
Lightweight, Multi-Stage,
Compiler-Assisted Application Specialization

Mohannad Alhanahnah, Rithik Jain, Vaibhav Rastogi, Somesh Jha, and Thomas Reps

University of Wisconsin-Madison, USA

{Mohannad,Rithik,Jha,Reps}@cs.wisc.edu, vaibhavrastogi@google.com

Abstract—Program debloating aims to enhance the perfor-
mance and reduce the attack surface of bloated applications.
Several techniques have been recently proposed to specialize
programs. These approaches are either based on unsound
strategies or demanding techniques, leading to unsafe re-
sults or a high-overhead debloating process. In this paper,
we address these limitations by applying partial-evaluation
principles to generate specialized applications. Our approach
relies on a simple observation that an application typically
consists of configuration logic, followed by the main logic of
the program. The configuration logic specifies what func-
tionality in the main logic should be executed. LMCAS
performs partial interpretation to capture a precise program
state of the configuration logic based on the supplied inputs.
LMCAS then applies partial-evaluation optimizations to
generate a specialized program by propagating the constants
in the captured partial state, eliminating unwanted code, and
preserving the desired functionalities.

Our evaluation of LMCAS—on commonly used bench-
marks and real-world applications—shows that it success-
fully removes unwanted features while preserving the function-
ality and robustness of the debloated programs, runs faster
than prior tools, and reduces the attack surface of specialized
programs. LMCAS runs 1500x, 4.6x, and 1.2x faster than
the state-of-the-art debloating tools CHISEL, RAZOR, and
OCCAM, respectively; achieves 25% reduction in the binary
size; demonstrates favorable gadgets elimination trade-off;
and eliminates 87.5% of the known CVE vulnerabilities in
our test corpus.

Index Terms—Debloating, Specialization, Security, Program
Division, Partial Evaluation

1. Introduction

The software stack is becoming increasingly bloated.
This software growth decreases performance and increases
security vulnerabilities. Software debloating is a mitiga-
tion approach that downsizes programs while retaining
certain desired functionality. Although static program de-
bloating can thwart unknown possibilities for attack by
reducing the attack surface [38], prior work has gener-
ally not been effective, due to the overapproximation of
static program analysis: these tools determine statically
the set of functions to be removed, using a combination of
analysis techniques, such as unreachable-function analysis
and global constant propagation [45], but a lot of bloated
code remains. More aggressive debloating approaches
(e.g., RAZOR [46] and Chisel [25]) can achieve more
reduction; however, they involve demanding techniques:

the user needs to define a comprehensive set of test cases
to cover the desired functionalities, generate many traces
of the program, and perform extensive instrumentation.
The computational expense of these steps leads to a
high-overhead debloating process. The work on RAZOR
acknowledges the challenge of generating test cases to
cover all of the desired code, and incorporates heuristics
to address this challenge. Furthermore, these aggressive
approaches often break soundness, which can lead the
debloated programs to crash or execute incorrectly. These
issues make such approaches unsafe and impractical [45].

Partial evaluation is a promising program-
specialization technique. It is applied in prior
work [37], [53], but prior work has suffered from
the overapproximation inherent in static program
analysis. In particular, existing implementations rely only
on the command-line arguments to drive the propagation
of constants. However, they do not capture precisely
the set of variables that are affected by the supplied
inputs. Constant propagation is performed only for global
variables that have one of the base types (int, char),
and no attempt is made to handle compound datatypes
(struct). Such a limited approach leaves a substantial
amount of unwanted code in the “debloated program,”
which reduces the security benefits.

In this paper, we present Lightweight Multi-Stage
Compiler-Assisted Application Specialization (LMCAS),
a new software-debloating framework. LMCAS relies on
the observation that, in general, programs consist of two
components: (a) configuration logic, in which the inputs
are parsed, and (b) main logic, which implements the set
of functionalities provided by the program. We call the
boundary between the two components the neck. LMCAS
captures a partial state of the program by interpreting
the configuration logic based on the supplied inputs. The
partial state comprises concrete values of the variables
that are influenced by the supplied inputs, LMCAS then
applies partial-evaluation optimizations to generate the
specialized program. These optimizations involve convert-
ing the influenced variables at the neck into constants,
applying constant propagation, and performing multiple
stages of standard and custom compiler optimizations.

LMCAS makes significant and novel extensions to
make debloating much safer in a modern context. The
extensions involve optimizing the debloating process and
improving its soundness. Specifically, we optimize the
debloating process by introducing the neck concept, which
eliminates demanding techniques that require: (1) exe-
cuting the whole program, (2) performing extensive in-
strumentation, and (3) obtaining a large set of tests. We

251

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

© 2022, Mohannad Alhanahnah. Under license to IEEE.
DOI 10.1109/EuroSP53844.2022.00024

20
22

 IE
EE

 7
th

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

16
14

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

53
84

4.
20

22
.0

00
24

demonstrate the soundness of our approach by validating
the functionality of 25 programs after debloating, under
various settings. The achieved soundness is driven by:
capturing a precise partial state of the program, support-
ing various data types, and performing guided constant
conversion and clean-up.

Our evaluation demonstrates that LMCAS is quite
effective: on average, LMCAS achieves 25% reduction
in the binary size with moderate overall ROP-gadget
removal and minimal rates of ROP gadget introduction in
the specialized applications. LMCAS eliminates 87.5%
of known CVE vulnerabilities. On average, LMCAS
runs 1500x, 4.6x, and 1.2x faster than the state-of-the-
art debloating tools CHISEL, RAZOR, and OCCAM,
respectively. Hence, LMCAS strikes a favorable trade-off
between functionality, performance, and security.

The contributions of our work are as follows:
1) We propose a novel debloating idea that takes ad-

vantage of the common pattern that a program has
a natural division into configuration logic and main
logic to reduce the overhead of debloating process.

2) We develop a neck miner to enable the identification
of such a boundary with high accuracy, substantially
alleviating the amount of manual effort required to
identify the neck.

3) We apply the principles of partial evaluation to gen-
erate specialized programs based on supplied inputs.
A partial program state is captured by conducting
partial interpretation for the program by executing the
configuration logic according to the supplied inputs.
The program state is enforced by applying compiler
optimizations for the main logic to generate the spe-
cialized program.

4) We develop the LMCAS prototype based on LLVM.
LMCAS harnesses symbolic execution to perform
partial interpretation and applies a set of LLVM passes
to perform the compiler optimizations. We also car-
ried out an extensive evaluation based on real-world
applications to demonstrate the low overhead, size
reduction, security, and practicality of LMCAS.

5) We will make LMCAS implementation 1 and its
artifacts available to the community.

2. Motivation and Background

This section presents a motivating example (§2.1), and
reviews necessary background material on program anal-
ysis and software debloating used in the remainder of the
paper (§2.2). We discuss debloating challenges illustrated
by the motivating example, and describe our solutions for
addressing these challenges (§2.3). Finally, we discuss the
threat model that our work addresses (§2.4).

2.1. Motivating Example

Listing 1 presents a scaled-down version of the UNIX
word-count utility wc. It reads a line from the specified
stream (i.e., stdin), counts the number of lines and/or
characters in the processed stream, and prints the results.
Thus, this program implements the same action that would
be obtained by invoking the UNIX word-count utility with

1. https://github.com/Mohannadcse/LMCAS_Demo

the -lc flag (i.e., wc -lc). Although Listing 1 merely
supports two counting options, it is still bloated if the user
is only interested in enabling the functionality that counts
the number of lines.

1 struct Flags {

2 char count_chars;

3 int count_lines; }

4 int total_lines = 0;

5 int total_chars = 0;

6 int main(int argc, char** argv){

7 struct Flags *flag;

8 flag = malloc(sizeof(struct Flags));

9 flag->count_chars = 0;

10 flag->count_lines = 0;

11 if (argc >= 2){

12 for (int i = 1; i < argc; i++) {

13 if (!strcmp(argv[i], "-c")) flag->count_chars = 1;

14

if (!strcmp(argv[i], "-l")) flag->count_lines = 1; }}

15 char buffer[1024];

16 while (fgets(buffer, 1024,stdin)){

17

if (flag->count_chars) total_chars += decodeChar(buffer);

18 if (flag->count_lines) total_lines++;}

19

if (flag->count_chars) printf("#Chars = %d", total_chars);

20 if (flag->count_lines) printf("#Lines = %d", total_lines

); }

Listing 1. A scaled-down version of the wc utility. Highlighted
statements are eliminated after debloating with “wc -l”.

Put another way, Listing 1 goes against the principle
of least privilege [31] [50]: code that implements unneces-
sary functionality can contain security vulnerabilities that
an attacker can use to obtain control or deny service—
bloated code may represent an opportunity for privilege
escalation. For instance, the character-count functionality
“wc -c” processes and decodes the provided stream of
characters via the function decodeChar (Line 17 of
Listing 1). An attacker might force it to process special
characters that decodeChar cannot handle [57]. More
broadly, attackers can supply malicious code as specially
crafted text that injects shellcode and thereby bypasses
input restrictions [39]. Debloating is a way to reduce
a program’s attack surface: the “wc -l” functionality
does not require the character-processing code used in
“wc -c”, and the call to the function decodeChar is
completely absent in the specialized version for “wc -l”.

2.2. Background

Partial evaluation [27], [51], [17] is an optimization and
specialization technique that precomputes program expres-
sions in terms of the known static input—i.e., a subset of
the input that is supplied ahead of the remainder of the
input. The result is another program, known as the residual
program, which is a specialization of the original pro-
gram. To create the residual program, a partial evaluator
performs optimizations such as loop unrolling, constant
propagation and folding, function inlining, etc. [27].

Partial evaluation and symbolic execution [28] both
generalize standard interpretation of programs, but there
are key differences between them. Specifically, symbolic

252

execution interprets a program using symbolic input val-
ues, while partial evaluation precomputes program expres-
sions and simplifies code based on the supplied inputs.
Unlike partial evaluation, one result of symbolic execution
is a set of expressions for the program’s output variables.
Because their capabilities are complementary, the two
techniques have been employed together to improve the
capabilities of a software-verification tool [14].

LLVM [34] provides robust compiler infrastructures
for popular programming languages, including C and
C++, and supports a wealth of compiler analyses and
optimizations that make it suitable for developing new
compiler transforms. LLVM operates on its own low-level
code representation known as the LLVM intermediate
representation (LLVM IR). LLVM is widely used in both
academia and industry.

2.3. Challenges and Solutions

In this section, we formalize the program-
specialization problem illustrated in Listing 1. In
general, there is (i) a program P that provides a set of
functionalities F, and (ii) an input space I that contains
a set of values that enable certain functionalities in F.
Typically, one or more functionalities are enabled based
on a set of supplied inputs Is, which are provided as
part of a command-line argument or configuration file.
Generating a specialized program P′ based on the set of
supplied inputs Is requires identifying a set of variables
Vs = {v0, v1, .., vn} that are influenced by the supplied
inputs, and a corresponding set of constant values
Cs = {c0, c1, .., cn}. The relationship between Vs and Cs is
bijective and Is ⊂ I. To generate a specialized program
P′ that (i) retains the required functionalities based
on the supplied inputs Is, and (ii) removes irrelevant
functionalities, we need to address the challenges
discussed below:

Challenge 1: how to optimize the debloating process
and avoid high-demand techniques?

Solution. To address this challenge, we propose to
interpret the program partially up to a certain point, in-
stead of executing the whole program. We can achieve
this partial interpretation by relying on the observation
that, programs often consist of two components: (a) con-
figuration logic, in which the inputs (from the input space
I) are parsed, and (b) main logic, which implements the
set of functionalities F. We call the boundary point the
neck. The frequent occurrence of a configuration-logic-
to-main-logic transition has been exploited by others. For
instance, Ghavamnia et al. [24] observed that in server
programs there is often such a boundary between initial-
ization and serving phases, which they took advantage of
to perform temporal debloating. (They also observed that
the concept often applies to client programs.) Meinicke et
al. [40] studied some of the reasons why programmers
introduce and respect such a separation, and proposed
several recommendations to regularize the practice and to
document the configuration parameters and features that
are supported in a program by this means.

The partial interpreter needs only part of the program
state to be available by executing the program up to the
neck. By this means, we obtain a precise characterization
of the set of variables Vs that are influenced by the

supplied arguments. We then convert these variables to
constants, based on the constant values Cs identified by
the partial interpreter. These values are then propagated
to other parts of the program via partial evaluation.

Consider again Listing 1. The program wc
provides two functionalities: F = {counting_lines,
counting_characters}, and these functionalities can
be activated through the two inputs I = {l, c}. For
generating the specialized program P′ that retains the
counting_lines functionality (i.e., “wc -l”) based on
the supplied input Is = {l}, we interpret program P
up to the neck (i.e., Line 15) to identify the set of
influenced variables Vs = {flag->count_chars,
flag->count_lines, total_lines, and
total_chars}, together with the corresponding
constant values Cs = {0, 1, 0, 0} (the partial state of P).
We supply this information to the partial evaluator to
generate the specialized program.

Challenge 2: how to simplify the program sufficiently,
while ensuring that it operates correctly, and preserve its
functionality and soundness?

Solution. The combination of partial interpretation
followed by partial-evaluation optimizations holds the
promise of achieving significant debloating. To achieve
this promise and preserve the program semantics, it is
necessary to handle various data types and complex
data structures (i.e., strings, pointers, and structs). By
using a precise model of the programming language’s
semantics, more information about variables and their
values is made available, which in turn enables more
optimizations to be carried out during program special-
ization. Therefore, we need to capture a broad spectrum
of variables. For instance, the scaled-down word-count
in Listing 1 contains a stack variable (flag) and two
global variables (total_lines and total_chars).
Various data types need to be supported as well: the
global variables are integers, whereas the stack variable
flag is a pointer to a struct that consists of two fields
(count_line and count_chars). Supporting these
various types of variables provides LMCAS the capability
to perform safe debloating and maintain soundness.

2.4. Threat Model

From a security standpoint, the basic premise of de-
bloating is that reducing code size decreases a program’s
attack surface. In this work, we consider remote adver-
saries that exploit an existing vulnerability that allows
arbitrary code execution. The attack vector for these
vulnerabilities can involve local interactions (i.e., by an
on-premise user) or interactions over the network. The
classification of these attack vectors is according to the
Common Vulnerability Scoring System (CVSS) [20], an
industry framework for communicating the characteristics
and severity of software vulnerabilities. Our debloating
technique aims to limit the attacker’s capabilities to run
an exploit; the debloater can (i) manipulate the control
flow in the debloated program, and (ii) remove code at
various levels of granularity (i.e., functions, basic blocks,
and LLVM IR instructions) according to the supplied
inputs. Code removal should eliminate known vulner-
abilities related to disabled features in the specialized

253

Figure 1. LMCAS Workflow.

programs. For instance, in Listing 1, the exploitable func-
tion decodeChar should be completely absent in the
specialized version for “wc -l”. The manipulation of
control flow by the debloater can alter the semantics of
any gadgets for return-oriented programming and allied
techniques [47], [9] that are present in executable memory
when the program runs, without affecting the intended
semantics of the actual program code [43].

3. LMCAS Framework

This section introduces LMCAS, a lightweight de-
bloating framework that uses sound analysis techniques
to generate specialized programs. Figure 1 illustrates
the architecture of LMCAS. The debloating pipeline of
LMCAS receives as input the whole-program LLVM
bitcode of program P, and performs the following major
phases to generate a specialized program P′ as bitcode,
which is ultimately converted into a binary executable.
• Neck Miner (§3.1). Receives P, and modifies it by
adding a special call that marks the neck. §3.1 de-
scribes our approach to neck identification based on
heuristic and structural analysis.

• Partial Interpretation (§3.2). Interprets the program
up to the neck (i.e., terminates after executing the
special function call inserted by the neck miner), based
on the supplied inputs that control which functionality
should be supported by the specialized application.
The output of this phase provides a precise partial state
of the program at the neck. This partial state comprises
the variables that have been initialized during the
partial interpretation and their corresponding values.

• Constant Conversion (§3.3). Incorporates into the
program the partial state captured by the partial in-
terpretation. It converts the variables and their cor-
responding values captured in the partial state (i.e.,
Vs and Cs) to settings of constants at the neck. This
phase also provides the opportunity to boost the degree
of subsequent optimization steps by supporting the
conversion of multiple kinds of variables to constants.

• Multi-Stage Simplification (§3.4). Applies selected
standard and customized LLVM passes for optimizing
the program and removing unnecessary functionality.
These optimization steps are arranged and tailored
to take advantage of the values introduced by the
constant-conversion phase.

3.1. Neck Miner

We developed a neck miner to recommend potential
neck locations. To illustrate the neck idea, consider the ex-
ample in Figure 2, which represents the motivating exam-
ple of Listing 1, but with the split between configuration

Figure 2. The neck miner selects Line 15 as a splitting point to partition
the motivating example in Listing 1 into configuration logic and main
logic. The splitting point is called the neck.

logic and main logic emphasized. The configuration-logic
part consists of Lines 4-14, which include the declaration
and initialization of global variables total_lines and
total_chars, and the first part of function main. The
rest of main (Lines 15-20) represents the main logic,
which contains the functionalities of counting lines and
counting characters. We call the point at the boundary
between the two components the neck. Because the neck is
located at the end of the configuration logic—where core
arguments are parsed—the neck location is independent
of the values of supplied inputs. Thus, neck identification
only needs to be conducted a single time for each program,
and the neck location can be reused for different inputs—
i.e., for different invocations of the debloater on that pro-
gram. According to the motivating example (Listing1), the
same neck location at Line 15 can be used for debloating
whether the supplied input is “wc -l” or “wc -c” .

The neck miner uses two analyses: heuristic analysis
and structural analysis, as described in Algorithm 1. The
heuristic analysis relies on various patterns, corresponding
to command-line and configuration-file programs, to iden-
tify a location from which to start the structural analysis,
which identifies the neck properly.

3.1.1. Heuristic Analysis. This step guides the structural
analysis. It identifies a single location from which the
structural analysis can be conducted, and relies on a set of
patterns that apply to two categories of programs. These
patterns are described as follows:

Command-Line-Program Patterns (Algorithm 1
Lines 5–9): the inputs are provided to this category of pro-
grams via command-line arguments. In C/C++ programs,
command-line arguments are passed to main() via the
parameters argc and argv: argc holds the number of
command-line arguments, and argv[] is a pointer array
whose elements point to the different arguments passed to
the program. Consequently, this analysis step tracks the
use of the argument argv (Line 6). Specifically, because
argv is a pointer array that, in general, points to multiple
arguments, the analysis identifies the uses of argv that

254

Algorithm 1: Neck Miner Algorithm
Input: CFG, EntryPoint, programCategory, fileParsingAPIs
Output: NeckLocation

1 startingPointForStructuralAnalysis = NULL
2 distanceToNeckLoc← ∅
3 distanceToInst← ∅
4 /* Heuristic Analysis */
5 if programCategory is Command-Line then
6 for inst ∈ UsesOf(argv) do
7 if inst is not inside a loop-structure then
8 distance = computeDistance(inst,EntryPoint,CFG)
9 distanceToInst← distanceToInst ∪ pair(inst, distance)

10 else if programCategory is Config-File then
11 for inst ∈ CFG do
12 if inst ∈ f ileParsingAPIs then
13 distance = computeDistance(inst,EntryPoint,CFG)
14 distanceToInst← distanceToInst ∪ pair(inst, distance)

15 startingPointForStructuralAnalysis =
InstAtShortestDistance(distanceToInst)

16 /* Structural Analysis */
17 for inst ∈ CFG do
18 if inst is after startingPointForStructuralAnalysis in CFG then
19 if inst satisfies the control-flow properties from §3.1.2 then
20 distance = computeDistance(inst,EntryPoint,CFG)
21 distanceToNeckLoc←

distanceToNeckLoc ∪ pair(inst, distance)

22 NeckLocation = InstAtShortestDistance(distanceToNeckLoc)
23 Add special function call before NeckLocation to mark the neck

are inside of a loop (Line 7).
Configuration-File-Program Patterns (Algorithm 1

Lines 10–14): this category of programs relies on con-
figuration files to identify the required functionalities. For
instance, consider how the neck is identified in Nginx,
a web-server program that supports 724 different config-
uration options [29]. Listing 2 presents a simple Nginx
configuration file. The gzip directive at line 7 is associated
with the libz.so library. In some cases, multiple directives
have to be defined to enable a certain capability, such as
the SSL-related directives in lines 6, 8, and 9 of Listing 2.
The heuristic analysis specifies the first location where
the configuration file is parsed by certain APIs. Iden-
tifying such APIs is simple because programs typically
use system calls to read files. For instance, nginx uses
the Linux system call pread2 to read the configuration
file. If the program uses custom parsing functions, either
located in the codebase, or in a library, then the LMCAS
user needs to supply the names of those functions to the
heuristic analysis. If the functions are in a dynamically
linked library, they can be made visible to LMCAS by
statically linking the library.

1 worker_processes 1 ;
2 ht tp {
3 c h a r s e t UTF_8 ;
4 k e e p a l i v e _ t i m e o u t 65 ;
5 s e r v e r {
6 l i s t e n 443 s s l ; # l i b s s l . so
7 gz ip on ; # l i b z . so
8 s s l _ c e r t i f i c a t e c e r t . pem ; # l i b s s l . so
9 s s l _ c e r t i f i c a t e _ k e y c e r t . key ; # l i b s s l . so

10 } }

Listing 2. Nginx configuration file

Finally, after identifying the set of statements that
match the various patterns, the heuristic analysis returns
the statement that is closest to the CFG’s entry point

2. https://man7.org/linux/man-pages/man2/pwrite.2.html

(Line 15), and ties are broken arbitrarily. In the motivating
example (Listing 1), the heuristic analysis obtains the
statement at Line 13 because it is the closest location to
the entry point that matches the command-line patterns.

3.1.2. Structural Analysis. This step identifies the neck
location by analyzing the program’s statements, start-
ing from the location specified by the heuristic analysis
(Lines 17- 18 in Algorithm 1). It identifies the statements
that satisfy a certain set of control-flow properties that are
discussed below (Line 19). Because it is possible to have
several matching statements, the closest statement to the
entry point is selected (Line 22). (Ties are broken arbitrar-
ily.) The closest statement is determined by computing the
shortest distances in the CFG from the entry point to the
neck candidates (Line 20). The remainder of this section
formalizes the aforementioned control-flow properties.

A program P is a 4-tuple (V, stmts, entry, exit), where
V is the set of variables, stmts is the set of statements,
entry ∈ stmts is the entry point of the program, and exit ∈
stmts is the exit of the program. As defined in Section 2.3,
we assume that there is a set Vs ⊆ V, which we call the set
of influenced variables (e.g., command-line parameters of
a utility). Note that V−Vs is the set of “internal” or non-
influenced variables. The location of a statement s ∈ stmt
is denoted by loc(s). For simplicity, we assume that Val
is the set of values that vars in V can take.

Let A : Vs → Val∪ {�} be a partial assignment to the
set of influenced variables (we assume that if A(v) = �,
then it has not been assigned a value). An assignment
A′ : Vs → Val is consistent with partial assignment A iff
for all v ∈ Vs, if A(v) � �, then A′(v) = A(v). A statement
s ∈ stmt is a neck for a program P = (V, stmts, entry, exit)
and a partial assignment A (denoted by nk(P,A)) if the
following conditions hold:
• Given any assignment A′ consistent with A, P always
reaches the neck nk(P,A), and the statement corre-
sponding to the neck is executed exactly once. This
condition rules out the following possibilities: Given
A′, the execution of P (i) might never reach the neck
(the intuition here is that we do not want to miss some
program statements, which would cause debloating to
be unsound), or (ii) the statement corresponding to the
neck is inside a loop.

• Let R(nk(P,A)) be all statements defined as fol-
lows: s ∈ R(nk(P,A)) iff s appears after nk(P,A),
then nk(P,A) could be identified as articulation
point of the CFG of P and one of the connected
components would over-approximate R(nk(P,A)). An-
other structural condition could be defined as follows:
R(nk(P,A)) is the set of all statements that are
dominated by the neck.

In summary, the structural properties of the neck are: (i)
it should dominate the main logic, and (ii) not be inside
any loop structure (the neck is executed only once).

The neck miner is fully automated, except the step at
Line 19 (in Algorithm 1), which currently requires manual
intervention. We argue that such effort is manageable;
moreover, it just requires a one-time effort for each pro-
gram. This approach takes advantage of the tendency of
developers to create disciplined and modular implementa-
tions that have a clean separation between configuration
actions and the main computation of the program [40].

255

Once the developer identifies the statements that satisfy
the control-flow properties, they are fed to the neck miner
to identify the statement that is closest to the entry point
in the CFG. Finally, a special function call (which serves
to label the neck location) is inserted before the identified
neck location.

Consider Listing 1 again. The developer iterates over
the program code, starting from Line 13 (specified by the
heuristic analysis) to identify the locations that satisfy the
control-flow properties. The developer ignores Lines 13
and 14 because they violate the control-flow properties:
they are not articulation points and are inside a loop,
so not executed only once. Line 15 satisfies the control-
flow properties because the statement at this location is
executed only once, is an articulation point, and dominates
all subsequent statements.

3.2. Partial Interpretation (PI)

Partial interpretation is a supporting phase whose goal
is to identify—at the neck—the set of variables (and
their values) that contribute to the desired functionality.
Partial interpretation is performed by running a symbolic-
execution engine (based on concrete inputs), starting at
program entry, and executing the program (using partial
program states, starting with the supplied concrete values)
along a single path to the neck. For configuration-file
programs, PI does not depend on the type of the con-
figuration file (JSON, text, etc.). In principle, as long as
it is feasible to partially evaluate the parsing function, the
specified configuration can be captured regardless of the
format of the configuration file. After partial interpretation
terminates, the partial state is saved, and the values of all
variables are extracted. Different types of variables are
extracted, including base types (e.g., int, char) and
constructed/compound types (e.g., enum, pointer, array,
and struct).

Consider a network-monitoring tool, such as
tcpdump, that supports multiple network interfaces,
and takes as input a parameter that specifies which
network interface to use. A specialization scenario might
require monitoring a specific interface (e.g., Ethernet) and
capturing a specific number of packets: for tcpdump,
the command would be “tcpdump -i ens160 -c
100” (see the inputs listed in Table 8, Section 5). The
first argument identifies the Ethernet interface ens160;
the second argument specifies that 100 packets should be
captured. The former argument is a string (treated as an
array of characters in C); the latter is an int.

Returning to the example from §2 (Listing 1), Fig-
ure 2 illustrates the location of the neck. Suppose that the
desired functionality is to count the number of lines (i.e.,
wc -l). Table 1 shows a subset of the variables and their
corresponding values that will be captured and stored in
LMCAS’s database after partial interpretation finishes.

3.3. Constant Conversion (CC)

This phase aims to propagate constants in the configu-
ration logic to enable further optimizations. For instance,
this phase contributes to removing input arguments that
were not enabled during partial interpretation, and thus
allows tests that check those inputs to be eliminated.

TABLE 1. PARTIAL PROGRAM STATE THAT CONTAINS THE SET OF

CAPTURED VARIABLES Vs AND THE CORRESPONDING VALUES

OBTAINED AT THE NECK AFTER PARTIAL INTERPRETATION OF

LISTING 1.

Variable Type Scope Value
total_lines

int Global
0

total_chars 0
flag->count_lines int

Local
1

flag->count_chars char 0

Constant conversion is a non-standard optimizing
transformation because optimization is performed up-
stream of the neck: uses of variables in the configuration
logic—which comes before the neck—are converted to
constants, based on values captured at the neck. It also in-
cludes inter-procedural constant conversion that facilitates
dead-code elimination and enforces accurate behaviour.
This step is necessary to handle situations where some of
the variables that are influenced by the supplied inputs are
initialized before the neck. The transformations performed
during this phase enforce that the state at the neck in the
debloated program is consistent with the partial state of
constants at the neck that was captured at the end of par-
tial interpretation. Standard dataflow analyses (e.g. Def-
Use) [22] for global and stack variables is used to replace
all occurrences of the variables with their corresponding
constant values in the program code before the neck.
Because some of the program statements become dead
after constant conversion, the replacement is performed
for all occurrences (i.e., accesses) of the variables obtained
after partial interpretation.

The CC phase receives as input the bitcode of the
whole program P generated using WLLVM,3 as well as
a dictionary (similar to Table 1) that maps the set of
variables in Vs captured after partial interpretation to their
constant values Cs. The set Vs involves global and stack
variables (base-type, struct, and pointer variables). The
CC phase then iterates over the IR instructions to identify
the locations where the variables are accessed, which
is indicated by load instructions. Then, it replaces the
loaded value with the corresponding constant value. This
approach works for global variables and stack variables
with base types. However, for pointers to base variables,
it is necessary to identify locations where the pointer is
modifying a base variable (by looking for store instruc-
tions whose destination-operand type is a pointer to a
base type). The source operand of the store operation is
modified to use the constant value corresponding to the
actual base variable pointed to by the pointer.

For stack variables that are Structs and pointers to
Structs, we first need to identify the memory address that
is pointed to by these variables, which facilitates tracing
back to finding the corresponding struct and pointer-
to-struct variables. We then iterate over the use of the
identified memory addresses to determine store operations
that modify the variable (corresponding to the memory
addresses). Finally, we convert the source operand of the
store operations to the appropriate constant. We also use
the element index recorded during partial interpretation to
identify which struct element should be converted.

For string variables, we identify the instructions that
represent string variables, create an array, and assign

3. https://github.com/SRI-CSL/whole-program-llvm

256

the string to the created array. Finally, we identify store
instructions that use the string variable as its destina-
tion operand, and override the store instruction’s source
operand to use the constant string value.

Soundness of CC. LMCAS needs to avoid unsound
conversions of variables to constants, which is done by
detecting aliasing among stack variables. Aliasing is de-
tected by examining the LLVM store instructions that
assign values to pointer and stack variables. Our criterion
for choosing to perform constant conversion for a given
variable is as follows: if, after the initialization point, there
is no store to that variable in the def-use chain to the neck,
then the variable’s value is not updated from initialization
to the neck, and the variable is one on which we perform
constant conversion; otherwise, the variable is left as it
was in the original program.

In wc (Listing 1), no replacements are performed
for global variables total_lines and total_chars
before the neck: there are no such occurrences. Replace-
ments are performed for referents of the pointer-to-struct
flag: the occurrences of flag->count_chars and
flag->count_lines at lines 13 and 14 are replaced
with the corresponding values listed in Table 1.

3.4. Multi-Stage Simplification (MS)

This phase begins with the result of constant conver-
sion, and performs whole-program optimization to sim-
plify and remove unnecessary code. In this phase, we used
existing LLVM passes, as well as one pass that we wrote
ourselves. In particular, LMCAS uses the standard LLVM
pass for constant propagation to perform constant folding;
it then uses another standard LLVM pass to simplify
the control flow. Finally, it applies an LLVM pass we
implemented to handle the removal of unnecessary code.
Constant Propagation. This optimization step folds vari-
ables that hold known values by invoking the standard
LLVM constant-propagation pass. Constant folding allows
instructions to be removed.
Simplifying the CFG. LMCAS benefits from the pre-
vious step of constant propagation to make further sim-
plifications by invoking a standard LLVM pass, called
simplifycfg. This pass determines whether the con-
ditions of branch instructions are always true or always
false: unreachable basic blocks are removed, and basic
blocks with a single predecessor are merged.
Clean Up. In the simplification pass, LMCAS removes
useless code (i.e., no operation uses the result [18]) and
unreachable code, including dead stack and global vari-
ables and uncalled functions. Although LLVM provides
passes to perform aggressive optimization, we wrote a
targeted LLVM pass that gives us more control in pri-
oritizing the cleaning up of unneeded code, as described
in Algorithm 2, which receives the modified program Pcc
after the CC phase and the list of functions visited during
the Partial Interpretation phase (visitedFunc).

The first priority is to remove unused functions. The
goal is to remove two categories of functions: (i) those
that are called only from call-sites before the neck, but
not called during partial interpretation (Lines 4-6), and
(ii) those that are never called from the set of functions
transitively reachable from main, including indirect call-
sites (Lines 7-10). Function removal is performed after

Algorithm 2: LMCAS Clean up
Input: Pcc, visitedFunc
Output: P′

1 P′ ← Pcc
2 /* Remove unused functions */
3 CG ← constructCallGraph(P′)
4 for func ∈ CG do
5 if func � visitedFunc ∧ func is not an operand of other

instructions then
6 remove func from P′ and CG

7 for func ∈ CG do
8 if func is not an operand of other instructions then
9 remove func from P′ and CG

10 remove func’s descendent nodes from P′ and CG if they are
not reachable from main

11 /* Remove unused Global Variables */
12 for var ∈ getGlobalList(Pcc) do
13 if var is not an operand of other instructions then
14 remove var from P′

15 /* Remove unused Stack Variables */
16 for func ∈ CG do
17 for inst ∈ func do
18 if inst is AllocInst then
19 if inst is not an operand of other instructions then
20 remove inst from P′

21 else if inst is a destination operand of only one
storeInst then

22 remove storeInst from P′
23 remove inst from P′

constructing the call graph at Line 3. To handle indirect-
call sites, Algorithm 2 also checks the number of uses of
a function, at Lines 5 and 8, before removing the function.
This check prevents the removal of a function invoked via
a function pointer.

The focus then shifts to simplifying the remaining
functions. For removing global variables (Lines 12-14),
we iterate over the list of global variables and remove un-
used variables. Finally, we remove stack variables (Lines
16-23), including initialized but unused variables by it-
erating over the remaining functions and erasing unused
allocation instructions. (In general, standard LLVM sim-
plifications do not remove a stack variable that is initial-
ized but not otherwise used because the function contains
a store operation that uses the variable. Our clean-up pass
removes an initialized-but-unused variable by deleting the
store instruction, and then the allocation instruction.)

Soundness of cleaning up: To prevent accidental re-
moval of functions and variables, we use the LLVM
user() API 4, which guarantees detecting whether a
function/variable is used either directly or indirectly via
a pointer: an item is not removed unless item.user()
returns emptyset.

In wc (Listing 1), after the CC phase both the
count_chars and count_lines fields of the struct
pointed to by stack variable flag are replaced by the
constants 0 and 1, respectively (see Table 1). The simpli-
fication steps remove the tests at lines 18 and 20 because
the values of the conditions are always true. Because
the values of the conditions in the tests at lines 17 and
19 are always false, control-flow simplification removes
both the tests and the basic blocks in the true-branches.
Furthermore, the removal of these basic blocks removes

4. https://llvm.org/docs/ProgrammersManual.html#iterating-over-def-
use-use-def-chains

257

all uses of the global variable total_chars, and thus
the cleanup step removes it as an unused variable.

4. Implementation

Neck Miner. This component is implemented as an LLVM
analysis pass. In command-line programs, we use LLVM’s
def/use API to track the use of argv. For configuration-file
programs, we iterate over the LLVM IR code to identify
call-sites for the pre-identified file-parsing APIs. The de-
veloper has the responsibility of identifying the program
locations that satisfy the structural properties from §3.1.2.
(i.e., locations that are executed only once, and dominate
the main logic). This task is relatively easy because the
developer can rely on existing LLVM analysis passes
to compute the dominance tree and verify the structural
properties. We argue that such efforts are manageable.
More importantly, they are one-time efforts. (Such a semi-
automated approach has also been used in prior work [36]
and completely manual [24].) Finally, the neck location is
marked by adding a special function call to the program.
Partial Interpretation. Our implementation uses
KLEE [16] to perform the partial interpretation because
it (1) models memory with bit-level accuracy, and (2) can
handle interactions with the outside environment—e.g.,
with data read from the file system or over the network—
by providing models designed to explore various possible
interactions with the outside world. We modified KLEE
2.1 to stop and capture the set of affected variables and
their corresponding values after the neck is reached. In
essence, KLEE is being used as an execution platform
that supports “partial concrete states.” For LMCAS, none
of the inputs are symbolic, but only part of the full input
is supplied. In the case of word-count, the input is “wc
-l”, with no file-name supplied. Only a single path to the
neck is followed, at which point KLEE returns its state
(which is a partial concrete state). The second column in
Tables 8 and 10 describes the inputs supplied to KLEE
for the different examples.
Multi-Stage Simplification. We also developed two
LLVM passes using LLVM 6.0 to perform constant-
conversion (CC) and the clean-up step of the MS phase.
We implemented these passes because of the absence
of existing LLVM passes that perform such functional-
ities. We tried existing LLVM passes like global dead-
code elimination (DCE) to remove unused code. However,
global DCE is limited to handle only global variables (and
even some global variables cannot be removed). We also
noticed that not all stack variables are removed, so in our
clean-up pass we employ def-use information to identify
stack variables that are loaded but not used. Also, the
removal of indirect calls is not provided by LLVM. To
prevent the removal of functions invoked via a function
pointer, our clean-up pass checks that the number of uses
of a function is zero before removing the function.

5. Evaluation

This section presents our experimental evaluation of
LMCAS. We address the following research questions:
• Effectiveness of Neck Miner: How accurate is the
neck miner in identifying the neck location? (5.1)

• Functionality Preserving and Robustness: Does
LMCAS produce functional programs? and how

TABLE 2. BENCHMARK SETS USED IN THE EVALUATION.

Source Label # of apps

GNU Coreutils 8.32 Benchmark_1 15

CHISEL Benchmark Benchmark_2 6

Tcpdump & GNU Binutils Benchmark_3 3

wget & mini-httpd Benchmark_4 2

robust are the debloated programs produced by
LMCAS? (5.2)

• Speeding Up Debloating Process: Does LMCAS
speed up the debloating process w.r.t. run time? (5.3)

• Code Reduction: What is the debloating performance
of LMCAS w.r.t. the amount that programs are re-
duced in size? (5.4)

• Security: Are attack surfaces reduced? (5.5)
• Practicality: Can LMCAS debloat programs based
on the kinds of inputs and complex input formats (i.e.,
object files, binaries, and network packets) in software
used in the real world? (5.6)

Experimental Setup. Our evaluation relies on three
datasets, as shown in Table 2. Benchmark_1 contains
15 programs from GNU Coreutils v8.32 (see Table 10).
Benchmark_2 contains six programs obtained from Chis-
elBench (see Table 5).5 Benchmark_3 consists of three
programs (see Table 8). The selection of programs in
Benchmark_1 was motivated by their use in prior papers
on software debloating. We used Benchmark_2 because it
provides us a list of CVE vulnerabilities and correspond-
ing apps; considering this dataset facilitates our evaluation
of the removal of CVEs, and allows us to compare against
the CVE-removal performance of Chisel and RAZOR.

All experiments were conducted on an Ubuntu 18.04
machine with a 2.3GHz Quad-Core Intel i7 processor and
16GB RAM, except the fuzzing experiment, for which we
used an Ubuntu 18.04 machine with a 3.8GHz Intel(R)
Core(TM) i7-9700T CPU and 32GB RAM.

Compared tools and approaches. To evaluate LMCAS,
we compared it with the following tools:

• Baseline. We establish the baseline by compiling each
app’s LLVM bitcode at the -O2 level of optimization
without applying any specialization. This baseline ap-
proach was used in prior work [53].

• OCCAM [37]. The system most comparable to
the approach used by LMCAS. However, OC-
CAM performs only a limited amount of program
optimization—i.e., standard intra- and inter-procedural
constant propagation, but not loop unrolling nor more
sophisticated optimizations—and thus omits a major
component of partial evaluation.

• CHISEL 6 [25]. It requires the user to identify wanted
and unwanted functionalities and uses reinforcement
learning to perform the reduction process.

• RAZOR [46]. Similar to CHISEL, RAZOR relies on
test cases to drive the debloating but incorporates
heuristic analysis to improve soundness. RAZOR per-
forms debloating for binary code, while the others
operate on top of intermediate representation that is
driven from source code.

5. https://github.com/aspire-project/chisel-bench

6. git #cc4fa66d2fe92e991ea19d268b65e379e675bd27

258

We considered CHISEL and RAZOR because they repre-
sent state-of-the-art tools that apply aggressive debloating
techniques. We selected OCCAM because it is a state-of-
the-art partial evaluation tool, and thus is the tool closest
in spirit to LMCAS. Comparing with these various tools
facilitates verifying the capabilities and effectiveness of
LMCAS. Unfortunately, we could not make a head-to-
head comparison with TRIMMER [53], [4] because its
implementation is unavailable. Finally, for all comparisons
that involve Benchmark_2, we used the same input values
used in the RAZOR evaluation [46].

5.1. Effectiveness of the Neck Miner

In this experiment, we measured the effectiveness of
the neck miner in facilitating neck identification. Our
evaluation involved the 28 programs specified in Table 2.
These programs belong to various projects: Coreutils,
Binutils, Diffutils, Nginx, wget, mini-httpd and Tcpdump.
For all 28 programs, neck mining was successful, and the
identified neck location was used to perform debloating.
Three of the programs, Nginx, wget, and mini-httpd, make
use of configuration files, which are parsed using system
APIs: Nginx invokes pread to parse the configuration file
(and in exactly one place in its LLVM IR code); wget and
mini-httpd use fopen to parse their configuration files.

For some programs, such as GNU wc and date, there
were multiple candidate neck locations before the shortest-
distance criterion was applied at Line 22 of Algorithm 1.
(Table 12 in Appendix B gives the full set of results.)

The neck location is inside the main function for the
majority of the programs, except readelf and Nginx.
With the help of the neck miner, it took only a few minutes
for the one manual step (Line 19 of Algorithm 1) needed
to identify the neck locations. More specifically, for each
program the analysis time for the heuristic analysis was 2
seconds on average, and it took 5−10 minutes to perform
the manual part of structural analysis. This amount of time
is acceptable, given that neck identification is performed
only once per program.

As mentioned in Section 3.1, the neck is identified
only once for each program: the same neck can be used,
regardless of what arguments are supplied. To verify this
aspect, we debloated various programs based on different
supplied inputs. For example, we debloated sort and
wc based on 4 and 5 input settings, respectively, and (for
each program) the same neck location was used with all
debloating settings. Similarly, a single neck location is
used for multiple debloatings for each of the programs
listed in Tables 8 and 13 (Appendix B).

5.2. Functionality Preservation and Robustness

We compared the robustness of LMCAS, as well as
that of CHISEL, RAZOR and OCCAM on Benchmark_2.
We used this benchmark because it was used to evaluate
both CHISEL and RAZOR, and thus the test cases used
for testing those tools were available to test LMCAS;
otherwise, we would have needed to come up with our
own set of test cases, which would not have been trivial.

In this experiment, we ran the binaries before and
after debloating against given test cases to understand
their robustness. The majority of the programs debloated

TABLE 3. EVALUATION OF FUNCTIONALITY PRESERVING AFTER

DEBLOATING BY LMCAS AND OCCAM FOR PROGRAMS IN

BENCHMARK_1. � MEANS FUNCTIONALITY IS CORRECTLY

PRESERVED; OTHERWISE: CRASHING (C), INFINITE LOOP(L), OR

WRONG OPERATION (W).

Program OCCAM LMCAS
basename � �
basenc � �
comm � �
date � �
du W �
echo � �
fmt � �
fold � �
head L �
id � �
kill W �

realpath � �
sort L �
uniq � �
wc C �

in Benchmark_2 using CHISEL and RAZOR suffer from
run-time issues. These issues include crashing, infinite
loop, or performing unexpected operations and are re-
ported and discussed in [46]. In our experiment, we found
that all the debloated programs by CHISEL contain these
issues. Among the programs in Benchmark_2, all but one
of the OCCAM-debloated programs work correctly, and
all of the LMCAS-debloated applications run correctly.

LMCAS and OCCAM have comparable results over
Benchmark_2. To further compare with OCCAM, we de-
bloated the programs in Benchmark_1 according to the
settings in Table 10. Five of the OCCAM-debloated pro-
grams (33%) crash (i.e., segmentation fault) or generate
inaccurate results, as reported in Table 3. In contrast, all
of the LMCAS-debloated programs run correctly (i.e.,
LMCAS preserves programs’ behavior).

We gained further confidence in the robustness of
LMCAS-debloated programs via fuzzing (which has also
been used to assess the robustness of programs debloated
by CHISEL [25]). To test whether programs debloated by
LMCAS functioned correctly and did not crash, we used
AFL (version 2.56b), a state-of-the-art fuzzing tool [1].
More precisely, we used afl-qemu to fuzz the debloated
binary.7 We ran afl-qemu on the debloated programs cre-
ated from Benchmark_1 and Benchmark_2 for six days.
AFL did not provoke any failures or crashes of the de-
bloated programs in either dataset, except for fmt in
Benchmark_1, which had three test cases that went over
the default 1-second timeout; these timeouts are not neces-
sarily caused by debloating. The fuzzing results including
coverage are reported in Table 17 (Appendix G).

5.3. Speed of the Debloating Process

We compared the run time of LMCAS against those
of CHISEL, RAZOR, and OCCAM on Benchmark_2. The
debloating settings in this experiment are listed in Table 11
(Appendix A). As depicted in Figure 3, the run times for
LMCAS and OCCAM are significantly lower than the
time for aggressive debloating techniques in CHISEL and
RAZOR.

7. We used the method described on the AFL GitHub repository:
https://github.com/google/AFL#4-instrumenting-binary-only-apps

259

As a result, LMCAS runs up to 1500x, 4.6x, and 1.2x
faster on average than CHISEL, RAZOR, and OCCAM,
respectively. This result illustrates LMCAS substantially
speeds up the debloating process in contrast to aggres-
sive debloating tools, but also slightly outperforms partial
evaluation debloating techniques.

Figure 3. Running times of LMCAS, CHISEL, RAZOR, and OCCAM
based on Benchmark_2 (ChiselBench).

5.4. Code Reduction

We conducted two experiments to evaluate code re-
duction. The first experiment involves CHISEL, RAZOR,
OCCAM, and LMCAS based on Benchmark_2, while the
second uses Benchmark_1 to compare the performance
of LMCAS against the baseline and OCCAM. (The
characteristics of Benchmark_1 are given in Table 10 in
Appendix A.) The second experiment allows us to com-
pare reduction capabilities based on multiple size metrics,
not just binary size. This comparison is not applicable
for RAZOR because it operates on binary code, while
CHISEL performs source-to-source debloating.

TABLE 4. REDUCTION IN BINARY SIZE

App CHISEL RAZOR OCCAM LMCAS
chown-8.2 89.15% -42.21% 40.41% 12.18%
date-8.21 97.12% -55.71% 45.18% 10.67%
rm-8.4 88.86% -54.06% 41.16% 12.89%
sort-8.16 91.98% -48.07% 43.43% 25.10%
uniq-8.16 57.62% -58.47% 35.76% 23.90%
gzip-1.2.4 13.83% -4.41% 2.62% 1.46%

Table 4 presents the reduction rates from the first
experiment. For computing the binary-size metric, we
compiled all debloated apps with gcc (except RAZOR,
because it debloats binary code), and ran size. We report
the sum of the sizes of all sections in the binary file (text
+ data + bss) because this quantity reflects the outcome
of our simplifications across all sections. Interestingly, the
RAZOR reduction rates are negative, which indicates that
the binaries of the debloated programs are larger that the
original programs. The reason is that RAZOR keeps the
entire old code section, and adds the debloated code as
a new code section. CHISEL achieves the best reduction
results across all programs. OCCAM is always second-
best, and LMCAS is always third-best. However, none of
the debloated programs using LMCAS suffer from run-
time issues (as discussed in Section 5.2.

Figures 4 and 5 present the results of the second
experiment, where Figure 5 breaks down the “BinarySize”
bars from Figure 4 on a per-application basis. The first
three groups in Figure 4 show the average reductions of
instructions, basic blocks, and functions in the LLVM
bitcode. The bars labeled “O2” report the results from
running the O2 pass, with no debloating. For the “Binary-
Size” bars, each original and debloated app was complied
with gcc, and size reductions are again based on size.
We report the sum of the sizes of all sections in the binary
file (text + data + bss) because this quantity reflects the
outcome of our simplifications across all sections.

LMCAS achieved significantly higher reduction rates
in the binary size—around double—compared to O2. This
result is due to the fact that the clean-up step of LMCAS
can remove nodes in the call-graph that correspond to
functions in binary libraries that are not used. Although
the reduction rates of LMCAS and OCCAM are close
(geometric mean binary size reduction is 25% and 22%,
respectively), some of the specialized programs generated
by OCCAM are not reliable (as discussed in Section 5.2).

Figure 4. Average reduction in LLVM bitcode (for programs in Bench-
mark_1) achieved through baseline (no specialization), OCCAM, and
LMCAS, using four different size metrics. (Higher numbers are better.)

Although the baseline shows a higher average reduc-
tion rate at instruction and basic block levels, its average
reduction at binary size is the worse. Indeed, it increases
the binary size for two programs (i.e., basenc and kill),
as depicted in Figure 5 (Appendix C presents extended
results), which shows the comparison results based on the
reduction in the binary size that each tool achieved for
each app in Benchmark_1.

5.5. Security Benefits of LMCAS

We performed three experiments to evaluate the capa-
bilities of LMCAS to reduce code-reuse attacks and to
remove known vulnerabilities: (i) after debloating an app,
we executed the debloated app to attempt to re-run the
exploit; (ii) we measured the reduction in the number of
code-reuse attacks by counting the number of eliminated
gadgets in the compiled version of the debloated program,
compared to the compiled version of the original program;
(iii) we compared the degree of gadget reduction achieved
by LMCAS and LLVM-CFI (discussed in Appendix F).
Vulnerability Removal. To test the ability to mitigate
vulnerabilities, we used six programs in Benchmark_2
because this benchmark contains a set of known CVEs.

260

Figure 5. Binary size reduction achieved through baseline OCCAM, and
LMCAS. (Higher numbers are better.)

TABLE 5. VULNERABILITIES AFTER DEBLOATING BY LMCAS AND

CHISEL. � MEANS THE CVE VULNERABILITY IS ELIMINATED; �
MEANS THAT IT WAS NOT REMOVED.

App CVE ID
Attack
Vector RAZOR CHISEL OCCAM LMCAS

chown-8.2 CVE-2017-18018 local � � � �
date-8.21 CVE-2014-9471 network � � � �
gzip-1.2.4 CVE-2015-1345 local � � � �
rm-8.4 CVE-2015-1865 local � � � �
sort-8.16 CVE-2013-0221 network � � � �
uniq-8.16 CVE-2013-0222 local � � � �

1 CHISEL and RAZOR CVE removal is obtained from the corresponding publication.
2 Although OCCAM removed the CVE in rm-8.4, the debloated version falls into
an infinite loop at run-time.

Table 5 presents a comparison between LMCAS, RA-
ZOR, OCCAM, and CHISEL. LMCAS and OCCAM
removed CVEs from 5 of the 6 programs; however, the
debloated version of rm-8.4 produced by OCCAM falls
into an infinite loop. We suspect that OCCAM may re-
move loop-condition checks. LMCAS could not remove
the vulnerability in date-8.21 because the bug is lo-
cated in the core functionality of this program. When
undesired functionality is too intertwined with the core
functionality—e.g., multiple quantities are computed by
the same loop—then LMCAS may not be able to remove
some undesired functionality because—to the analysis
phases of LMCAS—it does not appear to be useless code.
In such cases, LMCAS retains the desired functionality.

Vulnerability removal for Client/Server Programs. In
this experiment, we considered the two programs in
Benchmark_4: wget (version 1.17.1), which is a client
program, and mini-httpd (version 1.19), which is a
server program. These programs have been used in prior
work [4] to demonstrate debloating capabilities. wget is
used for retrieving files using HTTP, HTTPS, FTP, and
FTPS. mini-httpd is a small HTTP server that imple-
ments all the basic features of an HTTP server, including
GET/HEAD/POST methods, CGI, basic authentication,
and standard logging [41]. wget and mini-httpd can
read configuration settings from both command-line input
and configuration files. Both programs can be exploited
remotely, as described in Table 6: the attack vector of
these vulnerabilities is "network" according to CVSS. We
debloated wget and mini-httpd with respect to the
inputs shown in Table 6. We verified that functionality was
not broken by running (i) the original programs with these
configuration arguments, and (ii) the debloated programs,

and comparing their outputs. For wget we compared the
downloaded files; for mini-httpd, we ensured that the
same files and headers were retrieved by both programs.

Below, we discuss the elimination of remote vulnera-
bilities in wget and mini-httpd.

CVE-2017-13089. The vulnerability is a heap-based
buffer overflow in function skip_short_body() of
wget. The severity score of the vulnerability is high
(9.3 out of 10 according to CVSS8). By tricking
an unsuspecting user into connecting to a malicious
HTTP server, an attacker could exploit this flaw re-
motely to potentially execute arbitrary code. The func-
tion skip_short_body() is called when wget is
used to send POST requests (by enabling the arguments
post-file or post-data). However, if wget is used
only to retrieve data, then skip_short_body() is
never invoked. Debloating wget to disable these argu-
ments eliminates the vulnerability.

CVE-2009-4490. This vulnerability allows data to
be written to a log file without non-printable characters
having been sanitized. It can allow a remote adversary
to execute arbitrary commands, or overwrite files, via
an HTTP request that contains an escape sequence. The
severity score of this vulnerability is 5.0 out of 10 ac-
cording to CVSS.9 This vulnerability has been reported
and demonstrated in several web-server programs, in-
cluding mini-httpd, as well as nginx 0.7.64 and
thttpd 2.25b0 [19]. We eliminated this vulnerability
in mini-httpd by debloating it so that the logging
feature is disabled (i.e., the flag -l is not part of the
supplied inputs), which causes the corresponding logging
code to be removed. In particular, debloating removed the
function re_open_logfile(), which is responsible
for opening and updating the log file.
Gadget Elimination. Code-reuse attacks leverage existing
code snippets in the executable, called gadgets, as the
attack payload [11]. Those gadgets are often categorized—
based on their last instruction—into Return-Oriented Pro-
gramming (ROP), Jump-Oriented Programming (JOP),
and syscall (SYS) [47], [9]. Code-reuse attacks can be
mitigated using software diversification, which can be
achieved through application specialization [10]. Software
debloating is a specialization technique that can both
reduce the number of exploitable gadgets and change the
locations of gadgets, thus diversifying the binary.

We used Gadget Set Analyzer (GSA) [11] to determine
the impact of LMCAS on gadget elimination. GSA goes
beyond gadget-count reduction and relies on ROPgad-
get [52] to collect gadget information from binaries. Thus,
all derived metrics are based on the gadgets collected via
ROPgadget, which has also been used in the evaluation
of other debloating tools [53], [46], [25]. GSA proposes
new metrics based on quality—rather than quantity—for
assessing the security impact of software debloating. A
detailed description of these metrics can be found in [12],
[10]. All results are reported in Appendix E (Tables 14 &
15); in this section, we discuss major findings.

Table 7 summarizes the results of gadget local-
ity, ROP-gadget introduction, and ROP-gadget removal.
Gadget-locality rate is the percentage of gadgets remain-

8. https://www.cvedetails.com/cve/CVE-2017-13089/

9. https://www.cvedetails.com/cve/CVE-2009-4490/

261

TABLE 6. REMOTE VULNERABILITIES IN THE BENCHMARK_4 PROGRAMS, AND THE CORRESPONDING INPUTS USED FOR DEBLOATING.

App Type CVE ID
Attack
Vector

Supplied Inputs
Command-line args Configuration-file settings

wget client CVE-2017-13089 Network –config=config-file

quota

tries

mini-httpd server CVE-2009-4490 Network -C config-file

user
host
port

dir

TABLE 7. CODE-REUSE ANALYSIS USING GSA [10] FOR PROGRAMS IN Benchmark_2

App
Locality gadget rate ROP-introduction rate Overall ROP removal

CHISEL RAZOR OCCAM LMCAS CHISEL RAZOR OCCAM LMCAS CHISEL RAZOR OCCAM LMCAS
chown-8.2 0.0% 0.0% 0.0% 0.1% 40.2% 13.7% 78.7% 20.3% 185 96 2 38
date-8.21 0.0% 0.0% 0.0% 0.1% 21.2% 16.8% 80.4% 28.7% 198 70 -41 16
rm-8.4 0.0% 0.0% 0.0% 0.0% 37.8% 10.6% 80.6% 19.4% 206 65 -43 46
sort-8.16 0.0% 0.0% 0.0% 0.0% 42.6% 9.8% 82.3% 20.8% 264 135 -43 65
uniq-8.16 0.0% 0.0% 0.0% 0.0% 37.7% 16.5% 75.7% 19.6% 153 27 2 54
gzip-1.2.4 0.1% 6.3% 0.0% 0.0% 53.5% 28.2% 68.5% 15.9% 83 102 -73 5

ing after debloating that have not been altered and can
be found at the same offset as in the original program. If
debloating a program results in 0% gadget locality, then
gadgets found in the original program cannot be readily
used to exploit the debloated version. If debloating results
in 100% gadget locality, then an exploit crafted for tar-
geting the original program can also be used for targeting
the debloated version. Our evaluation shows the gadget-
locality rate is close to 0% for all compared tools across
all programs. The non-0% cases are gzip-1.2.4 using
RAZOR (6.3%) and CHISEL (0.1%), and chown-8.2
& date-8.21 using LMCAS (both 0.1%).

The ROP-introduction rate describes the amount of
new ROP gadgets in the debloated program that are
not present in the original program. A low introduction
rate reflects a positive impact of debloating on security.
Our evaluation indicates that all debloating techniques
introduce new ROP gadgets in the debloated programs.
LMCAS achieves a competitive ROP-introduction rate
compared to RAZOR.10 LMCAS outperforms CHISEL
across all programs (except date-8.21), and achieved
a significantly lower introduction rate than OCCAM.

Overall ROP removal counts the number of removed
ROP gadgets after debloating. The higher the number of
removed ROP gadgets, the positive impact on security.
Negative numbers indicate that the number of gadgets
in the debloated program increased to ROP introduction.
For instance, OCCAM’s overall ROP removal is nega-
tive for four programs. Aggressive debloating techniques
(CHISEL and RAZOR) show higher removal performance
in contrast to LMCAS. However, OCCAM demonstrated
the best gadget locality among all tools and for all pro-
grams. Overall, LMCAS exhibits a favorable trade-off
among all metrics: reasonable ROP-gadget removal, low
ROP-gadget introduction, and good locality rate.

5.6. Practicality

To evaluate the practicality of LMCAS, we used
Benchmark_3. The programs in Benchmark_3 have been
used in prior work to evaluate scalability [37], [44],
including the scalability of KLEE [15]. These programs

10. RAZOR keeps the original code section, but this section is not
scanned by ROPGadget. ROPGadget scans only the added debloated
code section because it becomes the loadable program segment.

TABLE 8. SCALABILITY ANALYSIS OF LARGE APPLICATIONS.

Program Supplied In-
puts

PI
(sec)

CC &
MS (sec)

Binary Size
Reduction
Rate

tcpdump
-i ens160 48.1 173.1 2%
-i ens160 -c 5 48.2 201.7 2%

readelf
-S 10.6 41.7 4.8%
-h -l -S -s -r -
d -V -A -I

20.15 72.4 4.71%

objdump
-x 40.84 246.17 5.65%
-h -f -p 48.07 320.11 5.71%

were also used to evaluate TRIMMER [4] because they
are commonly-used Linux utilities.11

• tcpdump [54] (version 4.10.0; 77.5k LOC) analyzes
network packets. We link against its accompanying
libpcap library (version 1.10.0; 44.6k LOC).

• readelf and objdump from GNU Binutils [7] (ver-
sion 2.33; 78.3k LOC and 964.4k of library code12).
readelf displays information about ELF files, while
objdump displays information about object files.
We debloated these programs using different inputs

to illustrate the capability of LMCAS to handle and
debloat programs based on single and multiple inputs.
For example, we debloated readelf based on one ar-
gument (-S) and nine arguments (-h -l -S -s -r
-d -V -A -I). Table 8 breaks down the analysis time
in terms of Partial Interpretation (third column) and the
combination of Constant Conversion and Multistage Sim-
plification (fourth column). For these programs, the time
for symbolic execution is lower than that for the LLVM-
based simplifications. This situation is expected because
these programs contain a large number of functions, so
a longer time is needed for the LLVM simplifications
steps. The inclusion of third-party libraries diminishes
the reduction rate in the binary size, which is clearly
illustrated in the achieved reduction rate for tcpdump.
Furthermore, we conducted additional experiments based
on a subset of programs from Benchmark_1 to show
LMCAS’s flexibility to support different combinations

11. Because deciding which lines of code belong to an individual
application is difficult, lines of code (LOC) are for the whole appli-
cation suites from which our benchmarks are taken. We used scc
(https://github.com/boyter/scc) to report LOC.

12. We only consider lines in the binutils folder and the following
dependencies: libbfd, libctf, libiberty, and libopcodes.

262

TABLE 9. BINARY-SIZE REDUCTION RATES.

Program Version Supplied Inputs

Binary-Size

Reduction Rate
TRIMMER LMCAS

readelf 2.28 -a 17.9% 5.7%
objdump 2.2.8 –D –syms -s -w 75.7% 57.1%

of supplied inputs. The selection of the supplied inputs
aims to represent the core functionality of the application.
Table 13 in Appendix B summarizes these results.

Although TRIMMER was unavailable to us, we com-
pared the debloating performance of LMCAS with the
results reported for TRIMMER [4, Table 1], with respect
to binary size-reduction rate, for two of the programs in
our Benchmark_3 suite, readelf and objdump. For
this comparison, we used the same versions, build settings,
and debloating inputs that were used in the TRIMMER
experiments [56]. Table 9 shows that TRIMMER has
a higher reduction rate for both programs.13 However,
our comparison also revealed that LMCAS is a more
general tool than TRIMMER: the TRIMMER-debloated
readelf is specialized to handle a specific ELF file,
whereas LMCAS supports delaying this input until later.
TRIMMER thus has more opportunities to specialize the
code with respect to that file, whereas the LMCAS-
debloated program works on all ELF files supplied sub-
sequently. The same situation holds for the TRIMMER-
debloated and LMCAS-debloated versions of objdump.

6. Discussion and Limitations

Generality of the neck concept. This concept applies
to various types of programs. Our evaluation involved 28
command-line programs; we found that the neck could be
easily identified in all of the programs. We also inspected
Nginx, wget, mini-httpd and observed that, as in
command-line programs, all directives in the configuration
file are read the main logic is reached. But this separation
between configuration and main logic cannot be applied to
event-driven programs, which require constant interaction
with the user to handle the functionalities required by
the user. Therefore, the configuration of program features
is performed at various locations. However, we foresee
our partitioning approach applies to event-driven programs
that apply server architecture, whose life-cycle is divided
into initialization and serving phases [24].
Practicality of LMCAS. The neck miner facilitates the
identification of the neck. Although it involves a manual
step, it provides the user with a few candidate neck
locations to be inspected, from which the user can easily
recognize whether a given location satisfies or violates the
neck properties. For example, LLVM provides utilities for
generating a CFG and a dominator tree. If a neck candi-
date is inside a loop in the CFG, the candidate should be
discarded. Finally, neck identification is a one-time effort,
thus creating a practical path to adoption. In contrast,
other debloating tools, such as CHISEL [25], place a
significant burden on the user because they require that
the user provide a set of detailed test scripts to invoke the
code that corresponds to the functionality that is intended

13. We learned from the TRIMMER authors that the binary-size
numbers reported in [4, Table 1] were obtained via ls -l, which we
also used for the programs debloated by LMCAS.

to be preserved. This step requires understanding details
of the application code, thus making it error-prone [4].
In contrast, an LMCAS user just needs to provide a
command line (or configuration file) similar to the one
used to run the standard version of the program, but
without providing all input arguments; the user invokes
the debloated program by providing the delayed inputs.

The scalability of LMCAS is influenced by KLEE
(our partial interpreter), which affected the selection of
programs in Section 5.6. Because KLEE has been devel-
oped to find bugs in GNU coreutils [16], its POSIX/Linux
emulation layer models only a limited number of APIs
(i.e., oriented towards supporting uClibc14). This defi-
ciency prevented us from debloating server programs like
Nginx, Apache, and Lighttpd. (For instance, ngx_cpuid()
and mmap64() are required by Nginx and Lighttpd, re-
spectively, but they are not supported by KLEE.) Recti-
fying this issue would have required extending KLEE to
model the required operations, which is beyond the scope
of this paper. In Section 5.6, we showed that LMCAS is
able to handle tcpdump compiled with libpcap under var-
ious settings. Also, as described in Section 5.5, LMCAS
could debloat the server program mini-httpd, using
parameters taken from a configuration file.
Incorrect neck identification. Misidentifying the neck
may lead to incorrect debloating. The neck miner in-
corporates a set of heuristics and structural features to
recommend accurate neck locations. The heuristic analysis
techniques aid neck identification by pinpointing the code
location where the neck miner can start checking the struc-
tural properties to identify the neck. For configuration-file
programs, the heuristic analysis requires the function(s)
used to parse the configuration file to be identified by the
LMCAS user if the parsing logic does not use system-call
APIs. To make these functions visible to the neck miner,
if they are located in a dynamic library, that library should
be statically linked. To identify candidate neck locations,
the neck miner applies a set of structural requirements that
reflect the neck definition—e.g., the neck is executed only
once, and the neck is an articulation point.
Precision of Constant Conversion and Cleaning up.
LMCAS relies on converting a subset of the variables
in the captured concrete state into constants. If one of the
variables could have been converted to a constant, but was
not identified by LMCAS as being convertible (and there-
fore no occurrences of the variable are changed), no harm
is done: that situation just means that some simplification
opportunities may be missed. On the other hand, if some
variable occurrences are converted to constants unsoundly,
the debloated program may not work correctly.

We mitigate this issue by: (1) avoiding the conversion
of some variables to constants (e.g., argv) because it
carries out the rest of inputs (i.e., delayed inputs) different
than the one required by the specialized program: for
instance, with wc the file name is not supplied during
partial interpretation, while the file name is supplied to
the debloated program; (2) leveraging existing LLVM
APIs (i.e., getUser) that track the uses of variables
to capture the final constant values at the end of the
partial interpretation. This approach overcomes situations
where a pointer indirectly updates the value of a location,

14. As described in https://github.com/klee/klee

263

and ensures that the pre-neck constant-conversion step
operates using updated and accurate constant values.

Reducing the Attack Surface. LMCAS reduces the
attack surface by removing some known CVEs and elim-
inating some code-reuse attacks. Both criteria were used
in prior work on debloating [53], [25], [46], [9] to eval-
uate the security benefits of debloating. In this work, we
conducted further analysis beyond gadget-count reduction
to evaluate the elimination of code-reuse attacks. We
leveraged GSA [10] to compare the quantity, quality, and
locality of code-reuse gadget sets in programs debloated
using LMCAS and three other tools.

7. Related Work

A variety of software-debloating techniques have been
developed in the research community [29], [59], [58],
[24], [46], [23], [30], [9], [6], [26], [3], [21], [32], [33].
This section discusses research on software debloating and
partial evaluation related to our work on LMCAS.

Tracing Program Configurations. TRIMMER [4] tracks
argv to annotate variables and memory objects that
may hold parameters read from configuration files and/or
program inputs. Rabkin et al. [49] leverages static analy-
sis to automatically infer a program’s configuration for
improving a program’s documentation. They focus on
identifying key-value-style configurations by tracing the
arguments of certain configuration APIs in the constructed
call-graph. The configuration APIs are used for reading a
program’s configuration. Therefore, the approach finds the
earliest configuration read point in a call chain. Meinicke
et al. [40] propose considering disciplined or modular
implementation strategies to facilitate configuration trace-
ability. These strategies mandate separating configuration
options as much as possible from other computations
in the program and leveraging APIs rather than local
variables. LMCAS takes advantage of the fact that such
a separation is present in many programs to carry out
debloating. The neck miner traces the use of argv, relies
on heuristic analysis to identify configuration APIs, and
considers the neck to be the earliest boundary candidate
(i.e., at the shortest distance from the entry point).

Program Partitioning. Ghavamnia et al. [24] propose a
debloating approach to reduce the attack surface in server
applications. This approach partitions the execution life-
cycle of server programs into initialization and execution
phases. It then reduces the number of system calls in the
execution phase. However, this approach requires manual
intervention from the developer to identify the boundary
between the two phases, but without providing certain
specifications to guide the identification process. In con-
trast, LMCAS incorporates a neck miner to suggest a
possible neck location. The neck miner provides semi-
automatic support for the partitioning process and identi-
fied the neck correctly in 26 programs.

Partial Evaluation has been used in numerous domains,
including debloating [53], verification [14], and generation
of test cases [5]. Bubel et al. [14] use a combination of
partial evaluation and symbolic execution. However, the
goals and modes of interaction are different: in the work of
Bubel et al., partial evaluation is used to speed up repeated
execution of code by a symbolic-execution engine; in our

work, symbolic execution is in service to partial evaluation
by finding values that hold at the neck.
Application Specialization. For debloating Java pro-
grams, JShrink [13] applies static and dynamic analy-
sis. Storm is a general framework for reducing proba-
bilistic programs [22]. For debloating C/C++ programs,
TRIMMER [53] and OCCAM [37] use partial evaluation.
TRIMMER [53] overcomes some of the limitations of
OCCAM by performing both loop unrolling and constant
propagation. However, both tools perform constant propa-
gation only for global variables, and thus TRIMMER and
OCCAM miss specialization opportunities that involve
local variables. That issue is addressed in a recent update
of TRIMMER [4], which extends specialization to local,
struct, and pointer variables (confirmed by TRIMMER’s
authors). It also applies taint analysis for propagating vari-
ables that potentially contain values of program-supplied
configurations.

LMCAS can accurately convert the elements of struct
variables into constants, and its analysis also considers
pointers to base types and to struct types. A key difference
between LMCAS and the most recent version of TRIM-
MER is the method for identifying variables influenced
by supplied inputs. LMCAS applies a lightweight partial
interpretation, while TRIMMER performs an expensive
taint analysis, as well as an additional pass to extract
information when the program uses a configuration file.
The extra pass interprets various instructions that handle
reading, parsing, and closing the configuration file. More-
over, TRIMMER [4] requires the user to specify the paths
that lead to the call sites that parse configuration files.

Aggressive debloating tools like CHISEL [25] and
RAZOR [46] can achieve a significantly higher reduction
rate in the size of specialized applications; however, these
tools are prone to run-time issues (e.g., crashing, infinite
loops). Furthermore, the debloating process takes a long
time because these tools apply burdensome techniques,
based on extensive program instrumentation, and they
require users to provide a comprehensive set of test cases.
RAZOR uses a best-effort heuristic approach to overcome
the challenge of generating test cases to cover all code.
LMCAS applies lighter weight static techniques, and the
specialized programs generated by LMCAS do not suffer
from run-time issues.
Function Specialization. Saffire [42] specializes call-
sites of sensitive methods to handle certain parameters
based on the calling context. Piecewise [48] is a tool for
debloating libraries; it constructs accurate control-flow-
graph information at compilation and link time.

8. Conclusion

The paper presents LMCAS, a practical approach to
creating specialized (“debloated”) applications. LMCAS
introduces the concept of the neck, a splitting point where
“configuration logic” in a program hands off control to the
“main logic” of the program. We developed a neck miner
to reduce the amount of manual effort required to identify
the neck. LMCAS performs partial interpretation of the
configuration logic up to the neck; the main logic is then
optimized according to the values obtained at the neck.
LMCAS achieves substantial reductions in program size,
and also reduces the attack surface.

264

Acknowledgment

This work is supported, in part, by a gift from Rajiv
and Ritu Batra; by Facebook under a Probability and
Programming Research Award; and by ONR under grants
N00014-17-1-2889, N00014-19-1-2318, and N00014-21-
1-2492. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of
the authors, and do not necessarily reflect the views of the
sponsoring entities.

References

[1] American fuzzy lop. http://lcamtuf.coredump.cx/afl, 2020.

[2] I. Agadakos, N. Demarinis, D. Jin, K. Williams-King, J. Alfajardo,
B. Shteinfeld, D. Williams-King, V. P. Kemerlis, and G. Portoka-
lidis. Large-scale debloating of binary shared libraries. Digital
Threats: Research and Practice, 1(4), Dec. 2020.

[3] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and
G. Portokalidis. Nibbler: Debloating binary shared libraries. In
Proceedings of the 35th Annual Computer Security Applications
Conference, ACSAC ’19, page 70–83, New York, NY, USA, 2019.
Association for Computing Machinery.

[4] A. A. Ahmad, A. R. Noor, H. Sharif, U. Hameed, S. Asif,
M. Anwar, A. Gehani, J. H. Siddiqui, and F. M. Zaffar. Trimmer:
An automated system for configuration-based software debloating.
IEEE Transactions on Software Engineering, pages 1–1, 2021.

[5] E. Albert, M. Gómez-Zamalloa, and G. Puebla. Pet: a partial
evaluation-based test case generation tool for java bytecode. In
PEPM ’10, 2010.

[6] B. A. Azad, P. Laperdrix, and N. Nikiforakis. Less is more:
Quantifying the security benefits of debloating web applications.
In 28th USENIX Security Symposium (USENIX Security 19), pages
1697–1714, Santa Clara, CA, Aug. 2019. USENIX Association.

[7] Binutils- gnu project - free software foundation. https://www.gnu.
org/software/binutils/, 2020.

[8] P. Biswas, N. Burow, and M. Payer. Code specialization through
dynamic feature observation. In Proceedings of the Eleventh
ACM Conference on Data and Application Security and Privacy,
CODASPY ’21, page 257–268, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[9] M. D. Brown and S. Pande. Carve: Practical security-focused
software debloating using simple feature set mappings. In Proceed-
ings of the 3rd ACM Workshop on Forming an Ecosystem Around
Software Transformation, FEAST’19, page 1–7, New York, NY,
USA, 2019. Association for Computing Machinery.

[10] M. D. Brown and S. Pande. Is less really more? towards bet-
ter metrics for measuring security improvements realized through
software debloating. In 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 19), Santa Clara, CA, Aug. 2019.
USENIX Association.

[11] M. D. Brown and S. Pande. Is less really more? towards bet-
ter metrics for measuring security improvements realized through
software debloating. In 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 19), Santa Clara, CA, Aug. 2019.
USENIX Association.

[12] M. D. Brown and S. Pande. Is less really more? why reducing code
reuse gadget counts via software debloating doesn’t necessarily
indicate improved security, 2020.

[13] B. R. Bruce, T. Zhang, J. Arora, G. H. Xu, and M. Kim. Jshrink:
In-depth investigation into debloating modern java applications. In
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, page 135–146, New York,
NY, USA, 2020. Association for Computing Machinery.

[14] R. Bubel, R. Hähnle, and R. Ji. Interleaving symbolic execution and
partial evaluation. In F. S. de Boer, M. M. Bonsangue, S. Haller-
stede, and M. Leuschel, editors, Formal Methods for Components
and Objects, pages 125–146, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[15] F. Busse, M. Nowack, and C. Cadar. Running symbolic execution
forever. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, page
63–74, New York, NY, USA, 2020. Association for Computing
Machinery.

[16] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, page
209–224, USA, 2008. USENIX Association.

[17] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’93, page 493–501,
New York, NY, USA, 1993. Association for Computing Machinery.

[18] K. Cooper and L. Torczon. Engineering a compiler. Elsevier, 2011.

[19] hack-httpd-escape. https://www.ush.it/team/ush/hack_httpd_
escape/adv.txt, Accessed Jan 2022.

[20] Nvd - vulnerability metrics. https://nvd.nist.gov/vuln-metrics/
cvss#, Accessed Jan 2022.

[21] N. Davidsson, A. Pawlowski, and T. Holz. Towards automated
application-specific software stacks. In K. Sako, S. Schneider, and
P. Y. A. Ryan, editors, Computer Security – ESORICS 2019, pages
88–109, Cham, 2019. Springer International Publishing.

[22] S. Dutta, W. Zhang, Z. Huang, and S. Misailovic. Storm: Program
reduction for testing and debugging probabilistic programming
systems. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2019, page
729–739, New York, NY, USA, 2019. Association for Computing
Machinery.

[23] M. Ghaffarinia and K. W. Hamlen. Binary control-flow trimming.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 1009–1022, New
York, NY, USA, 2019. Association for Computing Machinery.

[24] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis. Temporal
system call specialization for attack surface reduction. In 29th
USENIX Security Symposium (USENIX Security 20), pages 1749–
1766. USENIX Association, Aug. 2020.

[25] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. Effective program
debloating via reinforcement learning. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, page 380–394, New York, NY, USA, 2018.
Association for Computing Machinery.

[26] Y. Jiang, Q. Bao, S. Wang, X. Liu, and D. Wu. Reddroid: Android
application redundancy customization based on static analysis. In
2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE), pages 189–199, 2018.

[27] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Inc., USA, 1993.

[28] J. C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976.

[29] H. Koo, S. Ghavamnia, and M. Polychronakis. Configuration-
driven software debloating. In Proceedings of the 12th European
Workshop on Systems Security, EuroSec ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[30] T. Kroes, A. Altinay, J. Nash, Y. Na, S. Volckaert, H. Bos,
M. Franz, and C. Giuffrida. Binrec: Attack surface reduction
through dynamic binary recovery. In Proceedings of the 2018
Workshop on Forming an Ecosystem Around Software Transfor-
mation, FEAST ’18, page 8–13, New York, NY, USA, 2018.
Association for Computing Machinery.

[31] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler,
D. Mazières, R. Morris, M. Osborne, S. VanDeBogart, and
D. Ziegler. Make least privilege a right (not a privilege). In
Proceedings of the 10th Conference on Hot Topics in Operating
Systems - Volume 10, HOTOS’05, page 21, USA, 2005. USENIX
Association.

265

[32] H. Kuo, J. Chen, S. Mohan, and T. Xu. Set the configuration for
the heart of the os: On the practicality of operating system kernel
debloating. In Abstracts of the 2020 SIGMETRICS/Performance
Joint International Conference on Measurement and Modeling
of Computer Systems, pages 87–88. Association for Computing
Machinery, Inc, June 2020. 2020 SIGMETRICS/Performance
Joint International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS 2020 ; Conference date: 08-06-
2020 Through 12-06-2020.

[33] H.-C. Kuo, D. Williams, R. Koller, and S. Mohan. A linux in
unikernel clothing. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[34] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings
of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar 2004.

[35] J. Li, X. Tong, F. Zhang, and J. Ma. Fine-cfi: Fine-grained control-
flow integrity for operating system kernels. IEEE Transactions on
Information Forensics and Security, 13(6):1535–1550, 2018.

[36] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu.
MPI: Multiple perspective attack investigation with semantic aware
execution partitioning. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1111–1128, Vancouver, BC, Aug.
2017. USENIX Association.

[37] G. Malecha, A. Gehani, and N. Shankar. Automated software
winnowing. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC ’15, page 1504–1511, New York, NY,
USA, 2015. Association for Computing Machinery.

[38] P. K. Manadhata and J. M. Wing. An attack surface metric. IEEE
Transactions on Software Engineering, 37(3):371–386, 2011.

[39] J. Mason, S. Small, F. Monrose, and G. MacManus. English shell-
code. In Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, page 524–533, New York,
NY, USA, 2009. Association for Computing Machinery.

[40] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner. Exploring
differences and commonalities between feature flags and configura-
tion options. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’20, page 233–242, New York, NY, USA,
2020. Association for Computing Machinery.

[41] mini-httpd. https://acme.com/software/mini_httpd/, Accessed Jan
2022.

[42] S. Mishra and M. Polychronakis. Saffire: Context-sensitive Func-
tion Specialization against Code Reuse Attacks. In 5th IEEE
European Symposium on Security and Privacy (EuroS&P), 2020.

[43] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing
the gadgets: Hindering return-oriented programming using in-place
code randomization. In 2012 IEEE Symposium on Security and
Privacy, pages 601–615. IEEE, 2012.

[44] S. Poeplau and A. Francillon. Symbolic execution with symcc:
Don’t interpret, compile! In 29th USENIX Security Symposium
(USENIX Security 20), pages 181–198. USENIX Association, Aug.
2020.

[45] C. Porter, G. Mururu, P. Barua, and S. Pande. Blankit library
debloating: Getting what you want instead of cutting what you
don’t. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
2020, page 164–180, New York, NY, USA, 2020. Association for
Computing Machinery.

[46] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee.
RAZOR: A framework for post-deployment software debloating.
In 28th USENIX Security Symposium (USENIX Security 19), pages
1733–1750, Santa Clara, CA, Aug. 2019. USENIX Association.

[47] A. Quach, A. Prakash, and L. Yan. Debloating software through
piece-wise compilation and loading. In 27th USENIX Security
Symposium (USENIX Security 18), pages 869–886, Baltimore, MD,
Aug. 2018. USENIX Association.

[48] A. Quach, A. Prakash, and L. Yan. Debloating software through
piece-wise compilation and loading. In 27th USENIX Security
Symposium (USENIX Security 18), pages 869–886, Baltimore, MD,
Aug. 2018. USENIX Association.

[49] A. Rabkin and R. Katz. Static extraction of program configuration
options. In Proceedings of the 33rd International Conference on
Software Engineering, pages 131–140, 2011.

[50] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel.
Cimplifier: Automatically debloating containers. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2017, page 476–486, New York, NY, USA,
2017. Association for Computing Machinery.

[51] T. Reps and T. Turnidge. Program specialization via program
slicing. In O. Danvy, R. Glück, and P. Thiemann, editors, Partial
Evaluation, pages 409–429, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[52] Gadgets finder and auto-roper. http://shell-storm.org/project/
ROPgadget, 2020.

[53] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar. Trimmer:
Application specialization for code debloating. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, page 329–339, New York, NY,
USA, 2018. Association for Computing Machinery.

[54] Tcpdump/libpacap. https://www.tcpdump.org/, 2020.

[55] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow
integrity in GCC & LLVM. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 941–955, San Diego, CA, Aug. 2014.
USENIX Association.

[56] Trimmer examples. https://github.com/SRI-CSL/
OCCAM-Benchmarks/tree/master/examples/trimmer, Accessed
Jan 2022.

[57] Gnu coreutils news. https://github.com/coreutils/coreutils/blob/
ff80b6b0a0507e24f39cc1aad09d147f5187430b/NEWS#L3198,
2020.

[58] Q. Xin, M. Kim, Q. Zhang, and A. Orso. Program debloating via
stochastic optimization. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE-NIER ’20, page 65–68, New York, NY,
USA, 2020. Association for Computing Machinery.

[59] G. Xu and A. Rountev. Detecting inefficiently-used containers to
avoid bloat. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
’10, page 160–173, New York, NY, USA, 2010. Association for
Computing Machinery.

266

Appendix A.
Benchmark Characteristics and Debloating
Settings

Table 10 lists the programs in Benchmark_1 and the
supplied inputs for debloating, and mentions various size
metrics about the original programs. Table 11 provides
the list of supplied inputs that we used for debloating the
programs in Benchmark_2. This list of inputs are obtained
from [46].

TABLE 10. CHARACTERISTICS OF THE BENCHMARKS IN

Benchmark_1.

Program
Supplied

Inputs
Original

IR
Inst.

#
Func.

Basic
Blocks

Binary

Size a

basename suffix=.txt 4,083 96 790 26,672
basenc base64 8,398 156 1,461 44,583
comm -12 5,403 110 972 32,714
date -R 29,534 166 6,104 89,489
du -h 5,0727 466 8,378 180,365
echo -E 4,095 89 811 27,181
fmt -c 5,732 115 1,095 79,676
fold -w30 4,623 100 893 29,669
head -n3 6,412 119 1,175 37,429
id -G 5,939 125 1,172 36,985
kill -9 4,539 96 898 31,649
realpath -P 8,092 155 1,419 41,946
sort -u 25,574 329 3,821 116,119
uniq -d 5,634 115 1,092 37,159
wc -l 7,076 130 1,219 41,077

aTotal binary size obtained via the GNU size utility.

TABLE 11. INPUT SETTINGS FOR THE PROGRAMS IN Benchmark_2
(OBTAINED FROM [46]).

Program Supplied Inputs
chown -h, -R
date -d, –rfc-3339, -utc
gzip -c
rm -f, -r
sort -r, -s, -u, -z
uniq -c, -d, -f, -i, -s, -u, -w

Appendix B.
Neck Miner Evaluation

Table 12 describes the neck miner evaluation results.
The second column indicates whether multiple neck loca-
tions are matching the control-flow properties. The third
column describes if the location of the selected neck
location is inside the main function.

Table 13 shows LMCAS performed debloating based
on various debloating settings but using the same neck
locations that has been identified in each program. This
experiment shows the neck location is independent of the
input arguments.

Appendix C.
Code Reduction Comparing with other tools

This section provides a detailed code reduction com-
parison with two more debloating approaches.

TABLE 12. NECK MINER RESULTS. THE SECOND COLUMN

INDICATES IF THERE ARE MULTIPLE NECK LOCATIONS TO SELECT

FROM. THE THIRD COLUMN INDICATES WHETHER THE IDENTIFIED

NECK LOCATION IS INSIDE THE MAIN FUNCTION. THE FOURTH

COLUMN INDICATES WHETHER THE PROGRAM USES A

CONFIGURATION FILE.

Program
Multiple

Neck Locations Inside main
Support

Config file
basename 8.32 � � �
basenc 8.32 � � �
comm 8.32 � � �
date 8.32 � � �
du 8.32 � � �
echo 8.32 � � �
fmt 8.32 � � �
fold 8.32 � � �
head 8.32 � � �
id 8.32 � � �
kill 8.32 � � �

realpath 8.32 � � �
sort 8.32 � � �
uniq 8.32 � � �
wc 8.32 � � �
chown-8.2 � � �
date-8.21 � � �
rm-8.4 � � �
sort-8.16 � � �
uniq-8.16 � � �
gzip-1.2.4 � � �

tcpdump-4.10.0 � � �
objdump-2.33 � � �
readelf-2.33 � � �
diff-2.8 � � �

Nginx-1.19.0 � � �
wget-1.17.1 � � �

mini-httpd1-1.19 � � �

TABLE 13. DEBLOATING PROGRAMS FROM BENCHMARK_1 BASED

ON VARIOUS INPUT ARGUMENTS USING THE SAME NECK LOCATION

IDENTIFIED IN EACH PROGRAM

App
Supplied

Inputs

Required

Functionality
Reduction After Debloating

#Func.

Binary

Size
Total

Gadgets

du
-b shows number of

bytes
23% 15% 46%

-b –time shows the time of
the last modifica-
tion and number
of bytes

22% 14% 45%

sort
-c check if the file

given is already
sorted or not

34% 28% 54%

-n sort a file numeri-
cally

31% 25% 51%

-un sort a file numer-
ically and remove
duplicate

31% 25% 51%

wc

-c character count 42% 21% 41%
-w word count 42% 21% 41%
-lc line and character

count
43% 22% 42%

-wc word and charac-
ter count

42% 21% 42%

• Debugger-guided Manual debloating. We developed a
simple but systematic protocol to perform debloating
manually, which we state as Algorithm 3. The goal of
this manual approach is to create an approximation for
the maximum level of reduction that can be achieved
by an average developer.

• Nibbler [2]. state-of-the-art tool for debloating binary
code. It does not generate specialized apps, it rather
focuses only on reducing the size of shared libraries.

We used Benchmark_1 to compare the performance

267

Algorithm 3: Debugger-guided Manual Debloat-
ing Protocol

Input: App A, Input I
Output: App A′

1 varsToRemove← ∅
2 f uncToRemove← ∅
3 Executed← the set of statements that GDB reports are executed, given

input I
4 A′ ← A
5 repeat
6 for stmt ∈ A′ do
7 if stmt � Executed then
8 remove stmt from A′
9 varsToRemove← varsToRemove ∪ {stmt(vars)}

10 if stmt is a call site then
11 f uncToRemove← f uncToRemove ∪ {func}
12 while varsToRemove � ∅ ∧ f uncToRemove � ∅ do
13 for f unc ∈ f uncToRemove do
14 Remove f unc from funcToRemove
15 if no occurrence of f unc exists then
16 Remove func from A′

17 for var ∈ varsToRemove do
18 Remove var from varToRemove
19 if no occurrence of var exists then
20 Remove var from A′

21 if A′ does not build correctly then
22 put back stmt
23 undo var and f unc removal from A′

24 until no more removals of statements

of LMCAS against manual debloating, baseline, Nibbler,
and OCCAM. Figure 6 shows the comparison results
based on the reduction in the binary size that each tool
achieved for each app in Benchmark_1. For computing the
binary-size metric, we compiled all debloated apps with
gcc -O2, and ran size.

Figure 6. Binary size reduction achieved through manual debloating,
baseline, Nibbler, OCCAM, and LMCAS. (Higher numbers are better.)

Appendix D.
LMCAS Running Time

We measured the running time of LMCAS. Figure 7
shows the breakdown of running time, for Benchmark_1,
between (i) partial interpretation, and (ii) Constant Con-
version (CS) plus Multi-stage Simplification (MS).

The average total running time is 3.65 seconds; the
maximum total running time is 13.08 seconds for ana-
lyzing sort; and the lowest total analysis time is 1.19
seconds for analyzing basename. Notably, the time for
Constant Conversion and Multi-stage Simplification is
low: on average, the time for constant conversion and

multi-stage simplification is 0.4 seconds, while the average
time for Partial Interpretation is 3.25 seconds.

Figure 7. The time required for partial interpretation (PI) and the partial-
evaluation steps (Constant Conversion and Multi-stage Simplifications)
for Benchmark_1.

Appendix E.
Gadget-Elimination Experiment

The expressivity of a set of gadgets is a measure of the
computational power of a set of gadgets. GSA analyzes
the gadget set with respect to three levels of expressivity:
simple Turing-completeness, practical ROP exploits, and
ASLR-proof. Each level requires a different number of
computational classes to be satisfied. Therefore, the set of
gadgets should contain at least one gadget supporting each
necessary computational class to achieve a certain level
of expressivity. Table 14 summarizes functional gadget-set
expressivity data collected by GSA. Debloating tools were
generally successful in reducing expressivity. Negative re-
sults between brackets indicate an increment in the gadget-
set expressivity, which reflects introducing new gadgets
that satisfied previously unsatisfied computational classes
(practical ROP exploits, simple Turing-completeness, and
ASLR-proof). CHISEL obtains the best results because it
did not lead to any expressivity increment. RAZOR had
an increase in practical ROP exploit classes for rm and
simple Turing-complete classes for two programs (date
& sort). OCCAM and LMCAS show relatively similar
performance, although OCCAM increases the expressivity
slightly more than LMCAS.

Table 15 summarizes an evaluation of gadgets from
a qualitative perspective. The higher the score, the more
difficult the gadget is to use in an exploit chain, thus a
positive security impact is achieved. The numbers outside
of parentheses in Table 15 represent the average gadget-
quality score with respect to each attack method (ROP /
JOP / COP), while numbers inside of parentheses reflect
the change in gadget quality (the difference between the
average quality in the original program versus the average
quality in the debloated program). CHISEL succeeds in
reducing the difference in average quality score of the
quality gadgets for all programs except uniq-8.16.
LMCAS and OCCAM succeed in two programs, while
RAZOR achieves positive security impact in one program
date-8.21.

268

TABLE 14. COMPUTATIONAL CLASSES SATISFIED (AND REDUCTION) BY GADGET SET FOR THREE FUNCTIONAL EXPRESSIVITY LEVELS

App
Practical ROP Exploit Classes ASLR-Proof ROP Classes Simple Turing-Complete Classes

CHISEL RAZOR OCCAM LMCAS CHISEL RAZOR OCCAM LMCAS CHISEL RAZOR OCCAM LMCAS
chown-8.2 5 (1) 7 (0) 7 (-2) 7 (0) 8 (9) 13 (9) 25 (-9) 24 (5) 6 (3) 9 (1) 8 (0) 10 (2)
date-8.21 5 (2) 7 (0) 5 (1) 7 (-1) 7 (9) 16 (1) 18 (5) 20 (-2) 5 (3) 9 (-1) 9 (-2) 7 (-2)
rm-8.4 5 (1) 8 (-1) 6 (0) 7 (0) 7 (10) 15 (5) 24 (-7) 19 (5) 3 (6) 9 (1) 7 (0) 8 (3)
sort-8.16 5 (2) 7 (0) 7 (0) 7 (1) 12 (14) 20 (2) 29 (-2) 23 (3) 6 (5) 10 (0) 9 (-1) 9 (1)
uniq-8.16 5 (2) 7 (0) 7 (-2) 7 (-1) 7 (15) 17 (0) 2 (-3) 18 (0) 5 (5) 9 (-1) 8 (-3) 4 (0)
gzip-1.2.4 5 (1) 7 (0) 7 (-1) 5 (1) 7 (1) 20 (-7) 19 (-6) 12 (3) 5 (-1) 7 (-2) 8 (-2) 6 (2)

TABLE 15. AVERAGE QUALITY SCORE (AND REDUCTION) BY ATTACK METHOD (ROP / JOP / COP).

App
Quality ROP Gadgets Quality JOP Gadgets Quality COP Gadgets

CHISEL RAZOR OCCAM LMCAS CHISEL RAZOR OCCAM LMCAS CHISEL RAZOR OCCAM LMCAS
chown-8.2 4.0 (-2.5) 0.93 (1.23) 1.8 (0.6) 1.4 (0.28) 1.5 (0.57) 1.0 (0.5) 1.25 (0.41) 2.06 (0.17) 1.89 (-0.04) 1.9 (-0.13) 1.39 (0.4) 1.7 (-0.05)
date-8.21 4.0 (-2.0) 1.53 (-0.1) 3.6 (-1.26) 2.0 (0.25) 1.5 (0.25) 1.5 (0.22) 1.3 (0.21) 1.4 (0.46) 1.4 (0.2) 1.7 (-0.09) 1.35 (0.26) 1.54 (-0.07)
rm-8.4 4.0 (-2.5) 0.91 (0.47) 1.9 (0.6) 1.8 (-0.03) 1.125 (0.08) 0.7 (0.17) 0.56 (1.5) 2.3 (-0.24) 1.7 (0.1) 2.0 (-0.16) 1.4 (0.4) 1.6 (-0.02)
sort-8.16 4.0 (-1.9) 1.78 (0.08) 1.7 (0.48) 1.6 (0.005) 1.5 (-0.5) 0.65 (0.8) 0.54 (1.08) 1.8 (0.38) 1.8 (0.01) 2.05 (-0.1) 1.5 (0.3) 1.9 (-0.18)
uniq-8.16 4.0 (0.75) 1.2 (0.4) 4.0 (-1.1) 2.1 (-0.2) 1.5 (-0.4) 0.0 (0.78) 0.6 (0.46) 1.3 (0.1) 1.69 (0.2) 1.8 (-0.05) 1.4 (0.4) 1.8 (-0.15)
gzip-1.2.4 5 (1) 7 (0) 7 (-1) 5 (1) 7 (1) 20 (-7) 19 (-6) 12 (3) 5 (-1) 7 (-2) 8 (-2) 6 (2)

Appendix F.
CFI Experiment

Control-Flow Integrity (CFI). CFI is a prominent mech-
anism for reducing a program’s attack surface by pre-
venting control-flow hijacking attacks: CFI confines the
program to some specific set of CFG paths, and pre-
vents the kinds of irregular transfers of control that
take place when a program is attacked. Although CFI
does not specifically aim to reduce the number of gad-
gets, others have observed empirically that CFI reduces
the number of unique gadgets in programs [55], [35],
[8]. Thus, we compared the degree of gadget reduction
achieved by LMCAS and LLVM-CFI (a state-of-the-
art static CFI mechanism) [8]. We compiled the LLVM
bitcode of our suite of programs using clang, with the
flags -fsanitize=cfi -fvisibility=default.
Among the 20 programs analyzed, LMCAS outperformed
LLVM-CFI on 12 programs (60%) by creating a program
with a smaller total number of unique gadgets. (Table 16
in the Appendix F contains the full set of results.) The last
column in Table 16 shows that a significant reduction in
unique gadgets—beyond what either LMCAS or LLFM-
CFI is capable of alone—is obtained by first applying
LMCAS and then LLVM-CFI.

Appendix G.
AFL Fuzzing Results

Table 17 presents the results AFL fuzzing experiment
including basic block coverage, crashes, and hangs. We
used the tool afl-qemu-cov 15 to determine the coverage.
The columns crashes and hangs report the number of test
cases that caused crashing or time out, respectively.

15. https://github.com/andreafioraldi/afl-qemu-cov

TABLE 16. COUNTS OF THE TOTAL UNIQUE GADGETS FOR THE

ORIGINAL BINARIES AND THE BINARIES DEBLOATED USING LMCAS
AND/OR LLVM-CFI.

Program Total ROP Count

Original LLVM-CFI LMCAS
LMCAS

+LLVM-CFI
basename 1794 964 841 261
basenc 3063 1805 1309 793
comm 2095 1145 964 794
date 12119 3654 3381 1592
du 15094 7874 8503 5873
echo 1835 446 876 442
fmt 2496 1403 1230 1158
fold 2094 1168 1015 769
head 2671 1398 1366 932
id 2514 1214 1183 801
kill 1924 1147 919 1054

realpath 3073 1610 1664 1658
sort 7558 4804 4185 3699
uniq 2516 1280 1121 776
wc 2225 1611 1320 973

objdump 115587 103241 107985 80156
readelf 58186 50512 56519 45320
tcpdump 82682 53205 67417 50809
Chown 2890 2280 2529 1998
rm 3068 2316 2579 2083

TABLE 17. AFL COVERAGE RESULTS

program Basic Block
Coverage

unique_crashes unique_hangs

basename 91 0 0
basenc 212 0 0
comm 118 0 0
date 260 0 0
du 949 0 0
echo 89 0 0
fmt 294 0 3
fold 152 0 0
head 137 0 0
id 173 0 0
kill 93 0 0
realpath 91 0 0
sort 619 0 0
uniq 193 0 0
wc 200 0 0

269

