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Abstract—Domain name system (DNS) is the address book
of the Internet and domain names are queried before almost
every network activity. Since the entities like recursive re-
solvers can monitor users’ DNS queries, privacy concerns
such as user tracking arise. Though a number of prior
works have looked into this issue, they all focus on the
closed-world setting, which means that victim users must
be known to the adversary. We argue that it does not
reflect the adversary’s true capabilities. Moreover, there
lacks an effective approach to defend against DNS-based
user tracking. In this work, we revisit these issues by inves-
tigating the attack surface in both open-world and closed-
world settings and studying how to protect users. First,
we introduce a new tracking mechanism DSCORR which
incorporates domain-based word embedding to capture the
fine-grained distance between domain names, and automatic
threshold generation for fine-tuning the attack outcome.
The evaluation result on a real-world DNS dataset shows
DSCORR is able to outperform the existing works by a large
margin especially in the open-world setting. On the defense
side, we develop a system called LDPRESOLVE, which
incorporates a recently proposed differential privacy notion
ULDP (Utility-optimized Local Differential Privacy) and a
new technique named parallel domain resolving, to provide
privacy guarantees without damaging the utility of legitimate
applications. The evaluation result on the same dataset shows
the DNS-based user tracking can be effectively curbed, e.g.,
tracking accuracy degraded from 93% to 10.1%.

Index Terms—Domain name system, User tracking, Differ-
ential Privacy

1. Introduction

Domain name system (DNS) translates human-
readable domain names to machine-readable IP addresses.
It is an essential component of the Internet infrastructure
as DNS queries underpin almost every user’s Internet
activity. Nowadays, trillions of users’ requests on a single
day are processed by DNS [20].

Under normal configuration, a user’s DNS queries will
be sent to a recursive resolver, which acts as an agent to
obtain the authoritative answers from authoritative name-
servers. The plaintext information of every query is visible
to recursive resolvers, even when DNS encryption like
DNS-over-HTTPS [47] or DNS-over-TLS [45] is used

§. Both are first author. Part of Deliang Chang’s work was done when
visiting University of California, Irvine.

(the requests are only encrypted between users and re-
cursive resolvers). Hence, a recursive resolver holding a
large amount of DNS logs also poses privacy threats to
users. One prominent threat is user tracking [80], through
which a user’s activities across different networks and
devices can be correlated, for purposes like personalized
advertisement, surveillance, etc. This threat is more acute
nowadays as public resolvers handle the lion’s share of
users’ DNS requests and are well motivated to launch user
tracking [11], [21], [43], [46].

Understanding DNS-based User Tracking. We found
some works have studied DNS-based tracking [40]–[42],
[52], [53], [55], [85], but they all considered the closed-
world setting, where all possible victim users must be
known to the adversary. How tracking performs in the
more practical open-world setting (i.e., the user sending
DNS request may be unknown) is unclear yet.

To advance the understanding of DNS-based user
tracking, we design a new tracking mechanism tailored
to the open-world setting (called DSCORR). The problem
of DNS-based tracking can be formulated as assigning
a DNS session (or a sequence of DNS queries in a
short period) to a user, which exploits the similarity of
DNS behaviors from the same user. It is important to
correctly compute the similarity or the distance between
two different DNS sessions, but we found the previous
works all used the coarse-grained distance between do-
mains, i.e., the distance is either 1 (different domains)
or 0 (identical domain), which neglects the contextual
correlation between domains. This leads to sub-optimal
performance, especially in the open-world setting. Our key
insight is that a DNS session resembles a text paragraph to
some extent (both are sequences built up from tokens with
semantic meanings). Thus, techniques well established in
the NLP community, in particular word embedding [60],
[74], can be applied to capture the fine-grained distance
between DNS sessions. In particular, we use the domains
queried before and after a targeted domain as the context
to mine its semantics. We apply Word2vec [66] to auto-
matically convert each domain into a numerical vector,
such that the relation between domains can be quantified.
The computed distance is then compared to a threshold
to determine if the two sessions belong to the same user.
Existing works use the identical threshold for every user,
which leads to high error rate on certain users. We develop
a new technique named auto-threshold to learn a user-
centric threshold to tackle this issue.

Our result shows DSCORR can identify a user from
DNS sessions with high accuracy. In the open-world set-
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ting, DSCORR outperforms the existing approach [40] by
a large margin (0.87 AUC comparing to 0.657 AUC when
20 sessions per user are used for training). In the closed-
world setting, DSCORR is able to cluster an unlabeled
session with 52.6% accuracy when training set contains
only 1 session per user. This accuracy rises to 87.4% when
10 sessions are labeled.

Mitigation with differentially private domain resolving.
To prevent user tracking, a straightforward solution is to
add random dummy queries to the original users’ queries.
Spreading users’ queries across resolvers is another solu-
tion, which has been exercised in K-resolver [43]. How-
ever, we argue that the threat is not adequately addressed
by these solutions, as they may introduce significant over-
head at the client-side to achieve a certain level of privacy.
For instance, DNS queries have to be spread out to a
large number of resolvers to defend against tracking, as
discussed in Section 5.6. A greater concern is that these
solutions impair the utility of DNS data irreversibly, and
such DNS data is critical to legitimate applications like
malicious domain detection [96].

To address the tension between utility and privacy, we
make the first attempt to integrate differential privacy [29],
a method that controls utility loss under privacy guaran-
tee, to the process of domain resolution. We term our
defense LDPRESOLVE, which changes the behavior of a
stub resolver under Local Differential Privacy (LDP) so
recursive resolver does not need to be trusted. Yet applying
LDP to our setting has to address two prominent chal-
lenges. First, take frequency estimation (the primary usage
scenario of LDP) as an example, only Direct Encoding
(DE) of LDP [89] can be chosen to avoid revamping DNS
protocol, but it will incur very high utility loss. Second,
under the default randomized response protocol, the user
has to issue false DNS queries, but doing so will give the
user the wrong DNS response and break every Internet
application.

To tackle these challenges, we propose a novel
(XS ,YP , ε1, ε2)-ULDP (Utility-optimized LDP) protocol,
which is adjusted from ULDP [67], as the base of our
defense. Our key insight is that though both user tracking
and legitimate applications inspect domain names, dif-
ferent domain names have different levels of importance
to them (e.g., popular domain names are important to
user tracking but less so for malicious domain detection).
(XS ,YP , ε1, ε2)-ULDP allows us to assign different pri-
vacy budgets for DNS queries. Under (XS ,YP , ε1, ε2)-
ULDP protocol, we adapt parallel domain resolving to
address the issue of false DNS queries. Hence, users
always obtain accurate responses.

Based on the evaluation, we found LDPRESOLVE can
achieve the desired outcome: the tracking accuracy can be
significantly reduced while the utility loss is controlled
to a certain level. To highlight, the tracking accuracy of
DSCORR can be degraded from 93% to 10.1% while
the utility loss measured by the standard deviation of
unpopular domains is less than 10.

Contributions. Our contributions are summarized below:

• We propose a new tracking method DSCORR that
works under both open-world and closed-world
settings. With the help of domain embedding, the
tracking accuracy is significantly improved.

• To DNS-based user tracking, we make the first
attempt to integrate LDP into DNS. Based on
a novel LDP notion, (XS ,YP , ε1, ε2)-ULDP, and
parallel domain resolving, we show it is feasible to
solve the dilemma of DNS data utility and privacy.

• We evaluate DSCORR and LDPRESOLVE on a
real-world DNS dataset and report our discoveries.
A client-side prototype of LDPRESOLVE is also
developed.

• The code of DSCORR and LDPRESOLVE is pub-
licly released1.

2. Background

2.1. DNS Communications and Dataset

DNS (Domain Name System) queries are issued be-
fore most network activities to map a user-friendly domain
name (e.g., www.google.com) to an IP address (e.g.,
216.58.193.196). In particular, a user-end software
named stub resolver receives the user’s requests produced
by other applications and forwards them to a recursive
resolver if the responses are not cached. The recursive
resolver can be an Internet Service Provider (ISP) resolver
serving users within the same network or a public resolver
(e.g., Google Public DNS [2]) serving users all over the
Internet. It further forwards the requests to authoritative
nameservers, which is organized in a hierarchical structure
and provides authoritative answers to the iterative queries.

Users’ DNS traffic between their stub resolvers and
authoritative nameservers results in a wealth of infor-
mation valuable to applications like malicious domain
detection [19], [26], [63], [93] and Internet traffic es-
timation [36]. Several organizations are gathering those
telemetry data and sharing it with other parties under the
concept of Passive DNS, mainly through two approaches.
The first is to place a sensor array between recursive
resolvers and authoritative nameservers, such that only
the DNS lookups resulting in cache miss on recursive
resolver are captured, and the client IP addresses are
not seen. The Security Information Exchange (SIE) of
FarSight [12] is operated under this model. As clients’
requests are aggregated by each recursive resolver, a prior
study suggests users’ privacy is not violated when the
sensors are configured properly [84]. The second approach
is to fetch raw DNS logs directly from recursive resolvers
and share the logs with client IP anonymized [61]. DNS
Pai Project maintained by Qihoo 360 is operated under
this mode [10]. While it enables more powerful applica-
tions, like finding abnormal domain associations [61], it
could also raise privacy issues like user tracking. In this
work, we thoroughly study such risks and propose a new
approach to protect the end-users.

2.2. DNS-based User Tracking

We define user tracking as linking users’ network
activities across different networks without their consent,
for purposes like personalizing advertisements or surveil-
lance. When the network activities are DNS communica-
tions, user tracking can be done by linking raw DNS logs

1. https://github.com/dl-chang/ldpresolve
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collected and shared by the recursive resolvers. Though
such tracking is trivial when a user uses a static IP ad-
dress, many ISPs assign dynamic IP addresses that change
periodically to their customers, so the adversary needs to
re-identify the user after his/her IP address is changed.
Also, the user could move between different ISP networks.
Yet, a large number of users can be impacted due to
the consolidation of DNS resolvers and the increasing
dependency on the public resolvers [77], which can be
queried wherever the users are. Here we highlight a few
scenarios that this attack is relevant to: 1) the users use a
public resolver configured by their ISP (e.g., campus IT
without DNS infrastructure chooses google public DNS);
2) the users’ browsers set a default public resolver so
all DNS traffic about the users is collected (e.g., DNS-
over-HTTPS resolver in Google Chrome [3]); 3) an ISP
exchanges DNS data from its resolver with another ISP;
4) a company retrieves DNS logs from multiple resolvers,
e.g., DNS Pai mentioned in Section 2.1.

Some research has been done on DNS-based user
tracking. Herrmann et al. utilized classification methods
such as Bayesian classifier and k-nearest neighbor to
identify the re-occurrence of users based on their DNS
queries [40]. In [42], [55], the authors used a modified
k-means algorithm to cluster DNS logs of the same user.
DNSMiner [52], [53] re-identified the user by extracting
unique and repetitive fingerprints from DNS traces. Sun
et al., proposed a method called constrained Dirichlet
multinomial mixture for clustering DNS sessions without
knowing the number of users in advance [85].

In our paper, we choose the methods from [40] as the
baseline to compare against. The other methods are not
chosen because they cannot be easily adjusted in our set-
ting, e.g., open-world setting as described in Section 3.1,
due to their assumptions on the DNS data. 1) the methods
in [52], [53] required a DNS session (to be explained
in Section 3.1) is fixed to 24 hours. 2) the methods in
[42], [55], [85] need to know the number of users or the
maximum number of DNS sessions for a single user.

Other types of tracking. Most of the other works in
tracking looked into web-based (or browser-based) track-
ing. In its basic form, web code like JavaScript from a
third-party content provider attempts to link user’s visits
based on tagging [14], [18], [56] or fingerprinting [30],
[31], [57]. Different from web-based tracking, network-
based tracking looks into the characteristics of network
flows and maps them to the user. For example, Kumpost
et al. [58] built user profile based on HTTP/HTTPS/SSH
traffic. Verde et al. [87] leveraged characteristics of Net-
flow to track users behind the NAT. Previous works
showed that machine-learning approaches using packet
sizes and intervals can correlate flows of the same user,
even when the network flows are encrypted and mixed
under Tor [68]. A related attack is website fingerprinting,
which identifies the website visited by a targeted user
from the encrypted traffic with network features similar to
flow correlation. Protocols like HTTPS [58], DNS-over-
TLS [44] and DNS-over-HTTPS [83] are found vulnerable
under this attack.

A few other works also use DNS to mine users’
characteristics under very different settings. DNS cache-
based tracking [56] uses JavaScript code to query domains

and exploits the client-side DNS cache to tag a user, while
we passively analyze the DNS dataset. DefecTor [35]
exploits DNS packets for website fingerprinting, while
ours focuses on re-identifying users. Our work also differs
from [48], which reveals sensitive queries by an institution
using the logged DNS queries between recursive resolvers
and authoritative name servers, while we use DNS queries
between stub resolvers and recursive resolvers.

2.3. Differential Privacy

In this work, we leverage mechanisms under differen-
tial privacy (DP) to protect users from DNS-based user
tracking. Given a query from a data consumer [29], the
original idea of DP assumes there is a trusted data curator
adding noises to the result under a DP notion (also called
Central DP). Different from the central setting, local
DP (LDP) assumes there is no trusted data curator, and
the noises are added by the data providers (e.g., Internet
users) before the data are collected by the curator. The
user enjoys better privacy as the data curator needs not be
trusted, but the data utility is often worse than central DP
under the same privacy budget.

Definition 1 (ε-Local Differential Privacy [89]). An
algorithm A satisfies ε-local differential privacy (ε-LDP),
where ε > 0, if and only if for any pair of input x1 and
x2, we have

∀y ∈ Range(A) : Pr[A(x1) = y]

Pr [A (x2) = y]
≤ eε (1)

where Range(A) denotes the set of all possible output
results of an algorithm A.

LDP has seen strong adoption from the industry. Com-
panies like Google [32], Apple [8] and Samsung [69]
have developed their own LDP implementation to compute
aggregated user statistics in a privacy-preserving way.
The data collection protocol under LDP consists of three
steps [89]: Encode (users report their answers in a
specific format), Perturb (the answers are randomized),
and Aggregate (the answers are merged and decoded
to obtain statistics, e.g., item frequency). In our work,
we focus on the LDP protocols that support frequency
estimation (e.g., Google’s RAPPOR [32]).

3. DNS Session Correlation with Domain
Embedding

In this section, we first present the threat model. Then,
we propose a tracking method (named DSCORR) tailored
to DNS session correlation based on domain embedding.
Last, we evaluate the effectiveness of DSCORR.

3.1. Threat Model

Section 2.2 has described the attacker’s goal. Here we
focus on the attack constraints. We assume though the
attacker has access to raw DNS logs, he/she cannot access
DHCP logs, so a user’s dynamic IP addresses cannot be
easily linked to the user’s ID. Following the setting in
existing works about DNS-based tracking [40], [42], [52],
[53], [55], [85], we do not try to track users behind a NAT.
Under NAT, one source IP address (or its anonymized
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Figure 1: An example of sessions constructed from DNS
queries. Different colors represent different source IP ad-
dresses, and different shapes represent different queried
domain names.

Figure 2: The objective of the adversary, who aims to cor-
rectly link a DNS session to its requesting user, regardless
of IP churns.

version) can be associated with multiple users, which
makes correct user profiling, linking, and labeling (for the
evaluation purpose) very challenging.

To defeat DNS-based tracking, a user can use privacy-
preserving DNS resolution techniques like Adaptive
DNS [54] or Oblivious DNS [81]. However, these tech-
niques are still at the early adoption stage and we assume
they are not used by the victims in our setting. Notice
that DNS encryption mechanisms like DNS-over-TLS and
DNS-over-HTTPS do not prevent our adversary, as DNS
packets are decrypted by the resolver. Ironically, those
mechanisms might strengthen the adversary’s capability
in user tracking since most of the resolvers supporting
these protocols are centralized [11], [21], [43], [46].

DNS session. Like previous works [40], [42], [52], [53],
[55], [85], we assume the attacker constructs DNS ses-
sions from the raw DNS logs and performs data linking
at the session level. Here we give the definition of a DNS
session and explain how it is constructed in our setting.

Without considering multiple users sharing the same
IP address at the same time (e.g., under NAT), we define
a DNS session as a sequence of DNS queries associated
with a source IP address in a period issued by the same
user. A new session is created for a DNS query and its
following queries if the previous DNS query is observed at
least 45 minutes ago. According to our empirical analysis,
a device usually keeps sending DNS requests as long as
it stays online. A different device may use the IP address
only if the address has not been used for a period of time
(usually longer than 45 minutes). Therefore, we use the
aforementioned rule to split the DNS queries. Figure 1
illustrates how sessions are created from a stream of
queries. Noticeably, our session does not have to contain
all DNS queries from a source IP, and its covered time
period is variable. Two consecutive sessions could belong
to the same user. This setting is more flexible than the
previous works setting a session to be 24 hours [52], [53],

and it avoids the errors caused by IP churns across users.
After session construction, user tracking is performed and
Figure 2 gives an illustrative explanation.

Open-world and closed-world settings. Though the
high-level goal of this work and previous works is the
same, the previous works all assume closed-world set-
ting [23], [40], [42], [52], [53], [55], [85], while ours
assumes open-world setting. The two settings are well
defined by the literature of website fingerprinting, and we
use the definition proposed by Wang et al. [88]: in the
closed-world setting, the users are assumed to only visit a
set of web pages known to the attacker, and the attacker
has to detect which ones are visited; in the open-world
setting, the user is free to visit any pages, and the attacker
also needs to detect the pages not included in the set. Here,
we adjust the two settings to DNS-based tracking: in the
closed-world setting, a DNS session comes from users in
a set known to the attacker, and the attacker has to detect
the user that issues the session; in the open-world setting,
a DNS session can be from any user, and the attacker
needs to tell even when the user is not in the set. Clearly,
the open-world setting is more realistic yet challenging.
As pointed out by Wang et al. [88], classifying pages of
low base rate is error-prone. Users of low base rate (i.e.,
the users who only issue a few sessions) also exist here.

3.2. Ethics

We obtain a DNS dataset from the IT department of a
campus, which manages the campus DNS resolvers. The
source IPs are hashed before the dataset is given to us. As
the campus also runs a DHCP server, the user ID behind
each source IP is known to the IT department. To help
us build the ground truth, the IT department also hashes
the user IDs and provides us the mapping between them
to source IPs. Noticeably, the hashed user IDs are only
used to verify the effectiveness of DSCORR, and they are
not used as the input to DSCORR.

Usage of the dataset for research purposes is autho-
rized by the administration office of the campus. The raw
data and all intermediate data are processed and stored in
a server installed on the same campus. Only the authors of
this paper have access to this data. Similar DNS datasets
have been used by other works [36], [61], [73], and the
treatment of data is similar.

Therefore, we are publishing the code of DSCORR

and LDPRESOLVE, but we are not able to share the data
as it ties to individual identities.

3.3. Domain Embedding

To determine whether a pair of sessions are close
enough, i.e., belong to the same user, previous works
treat each session as a vector of domains and compute
the distance between them. The distance between a pair
of domains is either 1 (different) or 0 (identical), but fine-
grained distance is necessary and derivable, by consider-
ing what content they deliver and how they are connected.
For example, domains of the same website category, like
cnn.com and cbsnews.com under news, should have
high affinity; cnn.com always loads advertisements from
turner.com, so they are closely related. While the fine-
grained domain distance can be manually characterized,
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such an approach is not scalable. To this end, we develop a
new technique under domain embedding to automatically
infer the domain distance from the DNS data.

Our domain embedding is adapted from word em-
bedding, a technique extensively used by NLP commu-
nity [60], [74]. It can construct a vector for a word
based on the surrounding words occurring in the same
text, preserving its semantic similarity. Similar to the
distribution of words, users’ visits to domains are subject
to the power law, according to previous works [22], [51],
making embedding appropriate for domains. When we
regard a domain as a word and consecutive queries in a
DNS session as its context, the distance between domains
can be captured similarly. Though there are a few works
applying word embedding on domain names, the goals and
approaches are different. Jiang et al. [50] embeds each
character in URL/Domain while ours embeds an entire
domain. Lopez et al. [64] finds similar domain names
while ours links DNS sessions.

To generate domain embeddings, we follow the ap-
proach of Word2vec [66]. Word2vec builds a neural net-
work with one hidden layer and uses the weights of the
hidden layer as the embedding after training on a corpus
of text, e.g., Wikipedia. For our case, we generate em-
beddings of domains on a large number of DNS queries,
which are represented under the skip-gram model [66].
Those queries do not need to be labeled. After the em-
beddings are generated, a domain can be mapped to a
vector, based on its preceding and subsequent domains
queried from the same IP address. Our Word2vec-based
method has achieved satisfactory results, but we will also
test the newer methods like Glove [74] and Bert [28] in
the future.

3.4. Design of DSCORR

Terms. We first define the terms used in DSCORR. We
assume a DNS session is s and a domain is d. Like
previous works [41], [42], we extract the sequence of
domains requested by s, so s can be represented as
< d1, ..., dj , ..., dm >, where dj is the d of the jth request
and m is the number of requests in s. The user u behind a
session s has either been labeled by the adversary before
the tracking attack or is unknown. We term the sessions
already labeled as SL, and the sessions unlabeled as SU.
In the closed-world setting, the users behind SL and SU
are identical. In the open-world setting, they might not be
identical.

Workflow of DSCORR. The design of DSCORR is based
on semi-supervised learning to handle the open-world
setting. At a high level, DSCORR leverages SL as the
training dataset and creates session clusters grouped by
the labeled user IDs. Then, an s in SU will be assigned
to a session cluster in SL, or classified as “unknown”.
Four steps are carried out.

1) We apply domain embedding described in Sec-
tion 3.3 to convert each d to a numerical vector.

2) We group sessions in SL to create labeled session
clusters and build profiles for them. A cluster
consists of sessions of the same user.

3) Given an s in SU, the k nearest session clusters
are identified through a data-sketching process.

4) Fine-grained distances between s to all neighbor-
ing session clusters are computed. s will be clus-
tered to a session cluster in SL with the minimum
distance in the closed-world setting. For the open-
world setting, s might be classified as “unknown”
if it is far from any session clusters.

Session clustering. Note that Step 1 directly applies
Word2Vec, thus we focus on Step 2-4. First, we introduce
the method to measure the distance between two DNS
sessions, sm and sn. Since a session has a similar structure
as a word vector after embedding, we are motivated
to adopt the similarity metrics in the NLP domain. In
particular, we utilize Text Semantic Similarity (TSS) [65]
to compute the distance because it can model the context
of words.

simss(sm, sn) =1− 1

2
(

∑
di∈sm

tfidf(di, sm) · simds(di, sn)∑
di∈sm

tfidf(di, sm)

+

∑
dj∈sn

tfidf(dj , sn) · simds(dj , sm)∑
dj∈sn

tfidf(dj , sn)
)

distss(sm, sn) =1− simss(sm, sn)
(2)

where di and dj are domains after the embedding of sm
and sn respectively.

Note that we replace the idf (inverse document fre-
quency) function used by TSS [65] with tf-idf (term fre-
quency–inverse document frequency)2. This is because tf-
idf works better when the similarity is computed on word
embeddings [92]. In our setting, tfidf(di, sm) reflects the
importance of a domain di to the sequence enclosing it.

The similarity between a domain and a session,
simds(di, sn), is defined as the maximum similarity:

simds(di, sn) = max{simdd(di, dj)|dj ∈ sn} (3)

The similarity between two domains simdd(di, dj) is de-
fined by the Cosine similarity3 over their embeddings
(each embedding has 200 dimensions). We choose dis-
tance based on Cosine similarity over other distances, such
as Word Mover’s Distance, because of its low computation
overhead. With the distance between sessions defined, we
now describe the details of our tracking method.

In Step 2, we generate a profile for each cluster in
SL to enable fast comparison. Specifically, we merge all
sessions of a certain cluster S to get a summary of sessions
s0. In Step 3, for an s in SU, we measure its distance
to every S in SU by distss(s, s0). The k clusters with
the smallest distances are chosen, and the sessions within
each cluster are considered as candidates.

In Step 4, we compute the fine-grained distance be-
tween s and candidate sessions from k neighboring clus-
ters. For the closed-world setting, from all candidate ses-
sions, the one with the smallest distss is chosen and its
associated user identifier is used to label s.

2. tfidf(di, sm) = ci,m · log(|SL|/|{di ∈ s : s ∈ SL}|), where
ci,m is the count of di in the session sm. distss will remain the same
whether we choose domain count or domain frequency here. |{di ∈ s :
s ∈ SL}| is the number of sessions which contain domain di in SL.

3. Cosine similarity of two vectors di = (x1, x2, ...xn)
and dj = (y1, y2, ...yn) is given by simdd(di, dj) =∑n

i=1 xiyi/
√∑n

i=1 xi
2
∑n

j=1 yj
2
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Adjustment for the open-world setting. A session
snew ∈ SU might come from a user outside of SL.
In Step 4, we change how the session-cluster distance
(distsc(snew, S)) is computed: instead of the small-
est distss, we use the pth percentile of the ordered
{distss(snew, si)|si ∈ S} (p is set to 25 empirically).
We use p to model a user’s varying patterns.

After the nearest S (or Snear) is discovered based
on distsc(snew, S), we compare the nearest distance to
a threshold t. If it is greater than t, the unlabeled session
is classified as “unknown”, meaning it does not belong to
any user in SL. Otherwise, s is clustered to Snear. Note
that algorithm in the close-world setting is a special case
when p = 0 and t = 1.

As for the threshold, a fixed t can be set for every
user, but false positives are introduced when users exhibit
different browsing behaviors. To address this issue, we
propose an auto-threshold technique to generate threshold
ti for every session cluster to be inspected. The key insight
is that the threshold can be learnt from sampling the
sessions of a user. For each session si ∈ S, we define
{si}� = S \ {si}. Then we construct inner-distance set

of a cluster with I = {distsc(si, {si}�)|si ∈ S}. Given
another parameter θ, the threshold t of a session cluster
could be decided by sampling this inner-distance set:

t =

{
quantile(I, θ) 0 ≤ θ ≤ 1
θ ·max(I) + (1− θ) ·min(I) otherwise

(4)

3.5. Evaluation of DSCORR

Dataset. We extract anonymized DNS query logs from a
campus resolver as our evaluation dataset, as described in
Section 3.2, which contain information such as hashed
IPs, timestamps, domain names, qtypes, etc. We split
the data into two parts, one for domain embedding, and
another for tracking evaluation. For domain embedding,
we use the DNS queries from 61,870 distinct IP addresses
of 351 different class C subnets which belong to the
campus network. For a queried domain name, we use
the domain names of its neighboring queries from the
same IP as the context to generate an embedding. In
total, there are 163,762 domain embeddings generated.
For tracking evaluation, the sessions of different users are
differentiated using the anonymized DHCP logs (contains
hashed MAC addresses, hashed IPs, timestamps, etc.).
Consecutive sessions of the same user are merged. We ar-
gue that our labeling and data processing have limitations
yet are reasonable. For example, session segmentation
may be inaccurate, user DNS queries may be partially
missing from the shared data, and users may change MAC
addresses. However, the impact of these issues is expected
to be limited. We use 30,716 DNS sessions collected from
1,000 different users in a two-week period to evaluate
DSCORR in the open-world and the closed-world settings.
The average, min, and max DNS sessions per user are
30.7, 12, 90 respectively. For a DNS session, the longest
one covers 96.3 hours, while the shortest one only issued
1 query. The median duration is 2.74 hours. The campus
wireless network assigns an IP for each device (though
it is periodically changed based on DHCP), so NAT/VPN
egress endpoint is not expected.

Experiment settings. As we use Word2vec to generate
domain embeddings, its parameters are configured accord-
ing to our DNS data: the sub-sampling rate is set to 1e−5,
the number of negative samples is 5, and at most 10
domains before and after the domain to be embedded are
considered as the context.

For the open-world setting, we build SL with sessions
from 500 users and SU with sessions from 1,000 users.
We range the number of labeled sessions for each user
(termed SSL) from 2 to 20. The remaining sessions are
considered as unlabeled sessions whose user IDs are to be
inferred. In each run, we ensure the numbers of the test
sessions belonging to known and unknown users are the
same. We also compare DSCORR with the existing works
that target the closed-world setting with 1,000 users in
both SL and SU, and run the tracking experiment with
different SSL.

We implemented 3 models developed by the previ-
ous work [40] as the baseline, including 1NN-Jaccard,
1NN-Cosine, and Bayesian classifier. 1NN-Cosine and
1NN-Jaccard utilize Cosine Distance and Jaccard Distance
respectively to calculate session-to-session distance, and
then choose the nearest neighbor as the session owner.
Bayesian classifier generates conditional probability dis-
tribution based on labeled sessions for each user, and then
uses the maximum posterior probability estimate to infer
user ID. Both the uni-gram version, named jac, cos, bay
(1NN-Jaccard, 1NN-Cosine and Bayesian Classifier) and
the bi-gram version (a pair of domains is considered as
the basic unit), named ja-bi, co-bi, ba-bi, are tested.

Evaluation metrics. We term a session that belongs to
a known user in SL as “known session”, and otherwise
as “unknown session”. In our setting, a correctly iden-
tified known session is treated as a true positive (TP );
a correctly identified unknown session is treated as a
true negative (TN ); a known session that is identified
as not belonging to any known users is treated as false
negative (FN ). For false positives, there are two types:
a known session identified as a wrong owner (FP1), and
an unknown session identified as belonging to a known
user (FP2). With this definition, four metrics are used in
our experiment: true-positive rate (TPR, or recall), false-
positive rate (FPR), precision (PPV, or positive predictive
value), and accuracy (ACC). They are defined as follows.

TPR =
TP

TP + FN

FPR =
FP1 + FP2

FP1 + FP2 + TN

PPV =
TP

TP + FP1 + FP2

ACC =
TP + TN

TP + TN + FP1 + FP2 + FN

(5)

Open-world setting. In this setting, the users in SU
compose the superset of users in SL. We vary the labeled
sessions for each user in SL (SSL) from 2 to 20 (2,
5, 10, 20). According to our experiment in the closed-
world setting (described later), ba-bi achieves the second-
best result (the best result is achieved by DSCORR) when
SSL is set to 10, so we use it as the baseline to compare
against. To accommodate the open-world setting, when the
likelihood computed by ba-bi is lowered than a threshold
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Figure 3: ROC of different methods in the open-world
setting. SSL is number of labeled sessions for each user
in SL. AUC is Area under the curve of ROC.

t, it is considered as “unknown”. Figure 3 shows the ROC
curve of DSCORR and ba-bi with different θ and t under
different size of SSL. As expected, when SSL increases,
the attacker has more data to build a profile for a user,
and the effectiveness of both tracking methods improves.
Even though false positive rate is low when size of SL
is small, DSCORR outperforms the baseline approach
at every SSL by a big margin, especially when SSL is
small (e.g., SSL = 2): the difference between AUCs is
consistently larger than 0.2 (0.691 vs. 0.442 for ba-bi4

when SSL = 2 and 0.87 vs. 0.657 when SSL = 20). When
a proper θ is chosen, DSCORR achieves the best overall
accuracy, with 74.0% known sessions being classified
correctly and 84.8% unknown sessions being labeled as
unknown. The result shows the two key techniques of
DSCORR, domain embedding, and auto-threshold, make
a prominent contribution to the effectiveness of tracking.

Tracking effectiveness per user. Through our empirical
analysis, we find that not all users are equally vulnerable
under DNS-based tracking. Some users’ sessions are eas-
ier to be identified (high recall) than others, or they are
harder to be confused with others (high precision).

Here we change the measurement from all users to
individual users and re-run the experiment of DSCORR.
The heatmap of the detection precision and recall is shown
in Figure 4.

The result suggests high recall rate is seen in the ma-
jority of users. Actually, about 64% users have a recall rate
greater than 0.9 and 41% users have a recall rate greater
than 0.99. There are 5.6% users in our dataset having
precision and recall rates both greater than 0.99, meaning
their internet activities are clearly distinguishable. After
manually checking the DNS logs, we speculate that most
of them are from Android devices while the rest are
from PC/iOS devices or IoT devices. The domain names
requested by them reflect the combination of applications

4. ba-bi performs worse than 0.5 because the goal is not just to find
out whether a session is “known” or “unknown”, but also its associated
user, which is not a two-class classification problem.

Figure 4: Heatmap of the precision/recall per user. The
bar on the right shows the ratio of users.

# jac cos bay ja-bi co-bi ba-bi DSCORR

1 42.2 40.7 37.4 45.4 40.1 36.5 52.6
2 56.0 52.8 54.8 59.2 52.8 54.3 67.5
3 67.2 60.3 65.7 67.2 60.3 65.8 74.4
5 74.8 69.3 76.3 74.8 69.3 76.8 80.5

10 78.8 78.0 86.2 82.7 77.6 87.3 87.4

TABLE 1: Comparison of tracking accuracy under the
closed-world setting. # is the number of sessions in SL
for each user.

running on their ends, which are not common among
users.

Closed-world setting. Since the existing works focus on
the close-world setting, we also run DSCORR in this
setting for comparison. Here, the users in SU and SL
are the same. Table 1 shows the comparison of tracking
accuracy in both uni-gram (jac, cos and bay) and bi-
gram (ja-bi, co-bi and ba-bi) versions. We vary SSL, the
number of sessions in SL for each user, from 1 to 10.
We do not test SSL = 20 because only a small subset of
users has associated sessions of more than 20. The result
shows that DSCORR works best in all settings. When SSL

is large, DSCORR and ba-bi have similar performances,
while DSCORR performs much better when there are only
a few labeled sessions (from 1-5) per user. For example,
when there is only 1 labeled session, the accuracy of
DSCORR is 52.6%, while the runner-up achieves 45.4%
(ja-bi). When there are 10 labeled sessions, DSCORR

achieves 87.4% accuracy.

Domain importance. For DSCORR and other methods,
the similarity between sessions largely depends on the pro-
portion of domains shared among them. We are interested
in the properties of such domains, in particular, whether
they are popular among users. To this end, for each session
si, we compare it to the next session si+1 of the same user,
and categorize the domains appearing in both sessions as
shared and the domains in si only as unique. Figure 5
shows the distribution of shared and unique domains in
terms of session-wise popularity, defined by the number
of sessions in our dataset the domain appears in. It turns
out shared domains are more likely to be popular: 62.7%
shared domains are popular, while the number is 35.4%
for unique domains. Domains ranked after 10k have a
97.6% chance of being unique.

The result indicates popular domain names have
higher importance for tracking, which may be counter-
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intuitive. We speculate the main reason is that the com-
bination of popular domains is more powerful in link-
ing sessions of the same user. Our observation is also
echoed by Kim et al. [52] that a large number of users
cannot be fingerprinted by unique domains. Noticeably,
DSCORR did not track users with user-specific domains
(e.g., “ephemeral” or “disposable” domains) [15], [25],
and we leave the integration of this method as future work.

Figure 5: CDF of “shared” and “unique” domain for
top 10k domains. Domains are ranked by session-wise
popularity.

4. Domain Resolution under LDP

In this section, we propose a new privacy-preserving
domain resolution method to protect the user against
DSCORR and other tracking methods, while avoiding
drastic changes to the client-side and server-side DNS
infrastructure. We first overview the design of our pro-
posed defense, LDPRESOLVE, and its motivation. Then,
we elaborate how DNS resolution can be adapted to LDP
so that the privacy leakage is bounded. In the next section,
we evaluate the effectiveness of LDPRESOLVE.

4.1. Overview of LDPRESOLVE

At the high level, like other works against traffic
fingerprinting [16], LDPRESOLVE adds noise to DNS
queries from users’ end. We expect users are willing to
do so because they would like the DNS resolvers to serve
them, and at the same time protect their privacy as much as
possible. But in addition to privacy, we also consider the
utility of DNS data. The main reason for this consideration
is that DNS data is fundamental for legitimate third-party
applications, therefore a defense ignoring the data utility
is unlikely to be supported by the DNS service providers.
This is a similar situation as crowdsourcing statistics [32],
where Internet companies need to collect data from users
at large while abiding by privacy laws. Legislation like Do
Not Track Act [5] is directly related to DNS-based user
tracking, thus we envision our proposal could also help
companies avoid legal issues while using DNS data. We
found Local Differential Privacy (LDP) has the potential
to maintain both data utility and user privacy at the same
time. Therefore, we develop LDPRESOLVE around LDP.

For the legitimate applications to be modeled under
LDPRESOLVE, we focus on malicious domain detection,
which extensively leverages DNS data [96]. After liter-
ature survey, we found the frequency of domain visits

is an important detection feature used by many research
works [19], [26], [27], [34], [59], [63], [78], [93], includ-
ing the work published 2 years ago [86]. Hence, we select
the LDP protocols used for frequency estimation [89].
We acknowledge that frequency is not the only feature
useful for malicious domain detection. In Section 7, we
also describe other features related to this topic.

Challenges. Applying LDP to our setting has to overcome
two prominent challenges. First, though Encode of LDP
(see Section 2.3) have different options (i.e., 5 options
are listed in [89]), Direct Encoding (DE) is the only
practical option for encoding DNS queries, as all other
methods have to change the format of a request5, which
are unlikely to be supported by DNS stakeholders. On the
other hand, DE often results in much higher utility loss
than other methods when the cardinality of the answer set
is large [89]. For example, the variance of the estimation
under DE can be two orders of magnitude larger than
other methods, when the privacy budget is tight and the
answer set cardinality is high (see Table 2 of [89]). In
our setting, users can resolve any domain among billions
of the registered domains, resulting in an unbearable error
margin potentially.

Second, randomized response [90] is the default com-
munication protocol under DE, in which a user gives a
false answer to the data curator at a certain probability.
In our setting, randomized response means replacing the
domain to be queried (e.g., google.com) with another
domain drawn from a list (e.g., yahoo.com). Though
it is expected to reduce tracking accuracy, because the
user’s DNS behaviors are altered, all Internet applications
relying on DNS are likely to be broken.

Solutions. For the first challenge, it can be addressed
through extending a recently proposed LDP concept,
Utility-optimized LDP (ULDP) [67]. The key insight be-
hind ULDP is that not all data are equally sensitive
(e.g., the answer “Yes” is more sensitive to the question
“Have you ever cheated in an exam?” than the answer
“No” [67]), and the non-sensitive data output can be
protected in a lesser way (i.e., adding less noise). Overall,
ULDP provides much better utility when non-sensitive
data are dominant. We extend ULDP to enable two-
level privacy protection. For applications like malicious
domain detection, popular domains like google.com are
usually not scrutinized because they are quite unlikely to
be malicious [19], [34], [71]. On the other hand, they
are “anchors” to user tracking, connecting sessions of
the same user, as examined in Section 3.5 (“Domain
Importance”). As such, we treat the popular domains as
sensitive data, adding higher-degree noise to them under
ULDP. The remaining unpopular domains are treated as
non-sensitive data and be processed with lower-degree
noise to keep good data utility.

The second challenge can be addressed by parallel
domain resolving: given a domain name d to query, a user
can send d to an alternative resolver (termed AltRR) when
the risk of user tracking is high, and send a dummy query
d′ to the primary resolver. The idea of dispersing DNS

5. For example, assuming v is the answer provided by a user, when
Unary Encoding (UE) [89] is used, Encode(v) = [0, ..., 0, 1, 0, ..., 0],
a binary vector where only v-th position is 1. When DE is used,
Encode(v) = v.
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Figure 6: Workflow of LDPRESOLVE. The symbols are
defined in Section 4.2. A DNS query might be perturbed
and sent to AltRR based on (XS ,YP , ε1, ε2)-ULDP.

queries for better privacy was described in [24], [43].
Compared to previous works, our mechanism is fine-tuned
with LDP. As such, users’ privacy can be guaranteed under
a privacy budget ε. In addition, LDPRESOLVE ensures the
DNS data is usable by legitimate applications that rely on
aggregated statistics.

Workflow. Figure 6 illustrates the design and workflow
of LDPRESOLVE, following the concept of randomized
response. When the stub resolver is about to send a DNS
query for domain d to a resolver configured by the user
(i.e., primary resolver), she asks an oracle integrated by
the stub resolver whether d should be perturbed, depend-
ing on a generated probability and whether d is listed in a
sensitive set (set of popular domains). The sensitive set is
generated by a third-party, e.g., Alexa [9] or authoritative
nameservers, and it is periodically delivered to the stub
resolver. When it is determined to be perturbed, it sends
a different query with domain name d′ to the primary
resolver and the original d to an AltRR to obtain the
authentic answer.

AltRR. AltRR can be another resolver that is not collud-
ing with the primary resolver. It can be a local recursive
resolver (RR), which directly talks to authoritative name-
servers. Instead of altering the entire DNS resolution [81],
we use a combination structure of AltRR and Primary
RR, applying a DP-based approach to rationally distribute
queries among RR. In doing so, unlike previous work that
considered only privacy, we can achieve a balance be-
tween privacy, performance, and data utility. We expect the
usage of AltRR will not significantly increase the latency.
Firstly, Hoang et al. showed that DNS resolution is slightly
longer with AltRR [43]. Secondly, only domains in the
sensitive set go through AltRR and we can use the prefetch
strategy since the sensitive set is known beforehand. In
Section 5.7, we evaluate one AltRR implementation based
on a local resolver.

As described in Section 2.3, Encode, Perturb, and
Aggregate are the three key steps for an LDP protocol.
Since we choose DE for Encode, Aggregate becomes
a trivial process as no extra decoding is needed [89].
Perturb needs to be designed in light of ULDP and we
elaborate it next.

4.2. Perturb for LDPRESOLVE

Let X be a set of DNS queries and Y be the per-
turbed queries. We use a randomized mechanism A to
map x ∈ X to y ∈ Y with probability P(y|x). We

xs
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x’n
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x’s
x’’s

xn
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Figure 7: An illustration of how data are perturbed under
(XS , ε1, ε2)-URR.

divide DNS queries into sensitive queries about popular
domains (termed XS ⊆ X ) and non-sensitive queries
about unpopular domains (termed XN ⊆ X ). After per-
turbation, YP ⊆ Y and YI ⊆ Y are generated, which are
associated with popular domains and unpopular domains
respectively. We design A to satisfy a new DP nota-
tion (XS ,YP , ε1, ε2)-ULDP, as defined in Appendix A,
and provide a concrete construction (XS , ε1, ε2)-URR (or
(XS , ε1, ε2)-Utility-optimized Randomized Response) un-
der it, as described below.

Definition 2 ((XS , ε1, ε2)-URR). Given XS ⊆ X and
ε1, ε2 ∈ R≥0, let c1 = eε2

eε2+|XS |−1 , c2 = 1
eε2+|XS |−1 ,

c3 = 1
eε1+|XS |−1 , c4 = eε1−1

eε1+|XS |−1 . Then the (XS , ε1, ε2)-
URR can be defined as:

PuRR(y|x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 if xi ∈ XS , y = x
c2 if xi ∈ XS , y ∈ XS \ {x}
c3 if xi ∈ XN , y ∈ XS
c4 if xi ∈ XN , y = x
0 otherwise

(6)

where c4 ≥ c1 ≥ c2 ≥ c3, c1 + (|XS | − 1)c2 = 1, c4 +
|XS |c3 = 1. Figure 7 illustrates this protocol.

With these notations, we are able to prove via
two different approaches that (XS , ε1, ε2)-URR satis-
fies (XS ,YP , ε1, ε2)-ULDP. The proof is shown in Ap-
pendix B.

Our (XS ,YP , ε1, ε2)-ULDP notion is adapted from
the (XS ,YP , ε)-ULDP notion [67] by introducing an ad-
ditional ε in order to provide stronger protection over
the sensitive data entries (i.e., popular domains) while
maintaining as much utility as possible for the non-
sensitive data (e.g., unpopular domains). (XS ,YP , ε1, ε2)-
ULDP provides ε1-DP and ε2-DP for different input,
and it inherits other basic properties of ULDP [67], like
sequential composition and post-processing.

Sensitive set. As described in Section 4.1, we want to
build the sensitive set and associate it with a different
privacy budget. The sensitive set consists of popular do-
mains with a high volume of visits. As implied by the
results we found in section 3.5, the repetitive queries of
a user to popular domain names form his/her “identifier”.
Higher privacy protection for popular domain names is
thus a reasonable deduction. In our experiment, the list is
generated based on DNS sessions from another dataset of
9k users. When LDPRESOLVE is installed by the users,
the sensitive set can be fetched periodically from a web
server, like Adblock fetching EasyList [13] The sensitive
set can also be augmented with domains chosen by the
user, and we discuss this option in Section 6.
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We assume the sensitive set is not a secret, so the
adversary can obtain the set and actively prune the enlisted
domains before user tracking. In Section 5.5, we discuss
the impact of this strategy.

5. Evaluation of LDPRESOLVE

We first describe the experiment settings for LDPRE-
SOLVE and three evaluation metrics. In Section 5.1, we
investigate to what extent LDPRESOLVE can curb DNS-
based user tracking. In Section 5.2, the three parameters
of LDPRESOLVE are assessed. In Section 5.3 and Sec-
tion 5.4, we discuss alternative settings of LDPRESOLVE,
In Section 5.5, we discuss the impact of the adaptive attack
strategies. In Section 5.6, we compare against another
relevant work that disperses DNS requests. In Section 5.7,
we implement a prototype of LDPRESOLVE and evaluate
its overhead.

Experiment settings. The dataset used to evaluate LD-
PRESOLVE is the same as described in Section 3.5, but
we adjust how the unlabeled dataset SU and the labeled
dataset SL are generated. Instead of using a fixed number
of sessions of every user in SL, we choose 80% sessions
of a user to fill SL and leave the remaining 20% for SU,
which enhances the capability of the attacker. We test both
the open-world and the closed-world settings, but focus on
the closed-world setting, as it favors the adversary more.

To generate the sensitive set, we collect another DNS
dataset with 272,078 sessions from 9,000 users. It has no
overlap with SL and SU. We rank domains based on their
frequencies in sessions and take the top NS domains as
the sensitive set.

We simulate DNS queries under LDPRESOLVE by
perturbing their enclosed domains. We vary different pa-
rameters, including ε1, ε2 and NS to assess their impact. In
the default setting, we only perturb sessions in SU, which
represents the situation that the attacker has acquired a
“clean” SL and tries to correlate it with a noisy SU.

Evaluation metrics. We consider three metrics to eval-
uate the data utility. The first is tracking accuracy (or
TrkAcc), which is the same as the accuracy used to
evaluate DSCORR (see Section 3.5). The goal of LD-
PRESOLVE is to reduce it as much as possible.

The second is standard deviation (or std) of the do-
main frequency (used by prior works in malicious domain
detection [19], [26], [63], [93]), measured by the session
count. In addition to std across all domains, we also
measure it on the ones in sensitive set and non-sensitive
domains, and use std_s and std_n to represent their
std respectively.

The third metric measures the utility at the session
level. We measure the change ratio (or ChgRatio) of
domain names and domain pairs after perturbation. If O
is original set of domain names (or domain pairs) and P
is perturbed set, ChgRatio is computed as |O ∩ P |/|O|.
For ChgRatio on a single domain name, sensitive do-
main (s) and non-sensitive (n) domain are calculated
separately. For ChgRatio on domain pairs, pair of two
sensitive domains (s,s), one sensitive domain and one non-
sensitive domain (s, n), and two non-sensitive domains
(n, n) are measured. We choose ChgRatio because it
impacts the mapping of a domain name to the source IP
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Figure 8: Comparison of TrkAcc before (“raw”) and
after deploying LDPRESOLVE (“2k” and “10k”). “2k” and
“10k” are values set to Ns. All numbers are percentage.

address or domain names to domain names, which is also
utilized a lot for malicious domain detection [27], [34],
[59], [78].

5.1. Impact on User Tracking

We first measure the impact of LDPRESOLVE on
all tracking methods (jac, cos, bay, ja-bi, co-bi, ba-bi,
DSCORR) in the closed-world setting as described in
Section 3.5. We set ε1 = 10 and ε2 = 2 to represent
high & low privacy budgets. We set Ns to 2k and 10k
out of more than 2 million domain names from the 9k-
user set, to assess the impact of the sensitive set. When
Ns = 2000, 72.6% domain names per session are sen-
sitive, but 1.7% domains in SU are sensitive, showing a
long-tail distribution. When Ns = 10000, the numbers are
changed to 92.4% and 8.3% respectively.

Figure 8 shows TrkAcc before and after LDPRE-
SOLVE is applied6. It turns out DSCORR is influenced
most: TrkAcc is dropped to 60.0% when Ns is 2k, and
10.1% when Ns is 10k, from 93.0%. On the other hand,
the impact to 1NN-Cosine (cos) is the the smallest among
all tracking methods: TrkAcc is dropped to 62.2% and
34.1% from 86.6%, when Ns is 2k and 10k respectively.
The result indicates LDPRESOLVE is effective in protect-
ing users’ privacy, and it has stronger influence on tracking
methods with higher TrkAcc.

We also test LDPRESOLVE in the open-world setting,
by setting Ns to 10k. The original TrkAcc for 1NN-
Cosine and DSCORR are 70.9% and 82.3% respectively.
Under LDPRESOLVE, TrkAcc of them are dropped to
51.9% and 50.8%. In the open-world setting, one can
achieve an accuracy of at least 50% by labeling all ses-
sions as unknown. Thus, the TrkAcc drop here is suffi-
cient enough to show the effectiveness of LDPRESOLVE.

For the follow-up experiments, we choose 1NN-
Cosine (uni-gram) as the tracking method since it is more
robust to noise, and focus on the closed-world setting.

6. Noticeably, bi-ba has higher TrkAcc comparing to DSCORR

(95.7% vs 93.0%). This is because we use 80% and 20% data for
training and testing here, varying the number of labeled sessions per
user. DSCORR performs better with less data.
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ε1 TrkAcc std std_s std_n

15 38.7 332.30 1279.53 3.48
10 34.1 343.66 1279.63 5.71
9 28.4 352.52 1279.94 6.85
8 19.5 360.62 1280.39 8.54
7 10.2 365.38 1279.76 10.66
6 3.7 367.61 1279.92 10.75
5 1.4 368.45 1279.01 11.20
2 0.2 369.12 1280.31 10.84

TABLE 2: Impact of ε1 on TrkAcc (shown in percentage)
and overall std. std_s and std_n are std for sensitive
and non-sensitive domains.

5.2. Impact of Parameters

We discuss the impact of different parameters
(ε1, ε2, Ns) in LDPRESOLVE on the three evaluation met-
rics here. We set a large ε1 (10) and a small ε2 (2)
initially because we intend to preserve more privacy for
sensitive domains (more noise added) while maintaining
better utility for other domains (less noise added). The-
oretically, eε1 needs to be at least the same order as the
size of the sensitive set Ns to avoid significant changes
to non-sensitive domains. To evaluate the impact of each
parameter, we fix other parameters and vary the tested
parameter and obtain privacy and utility results.

We examine ε1 from 2 to 15 and ε2 from 0.5 to 10
with different size of the sensitive set Ns. We evaluate the
impact of these parameters based on their TrkAcc, std
and ChgRatio. Overall, a large ε1 and Ns with small ε2
is preferred. More specifically, by setting ε1 = 10, ε2 =
2 and Ns = 20, 000, LDPRESOLVE is able to decrease
the tracking accuracy to 23.3% for 1NN-Cosine, which is
proved to be the method most robust to noise. Regarding
the utility measured by std, our result indicates they can
be preserved (especially for non-sensitive domains). For
instance, when ε2 = 2 and ε1 = 10, std_n is only 5.71.

Impact of ε1. ε1 is the privacy budget for the whole
domain set and the smaller ε1 will introduce greater noise
to all the domains. We tested 5 different ε1 ranging from 2
to 15 while setting ε2 and NS to 2 and 10000 respectively.
The result of TrkAcc and std are shown in Table
2. We see that as ε1 drops, TrkAcc drops drastically
due to the higher-level noise added. Besides, std of the
whole domain set increases slowly with std of sensitive
domains remaining almost the same and std for non-
sensitive domains grows, because we use ε2 to control
the changes on the sensitive domains.

Figure 9a supports this claim as well with the result
on ChgRatio. The co-occurrence of any sets of domains
involving non-sensitive domains is dropping sharply from
a very high level as ε1 gets smaller. Meanwhile, 99.8%
of non-sensitive domain names and 99.5% non-sensitive
domain pairs are unchanged when ε1 is set to 15. Only
less than 16.8% of non-sensitive domains and 1.3% non-
sensitive domain pairs remain the same after the ε1 is
decreased to 7. Since non-sensitive domains play a big
role in security research, ε1 should be set to a relatively
high value in order to guarantee reasonable utility.

Impact of ε2. ε2 is the privacy budget for sensitive
domains only, and the smaller ε2 introduces more noise.
Similarly to the last setting, we fix ε1 to 10, NS to 10000,

ε2 TrkAcc std std_s std_n

10 84.8 121.59 241.10 3.27
8 80.2 264.24 731.94 3.80
7 70.3 305.47 967.65 5.31
6 57.4 326.82 1127.27 5.52
5 43.6 336.81 1214.65 5.67
2 34.1 343.66 1279.63 5.71

0.5 33.9 343.95 1282.55 4.38

TABLE 3: Impact of ε2 on TrkAcc, std, std_s and
std_n.

NS TrkAcc std std_s std_n

1000 68.0 363.13 2552.22 1.72
2000 62.2 388.23 2205.18 2.15
5000 48.8 376.73 1669.81 6.54
10000 34.1 343.66 1279.63 5.71
20000 23.3 304.17 949.84 7.13

TABLE 4: Impact of NS on TrkAcc, std, std_s and
std_n.

and examine the impact of different ε2 from 0.5 to 10.
In this setting, we have the non-sensitive domains not
impacted so their utility to legitimate applications is pre-
served. But because tracking relies on sensitive domains,
it is disrupted.

As shown in Table 3, std of non-sensitive domains
is small (all less than 6) and stable across different ε2.
A small difference is observed because a different set of
non-sensitive domains is perturbed every time we run the
experiment. The same pattern can be found in Figure 9b
where the ChgRatio of domains or domain pairs without
involving sensitive domains remains almost unchanged
under the fluctuation of ε2.

In conclusion, higher ε1 and lower ε2 are preferred for
a good balance between privacy and data utility.

Impact of NS . We fix ε1 to 10, ε2 to 2 and change NS

from 1k to 20k. Table 4 shows that by increasing NS , user
tracking is severely interfered, with TrkAcc dropping
from 68.0% to 23.3%. In the meantime, its impact on
non-sensitive domains is controlled, with std of them
ranging from 1.72 to 7.13. Figure 9c shows that with
the increase of NS , ChgRatio of sensitive domains,
nonsensitive domains and pairs of nonsensitive domains
are decreasing.

Here we explain this observation in depth. Followed
by increase of Ns, 4 perturbation probabilities c1, c2, c3, c4
all decrease. Sensitive domains will have a greater chance
to be changed as they are associated with c1, c2, c3, while
non-sensitive ones are less changed as it is only impacted
by c4. With Ns increased, sensitive set is expanded to
contain more low-frequency domains, so std_n also
increases. For pairs associated with sensitive domains, the
perturbation breaks their relations, so the ChgRatio of
them remain low with a trend of decreasing.

From the result and explanation above, it is clear
that Ns is also an essential parameter for LDPRESOLVE.
Larger Ns is recommended when the legitimate applica-
tions highly rely on the non-sensitive domains. Though
due to the power-law distribution of domains, 1k and 20k
have a big difference of influence on user sessions, only
a small portion of the whole domain set is impacted, as
shown in Section 5.1.
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Figure 9: ChgRatio vs. ε1, ε2 and NS . s, n, (s, s), (s, n) and (n, n) are explained in “Evaluation metrics”.

5.3. Noisy SL

Our default setting assumes SL is clean to the adver-
sary. We further explore the scenario when SL has noises
injected by LDPRESOLVE. The parameters are the same
as our default setting: ε1 = 10, ε2 = 2, Ns = 10000.

Firstly, we assume SL is noisy while SU is clean.
The tracking accuracy turns out to be 23.4%, which is
even worse than 34.1% when we assume a clean SL and
a noisy SU. Therefore, such “data poisoning attack” is
even more effective against user tracking. Secondly, we
allow one clean session for each user to be included in SL
(SU is still clean). Tracking accuracy will be increased to
41.9%. The result suggests even one clean session in SL
can give adversary great lift in countering LDPRESOLVE.
Finally, if both SL and SU are noisy, the accuracy will
drop back to 32.5%.

5.4. Sensitive Set with SLDs

So far we fill the sensitive set with FQDNs (Full
Qualified Domain Names). It can also be constructed by
extracting the SLDs (Second-Level Domains) part from
the popular FQDNs, by leveraging a public suffix list [4].
Then, if the SLD of a domain name matches the sensitive
set, it will be considered as in XS . By doing so, the sub-
domains under sensitive domains are also protected.

By building the new sensitive set based on only 100
most popular SLDs from the same 9k-user dataset, track-
ing accuracy is dropped to 14.16%. This result shows that
by adding strong noises to a small set of SLDs, tracking
will be significantly disturbed.

When applying this change, certain domains need to
be excluded, i.e., not adding their SLDs to sensitive set.
One example is domains requested under PTR Record.
Because all PTR records are under the same SLD in-
addr.arpa or ip6.arpa, if including those domains
in sensitive set, security research based on PTR records
[70] will be significantly impaired.

5.5. Adaptive Tracking against LDPRESOLVE

To counter LDPRESOLVE, an adaptive attacker can
try to eliminate the noises introduced by different means.
As ULDP ensures domains in the non-sensitive set are
invertible, one feasible option is to remove the observed
domains that appear in the sensitive set, therefore reduce

the effect of change of domains. In this way, the queries
left in the records contain only authentic domains. Another
option to eliminate the effect of LDPRESOLVE is to
estimate the domain frequency by reversing (XS , ε1, ε2)-
URR.

Removing sensitive domains. By removing the sensitive
domains in the DNS records, most of the noises would be
removed along with them. On the other hand, the tracking
effectiveness should not be restored to the level without
LDPRESOLVE, since there are less domains to be used to
connect sessions of the same user.

It turns out that tracking accuracy rises from 34.06% to
53.08% after this adaptive strategy. For the vanilla setting
(attacker has access to the clean data in both SL and
SU and no domains are removed), the accuracy is 86.6%.
As such, we argue that even this strategy is applied, the
tracking accuracy is far from optimum for the adversary.

Reversing (XS , ε1, ε2)-URR. LDPRESOLVE uses
(XS , ε1, ε2)-URR to perturb a request. The process
depends on a few parameters (c1, c2, c3, c4). When they
are known to the adversary, she might attempt to reverse
the perturbation process to estimate the real distribution of
a domain based on the observed distribution. We propose
an implementation for this strategy and evaluate its
impact on LDPRESOLVE. Mathematical details are listed
in Appendix C. It turns out this strategy does not work
well when the sensitive set is large, which introduces
large randomness to the perturbation process. When Ns

is 10k, TrkAcc is slightly increased from 34.06% to
34.54%. As an alternative solution, the adversary could
choose to reverse the non-sensitive set only, which are
derived by excluding sensitive set from the entire domain
set. This strategy increases TrkAcc to 53.50%, but still
far from the vanilla setting when LDPRESOLVE is not
deployed (86.6%).

5.6. Comparison with K-resolver

As described in Section 4.1, K-resolver [43] is ex-
pected to deter tracking by dispersing DNS queries across
resolvers. We test K-resolver by splitting DNS requests
into k slices, and launch 1NN-Cosine tracking against it.
The detailed evaluation results are shown below.

We vary k from 18 to 90 (with step size 8) and
TrkAcc is reduced from 62.89% to 30.7%, as shown in
Figure 10. It turns out only when k is very large (over
74), K-resolver can outperform LDPRESOLVE (TrkAcc
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Figure 10: Comparison on TrkAcc of LDPRESOLVE and
K-resolver by k.

at 34.06%) in theory. However, finding such a big pool of
resolvers is quite difficult. In fact, Hoang et al. investigated
53 DNS-over-HTTPs resolvers and found only 26 of
them can provide reliable services. LDPRESOLVE offers
sufficient protection by involving much fewer resolvers
(only 2). In fact, as a deterministic hash function is used
by K-resolver, a group of domains will always be sent to
the same resolver, regardless of how much information
they leak. The randomized protocol of LDPRESOLVE

addresses this limitation.

5.7. Prototype

We implement a prototype of LDPRESOLVE to eval-
uate its overhead. Our prototype is built on top of dnsdist
[1], an open-source DNS load-balancer. We write Lua,
Python, and Shell scripts to customize dnsdist to support
LDPRESOLVE. The code we wrote is released on GitHub.

For domains that are unperturbed, we query them
through a primary resolver, which is a public resolver
(223.5.5.5) in our experiment. For domains that are
perturbed, two kinds of queries are issues: 1) queries sent
to the alternative resolver (AltRR), which is set to be
a trusted local recursive resolver running PowerDNS [6]
and directly talking to authoritative nameservers, and 2)
dummy queries (i.e., noise) sent to the primary resolver.
The two types of queries are issued in separate processes,
so the impact on the normal DNS resolution is confined.
It is also worth mentioning that we create a local cache
with a fixed size similar to the sensitive set.

We randomly choose a group of sessions of one
user in our dataset, replay the first 10k DNS queries
(qname/qtype combination) and evaluate the Round-trip
Time (RTT) and traffic volume.

RTT. Firstly, we measure the distribution of the query
RTTs under LDPRESOLVE. Figure 11 shows the CDF
plot of the 10K queries. Because of the local cache, RTT
for most of the queries is less than 10ms (querying the
primary resolver takes about 20ms). Responses to the non-
sensitive domain names are slower than the sensitive ones,
because they are less likely to be requested multiple times
(so cached). We also examined the idea of prefetching
the domain names in the sensitive set, and the RTT
turns out to be even smaller generally. Overall, our result
shows LDPRESOLVE is efficient under parallel domain
resolving.

Figure 11: Comparison of RTT between different settings
of LDPRESOLVE. “ldp” are all queries. “ldp-sensitive”
and “ldp-nonsensitive” are queries to domains in and not
in the sensitive list. “ldp-prefetch” is RTT of all queries
when prefetch of sensitive domains is enabled.

Traffic volume. We found the 10k queries generate about
2.76MB of DNS traffic to the public resolver. When
using LDPRESOLVE, 3.28MB DNS traffic is generated,
where 2.36MB goes to the primary resolver, and 0.92MB
goes to AltRR, which is 18.8% higher than querying
DNS normally. The traffic sent to the primary resolver
is actually reduced because of the local cache.

6. Discussion

Limitations of DSCORR. 1) While fields in a DNS
request other than the domain name, like query timestamp,
could potentially be exploited for user tracking, they are
not used by DSCORR. Through empirical analysis, con-
sidering those fields could significantly increase the com-
putation complexity and introduce noises. 2) The domains
not encountered when training the embedding model will
be ignored during session clustering. As an alternative
approach, the domain embedding can be updated on the
fly when new domains emerge. The NLP community also
faces this “out-of-vocabulary” problem, and methods in
this area [75], [76] can be leveraged to tackle this issue.
3) Though DSCORR can distinguish unknown sessions
from known, it can not automatically build profiles for
unseen users.

Limitations of LDPRESOLVE. 1) The utility could be
worse for popular domains due to ULDP, which can hurt
the applications like domain popularity ranking at recur-
sive resolvers. From the level of authoritative nameservers,
the impact is expected to be smaller, as queries from RRs
over the world are aggregated. 2) We consider the passive
attacker who only does traffic analysis and do not consider
the active attacker who is able to change the state of the
user’s device, like changing DNS cache [56]. It would
be an interesting study about whether or how an active
attacker would be affected under LDPRESOLVE. 3) Ac-
cording to our implemented prototype of LDPRESOLVE,
the overhead of traffic volume is moderate and the latency
can even be reduced when AltRR uses local resolver,
local cache, or prefetch. These options might not always
be available to the users, so the performance result should
be perceived with a grain of salt.
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Sensitive set. As the sensitive set is generated based on the
historical domain popularity, an attacker can manipulate
this set by crafting domain visits. There exist two strate-
gies: 1) injecting a malicious domain into the sensitive set
so LDPRESOLVE will perturb it at higher probabilities,
but it also makes a user less likely to visit it; 2) injecting
many irrelevant domains to “kick out” the real popular
domains, but to override the query volume from users
requires significant network bandwidth. As such, there is
no strong motivation for an attacker to manipulate the
sensitive set.

LDPRESOLVE issues the same sensitive set to all
users. An alternative approach is to let a user customize
it for better performance at her end. We can allow a user
to manually change or automatically generate it from her
visiting history.

Limitations of dataset. For evaluation, we use only one
DNS dataset. We acknowledge that using more datasets
can address the potential bias caused by the user pop-
ulation, but getting access to one, especially with ses-
sion labels, is very challenging. Nevertheless, we want
to emphasize that our DNS dataset contains 10,000 users
launching over 300,000 DNS sessions, targeting 2 million
domain names, which is sufficient for a large-scale study.

Impact of NAT. To the best of our knowledge, our dataset
should not have data from users behind NAT. Though
we did not evaluate the impact of NAT on DSCORR and
LDPRESOLVE, we expect the impact is small when the
number of users behind a NAT address is small, as each
DNS session is more likely to be associated with only one
user. However, the impact would be amplified when more
users are behind a NAT address.

7. Related Works

In this section, we discuss the related works in differ-
ential privacy and DNS security and privacy. The related
works about user tracking have been described in Sec-
tion 2.2.

Differential privacy. Our defense mechanism LDPRE-
SOLVE leverages LDP to protect users against user track-
ing while retaining sufficient data utility for legitimate
applications. The utility function modeled by us belongs
to frequency estimation, which is considered as a major
use case for LDP with different protocols developed [32],
[49], [79], [89]. To enable better data utility with LDP, we
adopt ULDP [38], [67], a variation of LDP, and adjust it
for our setting.

We apply LDP to network data generated by users,
in particular DNS data. Prior works applied LDP mostly
in the data from the browser, like monitoring aggregated
browsing activities [33], learning the frequency of website
visits [32], enabling local search [17], supporting web
search with differentially-private query logs [95]. Differ-
ent from the browser setting in which the data curator asks
for the reports from users, in our setting the local resolver
adds noise to a portion of queries actively.

DNS security and privacy. Cyber-attackers tend to lever-
age DNS infrastructure to hide the IP address of a mali-
cious server, e.g., C&C server. Therefore, a long line of
works studied how to leverage the DNS logs recorded by
DNS servers for detection. The detection features mainly

come from the DNS packet, the auxiliary information
about domain name and IP, and statistical features about
DNS traffic. The lexical features of domain names such as
the distribution of characters [91] or their complexity [72]
are used to identify DGA domains. Fields in DNS packets
are also used as features, such as TTL and IP in DNS
response [19]. Information like ASN [27], zone files [39]
or WHOIS [94] can augment the DNS information. A few
works applied graph-based algorithms on domain-IP graph
[59], [71], [78] to identify malicious domains. Domain
frequency is also an important feature and is primarily
evaluated by LDPRESOLVE.

Though we introduce noises into DNS queries, the
utility loss to domain detection is contained. First, by
treating sensitive and non-sensitive domains with different
ε, the feature values about suspicious domains are largely
preserved. Second, the features about individual domains
are unchanged, like their lexical features.

Regarding the privacy of DNS, in addition to user
tracking, eavesdropping and manipulating DNS are also
important issues. It has been found that parties like NSA
and ISP are monitoring and hijacking DNS traffic [7],
[37], [62], which leads to significant efforts from the
Internet community in recent years to develop and de-
ploy encrypted DNS, including DNS-over-TLS, DNS-
over-HTTPS and etc, but users’ traffic is not immune to
the attacks based on statistical analysis on traffic [44],
[82], [83], or when the resolver is the adversary.

8. Conclusion

In this paper, we study the issue of user tracking
on DNS data. On the side of attack, we introduced a
new mechanism named DSCORR, to track users based
on their DNS queries, which turns out to be effective
under both open-world and closed-world settings. Based
on our observation on the attack side, we then present
a new mechanism named LDPRESOLVE to make DNS
sessions indistinguishable, using a generalized version of
ULDP and new constructions satisfying its requirements.
Finally, we evaluate the effectiveness of LDPRESOLVE in
different settings to prove its capability to protect users’
privacy from tracking while preserving the utility for
legitimate applications based on DNS data. Our study
suggests the threats coming from the DNS-based user
tracking should be mitigated and it is feasible to protect
users’ privacy without damaging the utility of legitimate
applications.
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Appendix A.
Definition of (XS ,YP , ε1, ε2)-ULDP

Given XS ,XN ⊆ X , YP ,YI ⊆ Y and ε1, ε2 ∈ R≥0,
a randomize mechanism A, where A(X) = Y , provides
(XS ,YP , ε1, ε2)-ULDP if it satisfies the following proper-
ties:

1) For any y ∈ YI , ∃ x, x′ ∈ XN

P(y|x) > 0 and P(y|x′) = 0, ∀x′ 	= x. (7)

2) For any x, x′ ∈ X and any y ∈ YP ,

P(y|x) ≤ eε1P(y|x′) (8)

That is, ε1-differential privacy is guaranteed for
∀x ∈ X .

3) For any x, x′ ∈ XS and any y ∈ YP ,

P(y|x) ≤ eε2P(y|x′) (9)

Where ε2-differential privacy is guaranteed for
∀x ∈ XS and ε1 ≥ ε2.

Appendix B.
Proof of (XS , ε1, ε2)-URR

- First Approach. We can show how the properties in
Definition 3 hold by showing all possible scenarios of
input and output combinations satisfy the definition:

1) For any y ∈ YI , there ∃x, x′ ∈ XN

PuRR(y|x) = c4 > 0 and PuRR(y|x′) = 0, ∀x′ 	= x.
(10)

2) For any x, x′ ∈ XN and any y ∈ YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c4
c3
≤ eε1 (11)

3) For any x, x′ ∈ XS and any y ∈ YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c1
c2

= eε2 ≤ eε1 (12)

4) For any x ∈ XS , x′ ∈ XN and any y ∈ YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c1
c3

=
eε2(eε1 + |XS | − 1)

eε2 + |XS | − 1
≤ eε1

(13)

- Second Approach. We can demonstrate our protection
mechanism as a two-layer model as well: all input data
has ε1-differential privacy guaranteed while for sensitive
data, another layer of ε2-differential privacy is provided.

– Layer 1. If we do not differentiate XS and XN ,
then we have same conclusion as Equation 7 and 8.

1) For any y ∈ YI , there ∃x, x′ ∈ XN

PuRR(y|x) = c4 ≥ 0 and PuRR(y|x′) = 0, ∀x′ 	= x.
(14)

2) For any x, x′ ∈ X and any y ∈ YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c1
c3
≤ eε1 (15)

Therefore, for all input data, ε1-differential pri-
vacy is guaranteed.
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– Layer 2. According to our definition, YP ⊆ XS ,
let ZP be the protected output set which follows same
definition of YP . Thus we have:

3) For any y, y′ ∈ YP ⊆ XS and any z ∈ ZP
PuRR(z|y)
PuRR(z|y′) ≤

c1
c2

= eε2 (16)

Appendix C.
Reversing (XS , ε1, ε2)-URR

Suppose
∣∣X∣∣ is the total number of observed queries,∣∣∣X̂

∣∣∣ the estimate and
∣∣∣XN

∣∣∣ is the number of non-sensitive

queries being observed. Note that
∣∣X∣∣ = ∣∣∣X̂

∣∣∣ under LD-

PRESOLVE.
∣∣∣X̂N

∣∣∣ is the estimate of the real non-sensitive

queries. According to the definition of (XS , ε1, ε2)-URR,
we have: ∣∣∣X̂N

∣∣∣ = 1

c4

∣∣∣XN
∣∣∣ (17)

Therefore, the estimate of real sensitive queries
∣∣∣X̂S

∣∣∣
would be:∣∣∣X̂S

∣∣∣ = |X| −
∣∣∣X̂N

∣∣∣ = |X| − 1

c4

∣∣∣XN
∣∣∣ (18)

For a specific observed sensitive query xS
0 , the total

number of xS
0 follows the equation below:

∣∣xS
0

∣∣ = c1
c1 + c2 + c3

∣∣x̂S
0

∣∣+ c2
c1 + c2 + c3

∑
k�=0

∣∣x̂S
k

∣∣ 1

|XS |

+
c3

c1 + c2 + c3

∣∣∣X̂N
∣∣∣ 1

|XS |
=

c1
c1 + c2 + c3

∣∣x̂S
0

∣∣+ c2
|XS |(c1 + c2 + c3)

(
∣∣∣X̂S

∣∣∣− ∣∣x̂S
0

∣∣)
+

c3
c1 + c2 + c3

∣∣∣X̂N
∣∣∣ 1

|XS |
=

c1
c1 + c2 + c3

∣∣x̂S
0

∣∣+ c2
|XS |(c1 + c2 + c3)

(
∣∣X∣∣

− 1

c4

∣∣∣XN
∣∣∣− ∣∣x̂S

0

∣∣) + c3
c4(c1 + c2 + c3)|XS |

∣∣∣XN
∣∣∣

(19)

Therefore, we have the estimation of any observed
domains as follows:

∣∣x̂S
0

∣∣ =
c2−c3
c4

− c2
∣∣X∣∣+ ∣∣xS

0

∣∣ |XS |(c1 + c2 + c3)

(c1 − c2)|XS | (20)

Attacker will then use |x̂S
0 | for user tracking.
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