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Abstract—An encrypted search algorithm (ESA) allows a
user to encrypt its data while preserving the ability to
search over it. As all practical solutions leak some infor-
mation, cryptanalysis plays an important role in the area
of encrypted search. Starting with the work of Islam et
al. (NDSS’12), many attacks have been proposed that exploit
different leakage profiles under various assumptions. While
these attacks improve our understanding of leakage, it can
sometimes be difficult to draw definite conclusions about
their practical performance. This is due to several reasons,
including a lack of open-source implementations (which are
needed to reproduce results), empirical evaluations that are
conducted on restricted datasets, and in some cases reliance
on relatively strong assumptions that can significantly affect
accuracy.

In this work, we address these limitations. First, we
design and implement LEAKER, an open-source framework
that evaluates the major leakage attacks against any dataset
and that we hope will serve the community as a common
way to evaluate leakage attacks. We identify new real-world
datasets that capture different use cases for ESAs and, for
the first time, include real-world user queries. Finally, we use
LEAKER to systematically evaluate known attacks on our
datasets, uncovering sometimes unexpected properties that
increase or diminish accuracy. Our evaluation shows that
some attacks work better on real-world data than previously
thought and that others perform worse.

1. Introduction

Encrypted search algorithms (ESAs) allow a user to
encrypt its data while preserving the ability to search over
it. ESAs have received a lot of attention due to applications
to cloud storage and database security (see the survey by
Fuller et al. [23] for an overview). At a high level, ESAs
consist of two algorithms: a setup algorithm that encrypts a
data collection (or database) and a search/query algorithm
that is used to query it. Dynamic ESAs also have an update
algorithm to add or remove data.

ESAs are designed via various, sometimes inter-
secting cryptographic techniques: property-preserving
encryption (PPE) [4], [8], fully-homomorphic encryp-
tion (FHE) [24], searchable/structured symmetric encryp-
tion (SSE/STE) [15], [17], [76], functional encryption [11],
or ORAM [28]. They have varying tradeoffs between
efficiency, expressiveness of the search, and security.

Efficiency. When evaluating the efficiency of an ESA, we
usually focus on the query or search time; that is the time
needed to search over the encrypted data. ESAs based
on FHE require linear time in the size of the data so they
are usually considered impractical. For practical purposes,
one needs sub-linear ESAs which can be achieved with
ORAM in opt · logO(1) n time, STE in opt time or PPE
also in opt time, where opt is the optimal time to search
and n is the number of items in the data collection.

Adversarial models and leakage. ESAs can be analyzed
in different adversarial models. The most common are
the snapshot and persistent models. A snapshot adversary
receives a copy of the encrypted data at various times
and tries to recover information about the data collection.
A persistent adversary receives the encrypted data and
a transcript of the query operations and tries to recover
information about the data collection and the queries. The
information an adversary can recover about the data or
queries is referred to as leakage and, ideally, one would
prefer a zero-leakage solution, which can be achieved in
several ways. In the snapshot model, it is possible to design
very efficient zero-leakage ESAs using structured encryp-
tion [5], whereas in the persistent model zero-leakage
ESAs can be designed using FHE at the cost of linear-
time queries. In the persistent model oblivious, structured,
and property-preserving ESAs all leak some information;
though recent work has shown how to suppress some of
this leakage for certain encrypted data structures [6], [25],
[46], [47], [68]. For instance, prominent leakage profiles
include the response identity (or access) pattern, which
reveals the response to a query, or the query equality (or
search) pattern, which reveals whether and when a query
repeats.

Leakage attacks. Because sub-linear solutions leak infor-
mation, cryptanalysis plays an important role in the area
of encrypted search. By designing leakage attacks one can
try to ascertain whether a leakage profile is exploitable.
Starting with the work of Islam et al. [38], leakage attacks
were first designed against structured ESAs in the persistent
model. Later, Naveed et al. [63] designed attacks against
PPE in the snapshot model and Kellaris et al. [50] showed
attacks against oblivious ESAs in the persistent model.

These works were improved by a series of papers [9],
[12], [32]–[34], [53]–[55], [66], [73]. While the attacks im-
prove our understanding of leakage, it can sometimes be dif-
ficult to draw definite conclusions about their performance
in practical settings. This is due to several limitations: (1)
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none of the implementations are open-source (with the
exception of [73]) which makes it burdensome to reproduce
results, especially in new empirical settings; (2) most of
the prior evaluations are based on a few and often small
datasets without real query logs; (3) some attacks and/or
their evaluations are based on assumptions which may
or may not be realistic, depending on the application
scenario. We stress that some of these limitations are
due to the fact that obtaining real-world query logs is
very challenging. In fact, this has been recognized as
an important impediment to the evaluation of attacks for
some time [34], [73]. A consequence of this is that prior
evaluations vary greatly in what assumptions they make
about queries, e.g., some evaluations of keyword attacks
use the most frequent keywords [12], [38] while others
use the least frequent keywords [9], [73], a choice that
can significantly affect results.

Our contributions. We broaden the scope of ESA crypt-
analysis with the following contributions:

1) We design and implement an open-source Python
framework called LEAKER that evaluates the major
leakage attacks against keyword and range (oblivious
or structured) ESAs on arbitrary datasets. It is intended
as an easy-to-use reference tool for research on leakage
attacks and mitigations. With LEAKER we enable
and invite the community to contribute additional
attacks and evaluations to continually advance our
understanding of leakage.

2) We uncover a wide set of real-world datasets that
capture different realistic use cases for ESAs and, for
the first time, include real user queries (query logs),
which has long been a well-known challenge in the field.
For keyword search, this includes search engine and
genetic data. For range search, this includes scientific,
medical, human resources, sales, and insurance data.
The datasets we consider cover significantly more
settings than those used in previous work and can serve
the community for future benchmarks.

3) We use LEAKER to systematically evaluate attacks on
oblivious and structured ESAs on real-world data. Our
analysis is an important step towards understanding the
practicality of many well-known leakage attacks and
provides some new insights which were not obtained
by previous evaluations. For example, we find that the
BKM attacks1 of Blackstone et al. [9] can achieve
higher recovery rates than previously reported when
evaluated with real query logs. On the other hand, the
recovery rates of the IKK attack of Islam et al. [38]
and of the COUNT attacks of Cash et al. [12] were
lower on our datasets. Similarly, the recovery rates
of many well-known range attacks were (expectedly)
lower on our real-world query logs and data collections.
However, when using synthetic query distributions
based on statistics from our query logs, the recovery
rates improved enough to be considered practical.

Guidance on how to interpret our results. We stress that
the goal of our work is to better understand the state-of-the-
art leakage attacks and not to provide a security analysis
of various leakage profiles. In other words, the fact that an
attack has low recovery rates on a given leakage profile

1. Throughout, we denote attacks by first letter of author names.

under real-world queries and data says nothing about the
security of that leakage profile. Understanding whether an
attack improves on real-world data or does worse, however,
is important for several reasons. First, since the recovery
rates of leakage attacks often depend (strongly) on the
query and data distributions, it is natural to ask how they
perform on a variety of distributions and especially on
distributions that capture real-world scenarios. Second,
understanding how attacks perform on real-world data
allows designers to improve their intuition about their
designs and whether there is enough of a “security margin”
for practical deployment or whether they should switch to
a scheme with a different leakage profile. What constitutes
the right “security margin” here is, of course, subjective and
different opinions are possible but making such evaluations
available to the community is important. A third reason that
evaluating state-of-the-art attacks on a variety of datasets
is important is that it can help us to uncover new data and
query characteristics that affect recovery rates.

Outline. We give related work in §2, preliminaries in §3,
and a general overview of leakage attacks in §4. In §5, we
detail the design of our LEAKER framework for evaluating
leakage attacks. Our real-world datasets are presented in §6
and our evaluation of attacks is shown in §7. We conclude
in §8.

2. Related Work

Our work is on the evaluation of leakage attacks. Since
these are described in §4, we focus here on ESAs and
query log analysis.

Encrypted search algorithms. We use the term
encrypted search algorithm to refer to any crypto-
graphic primitive/protocol that allows one to execute
search algorithms on encrypted data. ESAs can be
built using a variety of techniques including fully-
homomorphic encryption (FHE) [24], property-preserving
encryption (PPE) [4], [8], functional encryption [11],
oblivious RAMs (ORAM) [28], secure multi-party compu-
tation (MPC) [27], [84], and SSE/STE (see below). In this
work we refer to ESAs built from ORAM as oblivious
ESAs and to ESAs built from SSE/STE as structured ESAs.
Note, however, that the line between these notions is blurry
as one can also view ORAM as a (low-leakage) structured
encryption scheme for arrays [47].

Searchable/structured encryption. Searching on en-
crypted data was first explicitly considered by Song, Wag-
ner and Perrig [76], though previous work by Goldreich
and Ostrovsky on ORAM [28] could also be used. Boneh
et al. [10] then considered the problem of public-key
searchable encryption. Security definitions for searchable
symmetric encryption (SSE) were proposed by Goh [26]
and Chang and Mitzenmacher [13]. Curtmola et al. [17]
introduced the now standard notion of adaptive security
for SSE, proposed the first optimal-time solution and were
the first to identify and formalize leakage. The index-
based SSE constructions of [17] were later generalized as
structured encryption (STE) by Chase and Kamara [15].
The purpose of STE (referred to as structure-only STE
in [15]) is to encrypt data structures in such a way that they
can be privately queried. This is different than the purpose
of SSE which is to encrypt data collections so that they
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can support private keyword search. Of course, STE and,
specifically the special case of encrypted multi-maps, are
a building block for optimal SSE schemes. STE, however,
has other applications beyond SSE including various kinds
of encrypted databases [2], [47]–[49], [88].

Other SoKs. Fuller et al. [23] provide a survey of
encrypted search and Yao et al. [85] provide a survey
of leakage attacks, largely focusing on property-preserving
encryption. Our work focuses on leakage attacks against
structured and oblivious ESAs and provides a new software
framework and datasets to evaluate these attacks.

Query log analysis. Researchers across different fields
have tried to better understand users’ search behavior. This
is known as query log analysis, and is surveyed in [40]–
[42].

Many works analyze query logs gathered by proprietary
systems that only the authors had access to. Unfortunately,
almost none of these works [41], [44], [45], [61], [80] had
data we felt was appropriate to evaluate leakage attacks.
We also reached out to multiple services for relevant
statistics, but none were willing to provide us with even
basic information. As no information relevant to leakage
attacks was available, we thus identified novel, real-world
query data sources (cf. §6) and performed our own analyses
of leakage attacks on them (cf. §7).

3. Preliminaries

With [n] we denote the set {1, . . . , n}, with 2[n] its
power set, and with |s|b the bit length of a string s.

Document collections. A document collection D over
a keyword space W is a sequence of documents
(D1, . . . , Dn), each of which is a set Di ⊆ W. Given
a keyword w ∈ Q from a query space Q ⊆ W, a
keyword search returns the documents that contain w
which we denote as D(w) = {D ∈ D : w ∈ D}. The
function ids : W → 2[n] takes a keyword as input and
returns the identifiers of the documents in D(w). The
frequency of a keyword w is the number of entries that
contain w.

Numerical collections. A numerical collection N over
the universe [N ] is a (multi) sequence of positive inte-
gers (e1, . . . , en), each of which is an integer ei ∈ [N ].
The density of a numerical collection N is defined as
δ(N) = #{e ∈ N}/N ; i.e., the number of unique values
in N over the universe size.

Given a range r = (a, b), where a, b ∈ [N ] and a ≤ b,
a range query returns N(r) = {e ∈ N : a ≤ e ≤ b}. We
overload the function ids : [N ]× [N ]→ 2[n] which takes
a range as input and returns the identifiers of the elements
that are within the range r = (a, b). The width of a range
query r = (a, b) is the value b− a+ 1.

Leakage. The leakage profile of an ESA is a set of leakage
patterns which are functions that map the collection and
queries to some target space. We denote a (document or
numerical) collection of data entries as C, and a query
which can be either a keyword or a range as q. We recall
common leakage patterns as defined in [9]:

• The response identity pattern rid (or access pat-
tern) reveals the identifiers: rid(C, q1, . . . , qt) =(
ids(q1), . . . , ids(qt)

)
.

• The query equality pattern qeq (or search pattern) reveals
if and when queries are equal: qeq(C, q1, . . . , qt) =
M ∈ {0, 1}t×t, where M [i, j] = 1 iff qi = qj .

• The response length pattern rlen leaks the num-
ber of matching entries: rlen (C, q1, . . . , qt) =
(|ids(q1)|, . . . , |ids(qt)|).

• The co-occurrence pattern co leaks how often
keywords co-occur within the same document:
co (D, w1, . . . , wt) = M ∈ [n]t×t, where M [i, j] =
|ids(wi) ∩ ids(wj)|. This information is implied by rid
and implies rlen.

• The volume pattern vol leaks the bit length
of matching entries: vol (C, q1, . . . , qt) =(
(|e|b)e∈C(q1)

, . . . , (|e|b)e∈C(qt)

)
.

• The total volume pattern tvol leaks the total bit
length of matching entries: tvol (C, q1, . . . , qt) =(∑

e∈C(q1)
|e|b, . . . ,

∑
e∈C(qt)

|e|b
)

.

Additional patterns include order(N), the order of the
elements, and rankv(N), the number of entries that are
less than or equal to a given value v.

4. Existing Leakage Attacks

Here, we provide an overview of leakage attacks against
oblivious and structured keyword (point) and range ESAs
and classify them according to the following properties.

Adversarial model. The two main adversarial models
considered against ESAs are snapshot and persistent
adversaries. A snapshot adversary has only access to the
encrypted structures and any associated ciphertexts. This
captures attackers that, e.g., corrupt a server and read its
memory. A persistent adversary has access to the encrypted
structures, ciphertexts, and to the transcripts of query and
update operations. This captures an attacker that corrupts
a server and observes all interactions.

Target. Different information can be targeted. In a data
reconstruction attack, the adversary tries to recover infor-
mation about the data, whereas in a query reconstruction
attack, it tries to recover information about the queries.

Auxiliary data. Many leakage attacks require some auxil-
iary data or knowledge. A sampled-data attack requires
a sample from a distribution that is close to the data’s
distribution and a sampled-query attack requires one from
a distribution close to the queries. On the other hand, a
known-data attack requires explicit knowledge of a subset
of the data (partial knowledge). A known-query attack
requires knowledge of a subset of the queries.

Passive or active. In a passive attack, the adversary does
not choose any data or queries. In an active attack, it is
able to interact with the user, e.g., by injecting data.

This work. We focus on the evaluation of persistent query-
and data-recovery attacks that require either no auxiliary
data, known data or known queries. More precisely, in
the case of keyword search we evaluate query-recovery
attacks with known-data and in the case of ranges we
evaluate data-recovery attacks. We leave the evaluation of
sampled-data and sampled-query attacks under real-world
data as future work. Properly modeling real-world auxiliary
data is challenging since the auxiliary data needs to come
from a real-world distribution that is “close” to real-world
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Table 1: Major leakage attacks and our perceived risk. The target is either Keyword query (K) or Range data (Value/
Count, RV/RC) reconstruction. B is the maximum width and k the amount of missing queries per width. A denotes
that all possible response lengths occur (only within all widths ≤ B for AB , or k missing therein for AB,k). �� shows
no success on our real-world datasets, �� denotes some success (K for high partial Knowledge ≥ 75%, D for Dense
data, W for large Widths close to N , S for Specific data values, E for Evenly and ¬E for unevenly distributed data
collections), �� is severe risk across all of our evaluated instances.

Attack Target
Leakage Auxiliary Data Assumptions

Risk (§7)
Profile (§3) Queries Data Queries Data

IKK [38] K co Partial Partial Non-rep. − ��
DETIKK [73] K co − Partial Non-rep. − �� K

COUNT V.2 [12] K co − Partial Non-rep. − �� K

SUBGRAPH-ID [9] K rid − Partial Non-rep. − ��
SUBGRAPH-VL [9] K vol − Partial Non-rep. − ��
VOLAN [9] K tvol − Partial − − �� K

SELVOLAN [9] K tvol, rlen − Partial − − �� K

LMP-RK [55] RV rid, rank − − − Dense �� D

LMP-ID [55] RV rid − − − Dense �� D

LMP-APP [55] RV rid − − − Dense �� D

GENKKNO [33] RV rid − − Uniform − �� W∨¬E

APPROXVALUE [33] RV rid − − Uniform Specific �� S∧(W∨¬E)

ARR [53] RV rid, qeq − − − − �� W

ARR-OR RV rid, qeq, order − − − − ��
GLMP [32] RC rlen − − A − ��
GJW-BASIC [34] RC rlen B − AB − ��
GJW-MISSING [34] RC rlen B, k − AB,k − ��
APA [54] RC rlen, qeq − − − − �� E

query or data distribution. Collections of datasets with
these properties are hard to find.

Risk factors. We summarize our findings in Tab. 1,
where we consider query-recovery attacks that recover
more than 15% of the queries and data-recovery attacks
with reconstruction error less than 15% on our datasets as
successful. This threshold is, of course, subjective so the
reader can use our detailed empirical results from §7 to
formulate their own interpretation and conclusions. Note
that the recovery rate of an attack depends on a wide range
of factors which we identify in §7. For example, in the case
of ranges, these factors include the adversary’s knowledge
of the data, the query width, and characteristics of the
data such as density and whether specific values appear. In
addition, we also observed that a skew in the data towards
endpoints (1 or N ) can result in very different recovery
rates (see details in App. C.2.1).

4.1. Attacks Against Keyword ESAs

For keyword search, most attacks are known-data
attacks which require some partial knowledge of the data
collection.

The IKK attacks. The first leakage attack was described
by Islam et al. [38], who proposed a query reconstruction
attack in the persistent model using the co-occurrence
pattern co and a known fraction of the queries. Known
as IKK it, roughly speaking, solves an optimization prob-
lem minimizing a distance between candidate and observed
co-occurrence. Since finding the optimal solution is NP-
complete, IKK uses simulated annealing [51] to probabilis-
tically find an approximation. Originally introduced as a
sampled-data attack, we evaluate it as a known-data attack
as in [12]. Recently, Roessink et al. [73] showed how
IKK can be improved with deterministic techniques from
the COUNT attack [12] (described next). This modified

attack, which we refer to as DETIKK, reduces the search
space for the annealing process and, compared to IKK,
requires no query knowledge.

The Count attacks. A simpler attack called the COUNT

attack was proposed by Cash et al. [12]. Like IKK, COUNT

is a query reconstruction attack that exploits the co-
occurrence pattern co. There are two versions of it. The
first, which we refer to as COUNT V.1, requires knowledge
of some fraction of the data and queries. Its original descrip-
tion contained a bug which was addressed in an updated
version of the paper and lead to an improved variant of
the attack, COUNT V.2, which only requires knowledge
of some fraction of the data. COUNT V.2 constructs a
co-occurrence matrix and compares it to the observed co-
occurrences from co. Candidate matches are identified via
confidence intervals, and are iteratively eliminated if they
are inconsistent with previously confirmed matches.

The BKM attacks. Recently, Blackstone et al. [9] intro-
duced three new passive query reconstruction attacks. The
first, VOLAN, exploits the total volume pattern tvol and
matches a query to the keyword with the closest expected
total volume from the adversary’s known data. The second
attack, SELVOLAN, extends this by further identifying
candidates with a total volume in the known data falling
within a window of the expected volume based on tvol. It
then selects the best candidate using the response length
pattern rlen.

The third attack, SUBGRAPH, is a framework used to
design several attacks using any atomic leakage pattern,
i.e., any pattern leaking information about individual
documents. It constructs two bipartite graphs: one from the
observed leakage and the other from the known data. It then
filters candidates via inconsistencies between the graphs,
confidence intervals (the leakage roughly has to match the
expected value), and an optional cross-filtering that tries to
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invert the leakage and checks if the candidate appears in
all resulting entries. Two concrete attacks that result from
the framework are SUBGRAPH-ID and SUBGRAPH-VL,
which exploit the response identity pattern rid and the
volume pattern vol, respectively.

Other attacks not covered. An attack that exploits qeq
with auxiliary data was given by Liu et al. [57], and
was recently improved by Oya and Kerschbaum [66] also
using rid. Recently, Damie et al. [18] and Gui et al. [35]
proposed sampled-data attacks. Active file-injection attacks
are considered by Zhang et al. [87], Blackstone et al. [9],
as well as Poddar et al. [71]. Additional specialized attacks
against specific ESA instantiations were considered in [1],
[72], [77]. We focus on general passive attacks that do not
rely on auxiliary data.

4.2. Attacks Against Range ESAs

We now turn to attacks against oblivious or structured
range ESAs. In this setting, there are three variants of
attacks: reconstruction attacks, approximate reconstruction
attacks and count reconstruction attacks. More precisely,
a reconstruction attack recovers the exact values in a nu-
merical collection whereas an approximate reconstruction
attack only recovers an approximation of the values. A
count reconstruction attack recovers the (approximate)
number of times the values occur. Range attacks tend to
work “up to reflection”, meaning that the attack recovers
either the original numerical collection (e1, . . . , en) or
its reflection (N − e1 + 1, . . . , N − en + 1). This can be
viewed as a loss of 1 bit of information. In our experiments
in §7 we always report the minimum error rate over either
the original collection or its reflection.

The KKNO attacks. The first attacks against encrypted
range schemes were proposed by Kellaris et al. [50]. Two
attacks were described, both of which are data reconstruc-
tion attacks in the persistent model. The first, KKNO-1,
exploits the response identity pattern rid and assumes that
queries are chosen uniformly at random. At a high level, it
determines an entry as having minimal (or maximal) value
if it is not contained in the largest proper subset of all iden-
tifiers, and determines other entries based on co-occurrence
with that entry. The second attack, KKNO-2, only needs
the response length pattern rlen but still assumes uniform
queries. Intuitively, the attack solves a system of quadratic
equations of distances between values and the amount of
observed queries with the corresponding response length
to uncover the distances between entries. Because both
attacks were directly improved upon (described next), we
did not evaluate them in our work.

The (G)LMP attacks. Lacharité et al. [55] im-
proved KKNO-1, proposing three attacks which we refer
to as LMP-RK, LMP-ID, and LMP-APP. These are data
recovery attacks in the persistent model exploiting the
response identity pattern rid, with LMP-RK also using
the rank pattern. The third attack only recovers an approx-
imation of the values based on reconstructed intervals, but
all attacks assume dense numerical collections. In general,
the attacks identify the left endpoints of the queries (e.g.,
via rank) and assign these values to entries by excluding
differing entries seen in the response.

Grubbs et al. [32] also improved on the KKNO-2
attack with a new attack we refer to as GLMP that only
requires the response length rlen. GLMP, however, only
recovers the frequency (or value counts) of values as
opposed to the values themselves. The attack relies on
the assumption that the queries are made in such a way
that all response lengths are observed. At a high level,
it reduces the observed response lengths to “elementary”
queries (in the sense that they have the form (1, y)) and
uses graph theory to reconstruct counts based on basic
properties of elementary queries.

The GJW attacks. Gui et al. [34] proposed attacks in the
persistent model that only exploit the response length rlen
for count reconstruction. The main attack, called GJW-
BASIC, works when the query width is bounded. It builds
an initial solution similar to GLMP and uses a breadth-
first search that incrementally extends solutions consistent
with the leakage. Modifications were introduced for miss-
ing queries (GJW-MISSING) and other countermeasures,
which we consider outside the scope of this work.

Approximate reconstruction attacks. Several works at-
tempted to weaken the assumptions needed by the KKNO
attacks and their extensions. Grubbs et al. [33] describe
three attacks that do not require density but still as-
sume uniform queries. The first is GENKKNO, which
extends KKNO-1 to an approximate data reconstruction
attack by assigning values to entries based on a comparison
of the observed and expected amount of occurrences in the
leakage. Due to these estimations being individually sym-
metric with regard to the endpoints (1 and N ), queries close
to one endpoint are used to establish a global reflection. The
second attack is APPROXVAL, which assumes the existence
of at least one entry with values occurring in a specific
data range, and uses a single favorably-located entry as
an anchor that can be identified more easily than other
entries. The values around the anchor are then estimated
similarly to the GENKKNO attack. The third attack is
called APPROXORDER and uses the PQ-tree data structure
to approximate the order of the data collection based on
the response identity pattern rid, assuming that the data is
not heavily concentrated over a few values.

The KPT attacks. Kornaropoulos et al. [53] describe an
approximate value reconstruction attack in the persistent
model that is agnostic to the query distribution, denoted
as ARR (agnostic reconstruction range). It reduces to
the problem of support size estimation, in which the
number of outcomes not observed is estimated from the
frequency of observed outcomes. By estimating support
sizes of identifier subsets using the response identity and
query equality patterns (rid and qeq), the corresponding
distances and, therefore, the values can be uncovered and
are assigned according to an order, which can be uncovered
via APPROXORDER. While ARR does not require density
or uniform queries, the instantiation of [53] assumes that
the values are all unique. They suggest alternatives for
dealing with the more general case of repeating values,
which we use in our work. We provide more details on this
in App. A. In our evaluation, ARR uses APPROXORDER

to uncover the order, but we also investigate the case where
it is directly leaked, which we denote by ARR-OR.

Very recently, Kornaropoulos et al. [54] also applied
support size estimation to the setting where only the re-
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sponse length and query equality patterns (rlen and qeq) are
available, resulting in an approximate count reconstruction
attack. It generalizes previous rlen attacks to estimating the
number of queries for specific response lengths and solving
their relation to value distances, including observations
about state-of-the-art encrypted range search schemes [19],
[21]. As a result, the attack is parameterized by the ESA,
and denoted by APA (agnostic parameterized attack).
Crucially, APA requires no assumptions about the query
distribution and also deals with non-dense data.

Other attacks not covered. The above works also in-
troduced sampled-data variants: A version of LMP [55]
uses auxiliary data information to require fewer queries,
while Grubbs et al. [32] also incorporate frequency informa-
tion. APPROXDATA [33] demonstrates how to use APPROX-
ORDER to uncover exact values if density and an auxiliary
data distribution are given, and [34] show how GJW-
BASIC can be improved with auxiliary information about
the data. [32] also recover values of update operations in
case the frequencies have already been determined. k-NN
queries are considered in [52], [53] and Falzon et al. [22]
and Markatou et al. [59] recently proposed attacks on two-
dimensional ranges. Also we did not consider the attack of
Markatou et al. [60] which targets one-dimensional range
queries but assumes that all possible queries are issued.

5. The LEAKER Framework

We designed and implemented LEAKER with the
following goals in mind:

• integration: LEAKER makes the integration and evalua-
tion of new attacks effortless. Researchers can focus on
the design and leave the evaluation process to LEAKER.
This ranges from interfacing with various data sources
to plotting and visualizing the results.

• comparisons: LEAKER includes implementations of the
main leakage attacks for both point/keyword and range
queries. By having attacks implemented in the same
framework, they are easier to compare.

• data sources: practitioners with proprietary data can
use LEAKER to evaluate attacks on their specific data,
leading to a tailored evaluation.

• usability: LEAKER runs on many platforms and does
not require domain-specific knowledge—one only needs
to specify the data sources and evaluation criteria.

• open-source: LEAKER (including its evaluation scripts)
are freely available as open source software at https:
//encrypto.de/code/LEAKER.

5.1. Architecture

For interoperability, we implemented LEAKER in
Python 3.8. It has 8 149 lines of code (1 148 are tests).
LEAKER evaluates a leakage attack on a data collection
using queries from a query log and outputs a visualization
of the results. It consists of several modules described next:
a pre-processor, a datastore, an attack and pattern library,
an evaluator, a visualizer, and a statistical analyzer.

Pre-processor. The pre-processor parses and prepares data
collections and query logs for use by the other LEAKER
modules. It includes a set of parsers that can be arbitrarily
combined to build a data collection or query log from a

directory of files. Currently, LEAKER includes file parsers
for .csv, .json, .xml, .txt, .mbox, .pdf, .docx
and .pptx files. In the query logs that we identified,
range queries were often part of a larger SQL query so
we implemented a SQL parser that identifies and extracts
range queries contained in complex SQL queries.

Once parsed, LEAKER uses standard information
retrieval techniques to tokenize strings into keywords,
extract stems, remove stop words, and identify numerical
values. Due to its modular design, the pre-processor can
be easily extended for new file types.

Datastore and cache. After a file has been processed, it
is passed to an indexer which stores the data in a set of
internal data structures for later use. Numerical data is
additionally discretized before being stored. Our choice of
data structures to store and manage data collections and
query logs is important because one of our main goals is to
evaluate attacks on large datasets. For example, compared
to previous evaluations of co-occurrence attacks, which
used datasets with 500 [12], 1 500 [73], or up to 2 500
keywords [38], LEAKER evaluates the same attacks on
datasets with more than 250 000 keywords (cf. §6). To
achieve this, we use NumPy [37] arrays to store and process
numerical data and Whoosh [14] to store and process
keyword data. We chose Whoosh because of its Python
compatibilitiy and ability to store additional metadata such
as document volume in the index.

To get significant results, a single LEAKER analysis
can require a large number of repeated evaluations. We
speed up NumPy operations by integrating the optimized
just-in-time compiler Numba [7]. To address the costly
repeated querying of Whoosh structures on large datasets,
we use memoization and store the results of Whoosh
queries in a cache so we can reuse them across evaluations.

Attack & pattern library. LEAKER comes with a library
of attacks and leakage patterns that can be called on any
data collection and query log. We implemented the main
attacks from Tab. 1 and—with the exception of GLMP
and GJW2—verified their correctness by replicating the
results from the original papers. The attack library is easily
extendable to new attacks. One just has to realize an
interface performing recovery given the observed required
leakage. Examples are given in Listings 1 and 2 in App. B.

All attacks in LEAKER’s library are purely in Python
except for APPROXORDER [33], where we use a C++
implementation of PQ-trees [30]. Since we could not
find any public Python-compatible implementations of
the Jackknife or Valiant-Valiant estimators used in the
ARR and APA attacks [53], [54] we implemented them
ourselves in Python.

Evaluator. This module evaluates attacks. Given an attack
and a leakage pattern from the library and a data collection
and query log from the datastore, LEAKER proceeds as
follows. It creates the observed leakage of the leakage
patterns on the data collection and query log. Since this
can be expensive (e.g., the co-occurrence pattern requires
O(#W · (#W+ n)) storage and time) it is also cached.
Then, it executes the attack on the observed leakage a
number of times (in parallel) and stores the results. To

2. We used synthetic data to verify the correctness of these two attacks
because we did not have the original data that was used.
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Table 2: Overview of our keyword search use cases and
dataset properties. #QD is the size of the entire log and
#Q the amount of unique queries. n is the amount of
documents and #W the amount of unique keywords.

Case Data
Query log Data collection

#users #QD #Q n #W

Web AOL [67] 656k 52M 2.9M 151k 268k

Genetic TAIR [20] 1.3k 650k 54k 115k 690k

Email GMail (ours) 6 – 16-100 6k-47k 60k-895k

Cloud Drive (ours) 1 – 45 200 19k

evaluate attacks that require known data and/or queries, it
first executes an attack-specific sampling algorithm for the
known data.

Visualizer. Once all results have been collected, they
are used to compute the desired accuracy results (e.g.,
depending on a choice of available errors) and passed
to a visualizer. The visualizer then translates them into
graphical .png and TikZ plots, which can easily be
extended to different error or visualization types. All plots
in this work were generated with LEAKER.

Statistical analyzer. LEAKER also includes a statistical
analyzer module which computes and plots statistics over
its data sources. This is useful to get a better understanding
of a data collection’s and a query log’s characteristics.

6. Data Collections & Query Logs

We describe new datasets including query logs that
we believe capture a broad range of realistic scenarios.
The datasets include both publicly-available and private
data collections and query logs. We provide in App. C.1
a list of other possible data sources that could be used
with LEAKER. In App. C.1 we also describe how we
pre-processed our data and in App. C.2 we provide some
statistics of our datasets.

Data availability. All data is publicly available, except
for the private datasets we collected from our volunteers.
All our data pre-processing is integrated into LEAKER.

6.1. Keyword Data

We present an overview of all of our keyword data
in Tab. 2 and give more background in the following.

Search engines. A major proposed application for ESAs
are encrypted search engines, e.g., for desktop search
applications or to add search capabilities to email clients
or file managers. Due to privacy concerns, we were not
able to find public datasets matching these settings so we
proceeded as follows.

First, we evaluated attacks on the private data of 7
volunteers by providing scripts to locally extract their
GMail and Google Drive query logs and data collections.
Out of these participants, 6 evaluated the attacks on their
GMail accounts and 1 on their Google Drive account. They
returned to us basic statistics of their data, the accuracy of
the attacks, and their consent to use and publish the results.
We will note the average results of all evaluations as well
as the worst and best cases. No personal information is
included in this work or in LEAKER.

Because the number of private users we had access
to was small and because we cannot release their data,

Table 3: Summary of our scientific data range query logs
on the PhotoObjAll.dec collection [74] (n = 5242 134
entries with domain N = 10 456, density 95.82%, and an
even data distribution). #QD is the size of the entire log
and #Q the amount of unique queries.

Data #users #QD #Q

SDSS-S 1 1.4k 215
SDSS-M 1 13.4k 5 562
SDSS-L 1 38.2k 8 220

we also used public search engine data. Specifically, we
used Wikipedia [81] as a data collection and the AOL
query log [67]. We recognize, of course, that Wikipedia
is public so it is not completely representative of the
scenarios mentioned above in which one often queries
private data. Furthermore, it is clear that using AOL queries
on a Wikipedia data collection is not ideal but, given the
scarcity of real-world data with matching query logs, this
is the best one can do at the current time.

Genetic. We were also interested in domain-specific in-
stances that might be queried in a totally different manner.
As a prominent case, consider a lab querying large-scale
human genetic data for health research, e.g., looking
for expressions of specific proteins in gene annotations.
Because this query data is very sensitive and not publicly
available, we used the following approach.

We performed evaluations on publicly available data
that can be seen as related to the above case. Concretely,
we use The Arabidopsis Information Resource (TAIR)
database [56] as a data collection as well as its publicly
released query log [20]. The data contains genetic an-
notations and expression information of the Arabidopsis
Thaliana plant, which itself is not sensitive. However, we
believe it provides a close model for querying in genomic
research, as similar information might be queried in the
sensitive case of human genomic data.

6.2. Numerical Data

We found five datasets that capture scientific, medical,
human resources, sales, and insurance scenarios. The
dataset characteristics are summarized in Tab. 3 and Tab. 4.
The data is discretized by scaling3, rounding, and mapping
to integers which allows us to evaluate attacks without
losing too much precision. We display selected data
distributions in Fig. 5 in App. C.2.1, from which we derive
the general risk factors of different distributions.

Scientific data. Data from scientific research can often be
sensitive. This is the case, e.g., with data generated from
satellites, drug and medical studies, or nuclear experiments.
For this, we use the Sloan Digital Sky Survey (SDSS),
which contains a variety of astronomical data [74]. In
addition to astronomy, the SDSS has also been used to
investigate user behavior [64], [86]. We used the SDSS
to create one data collection and 3 query logs (cf. Tab. 3)
using a scale factor of 100.

Medical. Due to high sensitivity, medical data has long
been proposed as an ESA application and many works
used health data like HCUP [3] to evaluate attacks [32],

3. To scale a value we multiply it by a scale factor 10a, where a ∈ Z.
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Table 4: Summary of our range use cases and data with n
entries, domain size N , and density δ. E and ¬E denote
even and uneven data distributions, respectively (cf. §4).

Case Data collection Scale n N δ (%) Distr.

Medical
MIMIC-T4 [43] ×10 8 058 73 80.8 ¬E
MIMIC-PC [43] ×10 7 709 2 684 8.6 ¬E
MIMIC-CEA [43] ×1 2 844 9 978 3.3 ¬E

HR Salaries [29] ×0.01 536 395 2.3 E

Sales Sales [79] ×1 143 6 288 2.3 E

Insurance Insurance [16] ×1 886 25 425 1.2 ¬E

[34], [50], [54], [55], [63]. While HCUP is a real-world
dataset with millions of patients, its attributes usually have
small domain, e.g., a patient’s age. While evaluation on
small domains is important, we also wanted to know
how various attacks performed on varying and large
domains so we considered the Medical Information Mart
for Intensive Care (MIMIC) dataset [43] which includes
records of medical blood and urine tests performed on ICU
patients of the Beth Israel Deaconess Medical Center
between 2001 and 2012. We used MIMIC to create
three data collections: (1) MIMIC-T4 for patients’ free
thyroxine, used to evaluate thryroid function; (2) MIMIC-
PC for patients’ protein/creatine ratio to detect kidney
damage or pregnancy; and (3) MIMIC-CEA for patients’
carcinoembyronic antigen to detect cancer.

Human resources. Human resource databases contain
personally identifiable information like salaries and de-
mographic information. To capture this, we used a March
2018 snapshot of minimum salaries of the UK Attorney
General’s Office junior civil servants [29].

Sales. Sales data can also be sensitive as it contains trade
secrets. We use data released by Walmart for a prediction
competition [79], containing weekly sales of department 1
of store 36 from 2010 to 2012.

Insurance. Insurance data may be sensitive since it can
reveal financial or health challenges. We use a dataset of
property damage insurance claims [16] released by the
New York Department of Transportation. They were filed
with Allstate in September 2018.

6.3. Privacy Considerations

The experiments described in this work were exempt
of IRB approval from our institutions. None of the datasets
used were de-anonymized and we stress that LEAKER
cannot be used to de-anonymize data; its only use is to
evaluate the efficacy of leakage attacks. All the datasets
we use are public with the exception of the private data
for the search engine scenario. We obtained consent from
all involved parties to publish the attack evaluations and
some statistics. Access to PhysioNet’s MIMIC [43] data
is constrained and was only handled by approved authors
who completed the required training courses and strictly
adhered to PhysioNet’s data use agreement.

7. Empirical Evaluation

In this section, we use LEAKER to evaluate all the
attacks described in §4 on the datasets from §6 and identify
the main characteristics that impact each attack’s recovery
rate.

7.1. Keyword Attacks

We present results for the private GMail and Drive
logs in Fig. 1 and results for the public AOL and TAIR
query logs in Figs. 2 and 3. Further plots are given
in App. D. Prior to describing our results, we introduce
relevant parameters and our experimental setting.

Frequency. Each query in the query log matches a number
of entries in the data collection which is its frequency.
We investigated two settings: high frequency and low
frequency. The former includes an average frequency
ranging from 1 806 to 5 707, whereas the latter ranges
from 1 to 859.

Number of users. When it comes to the number of
users, there are two main settings in which structured and
oblivious ESAs can be deployed: single-user or multi-user.
The former characterizes a setting in which a single user
queries its dataset, while in the latter multiple users query
the same dataset. In the single-user case, we evaluated the
attacks by taking the average recovery rate over the queries
of 5 users each of which made at least 2 000 queries. In
the multi-user setting, we evaluate attacks on a sample
of the query logs which, in the case of AOL consists of
656 038 users and in the case of TAIR consists of 1 263
users. For the private Google data, we only evaluated the
attacks in the single-user setting since each user queried
their own data collection. While the number of users in
our private Google dataset is low, the experiments on AOL
and TAIR can give some indications as to how the attacks
would perform on datasets with a large number of users.

User activity. We noticed that users have different query
activities, with some issuing a lot of queries while others
are less active. Over all of our datasets, with the exception
of the Google data, the most active user issued 6 389
queries while the least active user issued 2 000 queries.
Since we did not find any noticeable difference in recovery
rates (for all attacks) against the most active and the least
active users, we only report the least active case in Fig. 3.
The most active case is provided in Fig. 7 in App. D.

Query sampling. Real-world query logs can be extremely
large, and given the computational complexity of some
attacks, we had to limit the number of queries we used. To
do this we sampled the query logs using two approaches
which we refer to as full sampling and partial sampling.
Full sampling outputs a new, smaller query log composed
of keywords sampled independently of whether they exist
in the adversary’s known-data set or not; in other words,
it is possible that a keyword appears in the query log
but is unknown to the adversary. In contrast, partial
sampling generates a new and smaller query log that is
only composed of keywords in the adversary’s known-data
set. This captures a worst-case scenario where the user
only queries for keywords in documents known to the
adversary.

For each of the public query logs, we sampled logs of
size 500, 2500 and 5000. Since we did not observe any
major deviations in the recovery rates of the attacks based
on size we only show the results for (sampled) query logs
of size 500. Since the private query logs were already
small, we did not sample them.

Query repetition. We observed that some of the queries
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in the log are repeated whereas some previous works
assumed distinct queries. This assumption makes sense if
the adversary can distinguish between queries based on
the query equality (which is disclosed by many structured
ESAs) and ignore repeated queries but the assumption no
longer holds for oblivious ESAs or structured ESAs that
do not leak the query equality [25], [47]. Given that some
attacks apply to both structured and oblivious ESAs and
may be affected by this, it was important to evaluate both
settings: with and without repetition.

Experimental setting. For public datasets, all our eval-
uations were run on an Ubuntu 20.04 machine
with 390GB memory and 1TB disk space. Unless explicitly
specified, every attack is evaluated as follows: given a query
log, a data collection, and a specific combination of the
parameters highlighted above, we sample a new query
log and data collection. For a fixed rate of adversarial
knowledge (i.e., known-data rate), we first sample a subset
of the entire data collection � times, and for each sample,
we sample a subset of the query log λ times. We denote
this as a �×λ evaluation and it accounts for �·λ evaluations.
For most experiments we picked � = λ = 5 and display
the median, maximum and minimum recovery rate.4 In the
public setting, we attack 150 queries drawn from the query
log according to their frequencies. We denote by X-Y a
setting in which the type of user and the frequency are set
to X and Y, respectively.5 Recall that X can be set to all
users (A) or to the single-user setting (S). Y can be set
as low (L) or high (H) frequency. For private data, each
participant ran the evaluation on their own machine using
their entire query log, which did not require any query
sampling process.

Discussion. There are obvious limitations to some of
our experiments. One example is in how we obtain the
adversary’s known-data. Since we do not know how an
adversary would choose/obtain this data in practice, we
have to make some assumptions. For our experiments,
we chose to run experiments with multiple known-data
samples chosen uniformly at random but other approaches
could be considered and it would be interesting to know
how they affect the recovery rates. Another aspect is in
how we sample the public query logs to generate smaller
more tractable logs. We considered different strategies and
opted for uniform sampling but, again, one could consider
other ways to sample.

7.1.1. The IKK Attacks [38], [73]. Given the attacks’
quadratic costs in the number of keywords, evaluating
them on TAIR was infeasible so we only considered AOL.

IKK did not work in any of our settings. This stands
in contrast to previous results which showed high recovery
rates but assuming almost full knowledge of the data [12],
[73] on small datasets. The best recovery rate we observed
was less than 15%; even with full knowledge of the data
and in the A-H setting (all users, high frequency), which is
the least realistic setting. We stopped the attack’s annealing

4. We limited evaluations to 25 per user due to the computational
overhead incurred by some attacks. As an instance, the COUNT V.2 attack
took one day to complete a single iteration for 5 users.

5. For ease of exposition, we mainly focus on these two parameters,
but we also varied the type of the query sampling, the query repetition,
or the length of the query log.

process after it ran for 48 hours. We attribute this to a
large search space, since the DETIKK [73] attack—which
has a reduced number of states—does not suffer from this
in the high-frequency setting (cf. Fig. 3). This evaluation
suggests that DETIKK may only work in practical settings
with high known-data rates.

7.1.2. The Count Attack [12]. Like IKK, COUNT V.2 is
also quadratic in the number of keywords so we only ran
it on the AOL query log.

In our evaluations, COUNT V.2 succeeded in all of our
settings but using full knowledge of the data. Without full
knowledge, it only succeeded in the A-H setting with a
recovery rate of 63% based on a 30% known-data rate.
Here, the query frequency had a mean of 5 707. This
aligns with the results stated in [9]. However, we observed
that without full knowledge of the data, COUNT V.2
failed to achieve adequate recovery rates. For example, in
the S-L setting, it achieved 8% recovery rate even with
knowledge of 90% of the data (cf. Fig. 3 for more data
points). Similarly to IKK, this suggests that COUNT V.2
may require very high known-data rates in more practical
settings.

7.1.3. The BKM Attacks [9]. The BKM attacks were
efficient enough to evaluate on all of our query logs.

The SUBGRAPH framework. Against our private
dataset (Fig. 1), both attacks did surprisingly well. For the
email case, more than 18.75% of the real-world queries are
recovered with knowledge of only 5% of the data.6 Though
the private dataset had a very small number of users, we
did observe that the recovery rates of the Subgraph attacks
on the Gmail data were very consistent across users and
always greater than 18.75%. On the Drive dataset, the
attacks achieved a much lower recovery rate with low
known-data rates; however when 35% of the data is known,
both attacks recovered half the queries.

In the public data setting (Fig. 3), both SUBGRAPH

attacks also achieve non-trivial recovery rates. For high-
frequency queries, SUBGRAPHVL achieves very high
recovery rates almost independently of the known-data
rate and of whether the queries come from a single user or
aggregated users. SUBGRAPHID, however, has a slightly
lower but still significant recovery rate: 86% in the S-H
setting for AOL with known-data rate of 10%. For low-
frequency queries (.-L), both attacks still perform well for
an average frequency as low as 4.85 (cf. Fig. 7 in App. D).
For frequency 1, however, we found that SUBGRAPHVL
does not work at all, while SUBGRAPHID can still correctly
recover queries at a low but significant rate (cf. Fig. 3). This
is in contrast to the original evaluation of the attack [9],
where queries with frequency 1 (sampled from the data
collection) could not be recovered. This again illustrates
the value of using real-world query logs for evaluations
as it can uncover new settings in which existing attacks
work.

In Fig. 2, the queries are fully sampled from the query
logs and we allow for repeated queries. We noticed that: (1)
the variance of the recovery rate increases; and (2) the
recovery rate of SUBGRAPH is reduced by about 40% if

6. Given that email data often contains public information such as
updates and spam, we consider a 5% known-data rate to be realistic.
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Table 5: Normalized mean errors on the entire SDSS
query logs. The collection is sampled 25× uniformly at
random with size n = 104 (n = 103 for APA and ARR).

Instance GKKNO AVALUE ARR ARR-OR APA-ORBT APA-ORABT

SDSS-S 0.413 0.432 0.473 0.249 0.242 0.239
SDSS-M 0.408 0.435 0.287 0.128 0.242 0.240
SDSS-L 0.417 0.456 0.286 0.141 0.241 0.242

we allow for repeated queries. Both attacks achieve lower
minimum recovery rates—around 40% for 10% known-
data rate—whereas their median recovery rate drops to
similar levels for all known-data rates if queries repeat.
We can see that the recovery rate is affected by full
sampling and repeated queries but remains significant in
all cases. The attacks also work slightly better even with
lower known-data rates on AOL compared to our private
datasets (Fig. 1). A possible intuition why these attacks
may work better than others is that they rely on atomic
leakage concerning individual documents.

Total volume attacks. Compared to the SUBGRAPH at-
tacks, the VOLAN and the SELVOLAN attacks achieved
significantly lower recovery rates in the private data
setting. More precisely, they only achieved 20% recovery
rate on the GMail dataset even with 75% known-data
rate (see Fig. 1).

We also noticed that the attacks did poorly in the
public setting considered in Fig. 3. For high-frequency
queries, they needed almost perfect knowledge of the data
to achieve an adequate recovery rate. Specifically, at least
70% of the data needs to be known in order to recover
more than 7% of the queries in the S-H setting. For very
low frequencies, none of the attacks worked with less than
100% known-data rate. Therefore, based on our datasets,
we only consider them to pose a risk for very high known-
data rates.

7.2. Range Attacks

We ran our evaluation against the numerical datasets
described in §6.2. Our results are summarized in Tab. 5
and Fig. 4. Similar to our keyword attack evaluation (§7.1),
we first describe the main parameters that impact accuracy
as well as our experimental setting, and then proceed to a
high-level description of our results.

Query distribution. This captures how a user queries its
own dataset. For the SDSS dataset, we were fortunate to
have access to both the query log and its corresponding
data collection. For datasets with no available query log,
we had to consider synthetic query distributions. Previ-
ously considered query distributions include the uniform
distribution and instances of the beta distribution [53], [54].
Given that none of these distributions are supported by
real-world query logs, we introduce a new distribution
we call the truncated Zipf distribution which has some
of the basic properties of the distributions we observed
in SDSS (cf. App. C.2.3). To summarize, this distribution
is a variant of the standard Zipf(a,N) distribution where
we fix a to be 5. It also has two additional parameters:
the maximum width B, and the fraction f. The former
removes any range that has width larger than B, and the
latter ensures that only a fraction f of possible ranges
occur. We denote this new variant of the Zipf distribution
TZipf(B, f). We varied both B and f and found that B can

have a significant impact on recovery rates. Thus, in our
evaluation we present results for both (relatively) small
and large B, and set f to be small but large enough to
give us a meaningful query space.

Amount of queries. For the SDSS dataset, we did not
sample the query logs and, instead, used them in their
entirety, see Tab. 3. For the other numerical datasets,
however, we sampled 102 to 105 queries with replacement.

Characteristics of the data. The datasets we use and
that are described in §6, have different characteristics
and properties which allows us to assess attacks in dif-
ferent scenarios. We recall some of their basic properties
here (more details are provided in App. C.2.1): the medical
dataset, MIMIC, and the insurance dataset, Insurance,
are skewed towards low values with just a few high-
value outliers so we refer to them as uneven distributions,
whereas entries in the human resources dataset, Salaries,
and the sales dataset, Sales, are spread more evenly across
the domain range so we refer to them as even distributions.

Data density and size. Other basic properties are the
size of a dataset and the density of an attribute/column
of dataset. The size refers to the number of records in
the collection and the density of an attribute/column is
the ratio of unique values in the attribute/column over its
domain size. We recall that the medical dataset MIMIC-T4
is much more dense than the other datasets.

Experimental setting. Contrary to the keyword attacks
we evaluated which were all query recovery attacks, the
range attacks we consider are all data recovery attacks.
To measure success, we use a normalized mean absolute
error. This error is a distance measure equal to the mean of
the normalized differences between the true and recovered
values. For count reconstruction attacks, we compute the
error between the sorted values, i.e., independent of the
order. To make this difference clear and comparable to
all attacks (disregarding order information), we add the
suffix -OR in the plots for these cases. As a reference,
an error close to 0.5 means that the attack does not work,
while one close to 0 is synonymous to a practical attack.
Every attack is evaluated several times and we report the
mean, maximum, and minimum error.

7.2.1. The (G)LMP Attacks [32], [55]. As expected,
the LMP [55] attacks were successful on MIMIC-T4,
which is dense, under uniform queries. The attacks were
also successful on MIMIC-T4 with queries sampled from
a truncated Zipf and they achieved very small error
rates (e.g., LMP-RK achieves a 0.0003 error rate). If the
attacks output the reflection, the error is significantly larger.
Based on our experiments, as predicted, we consider LMP
as risky if the data is dense.

The GLMP [32] attack, which is a count-reconstruction
attack, achieved perfect recovery on MIMIC-T4 if we
disregard density.7 This occurred with 105 queries from a
truncated Zipf distribution with B = 73 and f = 0.2.

7.2.2. The GJW Attacks [34]. With the exception of
the Salaries case, both GJW-BASIC and GJW-MISSING

aborted due to infeasible search spaces. More precisely,

7. Running the attack on a collection that has been made completely
dense by removing values that do not occur from the collection’s universe.
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for Salaries, the recovered counts were always completely
incorrect when queries are sampled from TZipf, and
while the correct counts were uncovered for a uniform
distribution for 105 queries, they were assigned to the
wrong values due to the low density.

7.2.3. Approximate Reconstruction Attacks [33].
Though the GENKKNO and APPROXVAL attacks of [33]
were designed to work with uniform queries, we still evalu-
ated them using our SDSS data collections and query logs.
As expected, they failed to recover any meaningful data,
achieving an error of at least 0.41 (cf. Tab. 5). However, and
perhaps surprisingly, we did find that both attacks achieved
significant recovery rates when queries were sampled from
the truncated Zipf distribution (cf. Fig. 4).

We identified two settings where GENKKNO succeeds
with a truncated Zipf: (1) when it has relatively large B;
and (2) when the data is skewed towards lower values as is
the case in MIMIC and Insurance, where it even succeeds
for a small B. Note that there was an exception to (1)
which was when we evaluated it on the Sales dataset.
Generally, we believe (1) holds because queries with large
width are more likely to cover values close to one of the
endpoints (1 or N ), which is required to determine the
global reflection (i.e., whether the value belongs to the
first or second N/2-half of the domain).8 For (2), we
believe that the skewness of the values in a dataset helps
to easily determine one of the endpoints, and therefore the
global reflection. This is not the case for Sales, where
the probability of hitting any value is almost uniform, as
seen by an error larger than 0.4 for B = 100.

The same holds for APPROXVAL, under the additional
condition that specific values have to be present in the
collection. Namely, the attack assumes that at least one
value in the dataset is in the range [0.2N, 0.3N ] or its
reflection to find its anchor. Though this is true for all data
collections, the fraction of such records is much lower
for MIMIC-PC (0.03%) and MIMIC-CEA (0.4%) than the
others (≥ 2.9%), which are exactly the cases where it
has much worse and unpredictable performance compared
to GENKKNO with a maximum error equal to 0.49 for
5 000 queries, see Fig. 4.

7.2.4. The KPT Attacks [53], [54]. Contrary to the
previous attacks, these attacks achieved low error rates
on the SDSS data and queries but were computation-
ally demanding since they have to solve non-convex or
nonlinear optimization problems with solution size n+ 1.
This computational overhead also meant we could not
evaluate them on our MIMIC datasets. We also had to
rely on SciPy [78] instead of the original MATLAB
optimization to meet our open-source goals (cf. §5). In the
following, we give more details on attack performance.

ARR and ARR-OR. ARR-OR reconstructs with error
rate 0.15 in almost all of our settings but standard encrypted
ranges schemes do not leak the order [19], [21]. In
our experiments, ARR only came close to ARR-OR’s
performance when queries were sampled from truncated
Zipf distributions with large B.

APA. Since APA [54] is parameterized by the underlying
range scheme, we show results for the state-of-the-art

8. This is not the case for the SDSS logs, also diminishing accuracy.

schemes [21] and [19]. Although APA only achieves an
error rate of about 0.24 on the SDSS data collection and
queries, it performs well on other datasets and with various
query amounts and query widths. It is sensitive, however,
to the data distribution. In particular, while it achieves an
error rate of 0.06 on Salaries and of 0.15 on Sales, it
had an error rate of 0.45 on Insurance.

8. Conclusions
In this work, we described LEAKER, a new framework

to implement and evaluate leakage attacks on real-world
data collections and query logs. We hope that LEAKER
will enable the community to easily implement, indepen-
dently evaluate, and compare current and future attacks
and countermeasures. Additional evaluations on more data
would also be valuable in our opinion. We then used
our framework to re-evaluate the major leakage attacks
for keyword and range queries. The implications of our
evaluation are as follows.

Keyword search. The IKK [38] and COUNT [12] attacks
did not work as well on our datasets whereas the SUB-
GRAPH attacks of [9] performed surprisingly well even in
settings with low known-data rates, and on low-frequency
queries on small private datasets. This contradicts previous
intuitions that SUBGRAPH attacks might not work as
well on real-world data [9]. As a consequence, we view
SUBGRAPH attacks as practical even for low-frequency
keywords and therefore recommend schemes that hide the
response identity and response length patterns in such
settings (for example, building on [6], [9], [25], [31],
[36], [46], [47], [68] for various structures). Compared
to the other attacks, SUBGRAPH relies on atomic leakage
of individual documents, and our evaluations strengthen
the intuition that such leakage might be more risky. Our
results also confirm the conclusions of [9] that the VOLAN

and SELVOLAN attacks (which exploit the total volume
and response length patterns) could pose some risk for
known-data rates ≥ 75%.

Range search. In contrast to keyword search, our evalua-
tions uncovered many subtleties in the case of range search.
As expected—since many range attacks are designed to
work for specific query distributions—the only attack to
succeed on all of our real-world datasets was ARR-OR
which requires leakage of the response identity, the query
equality and the order. Standard encrypted range schemes,
however, do not leak the order [19], [21].

If range queries have large width or if they are skewed
towards the end points, we found that leaking the response
identity is risky because the GENKKNO attack was
successful. If, in addition, the query equality is also leaked
then we found that the ARR attack was also successful.
We found that leaking the response length and the query
equality on evenly distributed data could be risky in light
of the APA [54] attack. However, our experiments showed
that attacks that solely rely on the response length rarely
worked on our datasets.
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Appendix A.
ARR with Repeating Values

Agnostic Reconstruction Range (ARR) [53] can be
slightly modified in order to also cover the case of repeating
values, i.e., a non-injective mapping from records to
values [53]. This can be achieved by allowing the distance
between values to be 0 and requires a deviation from
the original pseudocode of [53] since the employed error
function would be undefined if a distance of 0 was to be
used. Concretely, for finding the distance Li = ei − ei−1

between ordered data collection entries ei and ei−1, an
error function E between pairs Li, Lj , j > i and the

support size L̂i,j estimating Li,j = Li · Lj is used
for finding the minimum solutions Li, Lj , thereby re-
constructing the (ordered) data collection. The original
error function E2(Li, Lj) = log(Li)+ log(Lj)− log(L̂i,j)
stems from a logarithmic transform of products into sums,
allowing for an efficient representation of the optimization
problem with a convex, linear function. However, this
prevents a solution Li to be 0, thus assuming no repeated
values. We therefore use E1(Li, Lj) = (Li · Lj − L̂i,j),
which was introduced in [53], as the error function to
cover the more general and realistic case of repeated
values occurring in the data collection. Additionally, the
default value for lengths needs to be set to 0 rather
than 1. Changing the error function also results in a new
optimization problem, which is not convex in general.
As a result of the more complex optimization problem,
we noticed increased runtimes and attacking our MIMIC
instances became infeasible (cf. §7.2.4).

Appendix B.
LEAKER Code

We provide example LEAKER implementations in List-
ings 1 and 2.

Appendix C.
Additional Data Information

C.1. Alternate Sources and Pre-Processing

Search engines. There are other query logs we could
have used, including from the Excite [40], Yandex [83],
and Sogou [58], [75] search engines or from Yahoo!
Answers [82] or the TREC session track [65]. We preferred
the AOL dataset, however, due to its large size and the
fact that it comes divided by user.

The AOL query log contains queries issued between
March 1st and May 31st, 2006. We discarded the 1 000
most active users from the data because they appeared
to be bots. Also, 67 383 of the 2.9M keywords of the
AOL query log can be found in the data collection which
provides us with a large dataset.

Genetic. The TAIR query log contains all queries issued
between January 1st, 2012 and April 30th, 2013 and
is associated with user sessions. To obtain the TAIR
data collection state at the time of the queries, we use
the Araport11 release [69] together with the TAIR 2013
update data [70]. Out of the 650k queries, 5 272 can
be found in the collection, giving us a sufficiently large
dataset9.

Scientific data. We also identified SQLShare [39] as a
potential dataset. It contains a range of scientific mea-
surements by physicists, biologists and social scientists.
However, after integrating it and analyzing the query logs
we found very few range queries; a total of 12. We therefore
discarded this dataset, though it could prove useful in the
future if more relevant queries are added.

Census data. The SPARTA project [62] includes data
and SQL query generation based on census data. We did
not use this in our work, as the queries are generated
randomly to fit desired response lengths, but we believe
this could potentially be useful in other evaluation scenarios
that require the generation of relational queries.

C.2. Statistical Analysis

We used LEAKER to analyze the datasets of §6 and
describe relevant statistical insights here.

C.2.1. Data Distributions. Fig. 5 shows the frequencies
of values for the datasets that we can display without
violating access restrictions. Notice that Insurance has a
significant skew towards low values, with values greater
than 10 000 out of a maximum of N = 25 425 being very
rare outliers (8 out of 886). We note that this is also the
case in all MIMIC data, in that most entries have a low

9. We attribute the low size of the intersection between query and data
to the missing publications and people datasets, which have not been
released for download.
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Listing 1: Slightly simplified example of LEAKER code for implementing the basic count attack (Algorithm 1 of [12])
using co leakage.

1 class BasicCount(KeywordAttack):
2 def __init__(self, known_data_collection):
3 # Set up self._known_keywords the set of known keywords, self._known_coocc the known

↪→ co-occurence matrix, and _known_unique_rlens mapping unique rlens to known keywords.
4

5 @classmethod
6 def required_leakage(cls):
7 return [CoOccurrence()]
8

9 def _known_response_length(self, keyword):
10 #rlen is the diagonal of co matrix
11 return self._known_coocc.co_occurrence(keyword, keyword)
12

13 def __initialize_known_queries(self, queries, rlens):
14 return {i: self._known_unique_rlens[rlens[i]] for i, _ in enumerate(queries) if rlens[i]

↪→ in self._known_unique_rlens}
15

16 def recover(self, data_collection, queries):
17 coocc = self.required_leakage()[0](data_collection, queries)
18 rlens = [coocc[i][i] for i, _ in enumerate(queries)]
19

20 known_queries = self.__initialize_known_queries(queries, rlens)
21

22 while True:
23 unknown_queries = [i for i, _ in enumerate(queries) if i not in known_queries]
24 old_size = len(known_queries)
25 for i in unknown_queries:
26 candidate_keywords = [k for k in self._known_keywords if k not in

↪→ known_queries.values() and rlens[i] == self._known_response_length(k)]
27 for s in candidate_keywords[:]:
28 for j, k in known_queries.items():
29 if coocc[i][j] != self._known_coocc.co_occurrence(s, k):
30 candidate_keywords.remove(s)
31 break
32 if len(candidate_keywords) == 1:
33 known_queries[i] = candidate_keywords[0]
34 if old_size >= len(known_queries):
35 break
36

37 uncovered = []
38 for i, _ in enumerate(queries):
39 if i in known_queries:
40 uncovered.append(known_queries[i])
41 else:
42 uncovered.append("")
43

44 return uncovered

Salaries Sales Insurance

Figure 5: Frequencies of numerical dataset values.

value: for MIMIC-T4, only 301 out of 8 058 entries have
a value greater than 20 out of a maximum of N = 73;
for MIMIC-PC only 9 out of 7 709 entries have value
greater than 500 out of a maximum of N = 2684; and
for MIMIC-CEA only 25 out of 2 844 entries have value

greater than 2 500 out of a maximum of N = 9978.

In contrast, this is clearly not the case for Salaries
and Sales, where no such skew is noticeable in Fig. 5.
Since we notice that different attacks behave very dif-
ferently according to whether this skew exists (cf. §7),
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Listing 2: Simple example of LEAKER code for implementing the co pattern (without pre-computation and caching).

1 class CoOccurrence(LeakagePattern):
2 def leak(self, data_collection, queries):
3 doc_ids = {q: map(lambda doc: doc.id(), data_collection(q)) for q in queries}
4 return [[len([i for i in doc_ids[qp] if i in doc_ids[q]]) for qp in queries] for q in

↪→ queries]

SDSS-M SDSS-L Zipf distribution (a = 5) restricted
to 0.002% of all queries

Figure 6: Query frequency distribution of SDSS query logs on the PhotoObjAll.dec collection (here scaled by ×105; N =
10 455 488) as well as an artificial Zipf distribution on a random collection with N = 104.

we call the former case with the skew an uneven data
distribution in our potential general risk factors (cf. §4),
and consequently we denote the latter case as an even data
distribution.

C.2.2. Keyword data – Frequency distribution. The
frequency of queries has been identified as the main attack
performance metric [9], [73] and, therefore, we analyzed
the frequency distribution of queries issued in real-world
systems. In particular, [9] already noted that keyword data
usually follows the Pareto principle, i.e., the probability
mass function is heavy-tailed with the bulk of the keywords
appearing in a few documents. This was used by [9] to
argue that, because most keywords appear in the tail with
a low occurrence, most queries might have a very low
frequency as well. A similar argument for low-frequency
keywords in real-world queries can be found in [73]. Being
able to see which keywords are queried in real systems for
the first time, we noted that this is not the case for any of
our data sources: The queries are usually not from the tail
of the data distribution and have a high frequency (a mean
of 1 804 for AOL, 2 023 for TAIR and 326 for GMail).
Only Drive has a mean query frequency of 11.2, which
was considered as pseudo-low by [9]. We conclude that,
in our evaluations, users are not interested in querying
keywords of a low frequency and conjecture that they may
rely on the system’s ranking to obtain the desired results.

Additionally, we investigated if the activity of a user
has an effect on their queries’ frequencies, but found
no correlation between number of queries and mean
frequency (Pearson correlation of about 0.1 for TAIR
and 0.014 for AOL).

C.2.3. Range data – Query distribution. The core of
range attack analysis has been the query distribution. The
heavily-used uniform distribution is an unlikely case in the
real world, and while specific parametrizations of the beta

(family) distribution were considered [53], [54] and already
provide important insights, these do not have any empirical
basis. Using real query logs (cf. §6.2), we investigated two
major factors of query distributions: query frequencies and
their widths.

We plot frequencies of all possible queries for SDSS-
M and SDSS-L in Fig. 6 as well as a comparable Zipf
distribution. The case of SDSS-S does not need to be
plotted, as queries only appear once or twice. The Zipf
distribution has a probability mass function of

p(k) =
k−a

ζ(a)
,

where ζ is the Riemann Zeta function and a is the shape
parameter. This means that an element’s frequency is
inversely proportional to its rank among all elements
according to decreasing frequency. From Fig. 6, we de-
duced that queries are roughly sampled according to a
Zipf distribution, but this only holds for a tiny fraction of
queries.

We also looked at the query widths and found that they
are fixed: SDSS-S either has a width of 113 or 112, while
sizes range between 161 and 173 for SDSS-M and 51
and 61 for SDSS-L.

Based on these empirical observations, we considered
a new kind of query distribution in our experiments for
data without query logs, where queries are distributed
according to Zipf, but, in contrast to [53], [54], they are
restricted to specific widths and a fraction of possible
queries before the probabilities are assigned. However,
since this analysis was confined to one specific case, it
might not be representative. While we consider a large
fraction of possible queries missing as intuitive, the fixed-
sized widths might be unique to SDSS and we expect more
variable widths in other cases. We thus varied the upper
bound of widths in our experiments. For some attacks, a
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Figure 7: X-Y attack evaluations against AOL and TAIR. All evaluations are 5× 5, except for 3× 3 evaluations done
for COUNT V.2. 150 queries are drawn for each of the most active users (single user setting; S) without replacement
according to their query frequency from the 500 most (H) or least (L) frequent queries in the query log that are also
contained in the partial knowledge, respectively. The resulting mean frequency is given by freq(Q).

large upper bound (close to N ) has been identified as a
risk factor (cf. §7).

Appendix D.
Additional Evaluations for Most Active Users

We show further evaluations of the AOL and TAIR
datasets in Fig. 7 for the single user setting using five
users with the highest activity. Note that the results are not
significantly different to the least active users case in Fig. 3
in §7.1. This confirms our statistical analysis that activity
does not influence the frequency of queries (cf. App. C.2).
Further, we note an anomaly of a low amount of unique
queries for AOL’s most active users, resulting in equal
query spaces for highest and lowest frequency.
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