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Abstract—Direct-to-consumer genetic testing services are

gaining momentum: As of today, companies such as

23andMe or AncestryDNA have already attracted 26 million

customers. These services raise privacy concerns, exacer-

bated by the fact that their customers can then share their

genomic data on platforms such as GEDmatch. Notwith-

standing their right to learn about their genetic background

or to share their genomic data, it is paramount that indi-

viduals realize that such a behavior damages their relatives’

privacy (i.e., kin genomic privacy). In this paper, we present

KGP Meter, a new online tool that provides means for raising

awareness in the general public about the privacy risks of

genomic data sharing. Our tool features various properties

that makes it highly interactive, privacy-preserving (i.e., not

requiring access to the actual genomic data), and user-

friendly. It explores possible configurations in an optimized

way and combines well-established graphical models with an

entropy-based metric to compute kin genomic privacy scores.

Our experiments show that KGP Meter is very responsive.

We design and implement an interface that enables users to

draw their family trees and indicate which of their relatives’

genomes are known, and that communicates the resulting

privacy scores to the users. We then analyze the usage of the

tool and survey users to better understand users’ perceptions

towards these risks and evaluate our tool. We observe that

most of them find the privacy score worrisome, and that the

large majority of them find KGP Meter useful.

1. Introduction

Over the last decade, the plummeting cost of genome
sequencing has enabled new breakthroughs in genomics
and has fostered the emergence of companies that pro-
vide genetic testing services directly to consumers (e.g.,
23andMe [1], AncestryDNA [2]). By early 2019, direct-to-
consumer (DTC) genetic testing services already attracted
more than 26 million customers [3]. On the one hand,
this enables individuals to better understand their genetic
background, to identify distant or lost relatives, and to
learn about their predisposition to severe diseases. On
the other hand, it raises new concerns about genomic
privacy [4], [5], not only for the customer whose DNA
is tested, but also for their relatives (e.g., the Pentagon
recently warned the US military not to use DTC genetic
testing kits [6]). Indeed, the genome of an individual
can be partially inferred from that of their relatives [7],
thus creating an interdependent privacy situation [8] and
raising new ethical and legal questions [9]. DTC genetic

testing services can already extrapolate genomic data of
a large proportion of the US population [3]. The privacy
threat is exacerbated by the fact that customers can share
their genomic data publicly on platforms such as GED-
match [10], MyHeritage [11], or OpenSNP [12]. Potential
negative consequences of genomic information leakage
include discrimination in the contexts of insurance, jobs,
and loans to name a few [4], [5] but also tracking [6],
[13].

Facing this new trend, the security and privacy com-
munity has begun investigating concrete privacy risks that
stem from genomic data sharing [4] and proposing poten-
tial solutions (see related surveys [14]–[16]). For instance,
scholars have developed privacy-enhancing protocols for
biomedical researchers [17]–[23], or clinicians [24]–[29].
Yet, so far, no tool has been developed to enable the
layman to evaluate the genomic privacy risks they expose
their relatives to when sharing their genomic data (and
therefore to make informed decisions) or, conversely, to
evaluate the privacy risks their relatives expose them to,
i.e., kin genomic privacy risks. The need for tools to help
people understand kin genomic privacy risks is made even
clearer in a very recent study on people’s general attitudes
towards DTC genetic testing [30].

In order to raise awareness among the general popula-
tion on the kin genomic privacy risks, we design and im-
plement a new tool referred to as the kin genomic-privacy

meter (codenamed KGP Meter). It is based on a new data-
less privacy evaluation technique: Unlike typical privacy
meters that require the knowledge of the target user’s
actual data (e.g., [31]–[33]) and that of related individuals
(e.g., [34]), KGP Meter only requires the knowledge of the
family tree and of the set of relatives whose genomes have
been (hypothetically) tested (e.g., using a DTC genetic
testing service). As such, it is privacy-preserving and
enables users to evaluate hypothetical risks (e.g, when
deciding to take a test, or unsure about what would happen
if somebody else in the family took the test), or to evaluate
concrete risks (e.g., when a test was already taken). KGP
Meter is made available to the scientific community under
the form of a Python library and to the general public
under the form of a web-based interactive tool.1 Given that
the tool is intended for the general public, it is required to
be interactive [35], to be privacy-preserving (thus to not
make use of the actual genomic data of any individual),
and to be easy-to-use. In summary, we make the following
contributions:

1. https://santeperso.unil.ch/privacy/?src=article.
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• We design and implement a data-less inference algo-
rithm to efficiently compute the genomic privacy of a
targeted individual given the set of their relatives whose
genomes are known to an adversary (e.g., because they
used a DTC genetic testing service). As the algorithm
does not require any genomic data as input, it relies
on mutual information to capture the proportion of
uncertainty that is removed when having access to the
relatives’ genomes. It iterates over all combinations
of values for the genomic variants of the relatives
and uses a well-established graphical model to obtain
posterior distributions of the target. It includes a number
of optimizations to achieve low latency, despite the
combinatorial explosion of the number of considered
combinations. It focuses on generic genomic inference
attacks and thus evaluates privacy for the whole set of
variants genotyped by 23andMe based on general popu-
lation statistics available on dbSNP [36]. We postulate
that, as soon as we consider a large enough number
of SNPs, the individual extreme (rare) SNP values are
averaged out in the privacy score. Therefore, using the
actual genomic data would not bring much more pre-
cision for such a global privacy score. These technical
contributions are new and unlock the implementation
and deployment of a tool for the general public.

• We report kin genomic privacy scores computed with
KGP Meter for a number of typical situations, e.g., a
privacy score of 95% when only the genome of a first
cousin is known.

• We benchmark the performance of the algorithm
based on a very large dataset of configurations
(N=700,614,759). Our results show that KGP Meter is
very responsive, providing results in less than a second
in 99.8% of the cases.

• By following a user-centric development process, we
design and implement an interface that enables users to
draw their family tree and to specify the target whose
genomic privacy they want to evaluate as well as the
relatives whose genomes are known to an adversary.
The interface then communicates the scores computed
by our algorithm.

• We deployed KGP Meter, and conducted a user study
targeted, through Prolific, at the general US Internet
population (N=1,580 crowdworkers). Our results show
substantial learning by using the tool. They also show
that users are more interested in their own privacy than
in that of their relatives. Although a majority of users
found the results provided by the tool worrisome, a
substantial fraction found them reassuring. Finally, the
large majority of users found KGP Meter useful and
were likely to recommend it.

Next, we introduce the relevant background on genomics
and genomic privacy in Section 2. We present the threat
model in Section 3. After describing the inference frame-
work in Section 4, we describe our quantification frame-
work, including the core algorithm and the associated
optimizations, in Section 5. In Section 6, we detail the
implementation of our tool – both its backend and its fron-
tend – before reporting on some typical scores and on its
performance in Section 7. We report on the methodology
and results of our user survey in Section 8. We review the
related literature in Section 9 and conclude in Section 10.

2. Background

The human genome consists of 3.2 billion pairs of
nucleotides that take value in {A,C,G,T}. About 99.9%
of our genome is common to all of us, hence not privacy
sensitive. From a privacy point of view, the genomic
positions that matter are those where nucleotides can differ
between individuals; these are known as single nucleotide
polymorphisms (or SNPs, also called variants). SNPs
typically denote our ethnic background and encode our
physical traits but also predispositions to certain diseases.
There are – to date – around 150 million SNPs known
in the human genome. A SNP is determined by a pair
of nucleotides, which can take two (rarely three) different
values, referred to as alleles, among {A,C,G,T}. The
most frequent allele in the population is referred to as the
major allele (‘M’ in the following), and the least frequent
as the minor allele (‘m’).2 Therefore, a given SNP can take
three values: (i) MM (homozygous major) (ii) Mm (het-
erozygous), and (iii) mm (homozygous minor). A minor
allele frequency (MAF), given by population statistics,
is associated with each SNP. Note that MAF values are
publicly accessible information that serves as baseline to
measure the genomic privacy of individuals before any
relative’s genome has been observed by the adversary (i.e.,
the prior). At each position in an individual’s genome,
both their nucleotides are inherited from their parents.
One nucleotide from the mother and the other from the
father. Moreover, each nucleotide passed on by a parent is
randomly picked with probability 0.5 among this parent’s
nucleotides. The resulting inheritance probabilities, i.e.,
the probabilities of a child’s SNP given their parents’
SNPs, are shown in Table 1.

Genomic privacy has been extensively studied over the
last decade. One can categorize privacy attacks into three
groups: (i) attribute inference attacks, (ii) membership
inference attacks, and (iii) linkability or re-identification
attacks. Attribute inference is the ability to infer the value
of an attribute from the values of other attributes. This
work and previous studies [7], [34], [37], [38] on kin
genomic privacy belong to this group. Such inference
is made possible by the correlations between relatives’
genomes stemming from genetic inheritance.

Membership inference is the ability to infer that a
certain target is in a specific dataset. Having access to
a target genome, the adversary tries to determine whether
this genome is part of a dataset by comparing it to
summary statistics about this dataset. Such inference has
been first proposed by Homer et al. [39] back in 2008.
This binary classification typically relies on statistical
tests, such as the likelihood-ratio test. Since then, various
researchers have tried to characterize more precisely this
attack with respect to the number of genomes contributing
in the target dataset and the number of genomic variants
accessible to the attacker [40]–[42]. Besides, membership
inference attacks have also been studied with other types
of genomic data, such as microRNA expression [43] and
DNA methylation [44].

Linkability attacks are the ability to link at least
two records concerning the same individual. If one of
the records contain identifiers about the individual, this

2. Both the major and the minor alleles take value in {A,C,G,T}.
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TABLE 1. CONDITIONAL PROBABILITY TABLE OF A CHILD’S SNP
VALUE GIVEN THEIR PARENTS’ SNP VALUES:

(P (Xc = MM | Xm, Xf ), P (Xc = Mm | Xm, Xf ),
P (Xc = mm | Xm, Xf )).

father
Xf = MM Xf = Mm Xf = mm

m
o
th

er Xm = MM (1, 0, 0) (1/2 , 1/2 , 0) (0, 1, 0)
Xm = Mm (1/2, 1/2, 0) (1/4, 1/2, 1/4) (0, 1/2, 1/2)
Xm = mm (0, 1, 0) (0, 1/2, 1/2) (0, 0, 1)

leads to a so-called re-identification (or de-anonymization)
attack. In this regard, Gymrek et al. notably show that
one can re-identify genomes by analyzing Y-chromosome
sequences from public genetic genealogy websites that
contain relatives with the same surname. [45]. However,
their attack is based on short tandem repeats (STRs) that
are not as prevalent as SNPs in current genomic databases.
Humbert et al. show that one can re-identify genomes
based on the correlations between our genome and our
phenotypic traits (such as eye color, blood type, or skin
color) [46]. Lippert et al. further study the feasibility
of phenotype-based re-identification attacks in a larger
cohort by applying whole-genome sequencing, detailed
phenotyping, and statistical modeling [47]. More recently,
researchers have shown that we could re-identify a given
genome’s owner by relying on distant relatives search
of genetic genealogy services such as GEDmatch [48].
Ney et al. [49] and Edge and Coop [50] have further
studied other privacy and security risks, such as genotype
inference, stemming from the growing popularity and
open APIs of genetic genealogy services.

In genomic privacy, the attack type for which it is
most challenging to measure privacy is the first one, i.e.,
attribute inference. For other attack types, the inference
problem generally boils down to binary classification, and
thus traditional statistical metrics like accuracy, or true-
positive and false-positive rates can be directly applied.
Therefore, these are less relevant and we focus in this
paper on developing a meter for attribute inference, i.e.,
where we aim to infer the genomic variants of a given
individual. In fact, the main work surveying genomic
privacy metrics focuses on the attribute inference setting
as well [51]. Wagner studies a plethora of potential metrics
(detailed in Section 3.2 of [51]) that can be categorized
as metrics measuring: (i) the adversary’s error, (ii) the
adversary’s success probability, (iii) the adversary’s un-
certainty (typically based on entropy), (iv) the information
gain/loss (e.g., based on mutual information) and (v) sim-
ilarity/diversity. Given that the first two categories require
to have access to the actual SNP value of the individual
whose genomic privacy we measure, we cannot use them
for our meter. Moreover, the fifth category is shown to
perform worst in terms of agreement with adversarial
strength by Wagner. Therefore, in this work, we decide
to rely on the third and fourth categories that do not
require any data to be computed and that show relatively
good performance in [51]. Moreover, in the context of kin
privacy, Humbert et al. show that, when averaged over a
significant number of SNPs, the entropy-based and mutual
information-based metrics behave very similarly to the
expected estimation error, which is one of the best metric
to capture genomic privacy [34], [37].

3. Threat Model

We assume the adversary to be (i) anyone who can
access genomes publicly available on the Internet, on
platforms such as OpenSNP [12] or the 1000 Genomes
Project [52], or (ii) direct-to-consumer genetic testing
companies such as 23andMe [1] or AncestryDNA [2].
By having access to these genomes, the adversary then
aims to infer the genomes of some of the relatives of
the genome owners. Besides the aforementioned adver-
saries, recent studies [49], [50] have shown that it is
possible to recover the genomes of individuals having
uploaded their own genomic data on genetic genealogy
services such as GEDmatch [10], MyHeritage [11], and
FamilyTreeDNA [53]. The incentives for the adversaries
include genetic-based pricing/selection for loans and in-
surances as well as targeted advertisement [5]. These new
attacks threaten the privacy of millions of individuals,
but also, indirectly that of tens of millions of their rel-
atives. Consequences of such attacks include inference
of predisposition to certain diseases, and discrimination
based on this information [4]–[6], [13]. As individuals’
genomes barely change over their life course, such threats
have long-lasting consequences. New threats could arise
in the future. In this work, we focus on generic genomic
inference attacks, not on identity inference [48] (see the
Golden State Killer case [54], [55]) or kinship inference
attacks.

The goal of the adversary is to infer other individuals’
genomes from the genomes he already has access to, by
making use of familial correlations. We assume that the
adversary either gains access to the entire set of SNPs in
the genome or nothing, which corresponds to the current
settings of DTC genetic testing services. We focus on the
SNPs produced by the popular Illumina sequencer [56]
and returned by DTC services, such as 23andMe. These
are also the most informative SNPs, e.g., those associated
with diseases or ethnic background. Our methodology
applies to any number of SNPs, thus the list of SNPs
could be easily updated in the future. In order to have
a privacy-preserving tool that does not collect or require
any actual genomic data, KGP Meter cannot make any
deductions about specific genetic cases, i.e., the impact of
a relative sharing specific SNP values.

4. Inference Framework

In this section, we introduce the notations, model, and
method for inferring kin genomic data.

We consider a set of l SNPs, G = {g1, g2, ..., gl},
included in the genomic data of the genotyped individuals.
Each SNP takes values in G = {MM,Mm,mm}, repre-
senting – in this order – two major alleles, one major and
one minor allele, and two minor alleles. A minor allele
frequency (MAF) pimaf ∈ (0, 0.5] is associated with each
SNP gi. We denote the set of n relatives in a family by
R = {r1, r2, ..., rn}, the target by rt (t ∈ [1, n]), and
the indices of the relatives whose genomes are observed
by the adversary (i.e., “known”) by O ⊆ [1, n] \ {t}. Xi

j

represents the random variable of SNP gi for relative rj ,
and xi

j denotes its actual value. We use (bold) vector
notations for the variables associated with the SNPs of

412



t = 4 and Ro = {r1, r3}

Xi
1 Xi

2

Xi
4Xi
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(a)
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(b)
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(c)

Figure 1. Sample Bayesian network ((a) formal and (b) informal repre-
sentations) and (c) corresponding family tree with two parents and their
two children, for a given SNP gi.

the relatives whose genomes are known to the adversary:
X

i
O = (Xi

j)j∈O and x
i
O = (xi

j)j∈O.

We use a Bayesian network (BN) to represent depen-
dencies between the genomic data of the considered rela-
tives. Bayesian networks follow the same logical structure
as that given by the Mendelian laws of genetic inheritance:
The value of a random variable, represented as a node in
the BN, is determined from those of its parent variables.
As shown in Figure 1, each SNP variable Xi

j can be
represented by a node in the BN, and each node has
exactly two parent nodes, representing the SNP variables
of the two biological parents.3 Not only the BN structure
is given by genetic inheritance, but also its parameters.
Apart from the root nodes (i.e., nodes without parents), all
internal (i.e., child) nodes take a conditional probability
(i.e., P (Xi

c|X
i
m, Xi

f )) table of size 3 × 3 × 3 given their
mothers and fathers, as defined in Table 1. The root nodes
(i.e., Xi

1 and Xi
2 in Figure 1) take the prior probability

table defined as P (Xi
j = MM) = (1 − pimaf)

2, P (Xi
j =

Mm) = 2 · (1− pimaf) · (p
i
maf), P (Xi

j = mm) = (pimaf)
2.

The SNPs {gi}i∈[1,m] for the target relative can be

inferred independently4 from each other by using the same
BN, but with a different prior probability for the root
nodes; this probability is determined by the MAF of the
considered SNP.

Given the structure of the BN, the joint distribution
of the random variables (Xi

1, X
i
2, ..., X

i
n) representing the

values of SNP gi of all relatives in a family can be
factorized in smaller distributions given by the afore-
mentioned prior and conditional probability table. Thanks
to this factorization, we can efficiently compute the ex-

act marginal posterior distributions of unknown variables
given the observed variables, by using the junction tree
algorithm [63]–[65].

5. Data-Less Quantification

Our overarching goal is to build a tool for enabling
individuals to evaluate their (kin) genomic privacy in
a simple, interactive and privacy-preserving way. This
implies that the tool should be able to compute privacy
scores in less than a few seconds and should not rely on
the genomic data of the relatives.

The framework described in the previous section en-
ables the efficient inference of the target’s SNPs based

3. Throughout the paper, we focus on genetically-linked families, thus
not including adoptive or donor-conceived children.

4. As in most previous works [41], [57]–[60], we do not consider
linkage disequilibrium [61], [62], i.e., pairwise correlations between
SNPs, as they bring little information in our setting.

on the actual values of the SNPs of their relatives whose
genomes are known to the adversary. We can then quantify
the target’s privacy based on the adversary’s expected error
by comparing the inferred values to the actual values of
the target’s SNPs (i.e., ground truth). However, these steps
rely on the knowledge of the genomic data of the target
and of their relatives: This goes against the simplicity and
privacy-preserving requirements and prevents the use of
this framework for testing hypothetical scenarios.

In this section, we present a novel algorithm and de-
scribe how we alleviate the aforementioned requirements
for the inference and quantification processes. Because
the (basic version of the) proposed solution incurs a
substantial computational overhead, which goes against
the interactivity requirement [35], we design a number of
optimization techniques.

5.1. Privacy Metric

Given that the target’s actual SNP values are not
known to the tool, to quantify privacy we rely on the
mutual information – a metric based on Shannon entropy5

H(·) and widely used in privacy research – between
the target’s SNPs Xi

t and those of the relatives whose
genomes are known X

i
O. The mutual information is de-

fined as I(Xi
t ;X

i
O) = H(Xi

t) − H(Xi
t | X

i
O). In order

to obtain a score between 0 and 1, which directly reflects
the target’s privacy (and not the opposite, i.e., the privacy
leakage), we define the following metric:

Si
t(O) = 1−

I(Xi
t ;X

i
O)

H(Xi
t)

=
H(Xi

t | X
i
O)

H(Xi
t)

(1)

This represents the ratio between the entropy given the
observed SNP values and the entropy of the prior. This
ratio is maximum, i.e., equal to one, when no relatives’
genome is known, and minimum, i.e., zero, if the value
of Xi

t can be deterministically determined from X
i
O. In

short, this metric captures (for a given SNP) the proportion

of the adversary’s uncertainty about the target’s genome
that remains when knowing the relatives’ genomes. We
selected mutual information and Shannon entropy be-
cause these represent state-of-the-art metrics in genomic
privacy [34], [37], [51]. Furthermore, entropy was also
used for measuring privacy in anonymous communica-
tions [69], [70] and in information flows [71]. Note that
this metric measures the fraction of information leaked,
not a probability (of success) of a specific attack. In fact,
the genome of a distant relative leaks little information but
could be enough to establish paternity or to re-identify an
individual (e.g., the Golden State Killer case [54], [55])

Finally, the genomic privacy score of the target rt is
obtained by averaging over all SNPs gl, i ∈ [1, l]: S̄t(O) =
1
l

∑l

i=1 S
i
t(O). Alternatively, only selected SNPs could be

considered, for instance those related to specific diseases
such as Alzheimer’s.

5. Note that other entropy metrics could be used, such as Rényi min-
entropy which generalizes various entropy metrics [66] or g-leakage
which generalizes the min-entropy model of quantitative information
flows [67]. We further refer to [68] for a detailed analysis on the
connection between the various information-theoretic metrics and side-
channel attacks.
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(a) Sample family tree.

Xi
m Xi

f P (Xi
m, Xi

f ) P (Xi
c | Xi

m, Xi
f ) H(Xi

c | Xi
m, Xi

f ) Si
c

MM MM 0.656 (1.0, 0.0, 0.0) 0.0 0
MM Mm 0.146 (0.5, 0.5, 0.0) 1.0 1.319
MM mm 0.008 (0.0, 1.0, 0.0) 0.0 0
. . . . . . . . .

(b) SNP value combinations (truncated) for the relatives whose
genomes are known (i.e., mother and father) with the associated joint
probability as well as the posterior probability, entropy and score of
the target. Xi

c, Xi
m, and Xi

f
denote the SNP values of the child, the

mother and the father respectively. The MAF was set to pimaf = 0.1,

which yields H(Xi
c) ≈ 0.758.

Figure 2. Computation of the privacy score for SNP gi.

5.2. Data-Less Evaluation

Given that the relatives’ actual SNP values are not
known to the tool, we consider, for each SNP gi, all the

possible combinations of SNP values for the relatives. For
instance, if there are two relatives whose genomes are
known to the adversary (i.e., |O| = 2), there are a total
of 3 × 3 = 9 combinations: x

i
O equals (MM,MM) or

(MM,Mm) or (MM,mm) or (Mm,MM), etc. The total

number of such combinations to be considered is 3|O|.

Each such combination of SNP values has an associ-
ated joint probability of occurence, which only depends
on the MAF associated with the considered SNP (i.e.,
pimaf) and the inheritance laws (see Table 1). Note that
the SNP values of different relatives are not necessarily
independent. For instance, if the relatives whose genomes
are known are father and son, the joint probability of
the combination x

i
O = (mm,MM) is null. If the rel-

atives are mates / partners,6 however, their SNP values
are independent (assuming that the SNP values of their
descendants are all unknown) and the joint probability of
the combination x

i
O = (mm,mm) is (pimaf)

4.

For each combination x of SNP values, we compute its
joint probability P (Xi

O = x) and the posterior probability
P (Xi

t | X
i
O = x) of the target’s SNP value by perform-

ing an exact inference using the algorithm presented in
Section 4. We compute the entropy H(Xi

t | X
i
O = x)

of the posterior probability, from which we compute the
privacy score for a given SNP according to Eq. 1, and we
do so for all the genotyped SNPs. Note that the entropy of
the prior (i.e., the denominator) can be computed directly
from the MAF associated with the considered SNP (i.e.,
pimaf). Figure 2 illustrates the computation of the score on
a simple example. The final privacy score is an expected
value, computed as the sum of the privacy scores across all
combinations of SNP values, weighed by their associated
probabilities of occurrence:

E[S̄t(O)] =
1

l

l∑

i=1

∑

x∈G|O|

H(Xi
t | X

i
O = x)

H(Xi
t)

·P (Xi
O = x)

(2)

6. We mean “the other biological parent of one’s biological child”.

All the possible combinations of SNP values for the
relatives are iterated on through recursion and the expected
value (i.e., the sum) is computed iteratively. A pseudo-
code version of the algorithm is provided in Algorithm 1.
For the sake of clarity, we omit the SNP’s index i in the
algorithm. In the algorithm, BP stands for belief propa-
gation; for this, we rely on an implementation from an
existing library. To compute the final privacy score of the
target, the tool performs, for each of the l SNPs and each
of the 3|O| SNP value combinations, an inference using
the junction tree and belief propagation algorithms. Such
complexity prevents us from computing privacy scores in
a few seconds, even for a small number of relatives whose
genomes are known (e.g., |O| = 3).

Limitations. Note that, given that we capture a single
privacy score for a large set of SNPs in the genome, it
can only be an average, with or without having access to
the actual genomic data of the relatives or the target. In
our case, we average over both the set of SNPs and their
possible values, while with real data, we only average over
the set of SNPs. However, as we note in Section 7.1, the
scores between our meter and metrics with real data [37]
are very similar, even though [37] considers an average
on the first chromosome only. We postulate that, as soon
as we consider a large enough number of SNPs, the
individual extreme (rare) values are averaged out in the
privacy score. Therefore, the usage of real data does not
bring much more precision regarding a generic privacy
score over the whole genome.

The provided privacy score would certainly be less
accurate if we had focused on specific set of SNPs, e.g.,
related to a particular disease. In such case, the rare
values that some individuals’ SNPs could carry would
not average out with other SNPs’ values. For this case,
the users could perform their privacy score computation
with actual genomic data locally. If the user computing the
privacy score cannot have access to the actual data of their
relatives, another approach could be to rely on (secure)
multi-party computation (MPC). The main drawback of
our approach is that it does not provide a specific score
about the risk-sensitive genes or SNPs.

Algorithm 1 Returns the conditional entropy H(Xi
t | X̃

i
o)

of the target’s SNP given the values of the observed SNPs
of the relatives.
1: function CONDENTROPY(U , x̃)
2: � U ⊆ O: set of relatives whose genomes are known but for

which the SNP values are not yet set.
3: � x̃: evidence; SNP values of the relatives whose genomes are

known and for which the SNP values have already been set.
4: if U = ∅ then
5: pjoint ← P (X̃o = x̃) � compute with BP

6: pcond ← P (Xt | X̃o = x̃) � compute with BP

7: hcond ← −
∑

g∈G

pcond(g) logpcond(g) � compute entropy

8: return pjoint · hcond

9: else

10: pick j ∈ U � next relative to explore

11: r ←
∑

g∈G

CONDENTROPY(U\j, x̃ ∪ {x̃o,j = g})

12: � compute expected value of cond. entropy in exploration
(sub)tree

13: return r
14:
15: result ← CONDENTROPY(O,∅)
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Figure 3. Configurations illustrating the cases where the genome of some
relatives are irrelevant and can therefore be removed (marked with a red
cross). Nodes that are d-separated from the target can be safely removed
from the algorithm.

5.3. Optimizations

We present a number of optimizations for meeting the
interactivity requirement of the tool.

5.3.1. Removing Irrelevant Relatives. Due to the struc-
tures of family trees and of the associated BNs, in some
cases, the genome of a relative is irrelevant for inferring
that of the target. More specifically, given the genomes of
the other relatives whose genomes are known, it does not
bring new information. A simple example (Figure 3(a)) is
the case where the genomes of both the mother and the
maternal grandmother of the target are known: Given the
genome of the mother, the genome of the grandmother
does not bring new information for inferring that of the
target. Other examples are given in Figure 3.

Although such irrelevant nodes are automatically ig-
nored in the inference process, they are still (unnecessar-
ily) considered when enumerating the different configu-
rations of SNP values for the relatives whose genomes
are known (see Eq. 2). They should therefore be re-
moved. Formally, this optimization consists in removing
from the BN the nodes that are independent from the
target node, given the other observed nodes (i.e., those
corresponding to the relatives whose genomes are known).
In this endeavor, we rely on the notion of d-separation

that formalizes the concept of conditional independence
between nodes in a BN (see Appendix A on p. 18). Two
conditionally independent nodes in a BN do not bring
information about each other. This enables us to simplify
the BNs, by removing all nodes that are d-separated from
the target node Xi

t given the set of observed nodes X
i
O.

We show three examples of such simplifications by using
d-separation in Figure 3. In Figure 3(a), the grandparent
of the target is d-separated from the target because the
target’s parent is observed in-between. Figure 3(b) depicts
a v-structure between the target and his mate. In this case,
the trail between them is active only if the descendant is
observed, which is not the case here, hence the mate is
d-separated from the target and can be removed. Finally,
Figure 3(c) depicts d-separation between a target and their
sibling. This case is more complex because there are two

trails between the target and their sibling: one through the
mother and another through the father. However, none of
these trails are active if both the parents are observed.

Through this optimization, the number of combina-
tions of SNP values considered in the algorithm drops

from 3|O| to 3|O
′|, where O′ ⊆ O is the set of relatives,

in the simplified tree, whose genomes are known.

� �

� �

�

(a) Family tree.

�Child

�Mate

�Mother

mm
�Mother

Mm

�
MM

m
m

�Mate

�Mother

mm
�Mother

Mm

�Mother
MM

Mm

�Mate

�

mm
�Mother

Mm

�Mother
MM

M
M

(b) Exploration tree (pruned).

Figure 4. Configuration illustrating the cases where some combinations
of SNP values for the relatives whose genomes are known to the
adversary are impossible; this can be detected early and the algorithm
can stop, thus pruning sub-branches of the exploration tree (marked with
a red cross).

5.3.2. Pruning impossible SNP value combinations.
Due to the dependences between the genomes of the rela-
tives, some combinations of SNP values (for the relatives
whose genomes are known) are impossible, i.e., they have
a null joint probability. For instance, a combination where
a woman and her child have SNP values of MM and mm,
respectively, is impossible (see Table 1). Any combina-
tion containing an impossible combination is impossible.
Therefore, when exploring all combinations of SNP values
recursively, we can – at each recursive call – compute the
joint probability of the current sub-combination and stop
(i.e., return) early if this probability is null, instead of
computing the joint probability only when the recursion
terminates. The exploration tree is pruned, thus saving
unnecessary iterations. This is achieved by adding the
following instructions before Line 4 of Algorithm 1: “if

P (X̃o = x̃) = 0 then return 0”.

An example of pruning is shown in Figure 4. The
sample family tree (a) includes a relative (i.e., the target’s
mate) and their child; and both their genomes are known.
The branches of the exploration tree (b) that correspond to
the combinations of SNP values in which the mate / part-
ner and their child have values MM and mm, respectively
(or conversely), are pruned.

Through this optimization, the number of combina-

tions of SNP values considered is at most 3|O
′| instead of

exactly 3|O
′|. Note that neither this optimization nor the

previous reduces the worst case complexity. Yet, as our
user study shows, they do substantially reduce the average
computation time (and thus the responsiveness of the tool)
by an order of magnitude.

5.3.3. Interpolating over MAF Values. In order to com-
pute the target’s final privacy score, a privacy score must
be computed for each SNP gi and its associated MAF
value pimaf. And the number l of SNPs in popular DTC
genetic tests is in the order of hundreds of thousands.

In order to reduce the computational time of the algo-
rithm, we compute the privacy scores only for a limited
set of k (k � l) MAF values {p1, . . . , pk}, distributed
in [0, 0.5], and use these sample scores to interpolate the
privacy scores for all SNPs. We compute the correspond-
ing sample scores {s1, . . . , sk} (i.e., sj = St(O)(pj),
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Figure 5. Interpolation of the privacy scores based on k = 4 and 16
regularly distributed sample MAF values in the case where the genomes
of both the target’s parents are known. The shape of the curve (i.e., steep
increase for small MAF values) suggests the use of more samples for
small MAF values.

j ∈ {1, . . . , k}) as in Eq. 1 and estimate the final privacy
score as follows:

S̃t(O) =
1

m

m∑

i=1

interpolate(p1,s1),...,(pk,sk)
(pimaf) (3)

Unlike the other optimization techniques presented in this
section, which reduce the computational time without
affecting the result of the computation, interpolation intro-
duces some inaccuracy (which we measure experimentally
below). The larger the set of sample MAF values for
which we compute the privacy score is, the closer the
interpolated privacy score is to the actual privacy score.

To evaluate the inaccuracy introduced by interpolation,
we consider the sample configuration where the genomes
of both the parents of the target are known to the adversary
(see Figure 2(a)). We compute both the actual privacy
scores (for all the SNPs) and the scores interpolated from
k = 4 or 16 sample MAF values. Figure 5 illustrates
the concept of interpolation as well as the discrepancy
between the actual and interpolated privacy scores in
these settings. The relative error on the global privacy
score (assuming a uniform distribution of MAF across
the considered SNPs) is 1.51% for k = 16 (resp. 7.88%
for k = 4), which is reasonable. It can be observed that,
given the shape of the curve (i.e., steep increase for small
MAF values), non-regular distributions should be used for
sample MAF values, with more samples for small values
of MAFs.

Through this optimization, the number of privacy
scores to compute for individual SNPs/MAF values drops
from l (a few hundreds of thousands) to k (a few dozens).

5.3.4. Caching Computed Scores. In order to increase
the responsiveness of the tool, the system caches the
computed results. This enables the tool to return a score
very fast (i.e., without re-computing it) if it has already
been computed for the same, or an equivalent (i.e., that
gives the same inference results) configuration. Indeed,
due to the symmetry properties of BNs and of inheritance
laws and because we try all possible combination of SNP
values, parents and children can be re-ordered without
altering the result of the inference. Figure 6 depicts two
equivalent configurations.

For caching to be efficient, equivalent configurations
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Figure 6. Two equivalent configurations: Irrelevant relatives can be
removed and parents and children can be re-ordered without altering
the result of the inference.

should be mapped to the same “signature”;7 in other
words, the signature should be applied on the simplified

configuration (i.e., after irrelevant relatives have been
removed, as described in Section 5.3.1) and should be
invariant with respect to parents and children re-ordering.

The signature algorithms operates recursively, starting
at the target. The signature of a tree, rooted at a given
individual, is computed recursively by hashing7 the con-
catenation of (1) the status of the individual (i.e., “genome
known”: true, “genome not known”: false), (2) the
signatures (sorted alphabetically) of the subtrees rooted at
their parents, (3) the signatures (sorted) of those rooted
at their siblings, if any, (4) the signatures (sorted) of
those rooted at their children, if any, and (5) the signature
of the subtree rooted at their mate, if any. We illustrate
the functioning of the signature algorithm in the example
depicted in Figure 7.

a3f...

7be... 2c2...

14b... 93a...

c23... 872...

� �

� � � �

� �

Figure 7. Illustration of the signature-generation algorithm used for
caching. The signature of a tree rooted at a given relative is com-
puted recursively by hashing the concatenation of the status of the
relative, the signatures (sorted) of the subtrees rooted at their parents,
the signatures (sorted) of those rooted at their siblings, the signatures
(sorted) of those rooted at their children, and the signature of that
rooted at their mate/partner. The root node is circled. The (truncated)
signature of each subtree is indicated next to it. The resulting signature
is: hash(false;872..,c23..;14b..,93a..;2c2..,7be..;a3f..).

Because the signatures of the subtrees are sorted
within each relative type (e.g., parents, siblings), they
are deterministically ordered in the concatenation, thus
resulting in a signature that is invariant with respect to
parents and children re-ordering.

7. The terms “signature” and “hash” are used from an indexing
perspective here, not in a cryptographic sense.
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6. Implementation

In order for KGP Meter to be easy to run and avail-
able to a large audience, it is implemented as a web
application. KGP Meter consists of (1) a frontend (i.e.,
running on the client) that enables users to build their
family tree, indicate whose genomes are known, and who
the target of the privacy evaluation is and (2) a backend

(i.e., running on the server) that computes the privacy
score for a given configuration. The tool is embedded in
a website that contains (1) a short introduction stating
the context and the potential consequences of genomic
information leakage (e.g., discrimination in the contexts
of insurance, loans etc.), (2) an FAQ section, and (3) a
description of the techniques underlying the tool. See:
https://santeperso.unil.ch/privacy/?src=article.

6.1. Frontend

Design. We developed the website by following a user-
centric development process [72], which comprises for-
mative research and a few iterative cycles of design and
testing (we report the usability evaluation later below).

The initial design was based on web services that
enable users to interactively build their family trees [11],
[73]. For our tool, we focus on biological family rela-
tionships. Plain circles are used to represent tree nodes
(i.e., relatives). Parent nodes are connected to child nodes
through segments. The color scheme follows conventional
representations for sex. Icon selection is again based on
well established conventions: Mars/Venus symbols for
biological sex (i.e., �) the double helix for the DNA
(i.e., �), a rifle crosshair for the privacy-evaluation target
(i.e., �), and a person silhouette with a ‘plus’ sign for
adding a family member (i.e., �). The initial view is
composed of a single node representing the user (denoted
with “� You”). Placing the mouse pointer on a node
in the tree reveals a set of icons either to add a direct
relative (�, Figure 16(a) in Appendix B), to indicate the
genome of the considered relative as sequenced or not
sequenced ( �+/�–, Figure 16(b)), or to designate the
considered relative as the target of the privacy evaluation
(�, Figure 16(c)).8 Each node contains a DNA symbol.
The color fill is dark (�) if the genome of the corre-
sponding relative is known or light (�) if not known.
It also contains a name for the relative with a default
auto-generated value (e.g., “Father”); the name can be
edited to enable users to navigate complex family trees.
Users can load existing family trees (GEDCOM format),
including pre-defined ones. On the right hand-side of the
tree, we placed a vertical bar that represents the privacy
score as calculated by the algorithm. The portion of the bar
that is filled reflects the score, and so does its fill color
through interpolation using a green-orange-red gradient,
as per convention [74] (see also [75]–[77]).

The frontend does not currently directly support the
cases of half-siblings and of individuals having multiple
children with different partners / mates. It does not support
either cycles in family trees, e.g., John and Paul are
brothers, Mary and Lea are sisters, John and Mary have

8. Note that we chose not to designate “You” as the default target in
order not to prime the users. This is discussed in Section 8.1.

children together and so do Paul and Lea. Note, however,
that the backend (as well as the underlying formalism)
supports such cases; we report sample privacy scores with
half-siblings in Section 7.1. Moreover, such configurations
can be drawn with other tools (e.g., commercial genealogy
software), exported in the GEDCOM format, and finally
imported and processed with KGP Meter.9

Given the results of the formative research, we ex-
pected most of the users to have little knowledge about
DNA testing, not to mention DNA-related privacy risks.
These results motivated the inclusion of explanatory de-
sign elements: a short introduction that mentions the
potential consequences of genomic information leakage,
a video tutorial, and an FAQ page. The FAQ explains,
among other things, what the kin genomic privacy score
means (i.e., how much of the genomic information of the
‘target’ remains unknown when the genomes of some of
their relatives are known), as well as the limitations of
KGP Meter.

Usability Evaluation. Before implementing the website,
we implemented the design on a functional prototype that
underwent a usability evaluation [72]. We recruited 13 par-
ticipants with mixed backgrounds and varied demographic
characteristics. The experiment took place in a UX-lab, a
small room with a desktop computer and cameras. Par-
ticipants were welcomed and signed an informed consent
agreement where we specified that they were recorded.
They were asked to complete two tasks: the first was to
spend 2 minutes freely exploring the website and then to
explain, in their own words, its purpose. For the second
task, participants were given a family tree on a piece of
paper (see Figure 16(d)) and they were asked to represent
the same tree by using the website. A researcher sat in
the same room as the participants performed the task and
took notes of mistakes, uncertainties, and the time it took
to perform the task. At the end, participants were asked
to rate the level of difficulty in using KGP Meter (from
1=extremely difficult to 7=extremely easy).

All of the participants in the study managed to cor-
rectly identify the purpose of the website. However, 5
participants thought that the score represented an actual
measure of the target’s SNP values that had not been
released to the public. Hence, they failed to recognize
that the score represents a proportion of the genomic
information. The average time required to represent a tree
with 6 nodes through KGP Meter and estimate the privacy
risk was about 2 minutes (136 ± 44 sec.). The average
number of mistakes (e.g., adding a node by mistake and
erasing it) was 0.5. Finally, the average task complexity
reported by participants was moderately easy (5.6 ± 0.9).
The collected usability scores were judged sufficient to
grant the deployment of the KGP Meter. Furthermore, the
evaluation helped identify a few aspects of the design that
could be improved: (1) the video tutorial was replaced
with a step-by-step interactive tutorial; (2) a tooltip was
added when a mouse-over event on the icons of the tree
builder was detected; (3) a text explaining the privacy
score received was added under the family tree (see Fig-
ure 16(d)).

Implementation. The frontend is depicted in Figure 16
in Appendix B on p. 18. It is implemented in Javascript

9. See: https://santeperso.unil.ch/static/half.mov.
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and it relies on D3 [78] which provides the low-level
primitives to draw trees. The actual construction of the
tree and its configuration, however, are implemented in a
module we developed, as we could not find any suitable
open-source library for that purpose. As long as a target is
designated in the family tree, asynchronous requests are
sent to the server (i.e., the backend) every time the con-
figuration is modified by the user. For privacy reasons, the
names of the relatives, if any, and their sex are not sent to
the server. Furthermore, the ordering of the siblings (and
of the parents) is shuffled. The server returns a privacy
score that is reported in a vertical privacy bar and in an
explanatory message, as depicted in Figure 16(d). Status
messages from the backend can potentially be displayed at
the top. All pages include a cookie bar with a link to our
privacy policy. The privacy score evaluations performed
by the users of the tool are stored on the server. KGP
Meter was available in English during the experiment;
it now includes four additional languages. The source
code of the tool is available on GitHub.10 Additionally,
the frontend can be embedded in any static webpage by
relying on the backend we deployed. A video demo is also
available at: https://santeperso.unil.ch/static/demo.mp4.

6.2. Backend

The backend is implemented and runs in Python. It
is run by the Apache web-server through the Web Server
Gateway Interface; it relies on Flask for handling web
requests, and pgmpy [79] and NETICA [80] (through
ctypes as NETICA is implemented in C) for manip-
ulating BNs. The former is used for simplifying BNs
based on d-separation and active trails (see Section 5.3.1)
and the latter is used for computing joint and posterior
probabilities (i.e., the inference). The results are cached
in a persistent database (see Section 5.3.4).

The backend uses 16 MAF values, regularly dis-
tributed between 0 and 0.5, for the interpolation (see
Section 5.3.3) and computes the corresponding scores in
parallel. In order to account for the shape of the privacy
score curve as explained in Figure 5, we assigned priori-
ties to the different MAF values. The backend interrupts
the computations of a final privacy score after 10 sec-
onds [35]; if the scores for at least 4 sample MAF values
are available, a final score is returned.11 Otherwise, an
error is raised by the backend and a warning message
is shown to the users, asking them to try again later
(i.e., typically after the daemon process has computed
the missing values). For computing the final score, KGP
Meter relies on the list of SNPs genotyped by 23andMe [1]
v4 (≈638k in total). For the associated MAF values, it
relies on global statistics from dbSNP [36]; this leaves us
with 486,750 SNPs, as there is no information on dbSNP
for some of the SNPs genotyped by 23andMe.

6.3. Extensions

Pre-computing scores for caching at the client side. For
improved privacy and performance, the most frequently

10. https://github.com/isplab-unil/kin-genomic-privacy.

11. The privacy scores for the missing MAF values, if any, are com-
puted asynchronously by a daemon process running in the background,
thus providing a higher accuracy for future requests.

requested scores cached on the backend could be proac-
tively sent to the frontend in such a way that the frontend
can display the requested privacy score without contact-
ing the backend. This, however, requires the frontend to
compute the signatures of the requests (as described in
Section 5.3.4); this means using a Javascript library for
manipulating Bayesian networks. Another option would
be to use a less effective signature scheme at the client
(without simplification, just with deterministic reordering
of parents and children).

6.4. Privacy Considerations

For its functioning, our tool requires some informa-
tion that may impact its users’ privacy. Essentially, the
information that is sent to the backend of the tool is
(i) the family tree and (ii) whether each individual in
the tree is sequenced or not. However, note that tested
family trees can be hypothetical. Besides, dummy tree
requests could be envisioned and pre-computed scores
would prevent some requests to be sent to the backend
(see Section 6.3). Also, the names and gender are not sent
to the backend. Finally, note that, for maximum privacy,
users could download and run their own backend (the code
is open-source).

7. Evaluation

7.1. Privacy Scores

We give some sample average genomic privacy scores
in typical configurations and compare them to those ob-
tained by Humbert et al. [37] for a specific family (i.e., the
CEPH/Utah Pedigree 1463). Figure 8 depicts the global
privacy scores in these different configurations. Note that
although the case of half-siblings is not supported by the
frontend, it is by the formalism and the backend; therefore,
we can report on the privacy scores for configurations
involving half-siblings and, more generally, step families.
The labels on the x-axis denote the list of relatives whose
genomes are known. The configurations are sorted by
decreasing privacy scores. The genomic privacy score
ranges from 95% for a first cousin to only 19% for the
partner, the 2 parents, and 3 children. We observe the
same trend as Humbert et al. but with slightly different
scores (e.g., 78% for one parent with our tool vs. ≈74%
in [37]). This is due to the fact that our tool computes the
average case over all combination of SNP values for the
relatives whose genomes are known, whereas Humbert et
al. consider the real genomes of the relatives (considering
only Chromosome 1 and not all chromosomes). The pri-
vacy score for a half-sibling (92%) is substantially higher
than for a sibling (79%). Interested readers can compute
privacy scores for other configurations by using our online
tool or Python library. Remember that these scores are
not directly related to the success probability of specific
attacks (e.g., identity inference [48], [49] and the Golden
State Killer case [54], [55]). For instance, the score is 95%
for a first cousin although a first cousin match has been
consistently demonstrated to be sufficient to identify an
individual (in crimes, for example).
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Figure 8. Sample privacy scores in typical configurations.

7.2. Performance

Methodology. Interactivity is a key aspect and a strong
requirement, in the design of the tool [35]. In order to
evaluate the performance of the tool (i.e., benchmark) in
terms of computation time, we consider a large sample
family tree, centered on the target, with 38 relatives (excl.
the target). The general methodology for constructing the
benchmark tree is to assign 2 children to each couple–
except for the target who has 3 children and 2 siblings–
and to consider only relatives within a certain “distance”
to the target. The benchmark tree is depicted in Figure 17
in Appendix D on p. 20. We consider all the combina-
tions of 10 or less relatives whose genomes are known

(i.e.,
∑10

j=1

(
38
j

)
= 700,614,759 combinations). We relied

on a computer with Intel(R) Xeon(R) CPU E5-2665 @
2.40GHz (32 cores).

Results. We first measure the computation time for a
privacy score corresponding to a single MAF value and
for a given configuration (i.e., a family tree with a target
and a set of relatives whose genomes are known). Our
tool relies on 4 to 16 MAF values to compute the global
privacy score (using interpolation; see Section 5.3.3).
The scores corresponding to the different MAF values
are computed in parallel. We look at the distribution of
computation time, depending on the number of relatives
whose genomes are known. Figure 9 depicts a box-plot
representation of the computation time of the score cor-
responding to a single MAF value, aggregated over all
the considered configurations of the benchmark tree, as a
function of the number of relatives whose genomes are
known after simplification of the family tree (see Sec-
tion 5.3.1). It can be observed that the computation time

closely follows the O(3|O
′|) computational complexity.

The median proportion of removed relatives is 30% (see
Figure 10).

In order to evaluate the efficacy of caching (see Sec-
tion 5.3.4), we measure the number of equivalent con-
figurations, i.e., that are mapped to the same signature.
The 700,614,759 different configurations generated from
the benchmark tree are mapped to “only” 168,130 distinct
signatures. This means that, for each configuration, there
is on average 4167 equivalent configurations. In other
words, a score computed to answer a request can be
reused to answer many other different (but equivalent)
requests, hence saving computation time and increasing
the responsiveness of the tool.

Figure 9. Computation time of a privacy score as a function of the
number of relatives whose genomes are known in the simplified family
tree. The line represents the result of a log-linear regression (computation

time of 3.01|O
′|, R2 of 99.7%).

(a) (b)

Figure 10. Sequenced relatives removed in simplification of benchmark
family tree (a) number / (b) proportion.

8. Survey and Usage Statistics

In order to gain insights into the way individuals use,
perceive, and learn from KGP Meter–and the problem
of kin genomic privacy in general–we collected and ana-
lyzed survey and usage data. We recruited our participants
through a crowdworking platform, which enabled us to
collect a large dataset from a representative sample of
individuals. The study (including the deployment of the
tool) was approved by our institutional review board (IRB)
before its launch.

8.1. Methodology

We relied on the implementation described in Sec-
tion 6. The text of the website was simplified; in particular,
technical details were moved to the FAQ and/or Concept
sections. Participants were recruited through Prolific [81],
which provided us with a representative sample of the
US Internet population. First, participants were directed
to a first online questionnaire that includes a few knowl-
edge questions about genomics and (kin) genomic privacy.
Then, they were redirected to our website and instructed
to browse through it and to try at least three distinct
configurations with KGP Meter. Finally, they were di-
rected to a second questionnaire that presents again the
knowledge questions from the first questionnaire (to assess
the participants’ learning), but also includes new ones re-
garding KGP Meter. The questionnaires included attention
checks (see Appendix C on p. 19). We conducted cognitive
pretests and adjusted the questionnaire accordingly. The
tool usage data was linked to the questionnaire data. The
study took ∼20 minutes and each participant received a
compensation of ∼USD 3.2. The study was conducted in
May 2020.
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8.2. Results

In total, 1,822 individuals took part in the study. We
removed those who failed attention checks (Q7 and Q18),
those who completed the questionnaires too fast (less than
10 minutes), and those who computed kin genomic privacy
scores (with KGP Meter) in less than three different con-
figurations. This left us with 1,580 respondents. Recruited
participants were 54.2% “Female”. The mean age was
43.0, with a standard deviation of 14.7. The distribution
of ethnicity was: 73.0% white, 12.1% black, 7.4% asian,
4.8% mixed, and 2.7% other.

Questionnaire. We asked the respondents whether they
had their genome tested (Q8): Only 13.9% answered
“Yes”, 82.5% answered “No” and 3.3% answered “Not
Sure”. The remaining 0.3% preferred not to answer. We
also asked them whether any of their relatives had their
genome tested (Q19): 28.7% answered “Yes”, 56.5% an-
swered “No”, and 14.7% answered “Not sure”. Note that
KGP Meter can be used by the respondents who did not
have their genome tested (the vast majority) in order to
evaluate the privacy consequences–for their relatives–of
their own testing and thus to make an informed decision.
For those who did not have their genome tested but
some of their relatives had, KGP Meter can be used to
assess the privacy implications for themselves; for these
respondents, the configurations tested with KGP Meter
might correspond to the actual ones. The fact that a
non-negligible fraction of the respondents were not sure
whether their relatives had their genomes tested highlights
a key problem in interdependent privacy: Individuals do
not possess the required information to properly assess
their privacy.

Awareness. We asked the respondents whether they
were aware of the genomic privacy risk relatives can
create for each other (i.e., kin genomic privacy risks; Q20)
before visiting our website: 8.0% answered “Yes”, 37.5%
answered “To some extent”, and 53.9% answered “No”.

Concerns. We asked the respondents whether they
found the obtained scores reassuring or worrying, on
7-point Likert scale ranging from “highly worrying” to
“highly reassuring” (Q23). Figure 11(a) shows the dis-
tribution of responses. Overall, the respondents found
the results provided by KGP Meter more worrying than
reassuring (43.7%). A substantial fraction of the respon-
dents were neutral (36.1%). To better qualify these results,
we looked at the comments left in the free text field.
(Q28). A respondent asked “If my mother has her genome

sequenced why does it reveal only 22% of my genomic

information? Shouldn’t it be 50%”, and another one stated
“That if both my parents had the test, you would only know

51% of my genome.”; these comments highlight the com-
mon misunderstanding about genomics and probabilistic
reasoning that most people face.

In order to understand the target of the respondents’
genomic privacy concerns, we also asked them whether
they were more interested in their own genomic privacy or
in that of their relatives (Q24). Note that, in order to avoid
priming the users towards testing their privacy or that of
their relatives, the target was not selected by default in
KGP Meter. Also, the text on the webpage was phrased
in a neutral way. The results are depicted in Figure 11(b);
overall the participants were more interested in their own

(a) Distribution of responses for
survey question “Do you find
the obtained genomic privacy
scores reassuring or worrying?”
(Q23).

(b) Distribution of responses
for survey question “Are you
more interested in your ge-
nomic privacy or rather in that
of your relatives?” (Q24).

Figure 11. User concerns regarding Kin Genomic Privacy.

(a) Distribution of responses for
survey question “Do you find
this tool useful?” (Q26) .

(b) Distribution of responses
for survey question “What are
the chances that you would rec-
ommend this website?” (Q27);
NPS.

Figure 12. User satisfaction regarding KGP Meter.

privacy (38.5%) than in their relatives’ (19.1%), although
a large fraction (42.4%) indicated being equally interested
in both (i.e., neutral).12 When asked why, most respon-
dents reported being self-centered (e.g., “I’m just more
concerned with all things regarding myself”).

Satisfaction. Finally, we asked the participants their
opinion about KGP Meter in terms of perceived usefulness
(Q26) and net promoter score (NPS) (Q27). The results are
depicted in Figure 12. The majority of respondents found
KGP Meter useful (67.8%) and were likely to recommend
KGP Meter to other people (53.4%). The feedback of the
respondents (in free text, Q28) was positive overall. They
pointed out the usefulness of KGP Meter and suggested
possible improvements including: (1) more detailed expla-
nations on the score and on the implications of ethnicity
information, and (2) the ability to handle stepfamilies and
homoparental families. For future work, we will refine the
tool/website accordingly. It should be noted that survey
participants could be positively biased when evaluating
tools created by researchers [88]; for this reason, we did
not mention that the tool was created by us.

Knowledge and Learning. In order to assess the gen-
eral knowledge of the participants, we asked them a num-
ber of knowledge questions under the forms of multiple-
choice questions with 5 options (only one was correct,
the last one was “None of the above”; see the transcript
in Appendix C on p. 19). In order to evaluate their
learning, we asked them these questions before and after
the participants visited our website and used KGP Meter.
The raw results are depicted in Figure 13. Note that all

12. Previous work has investigated/modeled how individuals’ value
the privacy of others (incl. friends and relatives) when making privacy
decisions in different domains (e.g., [82]–[86]) including genomics
(e.g., [57], [87]). Results show that although individuals care about
others’ privacy, they care substantially less than for their own privacy.
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Figure 13. Raw survey results for knowledge questions (Q1/Q10,
Q2/Q11, Q3/Q14, Q4/Q15, Q5/Q16, and Q6/Q17). For each question,
the left (resp. right) bar represents the proportion of participants who
answered correctly the question before (resp. after) visiting the website.
The difference between the two is shown in percentage points and in
percents.

the differences in responses before and after using the tool
are statistically significant.

We first asked the participants about the functioning of
genetic inheritance (Q1/Q10) and about the definition of a
SNP (Q2/Q11). Note that the answers to these questions
were not on the home page of the website but only in
the Concept page. 76.5% of the participants answered
correctly the first question and 47.0% the second. These
proportions increased to 80.8% and 53.5% after visiting
the website; this constitutes an increase of 5.6% and
13.9%.

We then asked the participants about their (rela-
tive) privacy in different configurations (e.g., “When the
genomes of both your parents are known, compared to
the case when the genome of only one of your parents
is known, your privacy is lower/the same/higher/not com-
parable/none of the above”) (Q3/Q14, Q4/Q15, Q5/Q16,
and Q6/Q17). Note that the answers to these questions
could be obtained by using KGP Meter. Overall, the
background of the participants was limited, with a pro-
portion of correct answers lower than for a random guess
(i.e., 1/5 =20%), thus demonstrating common miscon-
ceptions about genomics and privacy. The increase of the
proportions of respondents who correctly answered these
questions, however, was positive and substantial except for
the last question: 54.0%, 49.3%, 93.5%, and -9.8%. This
increase was much higher (55.7%, 98.8%, 133.3%, and
10.2%) for the participants who tested the corresponding
configurations with KGP Meter (results not shown in
Figure 13). In particular, for the last question, the increase
was positive for such participants. Finally, when asked
whether, by visiting the website and using KGP Meter,
they learned something they did not know before (Q22),
76.0% of the participants answered “Yes”, 8.4% “No”,
and 15.6% “Not sure”. Some participants made notable
comments in the associated text box: “I learned that a

person’s genome is estimable based upon the genome of

their family, but there is substantial uncertainty in this

process that still exists”, “data that can be inferred from

knowing a family member’s genome is more complex than

I expected, and applies to more types of family members

than I expected”, “I enjoyed looking at different scenarios

and privacy scores. I didn’t understand this AT ALL before

this survey.”, “I found it interesting that even having your

partner tested can seemingly affect your privacy.”, “It also

never occurred to me that one person getting tested could

affect the privacy of other family members.”, and “That

there is an impact on my privacy, and that the impact does

not seem to be linear”.
Understanding. In order to assess the participants’

understanding of KGP Meter and of the underlying con-
cepts, we asked them two questions: one about the type of
risk measured by the score output by KGP Meter (Q12)
and one about the set of relatives considered by KGP
Meter when enumerating the possible configurations of
SNP values in the computation of the score (Q13). 75.9%
managed to correctly identify the correct risk (out of 5
options) and 50.5% the correct set of relatives (out of 5
options). These results are well above random guesses,
thus demonstrating a good understanding.

Future Actions. In order to assess the influence our
website could have on the participants’ future actions, we
first polled the participants about one specific action: tak-
ing a genetic test. We asked those who reported not having
already taken a genetic test (wrt Q8) about their intention
to have their genome tested in the next 12 months, on a
7-point Likert scale ranging from 1 (“Very unlikely”) to
7 (“Very likely”) (Q9/Q21). The average intention score
increased from 2.1 (SD: 1.4) to 2.9 (SD: 2.3) after visiting
our website, while remaining mostly on the “unlikely”
side. Note that the standard deviation increased; this could
be explained by the fact that neutral participants toggled
to a decision and/or that decided participants strengthened
their opinion. Regarding potential actions induced by the
tool, note that, unlike passwords that can be reset (hence
restoring security), genetic tests cannot be undone. Yet,
our tool can help users avoid further decreasing their
privacy (if genetic tests have been done already) and test
hypothetical scenarios before taking a test.

Finally, we asked the participants whether they in-
tended to use the information gained when visiting our
website, and, if yes, how they intended to use it (Q25).
26.1% answered “Yes”, 22.8% “No”, and 51.1% “Not
sure”. A preliminary analysis of the free-text responses
showed that the main use of the gained information were
(1) to inform relatives (e.g., “My family [...] have talked

about getting genetic testing done. I will share with them

the invasion of privacy issue. I know they are unaware of

this”) and possibly discourage them to take genetic tests or
encourage them to seek consent beforehand, (2) research
more on the topic (e.g., “I am going to use [the tool] again

and then read up on this”), (3) give up taking a test (e.g.,
“I am much less likely to get my genome sequenced”).

Usage. Users spent a median time of 5.0 minutes (Q1
2.9 and Q3 9.5 minutes) using KGP Meter and made
13.4 ±12.0 requests for privacy scores on average. Note
that some of these requests are intermediary requests sent
while building the desired configuration.

In order to better understand the target of the users’
privacy concerns, we first look at the family ties between
the users (marked with a � in the UI of the tool) and
the targets (marked with a �) in the users’ requests.
Figure 14(a) depicts the proportion of users who selected
a given target (grouped by family tie, i.e., themselves:
“you”, one of their parents, one of their children, etc.)
in at least one of their requests, and Figure 14(b) depicts
the proportion of requests per target (grouped by family
tie). We observe that 84.3% of the users made at least
one request for their own privacy score (i.e., they were
the target); unsurprisingly, “you” (i.e., the user) is the
most frequent target. More generally, we observe that the
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(a) Proportion of users who se-
lected a given target (grouped by
family tie, wrt the user) in one of
their requests.

(b) Proportion of requests per tar-
get (grouped by family tie, wrt the
user).

Figure 14. Family ties between users and targets in user requests

(� � �).

closer (in the family tree) a relative is from the user, the
higher the chance that the relative is chosen as a target;
this denotes a strongest concern for the privacy of the
users’ closest relatives. This can also be explained by the
fact that users tested the tool with family trees limited
to close relatives. It can also be observed that parents are
most often selected as targets than children. However, this
does not necessarily mean that users are more concerned
about their parents’ privacy; it could simply reflect the fact
that users do not have children (yet). On average, users
considered 3.0 ± 2.1 distinct targets.

We also look at the typical configurations tested by the
users. To do so, we look at the family ties between the
relatives whose genomes were marked as known (marked
with a �) and the target, independently from the users
themselves. The results are depicted in Figure 15. We
observe that, in 31.0% of the requests, the genome of a
parent of the target is marked as known. Again, the closer
the relative is to the target, the higher the chances are that
the user tests a configuration where the relative’s genome
is marked as known. The most frequent scenario, tested
by the majority of the users, is the case where only the
genomes of the two parents of the target are marked as
known (distribution not shown in the paper). The average
number of relatives whose genomes are known is 2.1 ±
2.4, and 1.4 ± 1.3 in the simplified tree: Overall, users
tested the tool with small to medium family trees. The
discrepancies between these two numbers could denote
the users’ misunderstanding regarding the information
conveyed by the genome of a relative (i.e., the fact that
the genome of the maternal grandmother of the target does
not bring additional information about the target’s genome
if the genome of the target’s mother is known). It could
also be because users wanted to challenge their precon-
ceived ideas about this, especially since the questionnaire
included a question on this.

Finally, we looked at the efficiency of the tool in
answering user requests: 98.0% of the users’ requests were
answered from the cache, thus providing a high level of
responsiveness (≈ 0.2 secs.). For the 2.0% of requests
that were not in the cache, the average response time was
0.179 ± 0.813 seconds. No request was left unanswered
(i.e., timed out). and 99.9% of the requests were answered
in less than a second.

(a) Proportion of users who se-
lected a given relative (grouped
by family tie, wrt the target) in
at least one of their requests.

(b) Proportion of requests per
sequenced relatives (grouped
by family tie, wrt the target).

Figure 15. Family ties between targets and relatives whose genomes are

known in user requests (� � �).

9. Related Work

We focus on the works for (1) quantifying (kin) ge-
nomic privacy and (2) conveying security and privacy
scores to users (beyond kin genomic privacy). For a com-
prehensive survey/systematization of knowledge articles
on genomic privacy, we refer the reader to [14]–[16].
Besides, our work is also related to interdependent privacy
situations that occur when the actions or data of someone
affects the privacy of others (see [8] for a comprehensive
survey). For instance, previous research has shown that
it is possible to infer an individual’s personal attributes
based on the data of others (e.g., for social network data
with friendship information [89], [90] and for location
data with co-location information [91]).

Humbert et al. were the first to propose a quantification
framework for evaluating privacy risks caused by relatives
sharing their genomic data [34]. They rely on different
privacy metrics, including the one used in this paper, and
they evaluate their framework on real data. In their follow-
up work, Humbert et al. propose a new Bayesian network
model for the inference based on inter-genome correla-
tions only [37]. The main differences between our work
and both [34], [37] are the following: (i) our algorithm
does not require the genomic data of the target, nor of their
relatives, (ii) we construct an easy-to-use interactive and
responsive tool (GUI), and (iii) we gather the perception
and learning of the users through a large-scale user survey.

Wagner surveys 23 metrics in genomic privacy and
categorizes them with respect to what they capture [51].
She introduces monotonicity of the metric with respect
to the adversarial strength as a key requirement, and pro-
vides suggestions on metric selection, interpretation and
visualization. Her empirical evaluation shows that none of
the metrics is sufficiently reliable when used in isolation.
Thus, she recommends combining several metrics. In our
work, as we do not have access to the ground truth, we
rely on mutual information.

Saha et al. very recently studied user attitudes on
DTC genetic testing with semi-structured interviews
(N=24) [30]. Yet, they focus on general genomic privacy
concerns and only one paragraph is related to kin genomic
privacy. The associated results show that the privacy im-
plications for relatives are unclear, hence the need for tools
such as KGP Meter. The aforementioned works as well
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as our work are related to generic genomic information
leakage. Recent works focused on specific risks, namely
identity inference attacks [48], [49], and phenotype, kin-
ship, and membership inference attacks [92].

A large amount of work has been devoted to eval-
uating and communicating to users the strength of their
passwords [75], [76], [93]–[101]. Ur et al. were the first
to conduct a large-scale study of 14 password-strength
meters [76]. This study shows that meters influence user
behavior and security. Meters that rated passwords strin-
gently led users to choose significantly longer passwords
harder to crack but not less memorable or usable. Besides,
the joint use of a visual indicator and text outperformed
either used in isolation. Ur et al. developed a data-driven
password-strength meter by relying on neural networks
and on heuristics to score passwords and generate text
feedback to the user [100]. Their online study shows
that the combination of a colored strength bar, detailed
text feedback, and improvement suggestion leads to more
secure passwords than only a strength bar. Golla and
Dürmuth measure the accuracy of 45 password-strength
meters [101]. By relying on correlation-based measures,
they find that meters used in practice are less accurate than
academic proposals and that no significant improvement
in meter accuracy was made over the last five years.

Riederer et al. propose a web-based application to help
users understand the privacy effect of sharing location
data [32]. Their tool enables users to import location
data collected by popular services, visualize it, view the
demographics of their visited locations (race, income,
age, . . . ), and finally receive a prediction of their own
demographics based on this data. Shokri et al. propose
a framework that enables mobile users to quantify their
location privacy [31]. Unlike [32], this location-privacy
meter remains at the geographical level and does not take
into account location semantics. Furthermore, it does not
provide any visualization of the resulting location privacy
level. Note that, unlike our work, both these tools require
access to the actual (location) data of the users.

In order to better inform users about what data third-
party apps (e.g., for cloud storage) can access, Harkous
et al. propose data-driven privacy indicators [102]. They
present an interface that informs the user about what data
the app has already access to, from previous app instal-
lations by the user or by their friends or collaborators.
For instance, their privacy indicator interface can show
that a specific cloud storage app has already access to
70% of the user’s files because one of their friends has
already installed this app. Finally, Lin et al. developed
a privacy meter for mobile (Android) apps that assigns
grades between ‘A+’ and ‘D’, depending on the privacy-
related behavior of the app [77], [103].

Positioning. To summarize, our work advances the state of
the art by proposing the first (kin) genomic privacy meter.
One of the key advantage and novelty of KGP Meter is
to rely only on the family tree and not on actual genomic
data, which was not possible with previous work. This is
made possible by our new quantification framework which
unlocks the implementation and deployment of a tool for
the general public.

10. Conclusion and Future Work

With this work, we provide the first means for raising
awareness about kin genomic privacy risks and for helping
decision-making in families.Yet, the design of KGP Meter
and the online interface is not complete. For future work,
we intend to implement several new features for the tool,
including (1) improved information visualization of the
privacy score, (2) the ability to handle step-families, and
(3) the ability to choose a specific set of SNPs (e.g.,
ApoE4) for evaluating privacy. We plan to deepen our
analysis of the survey results, in particular by conducting
a thematic analysis of the answers to the open-ended
questions. We also plan to further improve usability and
learnability of the tool through AB testing and additional
usability studies. For this matter, we will collaborate with
educational designers and risk communicators. In the long
term, we also intend to extend our approach for different
data types (i.e., beyond genomic data). Finally, a potential
avenue for future work is to investigate the risks of
inferring errors in the parentage reported in the family
tree based on the genomes of some of the relatives (e.g.,
inferring that the user’s father is not his biological father
when some relatives’ genomes are known).
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[68] B. Köpf and D. Basin, “An information-theoretic model for adap-
tive side-channel attacks,” in Proc. of the ACM Conf. on Computer

and Communications Security (CCS). Alexandria, Virginia, USA:
ACM, 2007, p. 286.

[69] C. Dı́az, S. Seys, J. Claessens, and B. Preneel, “Towards Measur-
ing Anonymity,” in Proc. of the Int’l Symp. on Privacy Enhancing

Technologies (PETS), vol. 2482. Springer, 2002, pp. 54–68.

[70] A. Serjantov and G. Danezis, “Towards an Information Theoretic
Metric for Anonymity,” in Proc. of the Int’l Symp. on Privacy

Enhancing Technologies (PETS). Springer, 2002, pp. 41–53.

[71] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, and
C. Palamidessi, “Quantitative Information Flow and Applications
to Differential Privacy,” in Proc. of the Int’l School on Founda-

tions of Security Analysis and Design (FOSAD). Springer, 2011,
pp. 211–230.

[72] Jeffrey Rubin and Dana Chisnell, Handbook of Usability Testing:

How to Plan, Design, and Conduct Effective Tests, 2nd Edition

— Wiley, 2nd ed. Hoboken, NJ, USA: Wiley, 2011.

[73] Intellectual Reserve, Inc., “Family History and Genealogy
Records,” https://www.familysearch.org/, 2019.

[74] W. Lidwell, K. Holden, and J. Butler, Universal Principles of

Design, Revised and Updated: 125 Ways to Enhance Usability,

Influence Perception, Increase Appeal, Make Better Design De-

cisions, and Teach through Design. Beverly, Mass: Rockport
Publishers, Jan. 2010.

[75] X. D. C. De Carnavalet, M. Mannan et al., “From very weak to
very strong: Analyzing password-strength meters.” in Proc. of the

Network and Distributed System Security Symp. (NDSS), 2014,
pp. 23–26.

[76] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L.
Mazurek, T. Passaro, R. Shay, T. Vidas, L. Bauer et al., “How
does your password measure up? the effect of strength meters on
password creation,” in Proc. of the USENIX Security Symposium

(USENIX Security). USENIX, 2012, pp. 65–80.

[77] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models
of mobile app privacy through crowdsourcing,” in Proc. of the

ACM Int’l Conf. on Ubiquitous Computing (UbiComp). ACM,
2012, p. 501.

[78] Mike Bostock, “D3js: Data-Driven Documents,” https://d3js.org,
2019.

[79] A. Ankan, “Pgmpy, a Python library for working with Probabilis-
tic Graphical Models,” https://github.com/pgmpy/pgmpy, 2019.

[80] Norsys Software Corp., “Netica,”
https://www.norsys.com/netica.html, 2019.

[81] Prolific, Inc., “Prolific: Online participant recruitment for surveys
and market research.” https://www.prolific.co/about/, 2020.

[82] Y. Pu and J. Grossklags, “An Economic Model and Simulation
Results of App Adoption Decisions on Networks with Interdepen-
dent Privacy Consequences,” in Proc. of the Conf. on Decision

and Game Theory for Security (GameSec). Springer, Nov. 2014,
pp. 246–265.

425



[83] ——, “Towards a Model on the Factors Influencing Social App
Users’ Valuation of Interdependent Privacy,” Proceedings on Pri-

vacy Enhancing Technologies (PoPETs), vol. 2016, no. 2, pp. 61–
81, Jan. 2016.

[84] ——, “Using conjoint analysis to investigate the value of inter-
dependent privacy in social app adoption scenarios,” in Proc. of

the Int’l Conf. on Information Systems (ICIS). AIS, 2015.

[85] ——, “Valuating Friends’ Privacy: Does Anonymity of Sharing
Personal Data Matter?” in Proc. of the Symp. on Usable Privacy

and Security (SOUPS). USENIX, 2017.

[86] N. Wang, H. Xu, and J. Grossklags, “Third-party apps on Face-
book: Privacy and the illusion of control,” in Proc. of the ACM

Symp. on Computer Human Interaction for Management of Infor-

mation Technology (CHIMIT). Cambridge, Massachusetts: ACM,
2011, pp. 1–10.

[87] J. Weidman, W. Aurite, and J. Grossklags, “On Sharing Inten-
tions, and Personal and Interdependent Privacy Considerations
for Genetic Data: A Vignette Study,” IEEE/ACM Transactions

on Computational Biology and Bioinformatics, vol. 16, no. 4, pp.
1349–1361, Jul. 2019.

[88] N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies,
“”Yours is Better!”: Participant response bias in HCI,” in Proc. of

the ACM Conf. on Human Factors in Computing Systems (CHI).
ACM, 2012, pp. 1321–1330.

[89] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel,
“You are who you know: Inferring user profiles in online social
networks,” in Proc. of the ACM Int’l Conf. on Web Search and

Data Mining (WSDM). ACM, 2010, pp. 251–260.

[90] N. Z. Gong and B. Liu, “You Are Who You Know and How You
Behave: Attribute Inference Attacks via Users Social Friends and
Behaviors,” in Proc. of the USENIX Security Symposium (USENIX

Security). USENIX, 2016, pp. 979–995.

[91] A.-M. Olteanu, K. Huguenin, R. Shokri, M. Humbert, and J.-P.
Hubaux, “Quantifying Interdependent Privacy Risks with Loca-
tion Data,” IEEE Transactions on Mobile Computing, vol. 16,
no. 3, pp. 829–842, Mar. 2017.

[92] J. L. Raisaro, J. R. Troncoso-Pastoriza, Y. El-Zein, M. Humbert,
J. Fellay, C. Troncoso, and J.-P. Hubaux, “GenoShare: Supporting
Privacy-Informed Decisions for Sharing Individual-Level Genetic
Data,” in AMIA, 2020.
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Appendix A.

d-Separation

Before formalizing d-separation, we introduce some
notations and definitions. We represent a directed edge
between two nodes X and Y as X → Y . The structure
X → Z ← Y , representing a common effect Z, is called
a v-structure. A sequence of nodes X1, . . . , Xk forms a
trail if, for every i ∈ [1, k − 1], Xi � Xi+1, where �

denotes an edge of any direction between two nodes. We
now introduce the notion of active trail.

Definition 1 (active trail [64]). Let N be a BN and X1 �

· · · � Xn a trail in N . Let Z be a subset of observed

nodes. The trail X1 � · · · � Xn is called active given

Z if:

• For all v-structure Xi−1 → Xi ← Xi+1, Xi or one

of its descendants are in Z;

• No other node along the trail is in Z.

Active trails correspond to trails through which informa-
tion can flow. An active trail between X1 and Xn means
that influence can flow from X1 to Xn. Using this notion,
we define the concept of d-separation, which enables us
to define the set of conditional independencies in a BN.

Definition 2 (d-separation [64]). Let X, Y, Z be three

sets of nodes in N . We say that X and Y are d-separated

given Z, denoted d− sepN (X;Y | Z), if there is no active

trail, given Z, between any node X ∈ X and Y ∈ Y.

Appendix B.

Graphical User Interface

(a) (b) (c)

(d)

Figure 16. Illustration of KGP Meter implemented as a web application:
Configuration (family tree (a), relatives whose genomes are known (b),
and target (c)) and communication of the result (d).
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Appendix C.

Transcript of the Questionnaire (Prolific)

In the questions for which there was no natural or-
dering of the options, the ordering of the options was
randomized.

1) In a pair of nucleotides at a given position in your genome,

from whom is each nucleotide inherited?

© They are both inherited from your father
© They are both inherited from your mother
© They can be generated spontaneously – not inherited from

your mother and your father
©� One is inherited from your father, and one from your mother
© None of the above

2) What is a SNP?

©� A position in the genome where nucleotides vary among the
population

© A position in the genome where nucleotides do not vary
among the population

© A disease that is very rare among the population
© A rare anomaly in an individual’s genome
© None of the above

3) When the genomes of both your parents are known, com-

pared to the case when the genome of only one of your

parents is known, your privacy is...

© Higher © The same ©� Lower
© It’s not comparable © None of the above

4) If the genomes of both your parents were known, what would

your privacy be?

© 0% © 70% © 100% © 200%
©� None of the above

5) If the genomes of one of your parents was known, what

would your privacy be?

© 0% © 50% © 100% © 200%
©� None of the above

6) Assuming the genome of your father was known, how would

your privacy evolve if the genome of his father (i.e. your

paternal grandfather) was known as well?

© It would decrease © It would increase
©� It would not change © It could either increase or de-

crease
© None of the above

7) It’s important that you pay attention to this study. Please

select the answer ’Genome’. [Attention check]

© DNA © Genomic privacy ©� Genome © SNP
© Nucleotides

8) Have you had your genome tested?

© Yes © No © Not sure © Rather not say

9) How likely are you to get your genome tested in the next

12 months? [Show only if “No” or “Not sure” to Q8]

Very unlikely © © © © © © © Very likely

[Visit website and use KGP Meter]

10) In a pair of nucleotides at a given position in your genome,
from whom is each nucleotide inherited?

© They are both inherited from your father
© They are both inherited from your mother
© They can be generated spontaneously – not inherited from

your mother and your father
©� One is inherited from your father, and one from your mother
© None of the above

11) What is a SNP?

©� A position in the genome where nucleotides vary among the
population

© A position in the genome where nucleotides do not vary
among the population

© A disease that is very rare among the population
© A rare anomaly in an individual’s genome
© None of the above

12) To what risk is the score provided by this tool related?

© Risk of the target having a genetic disease
©� Risk of a privacy violation regarding the genome of the target
© Risk of the target getting their job application refused
© Risk of knowing whether the target had their genome tested
© Risk of target’s genome being leaked by a genetic-testing

company (e.g. 23AndMe) because of hacking

13) In the general case, for which members of the target’s family

will the tool consider the possible configurations of their SNP

values?

© Only the target’s parents
©� Only those who got their genome tested
© All the members of the target’s family tree
© Only the target’s grandparents
© None of the above

14) When the genomes of both your parents are known, com-

pared to the case when the genome of only one of your

parents is known, your privacy is...

© Higher © The same ©� Lower
© It’s not comparable © None of the above

15) If the genomes of both your parents were known, what would

your privacy be?

© 0% © 70% © 100% © 200%
©� None of the above

16) If the genomes of one of your parents was known, what

would your privacy be?

© 0% © 50% © 100% © 200%
©� None of the above

17) Assuming the genome of your father was known, how would

your privacy evolve if the genome of his father (i.e. your

paternal grandfather) was known as well?

© It would decrease © It would increase © It would
not change

©� It could either increase or decrease © None of the above

18) It’s important that you pay attention to this study. Please

select the answer ’75%’. [Attention check]

© 0% © 25% © 50% ©� 75% © 100%

19) To your knowledge, did any of your relatives have their

genome tested?

© Yes © No © Not sure © Rather not say

20) Before visiting this website, were you aware of the genomic

privacy risk relatives can create to each other?

© Yes © To some extent © No © Rather not say

21) How likely are you to get your genome tested in the next

12 months? [Show only if “No” or “Not sure” to Q8]

Very unlikely © © © © © © © Very likely

22) By visiting the website and playing with the privacy tool,

did you learn something you did not know before? If yes,

what exactly?

© Yes © No © Not sure

23) Do you find the obtained genomic privacy scores reassuring
or worrying? Why? [Free text]

Highly worrying © © © © © © © Highly reassuring

24) Are you more interested in your genomic privacy or rather

in that of your relatives? Why? [Free text]

Mine © © © © © © © My relatives’

25) Are you going to use the information gained through the

website? If yes, how? [Free text]

© Yes © No © Not sure

26) Do you find this tool useful?

Not at all useful © © © © © © © Very useful

27) What are the chances that you would recommend this

website?

Very unlikely © © © © © © © Very likely

28) Do you have any comment regarding this tool? [Free text]
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Appendix D.

Benchmark Family Tree

Figure 17. Family tree used for benchmarking.
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