
EZEE: Epoch Parallel Zero Knowledge for ANSI C

Yibin Yang
Georgia Institute of Technology

USA
yyang811@gatech.edu

David Heath
Georgia Institute of Technology

USA
heath.davidanthony@gatech.edu

Vladimir Kolesnikov
Georgia Institute of Technology

USA
kolesnikov@gatech.edu

David Devecsery
Facebook; Work done at Georgia Tech

USA
ddevec@fb.com

Abstract—Recent work has produced interactive Zero
Knowledge (ZK) proof systems that can express proofs as
arbitrary C programs (Heath et al., 2021, henceforth referred
to as ZEE); these programs can be executed by a simulated
ZK processor that runs in the 10KHz range.

In this work, we demonstrate that such proof systems
are amenable to high degrees of parallelism. Our epoch
parallelism-based approach allows the prover and verifier
to divide the ZK proof into pieces such that each piece can
be executed on a different machine. These proof snippets
can then be glued together, and the glued parallel proofs
are equivalent to the original sequential proof.

We implemented and we experimentally evaluate an
epoch parallel version of the ZEE proof system. By running
the prover and verifier each across 31 2-core machines, we
achieve a ZK processor that runs at up to 394KHz. This
allowed us to run a benchmark involving the Linux program
bzip2, which would have required at least 11 days with the
former ZEE system, in only 8.5 hours.

Index Terms—Zero Knowledge, Interactive ZK, Parallelism

1. Introduction

Zero knowledge (ZK) proofs (ZKPs) allow a prover
P to demonstrate to a verifier V the truth of some state-
ment, while revealing nothing additional. In particular, P’s
witness, which might be sensitive, remains hidden from
V . ZK is a powerful cryptographic primitive that enables
numerous useful applications. As one simple example,
prior work has shown that ZK can be used to allow P
to prove to V the existence of a bug in a public program
without leaking the source of the bug [24].

For some time, cryptographers have known techniques
for proving arbitrary statements in ZK. However, until
relatively recently such statements needed to be encoded
as Boolean or arithmetic circuits, and so it was difficult
for non-experts to use this powerful technology. Moreover,
naı̈ve program-to-circuit unrolling is inefficient for many
programs.

Recent work shows that it is practical to construct
efficient ZK proof systems that operate over RAM pro-
grams rather than circuits [23], [25]. By choosing the
RAM program to be a general purpose CPU and by

implementing a compiler, it is now possible to encode
arbitrary ZK proofs as ordinary ANSI-C programs [25].
These works present low-level Zero-Knowledge machine
(ZKM) emulators, capable of running a complete instruc-
tion set in zero knowledge. Proof statements are input as C
programs, compiled into the instructions of the ZKM, and
then run on the ZKM. With these advances, implementing
a ZK proof is as easy as writing a C program, practically
opening ZK proofs to many new applications.

Despite advances in performance, state-of-the-art ZK
processors run millions of times slower than commodity
processors, executing instructions in only the low KHz
range. Furthermore, given the inherent cryptographic over-
head of ZK, it is unlikely that ZK machines will approach
the performance of modern CPUs in the foreseeable fu-
ture. A program that may modestly take a few seconds
on a commodity processor may not complete in months
when run in ZK. This high latency means that many ZK
applications remain impractical.

In this work, we build a ZK system that greatly reduces
proof latency by introducing a high degree of parallelism
without needing to change the proof statement. Our epoch
parallelism technique splits a logically sequential proof
into different epochs. Each epoch, which can be thought
of as a subsequence of instructions run during the program
execution, can be handled by a pair of worker machines,
one owned by P and one by V . Because the epochs run
in parallel, we decrease the proof latency by a factor up
to the degree of available parallelism. The technique does
incur a slightly larger proof, since P must additionally
prove that the epochs are consistent, but this cost is low
compared to the size of the overall proof.

1.1. Our Contributions

In this work we:

• Build on ‘ZK for Everything and Everyone’
(ZEE) [25] by designing, implementing, and eval-
uating Epoch ZEE (EZEE), a secure epoch par-
allel ZK proof system. We show that EZEE can
execute off-the-shelf ANSI C programs inside ZK
while utilizing epoch parallelism. We used EZEE
to execute in ZK the Linux programs sed (proving
it has a bug) and bzip2 (from the industry standard

109

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

© 2022, Yibin Yang. Under license to IEEE.
DOI 10.1109/EuroSP53844.2022.00015

20
22

 IE
EE

 7
th

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

16
14

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

53
84

4.
20

22
.0

00
15

SPEC2006 benchmark suite [26], proving it ter-
minates normally). In our experiments, we show
that EZEE runs at up to 394KHz. This clockrate
is bounded by the available parallelism, not by a
limitation of the technique. With more processors,
we estimate that EZEE can run at up to 1.8MHz
(see Section 8).

• Provide a template that explains how ZK protocols
can be transformed into epoch parallel ZK proto-
cols. Formally, we specify an interface that we call
the PIM (proof interface machine). We show that
ZK machines that meet the PIM interface allow
a general program transformation that introduces
epoch parallelism. We believe PIM would also be
useful in future ZKP parallelization work.

2. Related Work

Zero Knowledge Machines. We present a ZK
proof system in the RAM model of computation. This
direction is relatively unexplored; we review the few
works in the area.

The first such works built on succinct non-interactive
ZK (NIZK) proof engines [5], [7], [8]. Although these
works achieve highly desirable non-interactivity, they do
not scale to machines powerful enough to handle large
proofs. E.g., such machines only run in the 1Hz range.
Building substantially more powerful NIZK machines re-
mains an interesting research direction.

Recently, [23] and subsequently [25] constructed far
more efficient ZK RAM machines based on an interactive
proof system. While both P and V must be online for the
proof, the RAM machine runs thousands of times faster
and can support a main memory with megabytes of RAM.
Our work builds directly on the proof system of [25], ‘ZK
for Everything and Everyone’, which we call ZEE , so
we discuss the details of their system as background in
Section 3.

By implementing epoch parallelism, we build a ZKP
system with lower proof latency than the above systems.

[17] proposed a new efficient constant-overhead ZK
RAM. It is concretely efficient and improves both in
speed and supported RAM size over [23] and [25].
While our epoch-parallel system builds on ZEE and
BubbleRAM [23], it should be possible to integrate their
improved RAM into our epoch parallel approach. We
leave this integration as future research; the focus of this
work is exploring ZK parallelization.

Fast Interactive ZK Protocols. A number of
works investigate gate-by-gate interactive ZK protocols.
Such works are interesting because they (1) achieve low
proof latency and (2) can scale to large proof statements.

Our work builds on the information theoretic MAC
(IT-MAC) based ZK proof system of [23] and [25].
This proof system is based on the Garbled Circuit-based
ZK paradigm (GC-ZK) initiated by [29] and continued
by [18], [24], [31]. We view GC-ZK and IT-MACs as
background to our work (see Section 3). Note that we
favor the protocol of [25] over the following discussed
works because the authors provide a hand tuned CPU.
E.g., they provide an ALU that was specifically designed
with costs of the underlying ZK protocol in mind.

Mac’n’Cheese [4] is a recent ZK proof system that
builds gate-by-gate interactive proofs on top of vector
oblivious linear evaluation (VOLE). Their work also in-
corporates the recent stacked garbling technique [24] to
achieve efficient disjunctive proof statements.

Like [23], Wolverine [39] also builds on IT-MACs, but
does so using a custom protocol rather than using the GC-
ZK protocol of [29]. Wolverine, which like Mac’n’Cheese
is based on VOLE, is superceded by Quicksilver [43]
(discussed shortly).

Line-Point ZK [13] greatly simplified the handling of
VOLE-based IT-MAC multiplication.

Quicksilver [43] combines Wolverine with Line-Point
ZK to achieve an extremely communication-efficient ZK
protocol. The authors argue that Quicksilver is communi-
cation optimal for the gate-by-gate paradigm, since each
of their field multiplication gates requires only the trans-
mission of one field element and one VOLE correlation
(of course, approaches that do not operate gate-by-gate can
achieve much lower communication, i.e. sublinear ZK).

Detailed comparison between Quicksilver and the pro-
tocol of [25] is not available. Nevertheless, Quicksil-
ver [43] now appears to be the state-of-the-art protocol
for gate-by-gate interactive ZK, particularly for low band-
width networks. However, the system has not yet been
applied to the RAM model of computation, so we favor
the protocol of [25] which comes with a hand tuned CPU.
Also, it is not clear that Quicksilver greatly outperforms
the [25] protocol on fast networks, because the latter
is based on OT instead of the more expensive VOLE.
We view building a tuned CPU for Quicksilver and then
applying epoch parallelism as important future work.

Non-interactive and Succinct ZK. Large num-
bers of recent works in the ZK space emphasize small
proof size and/or non-interactivity, e.g. [3], [5], [6], [9],
[11], [12], [19]–[22], [28], [30], [33]. NIZK parallelization
(of computation) has also been explored, e.g., in [16], [42].
While NIZK work has achieved very impressive results in
terms of non-interactive proofs of smaller statements, such
proof systems do not yet match the scale and low latency
of the above interactive proof systems.

Epoch Parallelism. Epoch parallelism is a tech-
nique that predicts future states of an execution and then
uses those predicted states to parallelize that future execu-
tion. It has been used previously, typically for speculative
acceleration [32], [35], [36], [45], in which the system
predicts future behaviors of the system, and then specula-
tively runs that future execution using those predictions.
These speculative executions are often run in parallel,
in what is known as an epoch-parallel phase. If the
predictions are correct, the system can remove bottlenecks
such as I/O or heavy-weight computation. However, if the
predictions are inaccurate, the system must roll-back and
discard the work done during epoch-parallel execution.

Others have also used this technique with deterministic
computation to help accelerate dynamic analyses [34],
[41]. Here the initial prediction step is on a deterministic
computation, so the epoch generation is not speculative
and will not roll-back. However, the predictor to generate
the epoch’s state is less expensive than the epoch execu-
tion, allowing for parallelization of the analysis code.

Our work demonstrates the natural compatibility of
ZK proofs and epoch parallelism. By running the proof

110

locally, P can easily predict with perfect precision future
program states. Then, the slow-running portion of the ZK
proof can be parallelized to a very high degree.

3. Preliminaries

Traditionally, cryptographers encoded ZK proofs as
Boolean or arithmetic circuits. While circuits are theo-
retically convenient and are suitable for small proofs, it
is difficult to express complex systems as simple circuits.
Recent work shows that the state-of-the-art in ZK now
suffices to support efficient CPU-emulation based proof
systems [23], [25]. We build our epoch parallelism system
on one such recent work, that allows ZK proofs to be
encoded as ANSI C programs [25].

Thus, we briefly review their system and the crypto-
graphic foundations on which it lies. From here on, we
refer to this base system as ZEE .

3.1. Garbled Circuit Based ZK

[29] were the first to achieve practical ZK proofs of
arbitrary statements. The [29] protocol builds efficient ZK
on top of a simple semi-honest garbled circuit (GC) proto-
col. Here, V instantiates the GC generator and constructs
a garbling of the proof statement encoded as a Boolean
circuit. V sends this garbling to P . Additionally, V con-
veys to P via oblivious transfer (OT) GC input labels that
together encode P’s witness. P then evaluates the garbled
circuit gate by gate under encryption until finally obtaining
a single output label; if this label encodes a logical one,
then the proof succeeds. The authenticity property of GC
ensures that even a malicious P cannot forge a convincing
output label unless she has a valid witness. Thus, this
technique elegantly and straightforwardly ensures that P
cannot forge a proof.

Protecting against a malicious V is harder: V can,
in particular, send an ill constructed circuit garbling that
leaks part of P’s witness and violates ZK security. [29]
guard against this by adding a simple commitment step:
once P computes her GC output label, she does not
directly send it to V , but rather commits to it. Then, V
sends to P a single PRG seed that was used to derive all
garbling randomness. This seed allows P to replay V’s
actions when garbling the circuit and to check that all
messages from V were properly constructed. Only once
this check succeeds does P open her commitment.

While [29] were the first to achieve efficient and ar-
bitrary ZK, a cascade of research produced new ZK tech-
niques, particularly in the space of succinct non-interactive
ZK. Even so, the GC-ZK paradigm remains interesting
because of its attractive performance characteristics: its
communication and computation for both P and V scale
linearly in the proof statement size with low constants.
Moreover, thanks to OT extension [27], [44], a proof
can be completed using only a small number of public
key operations1; the remainder of the protocol requires
only simple and highly efficient symmetric key operations.
Finally, the GC-ZK paradigm places very low memory

1. The number of required base oblivious transfers, which require
public-key cryptography, scale only with the security parameter.

constraints on P , which for many other protocols becomes
a bottleneck (see e.g. discussion in [43]).

Our construction can be categorized as a GC-ZK
technique. While we build on more recent arithmetic tech-
niques (see next), the ZEE arithmetic technique that we
build on is formalized in the GC-ZK framework proposed
by [29] and updated by [18]. Moreover, the top-level
protocol that hosts our implementation was formalized by
[29].

3.2. Arithmetic GC-ZK via IT-MACs

Earlier GC-ZK techniques, e.g. [24], [29], worked
directly with Boolean garbled circuits. These techniques
were based on the classic GC technique of encoding
Boolean functions as encrypted truth tables: given input
labels, P decrypts the corresponding output label. To
protect against a cheating P , these techniques needed long
labels: label length was proportional to the computational
security parameter (e.g. 128 bits). Moreover, each label
could only hold one semantic bit.

More recently, [23] updated the GC-ZK technique by
showing that it is possible to replace GC labels by simple
information theoretic message authentication codes (IT-
MACs). These IT-MACs are both shorter (e.g. 40 bits),
since they are proportional only to the statistical security
parameter, and also can hold a semantic arithmetic value
with length equal to the length of the IT-MAC.

While our epoch parallelism technique is relatively
agnostic to the low level details of the underlying pro-
tocol, ultimately we use the IT-MAC based ZEE protocol
of [25]. Thus we briefly review the IT-MAC technique.

In the protocol, P and V hold IT-MACs that each
encode a value in a field Zp for a suitably large prime p
(we choose p = 240 − 87, the largest 40 bit prime). An
IT-MAC consists of two shares, one held by V and one
by P . We denote the IT-MAC that encodes x ∈ Zp by
writing �x�. This IT-MAC is a pair of values:

�x� � 〈X,xΔ−X〉 where X ∈$ Zp

where V holds the left hand element and P holds the right
hand element. Here, Δ is a global uniform non-zero value
drawn by V at the start of the protocol and is unknown
to P .

Crucially, an IT-MAC is unforgeable: given xΔ−X ,
P cannot reliably construct yΔ−X for y �= x. She can do
so only by guessing Δ, which succeeds with probability
1

p−1 .
At the same time, the parties can operate on IT-

MACs. First, IT-MACs are additively homomorphic, as
�x� + �y� = �x + y� (where the sum of two IT-MACs
is defined to be the pointwise sum of their two parts).
Second, [23] showed that it is easy to multiply a vector
of IT-MACs by a secret bit b ∈ {0, 1} chosen by P via
a single oblivious transfer. These two operations suffice
to implement arbitrary arithmetic circuits. Thus these two
operations, combined with the unforgeability property of
the IT-MACs, mean that these primitives can implement
arbitrary ZK proofs.

3.3. The ZEE Proof System

Based on IT-MAC ZK algebra (Section 3.2), [25]
developed a full ZKP system, ZEE , that handles proofs

111

expressed as ANSI C programs. Our core contribution is
that we convert ZEE to an epoch parallel proof system
that we call EZEE (Epoch parallel ZEE). We briefly
explain the relevant parts of the ZEE approach.

[25] breaks the problem of proving statements written
as C programs into two parts:

• The C program is compiled to a custom instruction
set architecture (ISA) via a custom compiler. The
ISA is relatively typical, with the notable inclusion
of a distinguished QED instruction; if the program
executes QED , then the proof accepts. The pro-
grammer writes ordinary C code to express their
proof, while placing QED behind appropriate pro-
gram conditions.

• The ZEE ISA is executed by a custom ZK imple-
mentation built on top of IT-MAC algebra. This
implementation handles programs instruction by
instruction, and includes many optimizations, such
as an improved ZK RAM, called BubbleCache.
Each program instruction is handled by an arith-
metic circuit.

Following the notation of [25], we refer to the ISA
as the ZEE architecture and to the implementation as
the ZEE microarchitecture. Our approach uses the ZEE
microarchitecture’s instruction circuit directly. However,
rather than running the entire program in sequence, we
split the program into epochs and run a smaller sequence
of instructions on each of a number of machines.

3.4. Notation and Security Model

• P is the prover. We refer to P by she/her.
• V is the verifier. We refer to V by he/him.
• [n] denotes the sequence of integers 0...n− 1.
• ρ is the statistical security parameter, e.g. 40.
• κ is the computational security parameter, e.g.

128.
• Zp is the field of integers modulo prime p.

We clarify our considered security model. Our proto-
col involves an arbitrarily large number of communicating
machines, some controlled by P and some by V . How-
ever, we view all of P machines as part of the prover
P (symmetrically for V). That is, although there are a
large number of machines involved, there are still only
two parties. Our protocol is secure against a malicious
adversary that corrupts one of the two parties.

4. Technical Overview

In this section we present our approach with sufficient
detail to understand our contribution.

To reiterate, the core idea of the ZEE proof system
(Section 3.3, [25]) is to handle a proof expressed as a
ISA program one instruction at a time. Each instruction
is handled by an arithmetic circuit expressed using the
IT-MAC-based ZK proof algebra of [23]. ZEE then se-
quentially executes each program instruction and, at the
end of the execution, outputs one if and only if the CPU
is in a distinguished QED state.

Our approach leverages this same idea, except that we
execute portions of the program in parallel across worker

node machines. Our EZEE proof system (Epoch parallel
ZEE) parallelizes the proof execution in three steps:

1) The EZEE prover P runs a non-cryptographic,
cleartext version of the ZEE architecture using
her witness. This cleartext version runs the ZEE
instructions, but does not provide any crypto-
graphic guarantees or communicate with the ver-
ifier V . As P runs this cleartext execution, she
periodically records snapshots of the simulated
CPU state. These snapshots include the state of
RAM, registers, and the program counter. Al-
though this cleartext execution of the proof runs
sequentially, it does not use cryptography and
hence completes quickly.

2) Once all snapshots are recorded, P distributes the
snapshots amongst a number of worker nodes. V
similarly initializes corresponding worker nodes,
and the two sets of nodes are grouped into pairs.
Each pair of nodes then starts from the snapshot
state and performs a ZK proof that guarantees
to V the correct execution of all proof program
instructions leading to the next snapshot. We refer
to this partial proof as an epoch.

3) The parties then glue the epochs together. Specif-
ically, P proves in ZK that for each epoch i, the
ending CPU state matches the starting snapshot
for epoch i+ 1.

Once all epochs are completed and glued, the proof is
finished. We show that this proof succeeds if and only
if the original, sequential proof would have succeeded.
Crucially, all subproofs in step (2) can be run in parallel,
and hence the latency to finish the overall proof is greatly
decreased.

Our presentation proceeds as follows:

• Observe that the above high level strategy is rela-
tively agnostic of the details of the ZEE architec-
ture: we simply need that it is possible to execute
an instruction and to glue epochs together. Since
these requirements are quite general, Section 5
begins by capturing the requirements formally
through an abstraction we call a Proof Interface
Machine (PIM). The simple yet key result is that,
given a PIM , it is possible to rewrite the execution
of a program into an equivalent epoch parallel
version.

• With PIM defined, Section 6 presents a system
design that describes how P and V can run a PIM -
based ZK protocol across a cluster of machines.
This design focuses on systems aspects of our
parallelization of ZEE , and is not yet crypto-
formal, since we do not yet specify the precise
protocol run between the workers.

• In Section 7, we show that ZEE can be expressed
as a PIM and then plug the resulting definition
into our system design. We call the resulting proof
system EZEE (Epoch parallel ZEE). We explain
protocol-specific details that must be handled and
give protocol-specific improvements to the glue
step of epoch parallelism.

• Finally, Section 8 describes our C/C++ implemen-
tation and evaluates its performance when running
C programs inside ZK.

112

5. Proof Interface Machine

ZKP protocols that handle arbitrary statements usually
encode such statements as circuits; at the lowest level,
our protocol (and the ZEE protocol we build on) is the
same. To achieve a high degree of parallelism, our goal
is to take as input a size O(n) circuit and transform
it into e new circuits of size O(n/e). Each of these e
circuits proves correctness of a portion (epoch) of the total
proof execution. While we must additionally prove that the
initial and final states of the e epochs are related, it is our
intent that the epochs will be run in parallel. Thus, the
total proof latency is greatly decreased.

In this section, we introduce the necessary formalisms
to facilitate and formally discuss this circuit transforma-
tion. Since we focus on CPU emulation, we choose a
CPU instruction as a unit of proof progress. We find
it convenient to represent the process of proving as the
execution of a state machine, whose states correspond to
proof states, and whose transition function specifies how
CPU instructions update the proof state.

Following [25], we separate the specification of the
state machine (architecture, including ISA spec, plaintext
state, etc.) from its implementation (microarchitecture,
including ISA and RAM implementation, encoded state,
etc.). Thus our state machine definition includes corre-
sponding architectural and microarchitectural parts. The
microarchitecural components, both functions and state,
denoted by a bar, will be operated on by the underlying
ZK protocol.

Definition 1 (PIM). A proof interface machine (PIM)
consists of a space of architectural states State, a space
of microarchitectural (encoded) states State, a space of
inputs Σ, and seven procedures (procedures annotated
with a bar are microarchitectural):

T : (Σ× State)→ State

accept : State → {0, 1}
extract : State → State

T : ((n ∈ N)× Σn × State)→ State

accept : State → {0, 1}
embed : State → State

match : (State × State)→ {0, 1}
subject to the following three requirements:

∀w ∈ Σn,

extract ◦ T (n,w, ·) ◦ embed = T n(w, ·)
∀ σ ∈ State,

accept(σ)⇔ accept(extract(σ))

∀ σ0, σ1 ∈ State,

match(σ0, σ1)⇔ extract(σ0) = extract(σ1)

where T n(w, ·) denotes the function that applies T n
times by passing the ith character from w to the ith call
to T .

We explain this definition informally. First, the func-
tions T and accept specify the architecture: T specifies
how the state transitions (e.g., T might handle a single
processor cycle), while accept queries if the machine has

reached an accepting state. In the context of ZK, providing
inputs to the PIM such that accept outputs one means that
the inputs together constitute a convincing witness.

The functions T and accept specify the corresponding
microarchitecture. Note that, while T specifies only a
single step, T simultaneously captures n steps of the state
machine. This difference is needed because in ZK it is
often useful for P to look ahead at her witness to improve
efficiency. Thus, we group n steps together such that this
lookahead is formally possible in the microarchitecture.

To enforce that the architecture and microarchitec-
ture appropriately correspond, we introduce extract and
embed , which map between the two kinds of states. The
PIM coherence conditions force correspondence: starting
from corresponding input states, then taking n steps in
both the architecture and microarchitecture results in cor-
responding output states. Moreover, the microarchitecture
accepts if and only if the architecture accepts.

Note that we consider embed to be a microarchitec-
tural function, because embed is needed to set up initial
proof states inside the ZK protocol.

The procedure match is needed for epoch parallelism:
we need a procedure that allows V to check that the
output state of one epoch matches the input state to the
subsequent epoch. Note that this cannot be achieved by
a simple equality check, because the two states might be
different; we only insist that the two microarchitectural
states correspond (via extract) to the same architectural
state.

Our epoch parallelism technique relies on the follow-
ing simple observation. Let k, e be two natural numbers
and let n � k · e. Here, e denotes a number of epochs
and k denotes the number of steps performed per epoch.
Let w0, ..., we−1 denote e length-k strings that together
concatenate to w and let σ0 be an initial state. Note the
following trivial fact:

accept(T n(w, σ0))⇔⎛
⎝
⎛
⎝ ∧

i∈[e]
T k (wi, σi) = σi+1

⎞
⎠ ∧ accept(σe)

⎞
⎠ (1)

where each σi is the initial state of epoch i and σe is the
final state. That is, to compute the final state T n(σ0), we
can appropriately compute the T k transition e times.

By Equation (1) and Definition 1, the following simple
yet crucial lemma holds:

Lemma 1 (Epoch Parallelism). Let n, e, k be natural
numbers such that k · e = n. For all PIM s, the following
fact holds: Let σ0 ∈ State be an initial PIM architectural
state, let w ∈ Σn be a witness, and let wi∈[e] ∈ Σk be e
chunks of w (which together concatenate to w). Then:

accept(T n(w, σ0))⇔⎛
⎝
⎛
⎝ ∧

i∈[e]
match

(
T (k, wi, σi) , σi+1

)
⎞
⎠ ∧ accept(σe)

⎞
⎠

where for each i < e, σi+1 � T k(wi, σi) and where for
each i < e σi � embed(σi).

In other words, during the ZK proof we need not
compute the circuit T (n,w, σ0) but rather can compute e
simpler subcircuits T (k,wi, σi). Each of these subcircuits

113

does not depend on the output of any other, and so
all e subcircuits can be executed in parallel. We break
dependencies between these subcircuits by allowing the
circuit to take as input intermediate machine states (via
calls to embed). Once the subcircuits have finished, we can
complete the proof by demonstrating that the intermediate
states between epochs are related by calls to match: this
call ensures that a cheating P cannot substitute some
invalid state into the middle of the proof execution.

Note that PIM does not guarantee security properties
of the resulting parallelized system; this must be proven
separately. For simplicity of notation, in Equation (1) and
Lemma 1, we divide the computation into equal sized
epochs; our formalisms trivially generalize to epochs of
different sizes.

Applicability of PIM . PIM is not an attempt to build
a general compiler that transforms an arbitrary ZK proof
system into an epoch parallel ZK proof system. Instead,
PIM formalizes a program transformation that introduces
parallelism to proof statements; the underlying ZK proto-
col must leverage the introduced parallelism to improve
performance. Proof systems that allow for parallel proofs
of conjunctive statements can take advantage of the PIM.
The ZEE proof system [25] implements PIM interface
and can take advantage of conjunctive statements; we
prove that the EZEE , an epoch-parallel version of ZEE ,
is a secure ZKP system. A general “parallelizing ZKP
compiler” would require designing a crypto API, which
underlying ZKP systems would need to satisfy. We believe
this is a well-motivated significant separate undertaking.

6. System Design

In Section 5, we described a class of state machines
that can be used to encode ZK proof statements and,
crucially, we gave Lemma 1 which proves that such state
machines can be parallelized. In this section, we use the
PIM definition (Definition 1) to design a high level system
on which parallel interactive ZK proofs can execute. Our
design allows us to scale interactive ZK to clusters of
machines.

Note that the given design is not yet crypto-formal,
since we do not at this point give a particular ZK protocol.
In Section 7 we plug the ZEE IT-MAC-based ZK protocol
into our design, resulting in a secure ZKP system. While
we do not prove a general statement for plugging in
different interactive ZK protocols, we view the PIM and
our system design as a template for design of parallel
interactive ZK protocols.

In our design, both P and V instantiate one distin-
guished main node and a number of worker nodes. We
refer to the P main node as Pmain and to the V main
node as Vmain. We refer to the ith P worker node (resp. V
worker node) as Pi (resp. Vi). Figure 1 depicts the high
level interaction between these nodes. The roles of these
components are as follows:

• Pmain uses the PIM definition’s transition function
T to compute in cleartext the entire proof. As it
runs, it periodically takes snapshots of the current
state σi. Additionally, it records portions of its
witness wi. Note that, in general, taking a snapshot
or recording the witness in a real system such

P0 P1 P2

V0 V1 V2

Pmain

Vmain

σ0, w0 σ1, w1 σ2, w2

σ0 σ1 σ2 σ3

T T T

σ1 σ2

match(σ′1, σ1)

σ1 σ2

match(σ′2, σ2) accept(σ′3)
σ0 σ′1
T

σ1 σ′2
T

σ2 σ′3
T

Figure 1: Our epoch parallel system design for three
epochs. Pmain first runs the proof locally by repeatedly
calling T ; as she runs, Pmain records snapshots of the proof
state σi and of portions of her witness wi. Pmain sends σi

and parts of her witness wi to the prover workers Pi. The
prover worker Pi and verifier worker Vi then execute a ZK
proof that demonstrates that (1) embedding σi to σi via
a call to embed , then running T results in an embedded
state σ′i+1 and (2) the embedded state σi+1 (shares of
which are sent back from the next workers) matches the
ending state σ′i+1 via a call to match . The final pair of
workers instead call accept to check if the final proof
state is accepting. Each Vi messages Vmain, indicating if
its epoch succeeded or not. If all epochs succeed, Vmain

accepts the proof.

as ours, is intricate; for example, recording the
witness may involve capturing arbitrary interac-
tions between a C program and the surrounding
operating system. In general, recording the witness
involves building a full non-determinism log (i.e.
the extended witness) for the execution of the
proof program. Pmain sends σi and wi to a worker
node Pi.

• Workers Pi and Vi together run an epoch of the
program. Specifically, they consider a circuit that
they together run inside the ZK protocol. The
circuit performs the following actions: (1) take as
input an intermediate state σi via a call to embed ,
yielding encoded state σi, (2) apply the transition
function T to map σi to a new state σ′i+1, (3)
if the considered epoch is not the last one, check
match(σ

′
i+1, σi+1) = 1 indicating that the ending

state is equal to the starting state sent back from
the next pair of workers, and (4) if the considered
epoch is the last one, check accept(σ

′
i+1) = 1

indicating that the final proof state is accepting.
• Vmain waits to receive an accepting message from

each worker Vi. If each verifier worker accepts,
Vmain accepts the overall proof statement as true.

We note that when plugging in a specific ZK protocol,
Pmain and Vmain can be leveraged to help coordinate the

114

workers. This coordination can help deal with protocol-
specific details. Looking forward, when we instantiate our
system design in Section 7 with the protocol of [29] (see
Section 3.1), we use the main nodes to coordinate the
required commitments and transmission of V randomness.

The execution of this system can be broken down into
three stages: epoch generation, epoch parallel computa-
tion, and epoch verification. We next discuss these three
stages in detail and explain the informal ZK protocol
requirements needed to support each stage, with respect
to both correctness and efficiency.

6.1. Epoch Generation

Recall that Pmain first generates epochs by repeatedly
calling T . We refer to this process as epoch generation. To
guarantee a correct and efficient system, epoch generation
should meet several informal requirements:

• Cheap To Generate - Epoch generation occurs
before any parallelization, running sequentially
through the entire proof program. Thus, it is cru-
cial that epoch generation completes quickly. I.e.,
running T in cleartext should be much (preferably
orders of magnitude) faster than running T inside
the ZK protocol. Otherwise, proof latency will be
constrained by the epoch generation step.

• Deterministic - Epochs must be deterministic.
The system requires that, upon re-execution in the
epoch parallel phase, each epoch reaches its pre-
dicted final state. This allows epochs to be glued
together in the epoch verification phase. Therefore,
the PIM microarchitecture must perfectly imple-
ment its corresponding architecture. Any deviation
between the two will cause proofs to erroneously
fail.
To ensure epochs are deterministic, the system can
record an epoch as a tuple of (1) a starting state,
and (2) a non-determinism log. This requires the
system to identify all non-determinism. I.e., the
PIM must formalize all non-determinism as part
of the witness w.

• Equal Sized - Epochs should be of roughly equal
size. The entire proof cannot complete until each
epoch finishes. If epochs are not of similar size,
then any long-running epoch will become the bot-
tleneck.
For security, too, it is crucial that the size and
other attributes of epochs (e.g., precisely the work
performed) are independent of the witness, and
hence of the proof execution flow. This is needed
for simulation of the view of V in proving the
ZK property. See Section 7.4.1 for discussion how
using BubbleCache, the ZEE ORAM implementa-
tion, which allows cache misses, may be insecure
in EZEE , and our resolution.

6.2. Epoch Parallel Computation

Once epochs have been generated, the system uses
the ZKP protocol to ensure that each epoch is valid. This
stage is the most computationally intensive portion of the

system, as it executes the heavy work of actually perform-
ing the majority of the ZK computation: T . However, as
the system has divided the computation into independent
epochs, this work can be done in an embarrassingly
parallel fashion. Namely, the system distributes epochs
to arbitrarily large numbers of processors, even up to a
cluster scale.

6.3. Epoch Verification

Once the system has proven that each epoch is valid,
it then proves that, when combined, the epochs form a
complete proof. This composition is achieved by calls
to match . Note that even these calls to match can be
parallelized, since pairs of workers Pi and Vi calls match ,
not Pmain and Vmain. After calling embed , a pair of workers
immediately sends the encoded state back to their prede-
cessors; thus match can be called as soon as the call to
T is completed.

7. The EZEE Epoch Parallel Proof System

Section 5 introduced a formal framework for express-
ing epoch parallel ZK proofs, and Section 6 sketched a
systems level design for running such ZK proofs across
clusters of machines. However, as argued in Section 6,
we could not directly prove the security of this design
with respect to an arbitrary protocol. In this section, we
formally instantiate our design with the ZEE protocol
(see Section 3.3) and clarify interesting points that arise.
We call the instantiated ZK protocol EZEE . Figure 2
illustrates many details of the EZEE protocol.

We begin by formally defining the ZEE PIM and
the instantiated epoch parallel ZK protocol EZEE . The
remainder of this section is dedicated explaining these
constructions; Appendix A sketches a proof that EZEE
is a secure ZKP system.

Recall from Section 5 that, to use our system, we
must define seven procedures corresponding to the PIM
definition. For ZEE , most of these definitions are inherited
directly from [25], but embed and match remain to be
defined. ZEE did not directly define these two procedures
because they were not needed for a “single epoch” proof
execution.

Construction 1 (ZEE PIM). The ZEE construction [25]
implements the PIM interface (Definition 1) as follows:

• State is the space of ZEE architectural states. It
includes a program counter, a program memory,
a small registry, and a large main memory. Each
memory is represented as a simple array of 32-bit
values.

• State is the space of ZEE microarchitecural
states. It contains the same elements as the ar-
chitectural states, but the representation is dif-
ferent. First, all values are elements in Zp for
prime p rather than 32-bit values. Second, each
memory is represented by a construction called
BubbleRAM2 [23] which maintains the memory

2. Technically, ZEE , as presented in [25], uses an improvement to
BubbleRAM called BubbleCache. However, for our purposes we use
BubbleRAM. We discuss this point at greater length in Section 7.4.1.

115

Pmain

P0 P1

V0 V1

Vmain

Cleartext

Δ Δ

I0 I1

(a)

Pmain

P0 P1

V0 V1

Vmain

�σ1�

�σ1�

∗ ∗

(b)

Checkpoint 0

Pmain

P0 P1

V0 V1

Vmain

C0 C1

∗ ∗

∗ ∗

(c)

Checkpoint 1

Pmain

P0 P1

V0 V1

Vmain

Δ Δ

Check Check

Check

∗ ∗

(d)

Checkpoint 2

Pmain

P0 P1

V0 V1

Vmain

∗ ∗

Open Open

Check Check

(e)

Figure 2: A two epoch EZEE execution. (a) Pmain first executes the program in cleartext and collects the initial
information I0 and I1 for both epochs. This information is sent to the prover workers Pi. Vmain generates the global
IT-MAC secret Δ and distributes it to each verifier worker Vi. (b) Each pair of workers Pi and Vi begin a ZK proof
starting from Pi’s initial state Ii. P1/V1 transmit their encoded initial state �σ1� to P0/V0. Both pairs of workers execute
their epoch in ZK until reaching the shared final states �σ′1� and �σ′2� . While the epoch 1 workers prove that the pc
terminated at QED (i.e. accept(σ′2) = 1), the epoch 0 workers prove in ZK that match(σ′1, σ1) = 1. After computing
its output value, each Pi sends a signal to Pmain and waits. (c) Once each Pi has indicated it has finished computing
its part of the circuit (Checkpoint 0, Section 7.1), Pmain instructs each worker Pi to commit to her proof output value.
Each worker Pi sends a commitment Ci to Vi. After receiving the commitment, each Vi sends a signal to Vmain and
waits. (c) After each Vi receives a commitment from Pi (Checkpoint 1), Vmain instructs each Vi to share its randomness,
including the global secret Δi, with Pi. Pi then checks Vi did not cheat by replaying all of Vi’s actions and checking
that Vi’s messages were well-formed. Pi forwards the result of this check and Δi to Pmain, then waits. Pmain ensures
that no Vi cheated. (Checkpoint 2) (c) Finally, Pmain instructs each Pi to open its commitment. If each Vi successfully
verifies the commitment, V is convinced that the overall proof is valid.

in a permuted order (in practice, the permutation
order is known to P and unknown to V).

• T is defined by the ZEE ISA and handles the
execution of a single ZEE instruction as defined
in [25]. I.e., T reads an instruction from mem-
ory and performs the corresponding state update,
e.g. reading/writing to main memory, performing
arithmetic, or jumping to a new program location.
Note, if the architecture is in the distinguished
QED state, then T is a no-op: the architecture
waits in this state until accept is called.

• accept is defined with respect to ZEE ’s distin-
guished QED instruction: accept reads a final
instruction from memory and checks if its op-code
is QED . If so, accept outputs one; else it outputs
zero.

• T and accept are the corresponding microarchi-
tectural implementations of T and accept . This
handling is defined in [25].

• embed and match are defined in Section 7.2.
• extract maps a ZEE microarchitectural state to

a corresponding architectural state by reading
entries from the microarchitectural memories and
writing these values into a fresh architectural
state. The key detail is that extract removes the
permutation implied by BubbleRAM and writes the
values into a simple array.

The fact that these definitions satisfy the PIM co-
herence conditions follows from the completeness of the
ZEE microarchitecture and from discussion about embed
and match in Section 7.2.

We use Construction 1 to instantiate an epoch parallel
ZK protocol:

Construction 2 (EZEE Proof System). The EZEE proof
system is the GC-ZK protocol [29] instantiated with the
ZEE PIM (Construction 1). The EZEE proof system
takes as input a ZEE program. It applies Lemma 1
to transform the input program into an epoch parallel
program. In the protocol, both P and V dispatch epochs
to a set of workers. These workers pairwise execute their
epoch as described in Section 7.1. Crucially, the workers
execute their epochs in parallel. EZEE also dispatches
more than one epoch to each worker (see Section 7.4.2);
in this case, the workers execute their epochs sequentially.
At certain steps of the protocol, P and V implement proof
checkpoints (Section 7.1): i.e., they ensure that no worker
proceeds to the next protocol step until each worker
finishes the current step.

We prove the following theorem, which proves that
Construction 1 is a secure ZKP system, in Appendix A.

Theorem 1 (EZEE Security). Assuming a collision re-
sistant hash function, that the prime modulus p > 237,
and that �log p ≥ ρ, Construction 2 is a sound (with
soundness error 2−ρ) and complete malicious-verifier
Zero Knowledge proof system that proves arbitrary ZK
relations expressed as ZEE programs [25] in the OT-
hybrid model.

7.1. EZEE Protocol Checkpoints

Recall from Section 3 that the ZEE protocol of [25] is
a GC-ZK-based protocol [29]. We plug this protocol into
the system design described in Section 6. We approach
parallelism carefully, as subtle issues can emerge with
parallel composition of standalone-secure protocols.

Our basic technique for ensuring security is to syn-
chronize the workers’ messages by introducing check-

116

points: once a worker finishes a protocol step, it waits
for its peers to catch up before proceeding. This ensures
that we adhere to the ZEE message flow and the [29]
framework, as discussed next and in our proof of secu-
rity. Serializing message flow allows for a trivial security
reduction to [29]. Indeed, the only step of the protocol
that is run in parallel is the OT execution. We handle
the security issues arising from parallelization by using a
UC-secure [10] OT protocol (Ferret OT [44] was proved
UC-secure by [40]).

There are three checkpoints in EZEE .
Checkpoint 0: OT checkpoint. In GC-ZK, after per-

forming all OTs, the prover commits to her GC out-
put label. Our first checkpoint preserves the ordering of
messages in the GC-ZK protocol by ensuring that all
(concurrently executed) OTs are completed before any
worker commits to its output label.

Here and in other checkpoints Pmain orchestrates the
synchronization. In our presentation, workers Pi send the
commitments (resp. other messages) directly to Vi. One
can think about them as being routed through Pmain for
even more explicit view of serialization.

Checkpoint 1: commitment checkpoint. In GC-ZK, V
sends to P all garbling randomness after P commits her
GC output label. Similarly, in EZEE , each verifier worker
send its randomness to its corresponding prover worker.
Crucially, no verifier worker sends its randomness until all
prover commitments are received. Without enforcing this,
P learns V’s global secret Δ for IT-MACs in advance,
allowing P to forge proof values.

Checkpoint 2: replay checkpoint. In GC-ZK, P must
replay V’s actions to ensure that all messages were prop-
erly constructed. Only once this check succeeds does
P open her commitment. Similarly, in EZEE , a prover
worker can only open its commitment once every prover
worker finishes checking its epoch. As an additional detail,
our P must make sure that each prover worker receives
the same global IT-MAC secret Δ. This ensures that V
cannot cheat during the match step of the proof.

7.2. EZEE ’s embed and match Procedures

EZEE ’s embed procedure is straightforward: it takes
as input an architectural state σ and constructs a microar-
chitectural state σ by choosing BubbleRAM permutations
in any arbitrary manner; we later refine this choice of
permutation.

match(σ, σ′) checks that, if we account for the Bub-
bleRAM permutations π and π′ applied to the states, then
the resulting values are equal. That is, match is defined
as follows:

match(σ, σ′) � (π′ ◦ π−1)(σ)
?
= σ′

where π is the BubbleRAM permutation of σ and π′ is
the BubbleRAM permutation of σ′.

In order to build our protocol, P and V workers must
implement both embed and match as part of a secure
ZK protocol. For example, embed uses OTs to allow P
to select IT-MACs corresponding a particular input state
under a particular permutation. Thus, the implementation
of these procedures is potentially expensive. We introduce
a simple trick that makes the implementation of match
more efficient.

Our trick is based on the fact that for epoch par-
allelism (Lemma 1), we only call match in the case
where one of the inputs is a freshly embedded input
state. Thus, we adjust the definition of embed such that
the permutation used to initialize BubbleRAM is chosen
uniformly. This, in particular, ensures that in all cases
where we call match , the composed permutation π′ ◦π−1

is also uniform. Because of this, we need not compute
the permutation π′ ◦ π−1 inside the ZK circuit. Rather, P
can securely reveal this uniform permutation to V without
leaking any information. The two parties now locally
permute their IT-MAC shares, achieving the permutation
with essentially no cryptographic overhead. This saves
significantly, since permuting inside a circuit requires a
Waksman permutation network [37], which, to permute n
values, requires O(n log n) gates (and hence O(n log n)
OTs in the ZEE protocol).

7.3. EZEE ’s Main Nodes

As discussed in Section 6, EZEE must fully specify
the four types of nodes. While prover worker and verifier
worker essentially execute the ZEE PIM (with adjust-
ments mentioned throughout this section), Pmain and Vmain

must be specified.

7.3.1. EZEE ’s Pmain. Recall from Section 6 that the
epochs should be cheap to generate, deterministic and
equal sized. Pmain achieves these goals as follows.

Per our system design, Pmain executes in cleartext
the entire proof. This cleartext emulator does not model
any cryptographic primitives used by ZEE , such as Bub-
bleRAM. This fact is important, since the cleartext ex-
ecution should finish as quickly as possible. A simple
experiment shows that a more complex cleartext emulator
that also models BubbleRAM is about 300× slower than
our faster emulator that does not model BubbleRAM. This
emulator can be seen as a traditional CPU. As it runs,
the emulator takes snapshots of intermediate states σi and
calculates the number of needed program instructions.

Recall that Pmain must also send to each worker Pi

its partial witness wi. In ZEE , P’s entire witness is
captured via calls to a distinguished INPUT instruction.
As Pmain’s cleartext emulator runs, it captures the witness
by recording a log of all INPUT instruction results. Note
that the INPUT instruction is the only non-deterministic
instruction in ZEE ’s ISA. The partial witness wi can
be viewed as a non-determinism log, ensuring that each
epoch is deterministic.

Once each epoch is generated, Pmain passes the re-
quired information Ii to the corresponding prover worker
Pi. Besides σi and wi, Ii also includes the number of
instructions to be executed in this epoch, and includes two
random seeds used to generate two uniform BubbleRAM
permutations πi and πi+1 as discussed in Section 7.2.
Once Pi receives Ii, the worker pair can immediately
begin executing its epoch.
Pmain is also responsible for enforcing Checkpoints 0

and 2. This is simple; e.g, for Checkpoint 2, each prover
worker Pi sends a bit indicating whether all messages
from Vi were properly constructed. It also sends the global
secret Δi provided by Vi. Pmain then checks that all
received bits are one, and checks that all values Δi are

117

equal. If so, it instructs every prover worker Pi to open
its commitment to Vi.

7.3.2. EZEE ’s Vmain. EZEE ’s Vmain is responsible for
ensuring that each verifier worker Vi is convinced of the
validity of epoch i such that all subproofs can be stitched
into a complete proof. Vmain also distributes the global
secret Δ to each verifier worker Vi.
Vmain is responsible for enforcing Checkpoint 1. That

is, each verifier worker Vi sends a signal to Vmain once
it receives a commitment from Pi. Only once all such
signals are received, does Vmain instruct each Vi to send its
randomness to Pi. This ensures that all commitments are
received before revealing any of V’s secret randomness.

7.4. Additional Modifications

7.4.1. Potential Leakage due to BubbleCache. By de-
fault, ZEE uses BubbleCache [25] as its ZK RAM.
BubbleCache improves RAM performance by allowing
for cache misses. Whenever a cache miss occurs, ZEE
simply executes no-op instructions, allowing BubbleCache
to catch up. Thus, in ZEE equipped with BubbleCache,
it is likely that the number of instructions will differ from
the number of needed processor cycles.

In EZEE , Pmain runs its cleartext emulator without
modelling the ZK RAM (see Section 7.3.1), and epochs
generated by Pmain contain equal numbers of instructions.
However, because of the cache miss feature of Bubble-
Cache, two epochs with same number of instructions may
require different numbers of cycles. In other words, if
EZEE ’s workers use ZEE with BubbleCache and each
worker executes the same number of instructions, V is
able to learn the cache miss rate distribution across epochs,
which is not possible in ZEE without epoch parallelism,
cannot be simulated and is not secure.

Therefore, we replace BubbleCache by its predecessor
BubbleRAM. BubbleRAM does not allow cache misses,
so the number of instructions matches precisely the num-
ber of needed processor cycles. Even in extreme scenarios
BubbleRAM, as compared to BubbleCache, reduces ZEE
cycle performance by at most around 30% [25]. Moreover,
any such overhead is fully parallelized in our system.

7.4.2. Reducing Memory Consumption. The ZEE im-
plementation consumes physical memory proportional to
the number of executed instructions. Thus, for very long
running proofs, physical memory becomes a serious con-
cern. Our experiments show that ZEE ’s P and V each
require over 22GB of physical memory when executing 1
million instructions using a 222 word ZK RAM. Therefore,
naı̈vely dividing a large execution into epochs might still
exhaust the available hardware resource.

Fortunately, our epoch parallelism technique solves
this problem without needing to significantly re-engineer
ZEE . Our idea is to allocate more than one epoch to a
single hardware device. This device executes each of its
epochs in sequence. More specifically, given d devices,
we execute on the ith device epochs i, i + d, i + 2d,
etc. Since each epoch runs only a portion of the program,
the workers only need enough memory for that portion.
By increasing the number of epochs, we decrease the

size of program portions and reduce per-epoch memory
consumption.

This does not yet completely resolve the issue, since
no epoch can proceed past Checkpoint 1 until all epochs
reach Checkpoint 1 (Section 7.1). However, we ensure
that the per-epoch amount of memory that must be stored
across Checkpoint 1 is small. Thus, each device runs each
of its epochs up to Checkpoint 1; when the checkpoint is
reached, the device simply reuses its physical memory to
handle its next epoch.

Achieving constant storage across Checkpoint 1 is
non-trivial. Specifically, after Checkpoint 1, Pi must check
that all messages received from Vi were properly con-
structed (Section 3.1). Thus, naı̈vely, Pi must store all
messages received from Vi, which are together very large.
This can be easily resolved by computing a hash digest
of all messages received from Vi. Upon receiving Vi’s
randomness, Pi reconstructs the messages, computes a
new hash digest, and checks it is equal to the stored
constant size digest.

A more difficult problem is in ensuring that Vi’s
randomness can be compactly represented. ZEE uses the
recent Ferret correlated OT protocol [44]. For each of her
input bits b, correlated OT ensures that P receives either a
uniform value X ∈ {0, 1}κ or X ⊕R where R is a fixed
global value. Crucially, each value X is chosen by the
OT protocol. Hence, P cannot locally expand each value
X starting from a compact PRG seed without replaying
the OT protocol in her head. We do not do this because
the bottleneck in Ferret performance is computation. We
instead alter the OT protocol such that each value X can
be simply derived from a PRG seed. Specifically, when
Ferret OT sends to P Y ⊕ bR, V also sends X ⊕ Y such
that P can compute X ⊕ bR. Thus, P can reconstruct
all OT values, and hence all messages, by expanding
a constant sized PRG seed. The technique does require
added communication, but is needed to allow for long
running proofs.

By the above adjustments, each worker needs to store
only a small constant amount of information (specifically,
digests and PRG seeds) across Checkpoint 1.

8. Evaluation

In this section, we describe our EZEE implementation
and then we evaluate its performance. Our evaluation
focuses on EZEE ’s proof latency, i.e. the total end-to-
end proof runtime. We compare EZEE to the non-parallel
ZEE proof system, and we give cost breakdowns of the
different EZEE components.

8.1. Implementation

We implemented EZEE in C/C++ based on ZEE .
Prover and verifier workers are implemented on top of
ZEE ’s backend cryptographic ZK protocol. We added
around 800LOC to account for EZEE specific concerns,
such as gluing and checkpointing. Pmain and Vmain are im-
plemented in around 1400LOC. We used ZEE ’s frontend
compiler and standard library to compile our benchmarks.

Data Availability. We plan to open-source this project
to the community.

118

Benchmark # ZEE Instructions ZK Main Memory Size (words) ZEE Proof Latency
sed bug 344,051 213 31.8s

bzip2, 8.1KB image 169,353,341 222 4h 20m*

bzip2, 278.5KB image 5,000,578,992 222 5d 8h 15m*

bzip2, 652.3KB image 11,859,715,862 222 12d 16h 12m*

Figure 3: Benchmark summary. Proof latency for the sed bug experiment were obtained by running ZEE without epoch
parallelism; proof latency for the bzip2 experiments (i.e. those marked with *) were estimated based on sed’s execution
speed because ZEE cannot run these long experiments.

Benchmark ZEE Adjusted Baseline EZEE Speedup EZEE CPU
Proof Latency Proof Latency Proof Latency Clock Rate

sed bug 31.8s N/A 2.8s 11.4× 122.9KHz
bzip2, 8.1KB image 4h 20m* 3h 33m 28s 8m 20s 25.6× 338.4KHz

bzip2, 278.5KB image 5d 8h 15m* 4d 9h 58m 52s 3h 31m 15s 30.1× 394.5KHz
bzip2, 652.3KB image 12d 16h 12m* 10d 4h 46m 16s 8h 37m 9s 28.4× 382.2KHz

Figure 4: Experimental results. ZEE proof latency is explained in Figure 3. Measurements for ZEE (i.e. those marked
with *) were estimated based on sed performance. The adjusted baseline system is explained in Section 8.3. We list
EZEE ’s total proof latency, its speedup over the adjusted baseline (except for sed, which is instead compared to ZEE
directly), and its clock rate.

8.2. Environment and Benchmarks

We evaluated EZEE on Cloudlab [15]. We used a
network of c6525-25g machines: 16-core AMD 7302P at
3.00GHz, 128GB ECC Memory, two dual-port Mellanox
ConnectX-5 25Gbps NIC, connected via a central Dell
Z9332 switch and multiple Dell S5296F switches to form
a star network. See [1] for precise server and network
specification.

Due to large number of Cloudlab users, we were only
able to allocate 62 of these nodes. These nodes were
arranged as follows: 1 for Pmain, 1 for Vmain, 30 for prover
workers Pi, and 30 for verifier workers Vi. Since one
EZEE worker requires significant physical memory, we
used only two cores per machine. Thus we can allocate
a maximum of 60 worker cores such that each core has
64GB of physical memory.

We evaluated our system with two Linux programs:

bzip2 is a benchmark in SPEC2006 [26], an industry-
standard, CPU-intensive benchmark suite. We used bzip2
to compress three different-sized images. Two are taken
from the SPEC2006 input data set. We prove in ZK that
the program terminates normally. This benchmark, in part,
demonstrates that EZEE can achieve long running proofs
that were previously impossible with the unmodified ZEE
system. For this benchmark, we instantiate a 222 word ZK
RAM.

sed 1.17 contains a segmentation fault bug listed in
the Software-artifact Infrastructure Repository (SIR) [14].
Specific inputs cause this version of sed to invoke the
standard function memmove to attempt to move −1 bytes
of memory, leading to a segmentation fault. [25] showed
that ZEE can prove the existence of this bug in ZK. We
used EZEE to achieve the same proof with lower proof
latency. As per [25], we run this benchmark with a 213

word ZK RAM.

Figure 3 summarizes information about our bench-
marks.

8.3. Baseline Evaluation

Ideally, we would use off-the-shelf ZEE as a point of
comparison for our benchmarks. Unfortunately, this is not
possible because ZEE consumes physical memory pro-
portional to the proof runtime. Thus, when we tried to use
ZEE to execute our long running bzip2 benchmarks, we
exhausted all available physical memory and were unable
to complete the proof. We were able to fully execute the
much shorter sed benchmark. Figure 3 tabulates ZEE ’s
sed performance and uses this value to extrapolate bzip2
performance.

However, we still wish to have a point of comparison
that is not based on extrapolation. In Section 7.4.2, we
explained that epochs can be used to help reduce memory
consumption. We build a non-parallel baseline system by
instantiating EZEE using only one worker pair. These
two workers sequentially execute each epoch and thus
emulate an unmodified ZEE system that can handle much
longer proofs. To more closely capture the performance of
the unmodified ZEE system, we instantiate this baseline
using BubbleCache rather than BubbleRAM. Technically,
this is not secure (see discussion in Section 7.4.1), but
ZEE can securely use BubbleCache, and we only want a
performance estimate for ZEE . Note, our parallel EZEE
implementation uses BubbleRAM and is secure.

We tabulate the performance of this adjusted base-
line system in Figure 4. Note that the adjusted baseline
system incurs the glue overhead of EZEE (i.e. calls to
match , embed , and a cleartext emulator). Nevertheless
and surprisingly, the adjusted baseline outperforms the ex-
trapolated performance of ZEE . Performance is improved
because ZEE performance was extrapolated from the very
short sed proof. Each epoch run by our adjusted baseline
is significantly longer than the entire sed proof (around
six million instructions per epoch). As proofs run longer,
the ZEE architecture amortizes some costs, e.g. accesses
to BubbleCache.

119

0

200

400

600

800

1000

1200

1400

1600

1800

15× 4 30× 2 60× 1

R
u
n
ti

m
e

(S
ec

o
n
d
s)

Number of Cores × Epochs/Core

Execution
RAM Setup

Glue
Cleartext

Figure 5: EZEE proof latency decomposition for the
bzip2 benchmark when compressing an 8.1KB image.
Note that because this proof requires large numbers of
instructions, as we decrease the number of cores, each
core is responsible for more epochs (see Section 7.4.2).

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 60

R
u
n
ti

m
e

(S
ec

o
n
d
s)

Number of Cores

Execution
RAM Setup

Glue
Cleartext

Figure 6: EZEE proof latency decomposition for the
sed benchmark. Each core is responsible for only one
epoch.

8.4. End-to-end Proof Latency

We first evaluate our end-to-end proof latency when
using the available 60 cores. End-to-end latency is mea-
sured starting from Pmain’s initialization and ending when
Vmain accepts the proof. Figure 4 tabulates these exper-
imental results. As compared to our adjusted baseline,
EZEE accelerates bzip2 by approximately 28×. The re-
sulting CPU runs at up to 394KHz. Our improvement
to sed is less impressive, since this proof is very short.
Hence, the non-parallelizable costs of our system begin
to dominate and reduce our improvement. Nevertheless,
we still accelerate sed by about 11.4×.

We next evaluate how EZEE performance scales with
the number of cores. We ran the bzip2 benchmark to
compress an 8.1KB image while varying the number of
utilized cores. Figure 7 plots performance. Recall that, as
discussed in Section 7.4.2, we use epochs to reduce mem-
ory consumption. For this bzip2 benchmark, we require 60
epochs to complete the proof without exhausting memory.
Thus, as we reduce the number of cores, we must assign
more epochs to each core. Some proof overhead increases
proportionally with number of epochs per core (see next).

8.5. Proof Latency Breakdown

Next, we break down the costs of our system to
identify the proof latency bottlenecks and the maximum
possible performance. Although EZEE parallelizes the
most expensive proof steps, there are still sequential com-
ponents that cannot be avoided. We decompose proof
latency into three major parts:

• Execution: Each pair of cores must finish its
proof execution, i.e., T . The incurred latency is
proportional to the number of instructions that
each core pair executes.

• Glue (and RAM setup): Every worker pair must
run embed and match in ZK. Crucially, the call
to embed involves initializing BubbleRAM with a
uniformly permuted RAM state (see Section 7.2),

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

R
u

n
ti

m
e

(S
ec

o
n

d
s)

Number of Cores

bzip2
ideal runtime

Figure 7: We used bzip2 to compress an 8.1KB image
inside ZK and measured proof latency as a function of the
number of cores. For n cores, each core runs 60

n epochs.
Ideal runtime is derived from the adjusted baseline runtime
(Section 8.3).

the most expensive portion of the glue step. The
incurred latency is proportional to the number of
epochs that each core executes.

• Cleartext: EZEE ’s Pmain must finish epoch gen-
eration before the parallel parts of the protocol
begin. The incurred latency scales with the total
proof runtime and with the number of epochs.

Figures 5 and 6 depict breakdowns of the above la-
tency costs for different numbers of cores and for (1) bzip2
with an 8.1KB image and (2) sed. Our plots separate the
cost to initialize BubbleRAM from other glue step costs.

These plots show how EZEE ’s latency decreases as
more cores are added. The expensive execution step is
made fast with large numbers of cores. Indeed for sed
with 60 cores, glue, not execution, dominates in terms
of latency. Given more cores, we could further accelerate
EZEE for the bzip2 benchmark: based on the cost of glue,
we calculate that the maximum possible clock rate for this

120

benchmark is ≈ 1.8MHz.

8.6. Network Traffic

Our cores communicate with one another through
TCP/IP channels as implemented by [38]. Specifically,
each prover worker Pi maintains channels with Pmain,
Pi+1 and Vi (and symmetrically for verifier worker Vi).
We measured network traffic on these channels. Figure 8
tabulates the results. Unsurprisingly, traffic is light except
between pairs of worker nodes. These workers communi-
cate via large numbers of oblivious transfers and hence
consume significant bandwidth.

Benchmark Pmain and Pi and Pi and Vi and Vmain and
Pi Pi+1 Vi Vi+1 Vi

sed 33.5KB 129KB 181MB 129KB 608B
bzip2 16.2MB 64.1MB 37.2GB 64.1MB 608B

Figure 8: Bandwidth consumption of different pairs of
nodes.

Acknowledgment

This work was supported in part by NSF award
#1909769, by a Cisco research award, by Georgia Tech’s
IISP cybersecurity seed funding (CSF) award. This mate-
rial is also based upon work supported in part by DARPA
under Contract No. HR001120C0087. Any opinions, find-
ings and conclusions or recommendations expressed in
this material are those of the authors and do not neces-
sarily reflect the views of DARPA.

References

[1] CloudLab Documentation. http://docs.cloudlab.us/hardware.html.
Retrieved Sept. 20, 2021.

[2] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko,
Krzysztof Pietrzak, and Leonid Reyzin. Beyond hellman’s time-
memory trade-offs with applications to proofs of space. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part II, volume 10625 of LNCS, pages 357–379. Springer, Heidel-
berg, December 2017.

[3] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[4] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for arithmetic circuits with
nested disjunctions. Cryptology ePrint Archive, Report 2020/1410,
2020. https://eprint.iacr.org/2020/1410.

[5] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90–108. Springer, Heidelberg, August 2013.

[6] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transparent
succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
103–128. Springer, Heidelberg, May 2019.

[7] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer, Heidel-
berg, August 2014.

[8] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von neumann
architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 781–796. USENIX Association, August 2014.

[9] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakr-
ishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang.
Ligero++: A new optimized sublinear IOP. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 20,
pages 2025–2038. ACM Press, November 2020.

[10] R. Canetti. Universally composable security: a new paradigm for
cryptographic protocols. Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

[11] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

[12] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss,
Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee
Zahur. Geppetto: Versatile verifiable computation. In 2015 IEEE
Symposium on Security and Privacy, pages 253–270. IEEE Com-
puter Society Press, May 2015.

[13] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero
knowledge and its applications. Cryptology ePrint Archive, Report
2020/1446, 2020. https://eprint.iacr.org/2020/1446.

[14] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Support-
ing controlled experimentation with testing techniques: An infras-
tructure and its potential impact. Empirical Software Engineering,
10(4):405–435, 2005.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David
Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn
Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 1–14, July 2019.

[16] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael
Pass. Sparks: succinct parallelizable arguments of knowledge. In
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 707–737. Springer, 2020.

[17] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky,
Xiao Wang, and Chenkai Weng. Constant-overhead zero-
knowledge for ram programs. Cryptology ePrint Archive, Report
2021/979, 2021. https://ia.cr/2021/979.

[18] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Or-
landi. Privacy-free garbled circuits with applications to efficient
zero-knowledge. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 191–
219. Springer, Heidelberg, April 2015.

[19] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs without
PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013.

[20] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[21] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Del-
egating computation: interactive proofs for muggles. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 113–
122. ACM Press, May 2008.

[22] Jens Groth. On the size of pairing-based non-interactive ar-
guments. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–
326. Springer, Heidelberg, May 2016.

[23] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge
processor with BubbleRAM. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 20, pages 2055–
2074. ACM Press, November 2020.

121

[24] David Heath and Vladimir Kolesnikov. Stacked garbling for
disjunctive zero-knowledge proofs. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS,
pages 569–598. Springer, Heidelberg, May 2020.

[25] David Heath, Yibin Yang, David Devecsery, and Vladimir
Kolesnikov. Zero knowledge for everything and everyone: Fast
ZK processor with cached ORAM for ANSI C programs. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1538–1556.
IEEE, 2021.

[26] John L Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[27] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Ex-
tending oblivious transfers efficiently. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer,
Heidelberg, August 2003.

[28] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[29] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM
Press, November 2013.

[30] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[31] Yashvanth Kondi and Arpita Patra. Privacy-free garbled circuits for
formulas: Size zero and information-theoretic. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 188–222. Springer, Heidelberg, August 2017.

[32] Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen,
and Jason Flinn. Rethink the sync. ACM Transactions on Computer
Systems (TOCS), 26(3):1–26, 2008.

[33] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation. In 2013 IEEE
Symposium on Security and Privacy, pages 238–252. IEEE Com-
puter Society Press, May 2013.

[34] Andrew Quinn, David Devecsery, Peter M Chen, and Jason Flinn.
Jetstream: Cluster-scale parallelization of information flow queries.
In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 451–466, 2016.

[35] Martin Süßkraut, Thomas Knauth, Stefan Weigert, Ute Schiffel,
Martin Meinhold, and Christof Fetzer. Prospect: A compiler
framework for speculative parallelization. In Proceedings of the 8th
Annual IEEE/ACM International Symposium on Code generation
and Optimization, pages 131–140, 2010.

[36] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M Chen, Jason Flinn, and Satish Narayanasamy.
Doubleplay: Parallelizing sequential logging and replay. ACM
Transactions on Computer Systems (TOCS), 30(1):1–24, 2012.

[37] Abraham Waksman. A permutation network. J. ACM,
15(1):159–163, January 1968.

[38] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://github.
com/emp-toolkit, 2016.

[39] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 42nd
IEEE Symposium on Security and Privacy, 2021.

[40] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. 2021 IEEE
Symposium on Security and Privacy (SP), 2021.

[41] Benjamin Wester, David Devecsery, Peter M Chen, Jason Flinn,
and Satish Narayanasamy. Parallelizing data race detection. ACM
SIGARCH computer architecture news, 41(1):27–38, 2013.

[42] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa,
and Ion Stoica. DIZK: A distributed zero knowledge proof system.
In 27th USENIX Security Symposium (USENIX Security 18), pages
675–692, 2018.

[43] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quick-
silver: Efficient and affordable zero-knowledge proofs for circuits
and polynomials over any field. Cryptology ePrint Archive, Report
2021/076, 2020.

[44] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. Ferret: Fast extension for correlated OT with small com-
munication. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 20, pages 1607–1626. ACM
Press, November 2020.

[45] Craig Zilles and Gurindar Sohi. Master/slave speculative paral-
lelization. In 35th Annual IEEE/ACM International Symposium on
Microarchitecture, 2002.(MICRO-35). Proceedings., pages 85–96.
IEEE, 2002.

Appendix A.
EZEE Proof Sketch

We sketch a proof of Theorem 1:

Proof Sketch. Note, the assumption of a collision resistant
hash function and the requirement that p > 237 are
inherited from ZEE security proof.

At a high level, our system simply implements a GC-
ZK proof system, as proved secure by [29]. However,
our system does introduce concurrent OTs which must
be properly handled.

We argue six main points:
First, we argue that we can apply our PIM circuit

transformation to the ZEE proof system. This fact follows
directly from Lemma 1.

Second, note that our explicit checkpoints (Sec-
tion 7.1) precisely preserve the message ordering of the
original ZEE protocol, except that the OTs are executed
concurrently by Pi−Vi pairs. Therefore, for now ignoring
the parallel execution of OTs, our protocol is clearly
secure under the [29] framework: we simply run the ZEE
protocol on a different – but equivalent – circuit.

Third, we show that it is safe to execute OTs concur-
rently in our protocol. This follows from two points:

1) All OT inputs from both P and V are defined
before the first OT is issued.

2) The chosen Ferret OT protocol [2], [44] is UC-
secure [10].

Fourth, notice that P can now see the output of some
OTs (i.e. those OT outputs corresponding to one epoch)
before choosing her input for other OTs (i.e. those OT
inputs corresponding to another epoch). This does not help
a corrupt P in our protocol, since the received labels are
all uniformly random and independent from each other.
(Recall that in the [29] protocol, V does open all such
randomness, but this step is not done until all OTs are
finished – cf Checkpoints 0 and 1). We stress that for
general protocols, e.g., where V’s OT inputs may be
related to each other, this may not be secure.

Fifth, note that interleaved with these OTs, P sends to
V uniform permutations per our implementation of match
(Section 7.2). That is, before performing the OTs for a
given epoch, Pi sends to Vi the permutation πi+1 ◦ π−1

i .
Similarly to the above point, this extra message preserves
ZK because the starting permutation for epoch i+1 πi+1

122

is chosen uniformly, so the composed permutation is also
uniform and conveys no useful information to a corrupt V;
it is easily simulatable by a ZK simulator. Alternatively,
we can view these uniform permutations as part of the
proved statement, established before the execution of the
protocol, and hence treated as public knowledge.

Sixth, we note that our breakdown of the computation
into epochs is independent of P’s witness, and hence can
be easily simulated given the program runtime. We recall
that, as discussed in Section 7.4.1, this prevents us from
using BubbleCache [25].

Therefore, our EZEE protocol is secure by reduction
to the [29] proof system.

EZEE is a secure ZKP protocol.

123

