Files � ... Queued on 'printer' by 'user'.
Postfix INFO Email Addresses Mail Files � ... from=<email> ...
ProFTPD INFO System/App. Users Files � USER user: Login successful.
Load Balancing

HAProxy Default IP Backend Server Sockets � Connect from <addr>:<port> to ...
Web Applications

MediaWiki DEBUG App. Users Wiki Pages (Database) ◦ ... Login for user succeeded ...
MoinMoin Wiki DEBUG App. Users Wiki Pages, Files ◦ ... authenticated user u'user' (valid)
Databases

PostgreSQL Configurable App. Users, IP Databases ◦ Format %u: username
Redis Monitor Keys Client Processes ◦ ... "get" "key"
memcached Verbose (-vv) Keys Client Processes ◦ <32 get key
Web Clients

cURL Verbose App. Users Files � < 230 User <user> logged in
Squid Configurable App. Users, URLs Client Processes � %un: username, %ru: request URL
Transmission INFO None Torrent Files � Parsing .torrent file successful "<file>"
Wget Default App. Users Files � Logging in as <user> ... Logged in!

TABLE 1: Survey of logging behavior of popular applications. Each row describes the logging behavior of an application
listed under the Program column, with programs grouped into categories. The Log Level column describes the required
logging configuration for the application to emit useful information about subject and objects noted in corresponding
columns. The “Useful” Policy column indicates whether we were able to identify a policy given the application’s logs
and behavior: � means that we identified a policy based on finer-than-process granularity mediation, � means we did
not, and ◦ indicates that useful policy components were identified but the policy was incomplete. The Sample Log
column provides an example of an application log message or configuration option that results in a useful subject.

Initially, our approach was to examine the top packages
in the Ubuntu Popularity contest; however, even after
filtering out libraries and packages without source code,
we found that the most popular packages were lightweight
system utilities that didn’t maintain complex application
state. For example, the highest ranked programs are almost
system utilities such as sed or coreutils, which are
relatively small with minimal logging activity. Broadly
speaking, DIFC cannot provide value to these simple
programs. Instead, we defined broad categories of applica-
tion event types, prioritizing applications that were more
likely to handle complex states for multiple clients/users.
We then manually identified and reviewed representative
applications from each category, carefully examining both
documentation and program source code to understand
their logging behaviors. No application, once identified for
the survey, was omitted from our results. We decided to
conclude the survey after examining 16 programs.

Table 1 shows our results. In all but one of the
surveyed applications, we were able to identify application
events that outlined the boundaries of event processes and
provided security contexts (in the form of subject and
object labels). The candidate subject labels we observed
included some system objects (IP, System User) that
duplicated OS level information, but mostly contained
application-level semantics such as application user names.
The logging configuration (Log Level) necessary for the
application to emit these events varied across applications.
Although some applications required high verbosity levels
(INFO, DEBUG, -vv), many others logged the required
context by default or offered a configurable interface for
auditing specific events. Encouragingly, we also found
that the listed log events occurred within the main event
handling loop of the application, meaning that the presence
of these events indicates the start of a new event process.
This is consistent with past observations that application

event logging can be used to perform execution partitioning
on system-level audit logs [14]. To conclude, we found
that many popular applications are already logging the
necessary information to express DIFC policies with T-
DIFC.

8.2. Case Study: ProFTPD

As a specific example, we consider how an admin-
istrator can leverage T-DIFC to add access control guar-
antees to ProFTPD, an FTP server, without any source
code modifications. Our test environment uses the default
ProFTPD package from Ubuntu 20.04 LTS. Suppose
our administrator needs to setup a ProFTPD server to
serve a large organization. The administrator leverages
ProFTPD’s virtual user functionality, which supports LDAP,
SQL, and many other backends, to scalably integrate FTP
authentication with their existing database; unfortunately,
this also means that the virtual users will not be subject
to system-level security policies. To avoid data leaks,
the administrator must ensure that there are appropriate
application-level controls in place to prevent unauthorized
access.

To define a policy, the administrator first observes
ProFTPD’s logging behavior: how does it handle user
sessions, and what kind of log messages does it emit?
The administrator reviews the application logs and notices
that, upon receiving a connection, ProFTPD will emit a
log message containing both the client’s username and
client process PID. Each PID is different, indicating that
ProFTPD uses a separate process per client.

Based on these observations, the administrator writes
the ProFTPD policy shown in Figure 3. They first define
a policy ID, label namespace, and the location of the
ProFTPD log file on disk (Lines 1 − 3): the policy ID
(here chosen to be 21, the standard FTP port number) is
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used to associate this policy with the ProFTPD binary; the
namespace indicates that labels for this ProFTPD policy
should be completely independent of any other policies
on the system; and the log file specified is the default
ProFTPD log file in Ubuntu 20.04 LTS. They then add
a constraint that at most 1 label can be associated with
the current event process (Line 5), guaranteeing that each
user session can only access public (unlabeled) data or
their own data. Finally, the administrator defines a match
block over the “login successful” application event that
contains the core labeling logic (Lines 7–11). The match
block extracts the PID p of the client process and the user’s
username u, and sets the label of p to u. After defining
and compiling the policy, the administrator sets the policy
ID of the proftpd binary to activate the T-DIFC policy.

Stability of policy across program revisions. While
a full-scale study of the stability of log messages in each
program is outside the scope of this project, we give some
insight into the stability of T-DIFC policies by examining
the log messages specifically used in each policy.

We looked through ProFTPD’s git history to find
when the exact “Login successful.” log message was first
introduced. This message was committed on October 10,
1999, with commit comment “Updated logging to be more
consistent, and generally be more informative.” This change
was later released in unstable version 1.2.0pre9 on October
27, 1999; the stable release of 1.2.0 happened on February
26, 2001, and the log message remains unchanged to the
current stable version, 1.3.7.

8.3. Case Study: wget/cURL

T-DIFC is not limited to servers; it can also enforce
DIFC policies for other programs, such as clients. We
demonstrate how T-DIFC can use the output of Wget
and cURL, which retrieve data from remote hosts, to
automatically label data belonging to a particular user.
Suppose a user is retrieving their file from a remote FTP
or HTTP server where they must authenticate themselves
with a username and password.

Once again, the administrator starts by observing the
log output of these programs. They see that Wget prints sta-
tus information to stderr, including where it connected
to, the current download progress, and the user it logs in
as on the remote host. Based on this application event,
Figure 4 shows the Wget policy that the administrator is
able to write. In Lines 7-11, the match block detects the
login success message, extracts the username u, and sets
Wget’s label to u using the self keyword. As a result, any
files downloaded by Wget will automatically be labeled
with the username used to access the remote host. Unlike
ProFTPD, Wget is a small client program that is more
likely to be used in concert with other processes; to account
for this, the administrator sets the namespace for this policy
to an empty string, the de-facto global namespace (Line 2).
Other programs can thus use the labels on the downloaded
files if their policy is also in the global namespace.

It is possible to write a similar policy for cURL. cURL
must be run with the verbose switch (-v) to output a
message when authenticating to the remote host. For
brevity, we omit this policy, as it is largely identical to
the Wget policy aside from the regular expression used to
match the username in cURL’s output.

Stability of policy across program revisions. We
looked for the git commit that introduced the exact matched
message, i.e., “Logging in as <user> ... Logged in!” This
message has been in wget since its first commit in the git
repo on December 1, 1999; any prior changes on CVS
are mising from the git repo’s history. As this message
has remained stable for at least 23 years, we believe it is
unnecessary to find exactly when it originated.

8.4. General Utility of T-DIFC policies

Returning to Table 1, we now consider the space of
possible T-DIFC policies we observed in the rest of survey.

HTTP Servers. Across the 3 surveyed applications, we
observe that HTTP servers consistently log when HTTP-
authenticated users access a site. These log statements
permit T-DIFC to mediate system accesses of these users at
finer-than-process granularity by labeling the client handler
processes with usernames.

Other Servers. Like web servers, the other servers we
survey all feature some application-level notion of user
IDs, which are consistently logged. The cupsd server
logs the authenticated user that has submitted a print
job; because cupsd temporarily saves queued files in
/var/spool/cups/, T-DIFC could improve confiden-
tiality by assuring that only the user that submitted the
print job has access to the file. The postfix mail server
logs the addresses of incoming emails, potentially enabling
T-DIFC to enforce different confidentiality/integrity policies
to emails and email attachments based on the identity of
the sender. We discuss ProFTPD in detail above.

Load Balancers. In other software that supports dis-
tributed applications, we observe less applicability for
T-DIFC. For example, the HAProxy load balancer only
handles system-level entities such as IP and port. While
this information is logged, we could not identify a useful
T-DIFC policy because the entities could also be mediated
using standard system access controls. DIFC in general
seems less applicable to these applications. We would
expect these observations to hold for many other middlebox
applications, e.g., firewalls.

Web Applications. We survey two wiki platforms,
both of which contain log statements that link a given
client handler to the authenticated user. This could allow
T-DIFC to mediate system-level accesses accounting to the
application-level user name. However, an important consid-
eration is that web applications typically use databases as
a backend, which appear as monolithic files from T-DIFC’s
perspective. As a result, T-DIFC would likely struggle
to enforce meaningful security policies on this class of
applications without an effective data partitioning strategy.
We note that the canonical DIFC application, Flume [21],
made architectural changes to the MoinMoin wiki source
code in their demonstration.

Databases. We survey three databases, one disk-based
(PostgreSQL) and two in-memory key-value stores
(redis, memcached). In PostgreSQL, T-DIFC can
identify application-level subjects and label partitions
of process activities accordingly; however, it is unclear
whether this could lead to useful policies due to the
monolithic nature of databases at the system-level. From
the kernel’s perspective, the database is represented as
just a few files. While T-DIFC can observe that different
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Test Control T-DIFC Overhead

Process times (μs)

null call 0.32± 0.00 0.41± 0.28 27.2%
null I/O 0.56± 0.09 0.43± 0.09 −23.7%

stat 0.60± 0.02 0.63± 0.02 4.5%
file open/close 1.29± 0.05 1.36± 0.05 6.0%

select TCP 4.81± 0.02 4.79± 0.01 −0.4%
signal install 0.37± 0.00 0.37± 0.00 0.0%
signal handle 0.90± 0.00 0.91± 0.01 0.4%
fork process 71.91± 1.16 73.24± 3.45 1.8%
exec process 240.4± 13.3 263.7± 23.6 9.7%
shell process 789.± 241. 1069.± 436. 35.5%

Local latency (μs)

pipe 4.06± 0.30 3.64± 0.32 −10.3%
AF_UNIX 6.63± 0.65 6.19± 0.71 −6.7%

UDP 5.50± 0.06 5.60± 0.20 1.8%
TCP 7.48± 0.35 6.94± 0.41 −7.2%

TCP connect 11.28± 3.02 11.96± 3.26 6.0%
Local bandwidth (GB/s)

pipe 6.43± 0.08 6.36± 0.12 −1.2%
AF_UNIX 14.30± 0.67 15.30± 0.82 7.0%

TCP 10.80± 0.42 11.00± 0.00 1.8%
file reread 10.18± 0.35 10.47± 0.09 2.8%

File latency (μs)
create (0k) 4.64± 0.09 4.77± 0.16 2.7%
delete (0k) 3.41± 0.01 3.45± 0.04 1.1%

create (10k) 10.12± 0.20 9.85± 0.19 −2.6%
delete (10k) 5.09± 0.05 5.10± 0.02 0.1%

TABLE 2: lmbench results for T-DIFC, compared with
the same Linux kernel running without T-DIFC. Most
values are essentially equivalent within measurement error.

application users are accessing these files, our current
implementation lacks a data partitioning scheme that would
allow us to perform fine-grained mediation over tables,
records, etc. For the in-memory stores, the application logs
reveal the specific keys being accessed, but due to the lim-
itations of our implementation we are unable to propagate
these labels to memory pages or page offsets. Taken as a
whole, database software highlights the limitations of the
current T-DIFC system but provides interesting avenues of
inquiry for future work.

Web Clients. We survey four web clients, two of
which (cURL and wget) are described in Section 8.3.
Squid is a caching proxy that can be run on either
client- or server-side, but is often associated with client-
side use by web browsers to reduce bandwidth consump-
tion. However, browser caches are also associated with
a number of privacy-infringing side channel attacks, e.g.,
[20]. Fortunately, because Squid records detailed logs of
requested URLs, T-DIFC could be used to label cached
files according to their web origin. This would allow T-
DIFC to supplement the cache’s existing access controls
by providing system-level enforcement of same origin
policies. Lastly, for the BitTorrent client Transmission,
we are unable to identify useful subject or object labels in
the log statements. Similar to the HAProxy case, we do
not believe T-DIFC could improve security here because
the client does not possess an application-level notion of
subjects and operates only on system-level data objects.

9. Evaluation

We evaluate the overhead incurred by running T-DIFC

relative to running an unmodified Linux kernel. We begin
by quantifying the specific overheads introduced by T-
DIFC in microbenchmarks, and then consider the end-to-
end effect on applications. All benchmarks were done on a
server with an 8-core, 4.20 GHz Intel i7-7700K processor,

64GB of RAM, and a 512GB NVMe SSD. We built T-DIFC

on top of Linux v5.4.
Comparison with existing systems. Ideally, our eval-

uation would be able to compare T-DIFC to past DIFC
systems as a baseline, most notably the infuential Flume
system [21] that informs our policy language. Unfortu-
nately, a number of factors prevented us from providing this
baseline. Flume and its contemporaries were implemented
for older kernels, e.g., Linux 2.6, which is past its end of
life and may not be suitable for contemporary applications.
In contrast, our design leverages LSM module stacking,
a feature introduced in Linux 5.1, to allow T-DIFC to
mediate on application logs without interfering with other
access controls (e.g., SELinux). Lastly, to the best of
our knowledge Flume’s source code, as well as other
comparable systems such as Hi-Star [48] or Asbestos [8],
are not publicly available.

9.1. LMbench

We begin by using LMbench to measure T-DIFC’s
impact on performance without installing a policy. Without
an active policy, modifications that may incur overhead
include the LSM permission hooks for file and socket
writes, artifacts from memory changes such as the data
structures we add to process control blocks, and the
modified write syscall used to track log messages.

The LMbench results in Table 2 show minimal over-
heads incurred by T-DIFC, most of which are within
measurement error. While we do occasionally see negative
overheads, these are most likely due to noise introduced
by caching or scheduling that result in T-DIFC performing
unexpectedly differently than the control. Overall, the
overhead of running applications without an active policy
on T-DIFC is very low, especially when the applications
are working with unlabeled data, as in the LMbench
measurements. However, the overhead incurred by T-DIFC

may increase even for a program with no active policy
if the program uses labeled data (e.g., reads from a file
labeled by some other program on the system). To measure
these overheads, we explicitly measure the performance
of write syscalls in Section 9.2.

9.2. write Overhead

To better quantify the specific impact of T-DIFC

on performance, we instrument and conduct a series of
measurements on the modified write syscall, compar-
ing the end-to-end results with an unmodified write
call. Specifically, we create a series of test policies that
match the message “Benchmark: T-DIFC”, then run
a varying number of statements within the match block
to set the current process label to varying label sizes. By
measuring the latency of such log writes, we can capture
the end-to-end cost of all of T-DIFC’s functionalities: log
regex matching, execution of the policy code corresponding
to the matched regex, and permission checks and label
propagation. We tested all combinations of label sizes
between 1 and 20 tags, and policy sizes between 1 and 20
statements. We seek to address the following questions:

1) What is the expected overhead of a single write call
under T-DIFC?

496



Figure 5: Effect of external policy code size on the mean
write times to a monitored application log. The bottom
dashed line is mean time for the write without T-DIFC.
The solid lines are the time taken for the write syscall
with T-DIFC; the bottom line represents a policy size of 1,
increasing up to a policy size of 20. The runtime increases
linearly with the number of policy statements.

2) How is this overhead affected by the process label size
and policy code size?

3) How much of this overhead is attributed to the three
operations listed above per write call?

To address points 1 and 2, we report the end-to-
end latency (measured in user space) of varying label
size and policy size in Figure 5. As can be seen, costs
increase linearly with both label and policy size. This is
because labels with more tags requires more iterations
of the copy operation to propagate the tag to the written
file. Likewise, increasing the number of policy statements
means proportionally more code must be executed on
each match. Because of the high level of optimization
of the normal write call, the overheads of T-DIFC are
quite high, ranging from 154% (Label and Policy Size
is 1) to 3184% (Label and Policy Size is 20). However,
the policy size costs only appear on write events to the
monitored application log, not all write calls. Under normal
circumstances, write latency would only be affected by
the number of tags being propagated (i.e., label size).

As mentioned above, the runtime performance of T-
DIFC is dominated by three operations: log regex matching,
permission checks and label propagation, and execution of
the policy code. Of these, log regex matching and policy
code only impact writes to monitored application logs,
while permission checks and label propagation occur on
every write. Thus, we can find the expected overhead
for other writes by examining the cost of permission
checks and label propagation. To do so, we instrument
these three operations in T-DIFC’s kernel code and observe
performance for all combinations of label size (1-20) and
policy size (1-20). Figures 6a and 6b show how these
overheads vary as either label size or policy size is held
constant while the other varies. We observe that varying
the label size (Fig. 6b) increases both the overhead of label
propagation and policy code execution, while varying the
policy size only increases the cost of policy code execution.
Further, the overhead of executing policy code dominates
the cost of label propagation; the overhead from permission
checks and label propagation is 5 μs or lower for label
sizes of up to 10 tags, as opposed to double that overhead

(a) Policy Code Size

(b) Label Size

Figure 6: Mean time costs imposed by specific T-DIFC

tasks under different policies. “Log Regex Match” is the
time needed to match all regular expressions, “Perms, Label
Prop.” is the time needed to do permission checks and
label propagation, and “Execute Policy Code” is the time
needed to execute the policy statements within all matched
blocks. In 6a label size is fixed at 10 tags, while in 6b
policy size is fixed at 10 statements. The time to conduct
regex matches remains fixed across both experiments.

for executing policy code. This is encouraging since only
the label propagation cost is imposed on every write. The
time taken to match log regexes does not vary.

9.3. Application Workload Overhead

Although T-DIFC incurs relatively high overheads on
log writes, log writes comprise a very small proportion of
executed code in real programs. To get a better impression
of expected overheads for real programs running T-DIFC

policies, we measure some end-to-end runtimes of FTP
transfers to a ProFTPD server running the policy introduced
in Section 8.2. We use ProFTPD version 1.3.5e from
Ubuntu 18.04.1 LTS, and the Linux NetKit 0.17 FTP
client. The ProFTPD server is configured to use SQLite
3.22.0 as its authentication backend. We measure the total
time taken for the FTP client to authenticate to the server
locally, then either store or retrieve a file via the put
or get command, and finally exit. The files are random
bytes, varying in size from 1 byte (1B) to 1 gibibyte (1G).
We also performed a test where the 1G file is transferred
100 times within the same session.
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(a) FTP put

(b) FTP get

Figure 7: Mean performance costs of T-DIFC on FTP
workloads. Results are averaged over 100 trials, except for
100G which was performed once. Any overhead imposed
by T-DIFC falls within the measured error.

The measured times can be found in Figure 7. For this
policy, the measured overhead was negligible. We note
that there are many factors causing this measurement to
be more favorable to T-DIFC. While the ProFTPD policy
described in Section 8.2 is useful and achieves our goal
of access control for ProFTPD application users, it is very
simple, with only one match block and a maximum running
label size of 1. As seen in 9.2, the expected overhead of
write calls for small label and policy sizes is significantly
lower than the expected overhead for larger label and
policy sizes. Additionally, ProFTPD only emits a single
log message per session when the user authenticates. Thus,
the overheads reported in the prior section seem unlikely
to be observed under realistic conditions.

During testing, we observed that authentication to
ProFTPD using the SQL backend is relatively slow;
examining the specific results in Figure 7, we see that this
authentication essentially dominates the observed runtime
for the smaller files (from 1B to 1M). Authentication takes
around 2 seconds, which dwarfs the 2 μs overhead from a
T-DIFC log writes with a label size and policy size of 1. On
the other hand, for larger files, the data transfer ended up
dominating the measured runtime. Presumably, if ProFTPD
is parallelizing the actual file I/O and network activity, then
the cost of label propagation for writing the file is only
incurred for the final write of the transferred data. Once
again, an overhead of around 2 μs is insignificant relative
to the 45 seconds needed for actual data transfer.

10. Discussion & Limitations

General Feasibility of T-DIFC. In Section 8, we ob-
serve broad trends in the applicability and utility of T-DIFC

for different classes of programs. Applications that contain
application-specific notions of users (i.e., not system users)
will consistently log authentication events, providing T-
DIFC with the ability to infer useful subjects labels as
well as partition process execution into fine-grained event
processes. This includes many server applications (e.g.,
proftpd, cupsd, httpd) and some clients (e.g., wget,
squid). The ability to partition processes on high-level
subject labels effectively meets half of the requirements for
T-DIFC to define a useful policy; the other half is whether
T-DIFC is able to precisely mediate data accesses based
on the kinds of objects that the application handles. At
this point, application categories such as databases and
and web applications highlight a notable limitation of T-
DIFC’s design – at present, we lack the ability to effectively
data partition over objects such a databases, which appear
as monolithic files from the kernel’s perspective. This
limitation is ultimately due to a semantic gap problem that
also posed deployment challenges for classic DIFC systems.
In future work, we hope to explore whether T-DIFC could
be extended to support transparent data partitioning in
order to overcome this problem. One possibility is that the
labels emitted by T-DIFC could be propagated to low-level
data structures such as memory pages and file blocks, then
handled like a traditional authorization denial at the kernel
level if a information flow violation is detected. Fortunately,
our application survey discovered that such an intervention
is often not necessary. This is because many classes
of applications, most notably different kinds of network
servers, handle application-specifc user semantics while
handling data objects at the standard system abstraction
(i.e., files). In this scenario, no further intervention is
required to define useful T-DIFC policies. For this reason,
we feel that network servers are the “killer application”
for our current design.

Performance optimizations. While we made some
effort to optimize the performance of T-DIFC, e.g., by
representing tags as integers to avoid string comparisons,
the overall system design is aimed to accommodate arbi-
trarily large labels and policies. Thus, we chose to use red-
black trees to represent label sets, allowing for logarithmic
complexity in the case of extremely large labels. In practice,
policies may not actually require very large labels, so it may
be faster to represent labels as sorted arrays rather than red-
black trees, reducing the amount of memory dereferencing
required at runtime.

Trusting application event logs. To achieve trans-
parency, T-DIFC references application event logs to pro-
vide DIFC guarantees. In some ways, this is analogous to
past DIFC systems’ trust in the application itself; however,
because these systems were able to modify the program,
they often minimized the attack surface by defining guard
modules that operated in a dedicated process space (e.g.,
[21]). Because T-DIFC operates transparently, it is not
possible to achieve such privilege separation in the same
way. Extending T-DIFC to include the ability to voluntarily
and permanently relinquish capabilities may allow certain
applications to emulate this form of privilege separation.
Worse yet, recent work has demonstrated sophisticated
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runtime attacks that alter the contents of audit logs through
control flow and data flow manipulation [45]. This attack
is a concern not just for T-DIFC but also all threat detection
and investigation tools. One possible way to defend against
this attack is to cross-validate the application logs’ contents
against ground-truth control flow information [45].

Distributed support. T-DIFC treats network sockets
as endpoints where any outgoing (and incoming) data must
be declassified; this is the same approach as in previous
systems like Flume [21]. Support for transmission of
classified data would require a distributed reference monitor
capable of tracking and coordinating information flows
between cooperating machines. The design requirements
of such a system have been explored in prior work [27]
but are beyond the scope of the present study.

Implicit declassification. As discussed in Section 5.3,
socket writes may implicitly declassify a label Lp. First,
for a tag t that is not owned by p, implicit declassification
can never lead to unpermitted exfiltration, as the owner
can remove t− from the default capability set. Second, the
maximum label size restriction is designed for common
scenarios; for example, in the case of client handler
processes that are already launched with the appropriate
tag for the authenticated user u, allowing at most 1 tag
when sending data ensures that the client cannot exfiltrate
multiple users’ data, as this would result in the process label
containing at least two tags. Thus, implicit declassification
accounts for one of the classic motivating scenarios for
DIFC – smash-and-grab web attacks in which an attacker
is able to exfiltrate many hundreds of users’ data using a
single client session. This said, unintended declassification
may occur if the policy’s tag restrictions are incorrect or
if data flows into the target application in an unanticipated
way. The difficulty of specifying correct security policies
is a common challenge for access control systems, one that
we share. Ultimately, we feel that implicit declassification
is a necessary compromise in order to provide DIFC
enforcement for legacy and unmodified applications.

Usability. While we have demonstrated the applicabil-
ity of T-DIFC, it may be that defining complex policies
for cooperating programs poses a significant cognitive
burden on machine operators. The difficulty of correctly
defining system-wide security policies is a well-known
problem, one that we expect T-DIFC also suffers from.
That said, administrators must commonly review log output
when diagnosing faults or investigating threats, and log
output is often well-documented. Further, T-DIFC can
interoperate with SELinux such that system-wide security
can be achieved without defining DIFC-aware policies for
every application. Ultimately, further work is required to
determine the usability of the interface exposed by T-DIFC

to machine operators.

11. Related Work

Myers and Liskov originally proposed programming
language constructs to enforce DIFC [30]. JFlow is a Java
extension including such DIFC constructs that transpiles
to Java [29]; the successor to JFlow, Jif, is also capable
of enforcing integrity [31] [32]. Flow Caml is a similar
extension for OCaml [37]; LIO is a Haskell library enabling
DIFC [39]. While there are many benefits to programming

language-level enforcement of DIFC, such as static check-
ing for reduced overhead or more exact dataflow analysis
for tainting, such an approach necessitates source code
modifications, which we seek to avoid.

Another approach to DIFC is to add explicit support
within the OS. Existing reference monitors for Unix-
like systems apply a security policy to programs without
requiring extensive source code modifications, but are
unable to handle the fine-grained decisions in DIFC [28]
[10] [24] [43]. Previous OS-level DIFC implementations
include Asbestos [8], HiStar [48], Flume [21], and Laminar
[34]. However, Asbestos and HiStar are entirely new oper-
ating systems with new interfaces, thus requiring source
code changes to leverage their DIFC primitives. Although
Flume extends Linux and OpenBSD and is designed
to require minimal source code modifications, porting
existing applications to Flume still requires some amount of
development effort to modify application sources. Similarly,
though Laminar is a Linux security module, it still requires
source-level changes.

Even for OS approaches to DIFC, programs must
somehow label and declassify data. Typically, this is done
by introducing new system calls, but leveraging these
system calls will necessarily require source code changes.
SIESTA connects the OS DIFC mechanisms from SELinux
with language-level mechanisms in Jif [16]. However, this
requires the program to already be written in a DIFC-
supported language.

Specific DIFC policies using prior knowledge could
automatically infer labels and apply the policy as part of
a language’s runtime. For example, JSFlow is a JavaScript
interpreter that achieves dynamic information flow tracking
that automatically distinguishes user data from input fields
from public data [15]. It is then possible to enforce policies
restricting where user data may flow without modifying
source code. However, this approach is limited to a specific
language and type of policy.

Systems such as EASEAndroid and TOMOYO Linux
aim to address a different aspect of usability [13], [42].
These systems aid in the analysis and generation of
IFC policies for TOMOYO’s own reference monitor or
SEAndroid (a port of SELinux to Android), respectively.
These systems focus on a different problem and are also
not specifically designed for DIFC.

Many existing works focus on bringing better security
support to existing applications. TightLip ports existing
applications by allowing users to identify sensitive data;
it then monitors this data using “doppelgangers” to track
potential security breaches [47]. RIFLE translates program
binaries to a new ISA that enforces information flow secu-
rity with specialized hardware [41]. InfoShield is a similar
architecture that instead enforces a new “information usage”
security policy [36]. We seek to similarly support DIFC in
legacy applications, but with only a Linux security module
and per-application software policies. TaintTrace allows
for data flow tracing of existing programs by rewriting
the binary, but causes a significant 5.5× slowdown at
runtime [4]. Our overall objective is different — we seek
to enforce DIFC according to some program-specific policy,
not dynamic taint tracing — and we seek less performance
overhead.

Our strategy to identify where the contexts of a running
process may change is to watch the application’s logging

499



behavior. It is typically considered good practice to log key
events during execution; around half of all logs identify
key points during execution [11]. We use log writes as
markers to identify when the process’s contexts need to
be adjusted, what data labels are appropriate, and whether
declassification is allowed. Identifying key events with logs
has been used for similar tasks, such as error diagnosis
[46], performance profiling [50], and execution partitioning
[14].

12. Conclusion

We present T-DIFC, a solution that harnesses ap-
plication logs to enable transparent DIFC policies. We
demonstrate that for many existing programs, application
logs carry enough information to enable designing useful
DIFC security policies. A major drawback of DIFC is the
requirement to port existing programs to use DIFC features,
which is often unfeasible due to lacking development power
or closed-source programs. By mitigating this drawback, T-
DIFC can be more practically deployed in current systems.

Availability

Our code is available at https://bitbucket.org/sts-lab/
tdifc/src/master/.
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