2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P) | 978-1-6654-1614-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/EUROSP53844.2022.00050

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

Captcha me if you can: Imitation Games with Reinforcement Learning

Ilias Tsingenopoulos, Davy Preuveneers, Lieven Desmet, Wouter Joosen
imec-DistriNet, KU Leuven
3001 Leuven, Belgium
{firstname.lastname} @cs.kuleuven.be

Abstract—Since their inception, Captchas have been widely
used as reverse Turing tests for combating bot proliferation
on the web. This has resulted in an arms race between
bot developers that automate Captcha solvers and Captcha
services that adjust the challenges accordingly or come up
with new ones altogether. Ultimately, older generations could
be bypassed consistently, and thus in the third version of
reCAPTCHA, Google offers zero user friction. The intent
in the new system is not only to avoid interrupting user
experience but to also obfuscate the nature of the challenge
itself, being much less prominent than a text or image
recognition task.

We introduce a methodology that learns through inter-
action how to evade detection, while collecting and analyzing
reCAPTCHA v3 scores over fifteen months and various web
environments. With reinforcement learning as the backbone,
we build models that can simulate human-like web browsing
behaviour by using the returned score as an informative
signal. Our study exposes an important vulnerability: while
the score is influenced by a multitude of undisclosed factors,
it is easily accessible and it enables adversaries to learn and
perfect evasive models. Notably, we demonstrate that our
automation models, which integrate general web browsing
capabilities, transfer between websites with an evasion rate
up to 99.6%.

1. Introduction

The prospect of automation reshapes our notions of
work, productivity, and efficiency, as it bestows us with the
capacity to simplify laborious tasks or turn them obsolete.
Despite that promise, advances in automation and Al
can also benefit abusive and malicious behavior in online
activities, with examples ranging from social media bots
[12], to botnets and DGA-based malware [3], and even
botting in multiplayer games [10]

In the fight against the proliferation of bots and abusive
automated solutions, “Completely Automated Public Tur-
ing test to tell Computers and Humans Apart” or Captcha
for short has proven to be as a group of approaches [48]
indispensable and widely adopted as a defensive solution.
Such abusive or malicious activity is often motivated by
direct financial incentives so there has always been a high
demand in automated solutions — or poorly compensated
human solvers — for Captcha. In response, Captcha de-
velopers have consistently tried to stay one step ahead
in the competition between human problem-solving skills
and their algorithmic approximation. This competition
has elicited various fundamental and ad-hoc changes in

© 2022, Ilias Tsingenopoulos. Under license to IEEE.
DOI 10.1109/EuroSP53844.2022.00050

719

Captcha design that can render a solver ineffective, as each
solver is usually crafted for specific types of Captcha. The
arms race has come a long way, with bot authors devising
novel solvers and Captcha services initially gravitating
from text-based to image-based challenges. Most recently,
the interactive part of the Turing test — the challenge itself
— is gradually being removed as it becomes progressively
more arduous for humans to solve. After all, a Captcha
challenge maintains its practical utility insofar as it is
easy for humans but difficult for automated approaches
to solve.

Nevertheless, the burgeoning capabilities of Al, par-
ticularly in computer vision and image segmentation, call
the security offered by text and image based Captcha
into question. Regarding text-based Captcha, it has been
demonstrated that a generic solution can be used to solve
new Captcha schemes without requiring an ad-hoc ap-
proach [8]. At the same time, automated solving has
been shown possible also for the full range of challenges
presented by Google’s reCAPTCHA v2, challenges that
are primarily image based [40]. As automated solutions
proliferate, the foundations upon which challenge-based
Captcha is built seem unreliable.

A recent version of Google reCAPTCHA is v3 and
the first to offer completely frictionless user verification
by simply observing the user and the information they
generate. The motivation in v3 is twofold, to minimize
the interruption in user experience and at the same time
conceal the exact nature and presence of the challenge: it
is the next move in the imitation games. In place of an
explicit challenge that calls for a solution, reCAPTCHA
v3 service returns a score to the back-end based on inter-
actions within the website, and enables the host to take
appropriate actions based on that score. In the absence of
an explicit challenge, the whole web session of the user
is the challenge. In fact, v3 constitutes a paradigm shift
over all previous approaches in Captcha solutions so far:
it verifies users without interrupting them or presenting
any challenge.

We set out to explore three key research questions
in this work: Can we disentangle the information that re-
CAPTCHA v3 is recording to determine how it influences
the final score? Can we evade reCAPTCHA v3 detection
by simulating human behavior and if yes, under which
conditions is the above possible? Finally, can we utilize
reCAPTCHA v3 as an oracle in order to learn a general
evasive model of online behaviour? Answering these ques-
tions positively would indicate significant vulnerabilities
in reCAPTCHA v3.

To that end, we build an automation framework that

is able to navigate the web in a GUI-enabled manner.
As a first step, we host our own website protected by
reCAPTCHA v3 as a testbed and in order to evaluate the
extent that it can be exploited. Then we step into the wild,;
we scale up our experiments to two live websites not under
our control with considerable daily traffic. Finally, we
build a substitute model that mirrors the reCAPTCHA v3
risk analysis system and perform an explainability analysis
to it in order to evaluate how different web browsing
aspects contribute to the score and thus how adversaries
could potentially exploit it.

Over an extensive period of manual and fully auto-
mated experiments, we show that it is possible to consis-
tently avoid detection in widely varied web environments.
Additionally, we show that it is possible for an adversary
to exploit the implicit challenge itself in order to learn
a web browsing behaviour with up to a 99.6% eva-
sion rate. To actualize that, we leverage a state-of-the-art
reinforcement learning (RL) methodology as the learning
component of our automation framework, which is trained
by interacting in an online manner with the websites in
question, requesting verification, and using the score as an
informative signal. The task and the environment are for-
mulated in a manner that allows a general evasive model
to be learned, something that can subsequently enable
various automation attacks, from fraudulent transactions,
to credential stuffing attacks and click fraud to generate
ad revenue.

As the gap between human and bot agents diminishes,
Turing tests are shifting towards continuous observation
and verification, and any such test that can be consistently
queried will in practice serve to further diminish this gap;
bots are inadvertently created in our own image. While we
propose potential defenses, these practically slow down
this process as reliable and pervasive human verification
on the web remains essential.

The contributions of our work can be summarized as
follows:

o To the best of our knowledge, this is the first com-
prehensive study of reCAPTCHA v3 along with its
advanced risk analysis system.

« We propose a novel RL-based automation framework
that consists of three different types of agents, each
more capable than the previous in simulating human
web browsing behaviour.

« We collect and study verification scores over a period
of fifteen months in various web environments, and
perform a state-of-the-art explainability approach to
quantitatively evaluate how different factors influence
the score.

o We perform an extensive evaluation of our proposed
approach over three different websites. The most
comprehensive agent — one that incorporates navi-
gation, typing and scrolling as capabilities — suc-
cessfully transfers to third-party websites reaching an
evasion rate up to 99.6%.

The remainder of the paper is structured as follows:
Section 2 provides the necessary background on the do-
main and reviews the related work. Section 3 analyzes how
reCAPTCHA v3 operates, from its source code to its web
mechanisms. Section 4 describes the web environments
and our automation framework. In Section 5 we elaborate
on our experimentation and analyze our results. In Section

720

6 we discuss insights, limitations and challenges, before
concluding in Section 7.

2. Related Work

Completely Automated Public Turing test to tell Com-
puters and Humans Apart, or CAPTCHAs as they are
more commonly known were initially conceived as a chal-
lenge-response test to determine whether or not an entity
interacting with a website is human or machine. While
there is controversy around who came up with the concept,
which has been around since the late nineties [34], the
term Captcha itself initially appears in the work of von
Ahn et al. in 2003 [44]. What is of particular interest
in this work is that it constitutes the first exploration
of utilizing Al problems as security primitives, drawing
parallels with prime factorization in cryptography.

The first generation of Captcha schemes was based
around recognizing combinations of distorted characters.
The straightforward assumption is that it would be easy
for humans to recognize the characters and complete the
challenge, but difficult for Al Text-based Captcha also
proved instrumental in digitizing old archives and books,
as many of the challenges presented to the users were
texts flagged by optical character recognition (OCR) as
unreadable. In terms of individual characters, it has been
demonstrated that machine learning (ML) algorithms con-
sistently outperform humans in recognizing them [9]. The
resilience of a text-based Captcha to automated solving
therefore lies in the difficulty of segmenting it into seg-
ments containing individual characters [8]. As anticipated,
this has led to an arms race between Captcha creators and
automated solving attacks, by applying new distortions
and creating new segmentation techniques tailored to these
distortions respectively [13].

Around 2014, Google introduced a new reCAPTCHA
mechanism purported to be more human-friendly and
secure. This version of reCAPTCHA which is still ac-
tive to this day is known as v2, while in 2018 Google
retired reCAPTCHA vl that was based on text character
recognition; it was no longer fit for purpose as it was
demonstrably more difficult to solve for humans than
Al Unlike its predecessor, the reCAPTCHA v2 challenge
consists of two sequential parts: a system that performs
the initial risk analysis, and in case this analysis flags
traffic as suspicious, then the user will be prompted to
solve a Captcha challenge. The challenges presented in
the latter case are image recognition problems, e.g. the
user is asked to select among a collection of pictures the
ones that contain the designated object or property.

Al problems were not always used as fundamental
primitives in computer security. In their seminal work, von
Ahn et al. [44] assert that the advantages of using hard Al
problems as a means for security are twofold. If the prob-
lem cannot be solved, then it remains as a reliable method
for distinguishing humans from Al. If the problem can be
solved, then that is by itself beneficial in the progress
towards stronger Al In the case of image- and text-based
Captcha, contemporary Al solutions are capable of better
than human segmentation and recognition in both images
and texts [8], [24], [40]. As reliable human verification
online is of essential importance and will not go away

in the foreseeable future, we inquire as to how can these
Turing tests stay one step ahead.

One such approach is Captcha based on game playing,
also known as Dynamic Cognitive Games (DCG), that
attempts to make Captcha solving a fun activity for the
user [31]. Such solutions are still vulnerable to automated
solving and additionally require a higher engagement
from the user which can be frustrating while browsing.
While hard AI problems are becoming easier to solve,
we observe a paradigm shift in current Captcha solutions.
When bot detection [16] and biometric authentication [18]
transition from one-shot to continuous tasks, this acceler-
ates the competition between detection and evasion. As
bot detection systems start relying on behaviometrics and
constant checks to detect bots, the continuous relaxation
of the problem — in the temporal and decision domains —
introduces a new vulnerability. The implication here is that
when designing new Captcha, the paradigm is no longer a
competition between incremental design adjustments and
ad-hoc tailored bypasses/solutions, but two Al-enabled
systems that engage in a competitive, online game, one’s
decisions becoming the other’s information.

2.1. Evasion

Currently, there are several approaches available in
order to evade or solve Captchas: employing ML in order
to solve the challenge or exploiting bugs in the implemen-
tation to bypass the Captcha altogether. A third option is
through websites like anti-captcha or 2captcha that employ
cheap human labor [46]; such availability has led to the
emergence of Captcha solving markets [32].

While bug exploitation is short-lived as bugs and
workarounds are quickly patched, the immediate threat
is posed by automated solving-based attacks. Bursztein
et al. [8] introduced a generic text CAPTCHA-solving
algorithm based on RL and asserted that text based
CAPTCHAs schemes are inherently vulnerable. Their
approach obviates any hand-crafted components, so it
generalizes to new text-based CAPTCHA schemes, and
assigns a score to all possible ways of segmenting the
text. Being one of the first approaches to use RL in
Captcha solving, they ask humans to annotate segments
that have been misclassified and the RL algorithm learns
from feedback and selects the segmentation that gives the
highest score. This conclusion was reinforced by Ye et
al. [50] which presented a deep learning-based approach
that could solve with high success rate 11 different text
Captcha schemes commonly used at the time by the top-
50 popular websites.

Regarding image Captcha, Sivakorn et al. [40] conduct
a comprehensive study of reCAPTCHA v2 by exploring
how the risk analysis process is influenced by various
aspects of the request: browsing history, Google account,
geo-location and browser checks. They also design a mod-
ule that upon receiving a challenge automatically extracts
the images and passes them for annotation to widely used
tools like Google Reverse Image Search and Clarifai. They
also conclude that ML capabilities have reached a point
where distinguishing between humans and bots through
such challenges is unrealistic. While reCAPTCHA v2 is
constantly adapted to account for new attacks, it is still
vulnerable to this day. The latest work on attacking v2 is

721

from Hossen et al. [20], where they propose an automated,
object detection based attack, and successfully solve most
(83.25%) of the image-based reCAPTCHA v2 challenges.

Furthermore, even audio challenges did not prove
resilient to automated solutions, as the authors in [5]
have developed an Al-based solution to solve audio
reCAPTCHAs. A most recent work [15] systematizes
the knowledge around the broad domain of automated
Captcha solving that includes text, image, audio and video
challenges.

2.2. Behaviometrics

Up to this point, Captcha challenges have proven
inadequate to effectively differentiate between humans and
bots as they can be consistently bypassed by automated
solutions. This has led researchers to consider introducing
behavioral biometrics, or behaviometrics for short, into
the Captcha challenge. The idea to utilize behaviometrics
to differentiate between legitimate users and bots has
existed for some time [1], [49]. Collecting behavior data
is considered advantageous by merit of being unobtrusive
while offering accurate identity verification. The first work
to have successfully incorporated mouse behaviometrics
as part of a Captcha challenge was by D’Souza et al.
[16]. Specifically, they extract mouse features such as
movement speed, click time, and angle of curvature, in
order to build what they describe as Mouse Dynamic
Signature (MDS) profiles. A Support Vector Machine
(SVM) classifier is subsequently trained on such profiles
that achieves near-perfect accuracy in bot detection. Be-
haviometrics offer several advantages over typical Captcha
challenges as they do not interrupt user experience and
conceal the nature of the challenge, a deterrence against
automated solutions.

Another advantage of zero challenge Captcha is that
since it does not interrupt the user, it can be continuously
evaluated and thus over time and during a web session it
can lead to more accurate detection. This property draws
a direct parallel between such Captcha and active authen-
tication, which is the process of continuously verifying a
user based on their ongoing interactions with a computer.
In [18], Fridman et al. present a methodology where they
can continuously and successfully authenticate users based
on multiple modalities: mouse and keystroke dynamics, as
well as stylometry. The application might be different in
that case, that is intruder detection, but the principle is
readily applicable to the context of bot detection; telling
a human apart from another is not that different from
telling a human apart from a simulacrum. In the most
recent work on behaviometric Captcha, Acien et al. [1]
build a scheme that works solely on mouse trajectories,
and they show that a mouse-based CAPTCHA can be a
highly dependable bot detection system. Before attempting
to break reCAPTCHA v3 though, we require an in-depth
investigation and understanding of its mechanisms.

3. reCAPTCHA v3

Version 3 is one of latest additions in the range
of Google’s reCAPTCHA services, the first of the
CAPTCHASs to achieve that without any user friction. It
employs an advanced risk analysis system to generate a

score ranging from O that is very likely a bot to 1 that is
very likely a human, based on a host of information and
interactions within a website. The back-end can request
verification at any point or time a user takes a specific
action within the website. At first sight, the transition
from a conspicuous, distinct Captcha challenge to an
obfuscation of where or what exactly is the challenge can
be considered advantageous for both users and adminis-
trators, for a number of reasons: it does not interrupt user
experience, it obfuscates the exact nature of the challenge,
and in place of a binary decision it returns a more granular
score that is delegated to the back end.

There is potentially another reason for the transition
from one-shot, explicit challenges, to a model more akin
to continuous authentication by observing interactions and
generating intermittent risk scores. While AI might be
constantly closing the “hard for Al - easy for humans
problem” gap, von Ahn et al. [44] point out that no matter
how small this gap becomes, as long as there remains
one between the human and the Al ability with respect to
some problem, this problem can be used as a primitive for
security. Rather than asking the user to solve a problem
once, we can ask them to solve the problem multiple
times. Even better, if the problem does not require any
explicit input from the user and does not interrupt them,
it can be solved continuously.

As is the case with v2, the latest version of re-
CAPTCHA embeds a widget in the website that it protects
while it offers granular and adaptive scoring to the web
admins and frictionless and uninterrupted experience to
the user. Naturally, to prevent analysis from third parties,
the widget’s JavaScript code is obfuscated. The JavaScript
code from reCAPTCHA v2 has been de-obfuscated and
has provided insights as to what information exactly is
being recorded and forwarded to Google'.

3.1. Source Code Analysis

The JavaScript code that implements reCAPTCHA v3,
and that always kicks-off at page load, is polymorphic and
protected by virtualization-based obfuscation. We man-
aged to hook the debugger and witness the various events
being logged and processed, yet we were unable to reverse
their encoding or meaningfully control the final response.
Our attempts were hampered further by multiple levels
of timeouts and sanity checks, and while it was possible
to directly manipulate some relevant variables, we did not
manage to affect the score, most likely due to the variables
being manipulated either at the wrong time or in the wrong
way.

More specifically, we utilized the well-known Burp
suite to capture the request responsible for sending the
reCAPTCHA v3 JavaScript code back to the browser and,
each time, insert a breakpoint in the code. The exact
position of the breakpoint was determined via trial-and-
error, as pausing in certain locations caused the multi-
threaded code to become desynchronized. Subsequently
we coarsely iterate through the code and see clear signs of
session-related variables, such as the respective Navigator
object, being manipulated. However, manually modifying
the values of said variables did not have an observable

1. https://github.com/neuroradiology/InsidereCAPTCHA

722

effect on the score. By inspecting the named variables in
the source code we identify a multitude of strings that re-
late to user browsing behavior; “mousedown”, “mouseup”,
“mousemove”, “mouseover”’, ‘“mouseenter’, ‘“keydown”,
“keyup” and others. This information can pertain to func-
tionalities separate from how the score is generated, or
also used as a red herring.

While manipulating this information at a low-level by
capturing requests and perturbing session variables proved
ineffective, our low-level analysis yielded insights on how
to affect the score through a higher level abstraction.
The further prototyping of our attacks was facilitated
by contrasting what is implicitly or explicitly monitored
by the source code on the one hand and the wealth
of information every user generates continuously and in
principle unconsciously during a web session on the other.
IP address, the presence of cookies, the user-agent string,
all embody the invariable part of the session information
collected. The variable part is user dynamic behavior —
timings, mouse and keyboard dynamics — which has the
potential to affect the score; the goal of our approach
is to simulate such behavior so that it evades detection.
After all, security by obscurity is a fundamentally flawed
approach, so we proceeded to put our hypotheses to the
test.

3.2. Website Integration & Evasion

Unlike reCAPTCHA v2 where the user is required
to click the “I am not a robot” checkbox, v3 offers
two ways of generating the token that is subsequently
verified by Google. It can be generated either by binding
the challenge to a button within the website, or by pro-
grammatically invoking it when the user takes a specific
action while browsing the website. The latter offers higher
granularity on where exactly does abusive behavior actu-
ally occur, and a detailed summary for these locations in
Google’s admin console. In order to adapt the risk analysis
for each website, Google’s admin console requests to
specify an action name in each place that reCAPTCHA
verification is executed, implying that separate statistics
are kept for each such action. After the token is generated,
the back-end forwards it to Google together with the
website’s sitekey in order to be verified. Finally, a score
s €{0.1,0.3,0.7,0.9} is returned to the back end, where
the decision on how to act on it is transferred to the
administrator. Based on the score, the context, and the
adjustable threshold, various actions can be taken, from
requesting further verification or downright blocking the
traffic. This verification flow is shown in Figure 1.

ReCAPTCHA v3 was launched in October 2018 and
while it is widely prevalent on the web, protecting at the
time of writing 8.5% of the top 10K websites and about
1.1M in total®, there has been a puzzling lack of research
on it. One exception is by Akrout et al. [2], where they
propose a methodology to bypass reCAPTCHA v3. How-
ever, there are some limitations that we intend to address
through our work. The authors do not mention how they
handle the lack of the “I am not a robot” checkbox — or of
any other challenge for that matter — in reCAPTCHA v3;
after all the goal in v3 is to offer completely frictionless,

2. https://trends.builtwith.com/widgets/reCAPTCHA-v3

reCAPTCHA server

Google £

A

—‘ JSON with score

5

2

| g-recaptcha-response I

4

| g-recaptcha-response

secret key
\ 4
3

g-recaptcha-response }—)

Site key

figger
P 3 Jl protecied by recaPTCHA
——

Website

Figure 1: reCAPTCHA v3 verification workflow.

Web server

uninterrupted web experience. In the absence of such
a transparent challenge and response interface that can
be consistently queried, a methodology that endeavors to
learn on it presupposes the definition and implementation
of such an interface. Secondly, pixel by pixel mouse con-
trol and mouse trajectories as a composition of multiple
smaller ones are insufficient to describe realistic, human-
like mouse dynamics. Finally, mouse dynamics are just
one aspect of human browsing behavior; we intend to
explore a broader definition that includes other behavioral
modalities as well as the effect they have on the score.

The research question behind [2] is compelling: given
a black-box system that can differentiate between human
and bot activity, an adversary can use it as an oracle —
observe its decisions w.r.t. to their activity — in order to
simulate a behavior that evades it. This capability has been
widely investigated in the image classification domain,
where black-box adversarial attacks against ML models
are progressively more evasive and efficient [7], [21]. In
text-based Captcha, Bursztein et al. [8] also rely on RL
in order to solve the conundrum of segmenting the image
into individual characters and classifying these characters
concurrently. One reason RL enables optimal solutions to
otherwise inscrutable problems is due to policy gradients,
fundamental methods in RL that allow for the gradient-
based optimization of non-smooth, non-differentiable ob-
jective functions [41].

In light of the above, the objective of our approach is
to understand how the information collected influences the
risk analysis score, to evade detection, and to confirm if a
general, evasive model of online browsing can be learned
by exploiting reCAPTCHA v3 as an oracle.

4. Approach

Having explored the manner in which reCAPTCHA
v3 operates, we elaborate on the building blocks of our
approach that will make evasion as well as learning pos-
sible. To that end we utilize three instruments:

o Three websites that incorporate reCAPTCHA v3 for
bot protection, one self-hosted and two live with
considerable traffic.

723

« The python library PyAutoGUI® to programmatically
control the mouse and keyboard. We opt for PyAu-
toGUI as it is lightweight, works at system and not
only at browser level, and to the best of our knowl-
edge is the only library that offers fine-tuned control
of user input — a prerequisite to construct human-
like browsing. We also experimented with Selenium
and we did not observe any negative impact on the
reCaptcha scores; in that way it has the potential to
work in conjunction with PyAutoGUI or even in its
place.

« RL as a methodology to learn evasive browsing be-
havior, at multiple levels of resolution: controlling
mouse trajectories, controlling timings, and finally
controlling sequences of actions while browsing, e.g.
navigating, scrolling, and typing.

4.1. Preliminaries

While the websites embedding reCAPTCHA v3 con-
stitute the environment, we require a formal description of
the RL agents behind our web automation; in this subsec-
tion we provide the necessary terminology and theoretical
background. We consider web browsing as an environment
where human or bot agents interact with, in sequential and
episodic fashion. This web environment, that is the loaded
web page together with the implicit Turing test performed
by reCAPTCHA v3 can be modeled as a Markov Decision
Process (MDP). MDPs formalize decision making in dis-
crete, stochastic, sequential environments that change state
randomly in response to action choices made by the agent.
As reCAPTCHA v3 is a completely black-box system
acting on a wealth of information that its precise nature we
can only estimate, it is more appropriate to consider this
environment as a Partially Observable Markov Decision
Process (POMDP) [23].

RL is a mathematical formalism for learning-based
control, suitable for solving MDPs and POMDPs. The
objective is to learn optimal behavior — represented by
policies — by optimizing reward functions while interact-
ing with an environment. The reward function defines the
goal of the agent, while the RL algorithm determines the
way to reach it. The enhanced function approximation
achieved through deep neural networks has allowed RL
methods to obtain excellent results in a wide range of
domains, from Atari and general game playing [30], [39]
to various defensive approaches in cybersecurity such as
cyber-physical systems [17], network attacks [29], smart
grid security [35] and mobile edge caching [47]. In com-
parison to other approaches of ML, RL defines a funda-
mentally interactive learning paradigm that consists of an
agent and an environment that interact for a number of
turns.

Markov decision processes. In environments where
outcomes are partially under the control of an agent and
partially stochastic, MDPs are a discrete-time stochastic
control framework for modeling decision making.

An MDP can be defined as a tuple M
(S, A, P,R,v), where S is a set of states s € S, which
can be either discrete or continuous, A is a set of ac-
tions a € A, which similarly can be discrete or con-

3. https://github.com/asweigart/pyautogui

tinuous, P defines a conditional probability distribution
P(st+1]st,a:) that describes the dynamics of the system,
R : S x A — R defines a reward function, and « € (0, 1]
is the discount factor.

A POMDP is an MDP where the agent is unable to
observe the current state, and are thus defined by the
extended tuple M = (S, A, P, R,Q,0O,), where Q is
a set of observations that are used to update the internal
belief state b of the agent and O is a set of observation
probabilities conditioned on actions and resulting states.

Objective. The objective in a RL problem is to learn
a policy, that is a distribution over actions conditioned
on states, m(a¢|s;). A sequence of states and actions of
length N constitutes a trajectory and is given by 7 =
(s0, a0, .--; SN, an). At each time ¢, the environment is in
some state s; € S. The agent takes an action a € A, which
causes the environment to transition to state s;11 with
probability P(s;t1|s,a). Depending on the environment
and the learning task, this process can repeat in episodic
fashion or continuously with intermittent rewards.

The reward R(s,a) is the signal that enables the
agent’s learning. The goal of the agent is to choose
actions at each time step that maximize the expected future
reward. This reward is a function J of the parameters 6
of the policy 7y that generates the actions a at each state
s.

J(0) = [thn(shat)] (1)
s'~P(s'|s,a),a~m(als) =0

where R, o, is the reward earned at time ¢ and -y
determines how much immediate rewards are favored over
more distant rewards. This function can become quite

complex and usually is non-differentiable.

4.2. Websites

As a testbed for experimentation, we host our own
website on a public web server, henceforth named Website
A. Similar to other websites that use reCAPTCHA v3
to protect against bots, it embeds a variety of HTMLS
form fields to offer similar opportunities for keyboard
and mouse-based interaction. It includes text input fields
and a password field to allow for collecting keystroke
dynamics, as well as checkboxes and buttons to capture
mouse dynamics.

We registered our website on Google reCAPTCHA,
configured the site key and secret key provided by Google,
and included the necessary JavaScript code in our website
to capture the Google reCAPTCHA response. The front
end invokes a JavaScript code snippet that uses the site
key to retrieve the token generated by the Google server.
This token is sent to the website back-end, which forwards
it with the site key to the server for verifying the token
and obtaining the score. To facilitate experimentation, our
website embeds a ‘Trigger’ button and a log text area
that displays the information that Google returns in JSON
format.

A similar process is followed on Website B that faces
diverse traffic with daily requests in the range of hundreds.
After acquiring explicit consent from the website owners,
we coordinated with the administrators and deployed re-
CAPTCHA v3 to it. In order to acquire the score that

724

the back-end receives for our requests, as soon as it is
returned by Google we embed it — encoded — in the front-
end. Following Google’s documentation, on this website
we avoided influencing the risk analysis system during its
training period by waiting for one week before initiating
automated interactions.

Finally, Website C is a frequently visited website
that gets 33K daily requests on average. This website
had already integrated reCAPTCHA v3 for bot protection.
After explicit consent from the website owners and a
carefully planned experimentation protocol, we use it to
evaluate our most capable model. The intention with this
website is to represent the full black-box case, where an
attacker has no knowledge other than a binary signal:
if they are allowed to continue browsing or if further
verification is required.

4.3. Environment

In the documentation, Google has established that
the reCAPTCHA v3 score is based on interactions with
the website. In order not to enable adversaries and bot
developers, they will not divulge the extent of what exactly
is being monitored — besides the named variables in the
source code — or how it affects the score. This effectively
conceals the game being played between the adversary and
the detection system. Under this uncertainty, we need to
formulate the structured form of rules that will represent
this imitation game. Previous work [26], [40] identified
a range of checks performed by reCAPTCHA v2 for
detecting suspicious characteristics of the environment,
as well as common automation tools that web bots use.
Our intention is to avoid biasing the risk analysis sys-
tem towards either bot or human indicators, i.e. avoid
increasing its confidence state. The assumption is that in
low-confidence states, dynamic behavior on the website
will directly influence the score of a request. In light of
the above and in order to imitate human-like behavior as
close as possible, we obviate any web automation other
than programmatically controlling the input devices.

The environment is composed by three types of infor-
mation:

o The static information, like IP, user-agent, browser,
cookies, etc.

o The dynamic information captured within the view-
port of the website, like mouse or key events and
timings.

o The decision that is returned when the web page
submits a request for verification.

While many control problems take place in real time,
in RL the temporal dimension is necessary to be dis-
cretized in order to make the problem tractable and create
well-defined states where actions are taken from. To that
end we fix the frames per second (FPS) to 50, which
allows for good temporal granularity and smooth mouse
trajectories without being too overbearing to the underly-
ing library.

Our objective is to learn human-like web browsing
behavior that evades detection. In order to successfully
evade and subsequently learn from the risk analysis sys-
tem, there is a plethora of variables to control thus equally
as many degrees of freedom. We separate these variables

into three categories: the ones that we keep constant, the
ones that we stochastically vary, and the ones that are
dynamically controlled by the agent. To achieve optimally
evasive behavior, we defined three levels of control with
expanding capabilities and generality:

o At the least-general level, the agent controls only
the mouse trajectory, specifically the distance and
angle of displacement at each frame. We call this
the Piecewise mode.

o At the intermediate level, the agent controls the
mouse trajectory and a range of timings — mouse
hover, mouse press, and inter-request delay. We call
this the Bezier mode.

o At the most-general level, the agent controls the
mouse trajectory, the timings, as well as other ca-
pabilities like typing and scrolling. We call this the
Abstract mode.

4.4. State-Actions-Reward

State. State representation in RL is a problem sim-
ilar to that of feature representation and engineering in
supervised or unsupervised learning. For an environment
to be solvable by dynamic programming or a RL al-
gorithm, it should exhibit the Markov property: the fu-
ture is independent of the past given the present. This
means that the current state representation should encode
the history of information encountered so far and which
knowledge is necessary in order to act on it. Formally,
a state S; upholds the Markov property if and only
if: P(Si41|S:) = P(Si41/51,-..,St). Here, it is worth
mentioning the difference between observation and state.
In POMDPs a single raw observation might not offer
enough information to constitute a suitable Markovian
state, e.g. the speed that the mouse pointer is moving.
To handle POMDPs there are two options: either utilize
our domain knowledge in order to construct a better state
from the available information, or use techniques that
build missing parts of the state statistically, like a recurrent
neural network (RNN). In the three different modes the
states are constructed as following:

o Piecewise state is a tuple consisting of 5 values:
[a,b,z,y,v], where a,b are the initial relative coor-
dinates, z,y are the current relative coordinates, and
v is the current speed of the pointer in pixels per
frame.

e Bezier state is a tuple consisting of 22 values:
[co,---,¢C9,80,--.,S0,T,t] Where cg,...,co are the
cookie settings of the last 10 web pages visited —
¢n € {0, 1} for cookies disabled and enabled respec-
tively, sg,...,s9 are the last 10 scores received —
sn €{0.1,0.3,0.7,0.9}, r is the session progression
and ¢ is the time in day normalized — r,¢ € [0, 1].
Session progression is calculated relative to the max-
imum number of requests per session.

o Abstract state is a tuple consisting of 20 values:
[so,-- -, S9,0a0,...,a7,7,d] where sg,...,sq are the
last 10 scores received — s, € {0.1,0.3,0.7,0.9},
aop, . .. ,ay are the last 8 actions used — a,, € {1, 2, 3},
r is the session progression and d is the delay be-
tween requests normalized — r,d € [0, 1].

Actions. Each agent mode has different sets of the
actions that are being controlled and others that are defined

725

Goal Box 1

)
1

Figure 2: Agent controlled mouse movement. In red and
blue are Piecewise and Bezier trajectories respectively.

stochastically. As for the temporal resolution: in Piecewise
mode, one mouse trajectory corresponds to multiple steps
and one episode; in Bezier mode one trajectory corre-
sponds to one step and vice versa; in Abstract mode one
trajectory corresponds to one step while one step can
correspond to a trajectory, a scrolling action, or a typing
action.

Piecewise. We define a mouse trajectory from points
A — B to be composed of individual linear segments
A — a3 — as — ... = B. In order to define a segment
for transition, two parameters are required: a) distance
in pixels and b) angle in degrees. The direction of 0° is
recalculated at each step as the line connecting the points
between the current mouse position and the current goal
coordinates.

We consider this parameterization of mouse trajecto-
ries fitting for several reasons: while simple and intuitive,
sufficiently complex and human-like mouse trajectories
can be generated and at 50 FPS the movement is smooth
and plausible. Such an approach is also commonplace
in stylometry, as a way to register and analyze mouse
trajectories [18].

At each environment step, or actual frame, the agent
based on the current state selects two continuous actions,
distance d,d € [0,1] and angle a,a € [—1,1]. These
actions are scaled with the respective absolute values to
calculate the actual distance and angle. For distance, the
unit is 1/20 of the initial distance between the two points.
For less meandering trajectories and higher sample effi-
ciency, we narrow down the solution space by constraining
the angle in the range of [—25°, 25°]. Afterwards, the new
position [z, y] is calculated as well as the new distance to
goal and the 0° direction. This process is illustrated in
Figure 2.

Bezier. We define a mouse trajectory from points
A — B to be along the Bezier curve connecting A and
B that is generated by control points chosen at random in
the range [A,, B;], [A,, By]. We selected Bezier curves
as they generate easy to parameterize smooth trajectories
and are widely used in computer graphics and robotics
[42], [45]; a good fit for human-like mouse control, if not
too good. The agent controls 4 continuous values that are

rescaled to the appropriate range. Duration d € [0.5, 1.5]
that defines the trajectory speed, hover h € [0.2,1.1] that
is the amount of time after the trajectory ends and before
the mouse is clicked, press p € [0.05,0.55] that is the
duration that the mouse button is pressed down, and delay
t € [2,10] which is the amount of delay between each
step/request — listed timings are in seconds. A sample
trajectory is shown in Figure 2.

Abstract. As in Bezier mode, in Abstract mode the
agent controls 4 actions, with one key difference. In place
of delay ¢, at each step the agent now selects between
3 actions to perform; that is scrolling, typing, or mouse
control which is carried out exactly like in Bezier mode.
All are parameterised by the duration, hover, and press
values as before. The value ranges of these actions are
determined by studies carried out in relevant literature
[14], [25]. For more information on these actions we refer
the reader to Appendix A.

Reward. The reward function embodies what we want
the agent to learn or accomplish. In our case the score is
affected by a multitude of factors and it can be a noisy
signal to learn on, thus a simple reward mechanism would
be most practical. For Bezier and Abstract modes, the
reward is the difference between the last received score
and the average cumulative score the agent has received
in this episode:

@)

TBA =8t — (St—1 +* + S0)

where s; is the score at step ¢

In Piecewise mode, the reward is provided at the end
of a trajectory/episode and is a weighted average of 3
terms: the difference between the current and last score,
the amount of steps taken in order to incentivize precise
trajectories, and a small constant term if the score remains
high:

rp =8t — St—1 — 0.001 - Nt + 0.01 - ht
b — 1, if >0.7 3
b 0, otherwise

where s; is the score at episode ¢ and IV, is the number
of steps in episode t.

4.5. Algorithm

To select an appropriate RL algorithm for the en-
vironment, we need to take the properties of the en-
vironment into consideration. As both state and action
spaces are continuous, a value-based approach would be
computationally intractable thus we opt for policy-based
approaches [41]. Policy gradient methods optimize the
policy mg(als) directly, where 6 is usually approximated
with neural networks, and they have been fundamental
to recent breakthroughs in dynamical system control, 3D
locomotion, and game playing. Put simply, the neural
network learns the optimal policy directly, i.e. which
action a to select in state s. From the range of policy-
based approaches, we conducted our experiments with the
Proximal Policy Optimization (PPO) algorithm, specifi-
cally the PPO-Clip variant. PPO [38] is a state-of-the-art
approach in RL that solves many of the issues previous
algorithms had, as it is simple to implement and tune,

726

more general in the discovered policies, and has better
sample complexity. PPO trains in an on-policy manner
by sampling actions according to the latest version of its
stochastic policy. This policy is updated by maximizing
the PPO-Clip objective function. The reader is referred
to Appendix B for further information on PPO-Clip, its
architecture and hyperparameters.

The learning process for the Abstract agent is shown
in Algorithm 1, where: n is the number of actions taken
between each score request, v is the number of steps
between updates to the neural network parameterizing
the policy, M is the total number of episodes, T is the
maximum number of steps in an episode, and a is the
selected action. The pseudocode for Piecewise and Bezier
agents is included in Appendix B. To navigate web pages
and the system interface in general, all agents receive
x,y values corresponding to exact screen coordinates.
If the location within the screen is known in advance,
coordinates are hard coded, otherwise they can be resolved
through our browser extension that retrieves the location
of HTML elements.

Algorithm 1: PPO-Clip Abstract

Set number of steps n per request;

Set policy update frequency u in steps;

for episode e = 1, 2, ... M do do

Get initial score Sp;

for stept =0, 1, ... T do

Select action a;

Select duration d, hover h, press p;

Perform action a parameterised by d, h, p;

if ¢ (mod u) == 0 then

Update policy and value networks
based on Eq. 4 and Eq. 5;

end

if ¢ mod n == 0 then
Get score S;;

Set r; based on Eq. 2;

end

end
end

5. Evaluation

In this section we elaborate on the evaluation we
performed and report on the results. For the automated
part of the experimentation, we use Firefox, Chrome, and
Chromium as browsers, and a VPN service to shuffle our
IP between browsing sessions. We attempt to control for
the score bias introduced by privacy settings by defining
two distinct settings between browsing sessions, that is
with third-party cookies disabled and private/incognito
browsing enabled — and vice versa. The intent is to
represent the differing levels of privacy-aware browsing
behavior and serve as one form of introduced variance
in order to observe the effect on the score. Within each
session, these configurations are kept constant as they
represent the static, invariant aspect of browsing; our aim
is to analyze how the risk analysis system is affected
by controlling the interactive counterpart. To avoid any
validity threats in our evaluation methodology, browsers

did not retain any state or information between sessions:
if private/incognito mode was not enabled, cache and
cookies were cleared after each.

5.1. Empirical Evaluation

Throughout our experiments we spawn differently
configured browsers on the same machine, so we investi-
gated for potential tracking or cross-browser fingerprinting
[6]. According to Google and Google Analytics docu-
mentation, Google can track unique IDs through their
NID and SID cookies, with the stated intentions to au-
thenticate users, prevent fraudulent use, perform targeted
advertising, and others. For the average web user, an
effective, practical albeit counter-intuitive method against
web tracking is by releasing more private information
rather than less, as privacy-aware policies can make a
user stand out in the crowd. Previous work [40] studied
the browser checks reCAPTCHA v2 performs, among
them canvas fingerprinting [33]. These checks are used to
determine the existence of web automation frameworks or
the browser version, and discrepancies can be highlighted
by comparing the results to the reported user-agent string.
During our empirical and automated evaluation, we did
not observe signs either of tracking or of a detrimental
effect to the score when the reported user-agent string
was manipulated.

Before performing the automated evaluation, the first
step is to observe how the risk analysis system is affected
by the various browser configurations, the presence of
cookies, different IP addresses, and more importantly user
behavior during browsing. We separate this information
supplied to this system to its static and dynamic compo-
nents. Keeping all but one of the features constant while
varying others provides us with practical insights as to
how each one of them affects the score that each request
gets. More concretely we observe that:

« Google cookies (GRECAPTCHA, NID & SID) and
enabled cookies in general have a decisive impact in
the confidence of the system that the user is indeed
human. This is to be expected, as cookies can track
longer legitimate user activity. The experimentation
with static features indicate that they affect the over-
all confidence of the system: when the confidence is
high, dynamic features have little observable effect;
conversely, when the confidence is low they appear
to influence the score. The latter is also the setting we
intend to induce and exploit in order to learn evasive
human-like browsing behavior.

o Starting from a low score, something that occurs
far more frequently with disabled cookies, we can
consistently increase the score by engaging in typical
browsing activity within the webpage, i.e. clicking,
scrolling, typing in input fields, changing subpages,
etc.

« Starting from a high score, it is possible to diminish
it either by overloading the webpage with requests
or by performing bot-like actions with mouse and
keyboard automation.

The scores returned by reCAPTCHA v3 are coarse-
grained and do not fall in a continuous range: there
are 4 discrete scores that a request can get: S €

727

{0.1,0.3,0.7,0.9}. A coarse-grained score offers two ad-
vantages in a Captcha system: (i) it simplifies for web
administrators the process of drawing a threshold, and (ii)
less information is divulged w.r.t. the model’s decisions —
akin to gradient masking in adversarial ML.

While high and low confidence refer to states of the
risk analysis system that cannot be observed directly,
a partial observation of them can be attained via the
score behavior; high volatility in scores within a session
indicates low confidence, while low volatility implies a
high confidence state. Through our empirical observations,
we further delineate two more states that can overlap to a
degree with the high confidence state:

1) Score saturation. Saturation occurs whenever the risk
analysis system has a high level of confidence that
the user is human. This confidence may propagate to
unrelated to the current session requests that come
from different users. In saturation, the score is insen-
sitive to user dynamic behavior.

Score depletion. Depletion represents a high confi-
dence that the user is a bot where all session requests
receive the minimum score. It can be caused by
excessive requests — hence the reason why frequency
of requests is part of the variables controlled — and
it may propagate to unrelated requests irrespective of
their source.

2)

These states are extensively observed through the be-
havior of the score, in empirical observations and auto-
mated experiments. Naturally, from an adversarial per-
spective that intends to learn automated solutions a low
confidence state is desirable and conducive to learning
as it renders the score sensitive to user behavior. It
then follows that high confidence states can be utilized
also as a deterrence against intelligent adversaries; for
reCAPTCHA v2 this is explicitly disclosed by Google.
There is a prominent call in the Vulnerability Reward Pro-
gram®* to not submit reports when reCAPTCHA accepts
invalid responses to challenges. It explains that in order
to combat automated solutions, if the system determines
you are likely a human — meaning it is in a state of high
confidence/saturation — it accepts even invalid answers.
Conversely, if it has high confidence that you are a bot,
it rejects even correct answers. The stated reasoning is
that by always accepting correct and always rejecting
incorrect answers, the challenge for adversaries is greatly
simplified.

5.2. Automated Evaluation

In all our experiments the automation is performed
in a fully GUI manner — no headless browsers are used —
and the simulation of user browsing behavior is performed
by programmatically controlling the mouse and keyboard.
Our experiments span a period of 15 months where more
than 70K requests were submitted in total. During this pe-
riod, we progressively refine our agents with more general
capabilities in order to encapsulate abstract, human-like
browsing behavior. To properly assess transferability and
given the progressively more general agent capabilities,

4. https://bughunters.google.com/learn/invalid-reports/google-
products/4539275112349696

0.9 1

0.8

0.7 A

0.6

0.5 1

Score

0.4 4
0.3 1

0.2 q === Baseline

Piecewise
== Bezier

0.1

0.0 T T

Score

0.9 1
0.8
0.7
0.6
0.5 1
0.4 1
0.3

0.2 1 = Baseline

= Bezier
== Abstract

0.1

T
40 60 80
[Website A] Session progression in %

T
20 100

0.0 T T
20

T T T T
40 60 80 100
[Website B] Session progression in %

Figure 3: Score evolution in sessions initially flagged as bot, on Website A and Website B.

we conduct our evaluation in a cascading manner on three
distinct web environments, as introduced in Section 4:

o Our self-hosted Website A which faces little actual
traffic other than that from a few researchers, but
where we had unconstrained request budget. Here
Piecewise was in training and testing mode, while
Bezier solely in training.

External Website B which sees considerable web
traffic. On this website, the Bezier agent trained on
Website A is in testing mode to evaluate how well it
transfers, while Abstract is in training mode.
External Website C which sees extensive web traffic.
This website already had reCAPTCHA v3 integrated
for bot protection, and the intention here is to eval-
uate how evasive is the Abstract agent trained on
Website B.

The practical difference between training and testing
mode is if the parameters of the policy network are
updated or not, i.e. if learning takes place or not. Next
to the RL-enabled agents, we implemented and evaluated
on every website a Baseline agent that differs in two key
aspects: the mouse displacement is executed in a naive
manner, i.e. either instantaneously or on a straight line
connecting the origin and destination; additionally, no
parameters are updated nor any learning takes place.

Website A. On this website, next to v3 we additionally
deploy reCAPTCHA v2. The intention is to contrast their
behavior throughout the evaluation. As the authors in [40]
have demonstrated, when v2 has high confidence that
the request is submitted by a human, it resolves to the
“no Captcha reCAPTCHA” challenge that lets the user
proceed without presenting a challenge. reCAPTCHA v2
never resolved to “no Captcha” mode while v3 was in
depletion, but surprisingly many times it did not resolve
to “no Captcha” mode even when v3 was in saturation.
This indicates that the risk analysis systems behind the
two versions of reCAPTCHA are potentially dissimilar in
the way they process the information they collect as well
as the risk profiles they build.

The main objective in this website is to have an
initial estimation on how plausible the automated evasion
of reCAPTCHA v3 is, but also whether we can learn
from the score that the risk analysis system generates.
To investigate the hypothesis that the scoring system can
be exploited, we utilize the VPN service to intentionally

728

look for and initiate sessions that start from a low score
s < 0.5; more than two thirds of those sessions occur with
disabled cookies and private/incognito mode. Statistically
throughout our experiments, low-starting sessions exhibit
higher score volatility (about twice as much) indicating
low-confidence states more sensitive to interactions.

In Figure 3 we illustrate the score evolution aver-
aged over all such sessions, for each methodology we
employed. As sessions can have variable length, we nor-
malize the time axis to a fixed 0 — 100% range and
we calculate the average over this range. There is a
clear divide in performance between Baseline and both
Piecewise and Bezier agents. For the latter two, the score
has a clear upwards tendency that on average surpasses the
typical detection threshold within 20-25% of a session’s
duration. We observe a clear drop towards the end in the
Bezier progression due to some sessions reaching more
than 200 requests where the otherwise consistently high
scores suddenly deplete to 0.1. This is strong evidence
that the temporal dynamics of incoming requests are taken
into consideration, especially since it occurs at the same
time irrespective of which session we submit the requests
from. Figure 4 plots the average cumulative score each
methodology achieves over the period of evaluation. Once
again there is a clear divide between the Baseline and the
RL enabled agents, with Bezier being the approach getting
most consistently high scores.

Website B. As website A is practically a synthetic
one, albeit one that offers ease of access and unconstrained
querying, it is probably not representative of the whole as
the risk analysis system adapts by observing actual traffic.
To properly evaluate the capabilities of our automation and
put this to the test, we transition our experimentation to
Website B as it faces actual live web traffic. As described
in Section 4, in coordination with the administrators we
deploy reCAPTCHA v3 on the website and wait for 1
week until it models the traffic patterns to avoid skewing
them. In this setting, we evaluate how well the most
performing agent trained on Website A transfers to the
new context; that is without using the scores and without
further re-training or fine-tuning. Additionally, we ascer-
tain if an even more general and evasive model can be
learned.

In Figure 3 we illustrate the score evolution averaged
over all sessions that start below the bot threshold — 96 out
of 180 — for each methodology we employed. We observe

=== Baseline
097 Piecewise 09
0.8 === Bezier 0.8 1
0.7 0.7
® 0.6 o 0.6
o Q
o o
n 0.5 ®n 0.5
j=2 f=2
> >
<04 < 04
0.3 4 4 0.3 4
02 02 == Baseline
0.1 0.1 = Bezier
= Abstract
0.0 T T T T T T 0.0 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

[Website A] Experimental period in % of completion

[Website B] Experimental period in % of completion

Figure 4: Average cumulative score over the period of evaluation, for Website A and Website B.

a clear but less prominent gap between the Baseline and
the RL enabled agents. In this environment saturation and
depletion still occur but differently than on Website A.
While it is still possible to deplete the score due to an
overabundance of requests, when it happens it concerns
only the IP address where the requests were submitted
from and does not propagate to others. The sessions where
the score reached depletion due to excessive requests were
less than 3% of the total.

In Figure 4 we illustrate the average cumulative score
each methodology achieves over the period of evaluation.
One thing we immediately observe is that Bezier performs
the best out of the box, however Abstract diminishes
the gap over time as the Bezier agent no longer updates
its parameters. Another notable observation in this web
environment is that the baseline is comparable to the
RL methodologies. This indicates that even a rudimentary
GUI-enabled automation can be sufficient to consistently
evade reCAPTCHA v3 detection.

Website C. After concluding our experiments on Web-
site B, we want to assess the level of threat our RL
enabled automation poses on the web. The best candidate
is the Abstract agent: it incorporates common browsing
capabilities that so far were scripted if needed, and is
thus the most general model we created. The next step
is to evaluate its evasive performance and the degree this
transfers to websites that get considerable traffic. Further-
more, our intention is to obviate any kind of learning and
to transition to the fully black-box case. To that end we
select Website C that compared to B gets two orders of
magnitude more daily requests. In contrast to Website B,
scores are no longer accessible. There is only a visible
indicator that shows whether the score was above an
unspecified threshold or not: the intention is to reflect
attack scenarios on other websites where we have no
access to the scores, only the binary verdict if further
verification is required. Unlike previous websites where
we track the average score, on Website C we report the
percentage of requests that go undetected instead, denoted
as evasion rate.

We evaluate the Baseline and Abstract agents in two
principal contexts that aim to reflect and contrast the worst
and best cases for the adversary: sessions that are initially
flagged as bot (low starting) and not (high starting) re-
spectively. Compared to A and B, it is exceedingly more
difficult to find low starting sessions on Website C. The

729

results are included in Table 1. We notice that for low
starting sessions, the performance gap between Baseline
and Abstract is quite prominent, while for high starting
sessions less so. For high starting sessions, that adversaries
have ample opportunity to initiate, the Abstract agent
goes almost completely undetected with an evasion rate of
99.6%, while even the Baseline agent reaches an evasion
rate of 84.3%. This demonstrates a stark decline on the
level of bot mitigation that reCAPTCHA v3 offers, and a
clear vulnerability that an attacker with enough resources
can exploit.

5.3. Explainability

Despite the overall success that our approach has in
evading detection and in exposing a vulnerability at the
core of how such a bot detection scheme functions, some
open questions remain:

o What is the risk analysis system behind reCAPTCHA
v3 scoring exactly?

o Apart from showing the vulnerability itself, can we
obtain a more precise understanding of what is hap-
pening within the black box?

o Which aspects of our online behavior influence the
score, and to what degree each?

During the evaluation on Website B, we registered
about 13K requests in total. From these requests, we
generated a dataset where each instance contains the fol-
lowing information:

o The duration for which actions execute.

o The hover timing.

o The press timing.

« The delay between successive requests.

o The presence of cookies.

o The frequency of requests.

o The time in the day.

o The day of the week.

o The number of different actions used.

o The total number of requests submitted in current

session.

o And the score that the request got.

In order to get insights into how does reCAPTCHA
v3 score requests, an intermediary step is to extract a

functionally similar model that shadows the decisions of
reCAPTCHA v3 [4], [22]. The extensive data collection

during our experiments provides such an opportunity. We
train Random Forest classifiers and regressors [27] with
the aforementioned features as independent variables and
the score as the target variable. On the classification task
we reach 87.5% mean accuracy and on the regression task
we reach 0.82 R2. In practical terms, an R? of 0.82 indi-
cates that the model cannot explain 18% of the variability
in the outcome. This is anticipated as Google has access to
a different set of information that in our models cannot be
controlled for. Examples are the reputation of IP addresses
and ranges, deviation from heatmaps generated through
Google Analytics for that particular website, and spatial,
temporal or entropic aspects of user activity. The above
are either missing or confounding variables, so we need
to be aware that a statistical analysis can indicate but does
not entail a causal relationship [37].

Our goal however is not to extract a high-fidelity
model of the risk analysis system behind reCAPTCHA
v3, but to get a glimpse in the black box and explain
how various factors can influence the score; factors that
come as a result of our initial assumptions. To that end we
employ a powerful framework for explainable Al called
SHapley Additive exPlanations (SHAP), a game theoretic
approach to explain the output of any ML model. SHAP
connects optimal credit allocation with local explanations
using the Shapley values, i.e. the average of the marginal
contributions of the features, across all the feature per-
mutations [28]. We note here that by following an exper-
imental protocol, bias is inadvertently introduced in the
collected data. For instance, the effect of the presence of
cookies will be exaggerated; we searched for low starting
sessions, something that occurs considerably more often
with disabled cookies.

Figure 5 demonstrates how each variable influences
the score, in descending order from most to least influ-
ential. The presence of cookies is the most influential,
indicating that the risk analysis system has a clear bias
between more and less privacy-aware web browsing be-
havior. What is interesting though is duration at the second
spot and that it is positively correlated with the score.
This indicates that short or instant actions are biasing the
score to lower values. Time of day and weekday are also
influential; their influence is most probably overestimated
as we unintentionally introduce some bias by following
typical (mostly) office activity. The number of requests is

‘ High
cookies
duration

timeofday

weekday
n_requests

frequency -

Feature value

n_acts -
press +.
hover —+—-

delay

Low
-0.2 =0.1 0.0 0.1 0.2

SHAP value (impact on model output)

0.3

Figure 5: Shapley values for all features, depicted in
descending order of importance

730

counter-intuitive at first look; while a few high values are
correlated with low scores, indicating depletion, the fea-
ture is mostly positively correlated with score, indicating
that longer and human-like activity is a strong predictor
of higher scores. The number of actions has a slight and
positively correlated influence, corroborating our findings
that put the Abstract mode a step above Bezier. What
is unexpected here though is that mouse button press,
mouse hover, and the delay between requests have little
to no influence to the model. The value ranges of press
and hover are by our definition commensurate to what an
average human would have; from the model’s perspective,
they might as well appear completely uncorrelated to the
score.

Computational cost. Throughout our experiments, the
most demanding agent computationally was Piecewise, as
it had to control actions at a rate of 50 FPS required
for seamless trajectories. The computational bottleneck
here is the neural network behind the agent policy, and
the average inference time on an Intel i7-7700 CPU
was 5 x 10™* seconds which could theoretically support
up to 2000 FPS control. Regarding the implementation
and evaluation platforms, all scripts and RL agents were
written in Python while a browser extension written in
JavaScript was used to retrieve scores — all experiments
were carried out on a dedicated desktop machine running
Ubuntu 18.04.

In Table 1 we report the summary on the scores, num-
bers of requests, and overall traffic, across all experiments
and for each of the websites. Over a period of 15 months,
our RL enabled methodology successfully used the risk
analysis system behind reCAPTCHA v3 to learn evasive
models of web browsing, while submitting high numbers
of requests commensurate to the total traffic a website
attracts.

6. Discussion

In this section we critically reflect on the results and
provide further insights into the topic. Captcha solutions
are an essential tool to combat bot proliferation on the
internet and the financial or other harm they may cause.
From fraudulent transactions, to credential stuffing attacks
and click fraud to generate ad revenue, an adversary
would benefit immensely from general and human-like
web browsing policies that evade Captcha detection. The
ability to learn such a behavior by utilizing a popular,
widely used Captcha service as an oracle, is a clear
vulnerability that needs to be addressed as it can constitute
the main component of a system that automates web
attacks. Transitioning from one-shot Captcha challenges to
overall behavior monitoring also has another implication.
If human behavior and its imitation are indistinguishable
to such a detection scheme, then this scheme — aside from
being insufficient — enables the perfection of this imitation.

In January 2020 Google launched reCAPTCHA Enter-
prise, where this vulnerability could potentially be more
severe. According to the documentation, reCAPTCHA
Enterprise appears to be based on reCAPTCHA v3, with
some modifications that intend it towards enterprises. Like
v3, reCAPTCHA Enterprise will never interrupt users
with a challenge, but it includes a pricing for every 1K
requests submitted above 1M per month. Additionally

Website A Website B Website C
Baseline Piecewise Bezier ‘ Baseline Bezier Abstract ‘ Baseline Abstract
SL 0.22 0.52 0.60 0.33 0.60 0.58 20.8% 70.1%
ST 0.31 0.65 0.77 0.56 0.72 0.66 51.6% 90.0%
Sy 0.52 0.71 0.83 0.73 0.86 0.80 84.3% 99.6%
Rr 2.6K 21K 8K 6.3K 44K 2K 8.6K 12.4K
Rp 130 231 244 203 182 89 866 773
Rg 101 140 144 93 75 37 208 122
Dg 203 761 526 40 71 37 68 136
Tr - - - 12.3K 9.4K 9.3K 328K 413K
Tp - - - 398 390 421 33K 26K

TABLE 1: Requests per website and agent. Sy, St, Sy are the average score for low starting, total, and high starting
sessions respectively. For Website C, Sy, S7, Sy denote the evasion rate instead. Ry is the total amount of requests,
Rp are the average requests per day, Rg are the average requests per session, Dg is the average session duration in
minutes, 7 and T are the total and daily amount of traffic during the experiments.

potential customers have to supply personal and company
information for a vetting process. A key difference to
reCAPTCHA v3 is that now the scores returned include
reason codes. These codes provide information on the
reason reCAPTCHA Enterprise interpreted the interaction
that way, in practice embedding explainability into the
inference process. Such reason codes are:

e automation, when an automated agent is detected.

o unexpected_environment, when an illegitimate envi-
ronment is detected.

o too_much_traffic, when the traffic volume from a
specific source exceeds typical values.

o unexpected_usage_patterns, when interactions in the
website diverge significantly from expected patterns.

o low_confidence_score, when there is insufficient traf-
fic observed to generate a representative risk score.

These reason codes correspond to a surprising degree with
several of our insights while investigating the risk analysis
system of reCAPTCHA v3. An adversary with access to
such reasoning behind the black-box decisions acquires a
crisper signal to what effect their actions have and thus
can optimize the parameters of an offensive methodology
even more effectively. However, putting a premium on
requests and putting customers through a vetting process
can disincentivize that. This indicates a promising path
for future work.

Ethics. Before deploying reCAPTCHA v3 on Web-
sites B and C, we acquired explicit consent from the
owners and administrators. Regarding the potential impact
on these websites, an open question was how will our au-
tomated activity affect the scores of unrelated requests and
overall user experience, even considering that a low score
will not mean escalation to further verification in neither
website. After all, depletion is a prominent phenomenon
on Website A, so we wanted to be extra careful when
we proceeded to actual websites with considerable live
traffic. In contact with the website administrators, we set
an initial conservative threshold on the amount of queries
submitted to be in par with the daily traffic, and gradually
increased it. In case of depletion we agreed to slow our
requests down to a halt in order to investigate the cause
and analyze the impact; something that ultimately did not
occur.

Responsible Disclosure. Regarding the broader im-
pact that our attack on Google reCAPTCHA v3 can have,

731

we followed the standard responsible disclosure policy:
we notified Google of our findings and the vulnerabilities
we discovered in reCAPTCHA v3. Google responded to
our detailed report and acknowledged the vulnerability.
After further investigation on their side, Google has closed
the issue without providing a fix and the status code
“intended_behavior”. We surmise that acquiring access to
backend scores and that GUI-enabled automation attacks
are considered reasonable limitations on the adversary,
however at the time of writing the issues described in
this paper are still present.

Defenses. As our methodology does not tinker with
the HTTP requests or cookies, defenses would fall pri-
marily within the adversarial training paradigm [43]. In
adversarial training, a model is trained also on data that
were specifically created to fool it. The intent is to make
the risk analysis system more robust towards adversarial
activity. This however is a complicated matter as the
domain of Captcha is considerably broader than image
classification. No matter its abstraction or representation,
the distribution of human behavior online is expected to
be fairly diverse for adversarial examples — adversarial
behavior here — to hide in the crowd. As adversarial
examples are fundamentally out-of-distribution data [19],
proactively modeling them can be a challenging task.
There is however precedence in utilizing adversarial ex-
amples as Captcha resilient to automated solutions [36].
Finally, as long as one can obtain oracle access to the
risk analysis system, defenses are limited to obfuscation
and rate limiting. Adversaries can iteratively refine their
attacks by using the oracle as either a discriminator to
a generative adversarial network (GAN) approach or a
reward function to a policy gradient method.

Limitations. The most capable agent demonstrates
that it is possible to fully evade detection on a website
of which it had zero beforehand knowledge or interaction
with. However, in order to fully exploit the information
leakage in reCAPTCHA v3, and in case the initial evasive
policy is insufficient, an adversary would have to have
access to the oracle for longer periods of time; something
made evident by the evolution of scores in Figure 4.
Furthermore, we posit that while the score returned by
v3 is a signal that allows learning to take place, it is
still one with noise, or as Google has indicated for v2,
at times even intentionally misleading. If other heavily

influencing factors are not controlled for, this innately
limits the degree that learning can take place.

In many configurations, e.g. with low privacy settings,
the baseline approach was sufficient to evade detection
up until depletion. Beside the effectiveness and transfer-
ability of our approach, our results underline the impor-
tance of developing the scientific understanding of the
strengths and limitations in the new paradigm of fric-
tionless Captcha, specifically in the presence of adaptive
attackers capable of learning from interaction with the
deployed detection mechanism.

Controversies. While widely useful and an impor-
tant pillar in the fight against bots and malicious users,
Captcha does not come without its controversial aspects.
reCAPTCHA was rightfully criticized for being a source
of unpaid work to assist in transcribing text and image
labeling tasks. As a competing solution, hCaptcha® raison
d’étre is to ameliorate this by returning some of the rev-
enue made from solving the Captcha to the website owner.
What can be disconcerting though is the above principle
extended to frictionless Captcha such as reCAPTCHA v3,
where all the interactions occurring in a website are mon-
itored. As automated solving becomes ever more efficient
and effective, Captchas are expected to transition towards
behaviometrics, where there is no revenue to be made by
transcribing text or labeling images. In this scenario, the
users’ online behavior could become the revenue, this time
not to commercialize insights but as Turing tests.

Availability & Future Work. We opt for RL as a
learning paradigm as it enables optimal behavior without
access to gradients; the agent can learn in an immediate,
online manner by interacting with the environment. Our
approach and general framework, which we can make
available to other researchers upon request, are modular
by design to accommodate the learning of any parameters
that might affect the risk analysis scoring system, in the
case it adapts to observing a broader or different set of
information. As a result, there are two main promising
paths for future exploration: First, the possibility to train
more capable agents by exploiting the reason codes of
reCAPTCHA Enterprise. Secondly, to explore more ef-
fective defenses that go beyond rate limiting and security
by obscurity, in the domains of adversarial ML and com-
petitive multi-agent RL.

7. Conclusion

This work presents the first comprehensive investi-
gation of Google reCAPTCHA v3 service. Over vari-
ous websites, web configurations, attack methodologies
and a period of fifteen months, we perform a black-box
analysis and comprehensive evaluation of the risk scores
reCAPTCHA v3 generates. We discover that it offers
insufficient protection against web automation as we are
able to consistently bypass it with an evasion rate up to
99.6%. We evaluate how different aspects of the activity
on a website protected by reCAPTCHA v3 influence the
score. Static aspects like privacy settings and IP address
have a constant positive or negative impact on the score
and do not change during a session. On the other hand,
the score is also influenced by volatile aspects directly

5. https://www.hcaptcha.com/

732

linked to the dynamic browsing behavior of the user. As
reCAPTCHA v3 constantly monitors user interactions to
differentiate between humans and bots by generating a
risk score, we exploit this information to learn a general
model of automated web browsing that consistently evades
detection.

Our study indicates that while a transition towards
Captcha services based on continuous behaviometric eval-
uation is unavoidable, as text and image Captchas have
become more difficult for humans to solve than for Al,
this inadvertently leads to vulnerabilities that dedicated
adversaries can potentially exploit. The effectiveness of
our approach demonstrates the need for improved bot
and automation detection in zero friction, zero challenge
Captcha. Nevertheless, as this type of Captcha are be-
coming more prominent, the competition in differentiating
between human interaction and its imitation accelerates
and calls for further research on proactive and reactive
response to such adversarial activity.

Acknowledgment

This research is partially funded by the Research Fund
KU Leuven, and by the Flemish Research Programme
Cybersecurity. We want to extend our thanks to Stelios
Tsampas and Vera Rimmer for the extensive discussions
and insights.

References

[11 A. Acien, A. Morales, J. Fierrez, and R. Vera-Rodriguez,
“Becaptcha-mouse: Synthetic mouse trajectories and improved bot

detection,” arXiv preprint arXiv:2005.00890, 2020.

[2] 1. Akrout, A. Feriani, and M. Akrout, “Hacking google recaptcha
v3 using reinforcement learning,” Conference on Reinforcement

Learning and Decision Making, 2019.

[3] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-
Nimeh, W. Lee, and D. Dagon, “From throw-away traffic to
bots: detecting the rise of dga-based malware,” in 27sr {USENIX}

Security Symposium, 2012, pp. 491-506.

[4] O. Bastani, C. Kim, and H. Bastani, “Interpreting blackbox models

via model extraction,” arXiv preprint arXiv:1705.08504, 2017.

[5S1 K. Bock, D. Patel, G. Hughey, and D. Levin, “uncaptcha: a low-
resource defeat of recaptcha’s audio challenge,” in /1th {USENIX}

Workshop on Offensive Technologies ({WOOT?Y} 17), 2017.

K. Boda, A M. Foldes, G. G. Gulyas, and S. Imre, “User tracking
on the web via cross-browser fingerprinting,” in Nordic conference
on secure it systems. Springer, 2011, pp. 31-46.

[6]

[71 W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversar-
ial attacks: Reliable attacks against black-box machine learning

models,” arXiv preprint arXiv:1712.04248, 2017.

[8] E. Bursztein, J. Aigrain, A. Moscicki, and J. C. Mitchell, “The end
is nigh: Generic solving of text-based captchas,” in 8th {USENIX}

Workshop on Offensive Technologies ({WOOT} 14), 2014.

K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski,
“Computers beat humans at single character recognition in reading
based human interaction proofs (hips).” in CEAS, 2005.

91

[10] Y.-W. Chow, W. Susilo, and H.-Y. Zhou, “Captcha challenges for
massively multiplayer online games: Mini-game captchas,” in 2010
International Conference on Cyberworlds. 1EEE, 2010, pp. 254—

261.

[11] Z. Chu, S. Gianvecchio, A. Koehl, H. Wang, and S. Jajodia, “Blog
or block: Detecting blog bots through behavioral biometrics,”

Computer Networks, vol. 57, no. 3, pp. 634-646, 2013.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “Detecting
automation of twitter accounts: Are you a human, bot, or cyborg?”’
IEEE Transactions on Dependable and Secure Computing, vol. 9,
no. 6, pp. 811-824, 2012.

C. Cruz-Perez, O. Starostenko, F. Uceda-Ponga, V. Alarcon-
Aquino, and L. Reyes-Cabrera, “Breaking recaptchas with unpre-
dictable collapse: Heuristic character segmentation and recogni-
tion,” in Mexican Conference on Pattern Recognition. Springer,
2012, pp. 155-165.

V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta, “Ob-
servations on typing from 136 million keystrokes,” in Proceedings
of the 2018 CHI Conference on Human Factors in Computing
Systems, 2018, pp. 1-12.

A. Dionysiou and E. Athanasopoulos, “Sok: Machine vs. machine—
a systematic classification of automated machine learning-based
captcha solvers,” Computers & Security, p. 101947, 2020.

D. F. D’Souza, “Avatar captcha: telling computers and humans
apart via face classification and mouse dynamics.” 2014.

A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, “Robust
deep reinforcement learning for security and safety in autonomous
vehicle systems,” in 2018 21st International Conference on Intel-
ligent Transportation Systems (ITSC). 1EEE, 2018, pp. 307-312.

L. Fridman, A. Stolerman, S. Acharya, P. Brennan, P. Juola,
R. Greenstadt, and M. Kam, “Multi-modal decision fusion for
continuous authentication,” Computers & Electrical Engineering,
vol. 41, pp. 142-156, 2015.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel,
M. Bethge, and F. A. Wichmann, “Shortcut learning in deep neural
networks,” arXiv preprint arXiv:2004.07780, 2020.

M. I. Hossen, Y. Tu, M. F. Rabby, M. N. Islam, H. Cao, and X. Hei,
“An object detection based solver for google’s image recaptcha v2,”
in 23rd International Symposium on Research in Attacks, Intrusions
and Defenses ({RAID} 2020), 2020, pp. 269-284.

A. Tlyas, L. Engstrom, and A. Madry, “Prior convictions: Black-
box adversarial attacks with bandits and priors,” arXiv preprint
arXiv:1807.07978, 2018.

M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High accuracy and high fidelity extraction of neural networks,”
in 29th {USENIX} Security Symposium ({USENIX} Security 20),
2020, pp. 1345-1362.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artificial
intelligence, vol. 101, no. 1-2, pp. 99-134, 1998.

A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments
for generating image descriptions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp.
3128-3137.

T. Katerina and P. Nicolaos, “Mouse behavioral patterns and
keystroke dynamics in end-user development: What can they tell us
about users’ behavioral attributes?” Computers in Human Behavior,
vol. 83, pp. 288-305, 2018.

X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot, bad
bot: Characterizing automated browsing activity,” in 2021 IEEE
symposium on security and privacy (sp), 2021, p. 17.

A. Liaw, M. Wiener et al, “Classification and regression by
randomforest,” R news, vol. 2, no. 3, pp. 18-22, 2002.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpret-
ing model predictions,” in Proceedings of the 3l1st international
conference on neural information processing systems, 2017, pp.
4768-4771.

K. Malialis and D. Kudenko, “Distributed response to network
intrusions using multiagent reinforcement learning,” Engineering
Applications of Artificial Intelligence, vol. 41, pp. 270-284, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” dec 2013. [Online]. Available: http:
/larxiv.org/abs/1312.5602

733

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

M. Mohamed, N. Sachdeva, M. Georgescu, S. Gao, N. Saxena,
C. Zhang, P. Kumaraguru, P. C. Van Oorschot, and W.-B. Chen, “A
three-way investigation of a game-captcha: automated attacks, relay
attacks and usability,” in Proceedings of the 9th ACM symposium
on Information, computer and communications security, 2014.

M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M.
Voelker, and S. Savage, “Re: Captchas-understanding captcha-
solving services in an economic context.” in USENIX Security
Symposium, vol. 10, 2010, p. 3.

K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas
in html5,” Proceedings of W2SP, pp. 1-12, 2012.

M. Naor, “Verification of a human in the loop or identification
via the turing test,” 1996. [Online]. Available: http://www.http:
/Iwww.wisdom.weizmann.ac.il/~naor/PAPERS/human.pdf

Z. Ni and S. Paul, “A multistage game in smart grid security:
A reinforcement learning solution,” IEEE transactions on neural
networks and learning systems, vol. 30, no. 9, pp. 2684-2695,
2019.

M. Osadchy, J. Hernandez-Castro, S. Gibson, O. Dunkelman, and
D. Pérez-Cabo, “No bot expects the deepcaptcha! introducing
immutable adversarial examples, with applications to captcha gen-
eration,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 11, pp. 2640-2653, 2017.

B. Scholkopf, “Causality for machine learning,” arXiv preprint
arXiv:1911.10500, 2019.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no.
7676, pp. 354-359, 2017.

S. Sivakorn, I. Polakis, and A. D. Keromytis, “I am robot:(deep)
learning to break semantic image captchas,” in 2016 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). 1EEE,
2016, pp. 388—403.

R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al.,
“Policy gradient methods for reinforcement learning with function
approximation.” in NIPs, vol. 99. Citeseer, 1999, pp. 1057-1063.

A. Tharwat, M. Elhoseny, A. E. Hassanien, T. Gabel, and A. Ku-
mar, “Intelligent bézier curve-based path planning model using
chaotic particle swarm optimization algorithm,” Cluster Comput-
ing, vol. 22, no. 2, pp. 4745-4766, 2019.

F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,
and P. McDaniel, “Ensemble adversarial training: Attacks and
defenses,” arXiv preprint arXiv:1705.07204, 2017.

L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha:
Using hard ai problems for security,” in International conference on
the theory and applications of cryptographic techniques. Springer,
2003, pp. 294-311.

D. Wang, M. Moh, and T.-S. Moh, “Using deep learning to solve
google recaptcha v2’s image challenges,” in 2020 14th Interna-
tional Conference on Ubiquitous Information Management and
Communication (IMCOM). 1EEE, 2020, pp. 1-5.

H. Weng, B. Zhao, S. Ji, J. Chen, T. Wang, Q. He, and R. Beyah,
“Towards understanding the security of modern image captchas
and underground captcha-solving services,” Big Data Mining and
Analytics, vol. 2, no. 2, pp. 118-144, 2019.

L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani,
“Security in Mobile Edge Caching with Reinforcement Learning,”
IEEE Wireless Communications, vol. 25, no. 3, pp. 116-122, jun
2018.

X. Xu, L. Liu, and B. Li, “A survey of captcha technologies to
distinguish between human and computer,” Neurocomputing, 2020.

R. V. Yampolskiy and V. Govindaraju, “Use of behavioral bio-
metrics in intrusion detection and online gaming,” in Biometric
Technology for Human Identification III, vol. 6202. International
Society for Optics and Photonics, 2006, p. 62020U.

G. Ye, Z. Tang, D. Fang, Z. Zhu, Y. Feng, P. Xu, X. Chen, and
Z. Wang, “Yet another text captcha solver: A generative adversarial
network based approach,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
332-348.

Appendix A.
State and Action specifications

Piecewise agent. Our state construction ignores the
absolute values of the mouse origin and destination coor-
dinates and maintains only their initial relative position. A
state extracted from a single frame with the coordinates
of the mouse pointer and the destination coordinates is
thus insufficient, as it does not include the speed that
the pointer moves. Similar to frame stacking where RL
agents play Atari games [30], the state representation here
is a tuple that includes the current speed of the pointer in
pixels per frame.

Abstract agent. The agent has an action space size of
4. At each step of the environment, one of three possible
browsing actions can be executed: moving the mouse and
clicking, scrolling, and typing. The agent selects which
one to execute via action A, then the one selected is
parameterised by actions As, A3, Ay

Mouse control is identical to Bezier mode and all
timings listed are in seconds. Scrolling is parameterised
by duration d, press p, and a predefined number of scroll
units n. If n is not provided, a random integer is chosen
in the range 6-8. The agent pauses for p between each
scroll unit and for d halfway and at the end.

Typing is parameterised by h and p, rescaled to fall in
ranges pertinent to keystroke dynamics: h € [0.12,0.16]
controlling inter-key interval, p € [0.085,0.125] control-
ling key press duration. Text can be provided as input,
otherwise characters are typed from a dictionary at ran-
dom.

Appendix B.
PPO Specifications

We follow the official implementation by OpenAl. The
policy network of PPO-Clip is updated by maximizing the
objective function shown in Eq. 4, taking multiple steps
of mini-batch stochastic gradient ascent (SGA).

(7?9 at|st)

7o, (at|st)

Ok+1 —argmax |D T Z Zmz

TED t=0

AT (51, a0, g6, AT (51, at»)

“)

where

f+e4,4>0
gle,A) = {(1—5)A,A§O

and A is the advantage function, which is the differ-
ence between the () value for a given state - action pair
and the value V' of the state: A(s,a) = Q(s,a) — V(s).

€ is a hyperparameter that controls how far the new
policy is allowed to change in comparison to the old. A
similar approach is followed in approximating the value
function that represents the value of each state, by mini-
mizing Eq. 5 with stochastic gradient descent (SGD).

R argm(;n Z Z Vs(st) — Rt (5)

TED), t=0

734

Algorithm 2: PPO-Clip

Input: initial policy parameters 6y, initial value
function parameters ¢;

for k=0, 1, 2, ... do do

Collect set of trajectories Dy, = 7; by running
policy 7, = () in the environment.;

Compute rewards Ry.;

Compute advantage estimates, A, based on
the current value function Vy, .;

Update the policy by maximizing the
PPO-Clip objective (Eq. 4) via stochastic
gradient ascent with Adam.;

Fit Value function (Eq. 5) by regression on
mean-squared error with Adam.;

end

Algorithm 3: Piecewise Agent

Set request frequency P in seconds;

Set policy update frequency u in steps;

for episode e = 1, 2, ... M do do

Observe the last score s acquired;

Retrieve new goal coordinates x, y;

for stept =0, 1, ... T do

Select distance d and angle g;

Calculate new coordinates a, b based on
d, g and move cursor to them;

if t (mod u) == 0 then

Update policy and value networks
based on Eq. 4 and Eq. 5;

end

if t is terminal then

Perform left mouse button click;
Set r; based on Eq. 3;

end
end

end

Algorithm 4: Bezier Agent

Set max requests n per episode;

Set policy update frequency u in steps;

for episode e = 1, 2, ... M do do

Get initial score Sp;

for stept =0, 1, .. T do

Select duration d, hover h, press p, and
delay f;

Perform a Bezier trajectory to goal
coordinates x,y with duration d;

After hovering for h, press for p;

if t (mod u) == 0 then

Update policy and value networks
based on Eq. 4 and Eq. 5;

end

Get score Sy;

Set r, based on Eq. 2;

Sleep for f;

end
end

The pseudocode for PPO-Clip is shown in algorithm
2. The learning process for the Piecewise and Bezier
agents are shown in Algorithms 3 and 4 respectively. Goal
coordinates for Website A is the button that triggers the
verification, and for Website B is the hyperlink for one of
the subpages selected at random.

B.1. Architecture & Hyperparameters

For both actor and critic networks, we opted for a 2
hidden layer fully-connected neural network. The archi-
tecture and hyperparameters are shown in Table 2.

| Hyperparameter | Piecewise | Bezier | Abstract |

dense units 64, 32 64, 32 64, 32
activation tanh tanh tanh
final activation sigmoid sigmoid sigmoid
optimizer Adam Adam Adam
action std 0.2 1 1
learning rate 0.0003 0.0003 0.0003
update 20 10 10
epochs 80 80 80
epsilon clip 0.2 0.2 0.2
gamma 0.99 0.9 0.9
max timesteps 100 100 200
max episodes 100-800 4 4

TABLE 2: Architecture and hyperparameters of PPO-Clip
for Piecewise, Bezier, and Abstract agents.

735

