
TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural
Backdoors

Ren Pang∗ Zheng Zhang∗ Xiangshan Gao† Zhaohan Xi∗

Shouling Ji† Peng Cheng† Xiapu Luo‡ Ting Wang∗
∗ Pennsylvania State University, {rbp5354, zxz147, zxx5113, ting}@psu.edu

† Zhejiang University, {corazju, sji, lunar heart}@zju.edu.cn
‡ Hong Kong Polytechnic University, csxluo@comp.polyu.edu.hk

Abstract—Neural backdoors represent one primary threat
to the security of deep learning systems. The intensive re-
search has produced a plethora of backdoor attacks/defenses,
resulting in a constant arms race. However, due to the lack
of evaluation benchmarks, many critical questions remain
under-explored: (i) what are the strengths and limitations of
different attacks/defenses? (ii) what are the best practices to
operate them? and (iii) how can the existing attacks/defenses
be further improved?

To bridge this gap, we design and implement TROJAN-
ZOO, the first open-source platform for evaluating neural
backdoor attacks/defenses in a unified, holistic, and practical
manner. Thus far, focusing on the computer vision domain,
it has incorporated 8 representative attacks, 14 state-of-the-
art defenses, 6 attack performance metrics, 10 defense utility
metrics, as well as rich tools for in-depth analysis of the
attack-defense interactions. Leveraging TROJANZOO, we
conduct a systematic study on the existing attacks/defenses,
unveiling their complex design spectrum: both manifest intri-
cate trade-offs among multiple desiderata (e.g., the effective-
ness, evasiveness, and transferability of attacks). We further
explore improving the existing attacks/defenses, leading to
a number of interesting findings: (i) one-pixel triggers often
suffice; (ii) training from scratch often outperforms perturb-
ing benign models to craft trojan models; (iii) optimizing
triggers and trojan models jointly greatly improves both
attack effectiveness and evasiveness; (iv) individual defenses
can often be evaded by adaptive attacks; and (v) exploiting
model interpretability significantly improves defense robust-
ness. We envision that TROJANZOO will serve as a valuable
platform to facilitate future research on neural backdoors.

Index Terms—backdoor attack, backdoor defense, bench-
mark platform, deep learning security

1. Introduction

Today’s deep learning (DL) systems are large, complex
software artifacts. With the increasing system complexity
and training cost, it becomes not only tempting but also
necessary to exploit pre-trained deep neural networks
(DNNs) in building DL systems. It was estimated that
as of 2016, over 13.7% of DL-related repositories on
GitHub re-use at least one pre-trained DNN [27]. On the
upside, this “plug-and-play” paradigm greatly simplifies
the development cycles [47]. On the downside, as most
pre-trained DNNs are contributed by untrusted third par-

ties [8], their lack of standardization or regulation entails
profound security implications.

In particular, pre-trained DNNs can be exploited to
launch neural backdoor attacks [21], [38], [43], one pri-
mary threat to the security of DL systems. In such attacks,
a maliciously crafted DNN (“trojan model”) forces its host
system to misbehave once certain pre-defined conditions
(“triggers”) are met but to function normally otherwise,
which can result in consequential damages in security-
sensitive domains [7], [15], [61].

Motivated by this, intensive research has led to a
plethora of attacks that craft trojan model via exploiting
properties such as neural activation patterns [12], [21],
[32], [38], [55], [68] and defenses that mitigate trojan
models during inspection [11], [23], [26], [36], [37], [62]
or detect trigger inputs at inference [10], [14], [19], [60].
With the rapid development of new attacks/defenses, a
number of open questions have emerged: RQ1 – What are
the strengths and limitations of different attacks/defenses?
RQ2 – What are the best practices (e.g., optimization
strategies) to operate them? RQ3 – How can the existing
backdoor attacks/defenses be further improved?

Despite their importance for understanding and mit-
igating the vulnerabilities incurred by neural backdoors,
these questions are largely under-explored due to the
following challenges.

Non-holistic evaluations – Most studies conduct the
evaluation with a fairly limited set of attacks/defenses,
resulting in incomplete assessment. For instance, it is un-
known whether STRIP [19] is effective against the newer
ABE attack [31]. Further, the evaluation often uses simple,
macro-level metrics, failing to comprehensively character-
ize given attacks/defenses. For instance, most studies use
attack success rate (ASR) and clean accuracy drop (CAD) to
assess attack performance, which is insufficient to describe
the attack’s ability of trading between these two metrics.

Non-unified platforms – Due to the lack of unified
benchmarks, different attacks/defenses are often evaluated
under inconsistent settings, leading to non-comparable
conclusions. For instance, TNN [38] and LB [68] are
evaluated with distinct trigger definitions (i.e., shape, size,
and transparency), datasets, and DNNs, making it difficult
to directly compare their assessment.

Non-adaptive attacks – The evaluation of the exist-
ing defense [19], [23], [36], [62] often assume static,
non-adaptive attacks, without fully accounting for the
adversary’s possible countermeasures, which however is

684

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

© 2022, Ren Pang. Under license to IEEE.
DOI 10.1109/EuroSP53844.2022.00048

20
22

 IE
EE

 7
th

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

16
14

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

53
84

4.
20

22
.0

00
48

critical for modeling the adversary’s optimal strategies and
assessing the attack vulnerabilities in realistic settings.

Our Work

To this end, we design, implement, and evaluate TRO-

JANZOO, an open-source platform for assessing neural
backdoor attacks/defenses in a unified, holistic, and prac-
tical manner. Note that while it is extensible to other
domains (e.g., NLP), currently, TROJANZOO focuses on the
image classification task in the computer vision domain.
Our contributions are summarized in three major aspects:

Platform – To our best knowledge, TROJANZOO repre-
sents the first open-source platform specifically designed
for evaluating neural backdoor attacks/defenses. At the
moment of writing (02/06/2022), focusing on the com-
puter vision domain, TROJANZOO has incorporated 8 rep-
resentative attacks, 14 state-of-the-art defenses, 6 attack
performance metrics, 10 defense utility metrics, as well
as a benchmark suite of 5 DNN models, 5 downstream
models, and 6 datasets. Further, TROJANZOO implements a
rich set of tools for in-depth analysis of the attack-defense
interactions, including measuring feature-space similarity,
tracing neural activation patterns, and comparing attribu-
tion maps.

Measurement – Leveraging TROJANZOO, we conduct
a systematic study of the existing attacks/defenses, un-
veiling the complex design spectrum for the adversary
and the defender. Different attacks manifest delicate trade-
offs among effectiveness, evasiveness, and transferabil-
ity. For instance, weaker attacks (i.e., lower ASR) tend
to show higher transferability. Meanwhile, different de-
fenses demonstrate trade-offs among robustness, utility-
preservation, and detection accuracy. For instance, while
effective against a variety of attacks, model sanitization
[36], [40] also incur a significant accuracy drop. These
observations indicate the importance of using comprehen-
sive metrics to evaluate neural backdoor attacks/defenses,
and suggest the optimal practices of applying them under
given settings.

Exploration – We further explore improving exist-
ing attacks/defenses, leading to a number of previously
unknown findings including (i) one-pixel triggers often
suffice (over 95% ASR); (ii) training from scratch often
outperforms perturbing benign models to forge trojan
models; (iii) leveraging DNN architectures (e.g., skip con-
nects) in optimizing trojan models improves the attack
effectiveness; (iv) most individual defenses are vulnerable
to adaptive attacks; and (v) exploiting model interpretabil-
ity significantly improves defense robustness. We envision
that the TROJANZOO platform and our findings will facil-
itate future research on neural backdoors and shed light
on designing and building DL systems in a more secure
and informative manner.1

Roadmap

The remainder of the paper proceeds as follows. § 3
introduces fundamental concepts and assumptions; § 4

1. All the data, models, and code used in the paper are released at:
https://github.com/ain-soph/trojanzoo.

h

g∗

g∗

g

f∗

Figure 1: Illustration of neural backdoor attacks.

details the design and implementation of TROJANZOO and
systemizes existing attacks/defenses; equipped with TRO-

JANZOO, § 5 conducts a systematic evaluation of existing
attacks/defenses; § 6 explores their further improvement;
§ 7 discusses the limitations of TROJANZOO and points to
future directions; the paper is concluded in § 8.

2. Related Work

Some recent studies have surveyed neural backdoor
attacks/defenses (e.g., [33]); yet, none of them provides
benchmark implementation or empirical evaluation to ex-
plore their strengths/limitations. Compared with the rich
collection of platforms for adversarial attacks/defenses
(e.g., CLEVERHANS [2], DEEPSEC [35], and ADVBOX

[1]), only few platforms currently support evaluating neu-
ral backdoors. For instance, ART [3] integrates 3 attacks
and 3 defenses.

In comparison, TROJANZOO differs in major aspects:
(i) to our best knowledge, it features the most com-
prehensive library of attacks/defenses; (ii) it regards the
evaluation metrics as a first-class citizen and implements
6 attack performance metrics and 10 defense utility met-
rics, which holistically assess given attacks/defenses; (iii)
besides reference implementation, it also provides rich
utility tools for in-depth analysis of attack-defense inter-
actions, such as measuring feature-space similarity, trac-
ing neural activation patterns, and comparing attribution
maps. r The work closest to ours is perhaps TROJAI [4],
which is a contest platform for model-inspection defenses
against neural backdoors. While compared with TRO-

JANZOO, TROJAI provides a much larger pool of trojan
models (over 10K) across different modalities (e.g., vision
and NLP), TROJANZOO departs from TROJAI in majors
aspects and offers its unique value. (i) Given its contest-
like setting, TROJAI is a closed platform focusing on
evaluating model-inspection defenses (i.e., detecting trojan
models) against fixed attacks, while TROJANZOO is an
open platform that provides extensible datasets, models,
attacks, and defenses. Thus, TROJANZOO may serve the
needs ranging from conducting comparative studies of
existing attacks/defenses to exploring and evaluating new
attacks/defenses. (ii) While TROJAI focuses on model-
inspection defenses, TROJANZOO integrates four major de-
fense categories. (iii) In TROJAI, for its purpose, the con-
crete attacks behind the trojan models are unknown, which
makes it challenging to assess the strengths/limitations of
given defenses with respect to different attacks, while in
TROJANZOO one may directly evaluate such interactions.
(iv) As the attacks are fixed in TROJAI, one may not

685

evaluate adaptive attacks. (v) The main metric used in
TROJAI is the accuracy that defenses successfully detect
trojan models, while TROJANZOO provides a much richer
set of metrics to characterize attacks/defenses.

3. Fundamentals

We first introduce fundamental concepts and assump-
tions used throughout the paper. The important notations
are summarized in Table 1.

Notation Definition

A,D attack, defense

x, x∗ clean input, trigger input

xi i-th dimension of x

r trigger

m mask (α for each pixel)

f, f∗ benign model, trojan model

ffeat upstream feature extractor

g, g∗ downstream classifier, surrogate classifier

t adversary’s target class

T reference set

Rε,Fδ trigger, model feasible sets

Table 1. Symbols and notations.

3.1. Preliminaries

Deep neural networks (DNNs) – Deep neural net-
works (DNNs) represent a class of ML models to learn
high-level abstractions of complex data. We assume a
predictive setting, in which a DNN fθ (parameterized by
θ) encodes a function fθ : R

n → S
m, where n and m

denote the input dimensionality and the number of classes.
Given input x, f(x) is a probability vector (simplex) over
m classes.

Pre-trained DNNs – Today, it becomes not only
tempting but also necessary to reuse pre-trained models in
domains in which data labeling or model training is ex-
pensive [70]. Under the transfer learning setting, as shown
in Figure 1, the feature extractor (FE) g of a pre-trained
model is often reused and composed with a classifier h to
form an end-to-end model f . As the data used to train g
may differ from the downstream task, it is often necessary
to fine-tune f = h ◦ g in a supervised manner. One may
opt to perform full-tuning to train both g and h or partial-
tuning to train h only with g fixed [27].

Neural backdoor attacks – With the increasing use
of DNN models in security-sensitive domains, the ad-
versary is strongly incentivized to forge malicious FEs
as attack vectors and lure victim users to re-use them
during system development [21]. Specifically, through a
malicious FE, the backdoor attack infects the target model
with malicious functions desired by the adversary, which
are activated once pre-defined conditions (“triggers”) are
present. We refer to such infected models as “trojan mod-
els”. Typically, a trojan model reacts to trigger-embedded
inputs (e.g., images with specific watermarks) in a highly
predictable manner (e.g., misclassified to a target class) but
functions normally otherwise.

3.2. Specifics

Trigger mixing operator – For given trigger r, the
operator ⊕ mixes a clean input x ∈ R

n with r to generate

a trigger input x ⊕ r. Typically, r comprises three parts:
(i) mask m ∈ {0, 1}n specifies where r is applied (i.e.,
x’s i-th feature xi is retained if mi is on and mixed
with r otherwise); (ii) transparency α ∈ [0, 1] specifies
the mixing weight; and (iii) pattern p(x) ∈ R

n specifies
r’s color intensity, which can be a constant, randomly
drawn from a distribution (e.g., by perturbing a template),
or dependent on x [45]. Formally, the trigger embedding
operator is defined as:

x⊕ r = (1−m)� [(1− α)x+ αp(x)] +m� x (1)

where � denotes element-wise multiplication.

Attack objectives – The trojan model satisfies that
with high probability, (i) trigger inputs are classified to the
target class desired by the adversary and (ii) clean input
are still correctly classified. Formally, the adversary forges
the malicious FE by optimizing the following objective:

min
r∈R,θ

E(x,y)∈T [�(fθ(x⊕ r), t) + λ�(fθ(x), y)] (2)

where T represents the training set, t denotes the target
class, and trigger r is selected from the feasible set R
(which constrains r’s shape, transparency, and/or pattern).
Intuitively, the first and second terms describe (i) and (ii),
respectively, and the hyper-parameter λ balances the two
objectives.

Adversary’s knowledge – If the downstream classifier
h is known to the adversary, f shares the same architecture
with the model h ◦ g used by the victim; otherwise, the
adversary may resort to a surrogate classifier h∗ (i.e., h∗ ◦
g) or re-define the loss �(f(x ⊕ r), t) in terms of latent
representations [43], [68] as Δ(g(x⊕ r), φt), that is, the
difference(e.g., MSE loss) between g(x⊕r) and φt, where
φt is the average latent representation of class t.

Malicious FE training – To optimize Eqn. 2, one
may perturb a benign FE [38], [55] or train the malicious
FE from scratch (details in § 6). To satisfy the trigger
constraint, r can be fixed [21], partially defined [38]
(e.g., with its mask fixed), or optimized with f jointly [43].

4. Platform

As illustrated in Figure 2, TROJANZOO comprises three
major components: (i) the attack library integrates a set of
representative attacks that, for given benign models and
clean inputs, are able to generate trojan models and trigger
inputs; (ii) the defense library integrates a set of state-
of-the-art defenses that are able to provide model- and
input-level protection against trojan models and trigger
inputs; and (iii) the analysis engine, equipped with attack
performance metrics, defense utility metrics, and feature-
rich utility tools, is able to conduct unified and holistic
evaluation across different attacks/defenses.

In its current implementation, TROJANZOO has incor-
porated 8 attacks, 14 defenses, 6 attack performance met-
rics, and 10 defense utility metrics, which we systematize
as follows.

4.1. Attack Library

While neural backdoor attacks can be characterized
from a number of aspects, here we focus on 4 key de-
sign choices by the adversary that directly impact attack

686

Figure 2: Overall system design of TROJANZOO.

performance. Table 2 summarizes the representative neural
backdoor attacks currently implemented in TROJANZOO,
which are characterized along the above 4 dimensions.
More specifically,

Attack
Architecture Trigger Fine-tuning Defense

Modifiability Optimizability Survivability Adaptivity

BN [21] � � � �
ESB [57] � � � �
TNN [38] � �� � �

RB [39] � �� � �
TB [12] � �� � �
LB [68] � � � �

ABE [31] � � � �
IMC [43] � � � �

Table 2. Summary of representative neural backdoor attacks
currently implemented in TROJANZOO (� – full optimization,�� – partial optimization, � – no optimization)

Non-optimization – The attack simply solves Eqn. 2
under pre-defined triggers (i.e., shape, transparency, and
pattern) without optimization for other desiderata.

– BadNet (BN) [21], as the representative, pre-defines
trigger r, generates trigger inputs {(x⊕ r, t)}, and crafts
the trojan model f ∗ by re-training a benign model f with
such data.

Architecture modifiability – whether the attack is
able to change the DNN architecture. Being allowed to
modify both the architecture and the parameters enables a
larger attack spectrum, but also renders the trojan model
more susceptible to certain defenses (e.g., model specifi-
cation checking).

– Embarrassingly-Simple-Backdoor (ESB) [57], as the
representative, modifies f ’s architecture by adding a mod-
ule which overwrites the prediction as t if r is recognized.
Without disturbing f ’s original configuration, f ∗ retains
f ’s predictive power on clean inputs.

Trigger optimizability – whether the attack uses a
fixed, pre-defined trigger or optimizes it during craft-
ing the trojan model. Trigger optimization often leads
to stronger attacks with respect to given desiderata
(e.g., trigger stealthiness).

– TrojanNN (TNN) [38] fixes r’s shape and position,
optimizes its pattern to activate neurons rarely activated
by clean inputs in pre-processing, and then forges f ∗ by
re-training f in a manner similar to BN.

– Reflection-Backdoor (RB) [39] optimizes trigger
stealthiness by defining r as the physical reflection of a

clean image xr (selected from a pool): r = xr⊗k, where k
is a convolution kernel, and ⊗ is the convolution operator.

– Targeted-Backdoor (TB) [12] randomly generates r’s
position in training, which makes f ∗ effective regardless
of r’s position and allows the adversary to optimize r’s
stealthiness by placing it at the most plausible position
(e.g., an eyewear watermark over eyes).

Fine-tuning survivability – whether the backdoor
remains effective if the model is fine-tuned. A pre-trained
model is often composed with a classifier and fine-tuned
using the data from the downstream task. It is desirable
to ensure that the backdoor remains effective after fine-
tuning.

– Latent Backdoor (LB) [68] accounts for the im-
pact of downstream fine-tuning by optimizing g with re-
spect to latent representations rather than final predictions.
Specifically, it instantiates Eqn. 2 with the following loss
function: �(g(x ⊕ r), t) = Δ(g(x ⊕ r), φt), where Δ
measures the difference of two latent representations and
φt denotes the average representation of class t, defined
as φt = argminφ E(x,t)∈T [g(x)].

Defense adaptivity – whether the attack is optimiz-
able to evade possible defenses. For the attack to be
effective, it is essential to optimize the evasiveness of
the trojan model and the trigger input with respect to the
deployed defenses.

– Adversarial-Backdoor-Embedding (ABE) [31] ac-
counts for possible defenses in forging g∗. In solving
Eqn. 2, ABE also optimizes the indistinguishability of the
latent representations of trigger and clean inputs. Specif-
ically, it uses a discriminative network d to predict the
representation of a given input x as trigger or clean.
Formally, the loss is defined as Δ(d ◦ g(x), b(x)), where
b(x) encodes whether x is trigger or clean, while g∗ and d
are trained using an adversarial learning framework [20].

Multi-optimization – whether the attack is optimiz-
able with respect to multiple objectives listed above.

– Input-Model Co-optimization (IMC) [43] is moti-
vated by the mutual-reinforcement effect between r and
f ∗: optimizing one amplifies the effectiveness of the other.
Instead of solving Eqn. 2 by first pre-defining r and then
optimizing f ∗, IMC optimizes r and f ∗ jointly, which
enlarges the search spaces for r and f ∗, leading to attacks
satisfying multiple desiderata (e.g., fine-tuning survivabil-
ity and defense adaptivity).

687

Neural Backdoor Defense Category Mitigation Detection Target Design Rationale
Input Model Input Model Trigger

Randomized-Smoothing (RS) [14]
Input

Reformation

� A’s fidelity (x’s and x∗’s surrounding class boundaries)

Down-Upsampling (DU) [66] � A’s fidelity (x’s and x∗’s high-level features)

Manifold-Projection (MP) [41] � A’s fidelity (x’s and x∗’s manifold projections)

Activation-Clustering (AC) [10]

Input

Filtering

� distinct activation patterns of {x} and {x∗}
Spectral-Signature (SS) [59] � distinct activation patterns of {x} and {x∗} (spectral space)

STRIP (STRIP) [19] � distinct self-entropy of x’s and x∗’s mixtures with clean inputs

NEO (NEO) [60] � sensitivity of f∗’s prediction to trigger perturbation

Adversarial-Retraining (AR) [40] Model � A’s fidelity (x’s and x∗’s surrounding class boundaries)

Fine-Pruning (FP) [36] Sanitization � A’s use of neurons rarely activated by clean inputs

NeuralCleanse (NC) [62]

Model

Inpsection

� � abnormally small perturbation from other classes to t in f

DeepInspect (DI) [11] � � abnormally small perturbation from other classes to t in f∗

TABOR (TABOR) [23] � � abnormally small perturbation from other classes to t in f

NeuronInspect (NI) [26] � distinct explanations of f and f∗ with respect to clean inputs

ABS (ABS) [37] � � A’s use of neurons elevating t’s prediction

Table 3. Summary of representative neural backdoor defenses currently implemented in TROJANZOO (A – backdoor attack, x –
clean input, x∗ – trigger input, f – benign model, f∗ – trojan model, t – target class)

4.2. Attack Performance Metrics

Currently, TROJANZOO incorporates 6 metrics to assess
the effectiveness, evasiveness, and transferability of given
attacks.

Attack success rate (ASR) – which measures the like-
lihood that trigger inputs are classified to the target class
t:

Attack Success Rate (ASR) =
successful trials

total trials
(3)

Typically, higher ASR indicates more effective attacks.

Trojan misclassification confidence (TMC) – which is
the average confidence score assigned to class t of trigger
inputs in successful attacks. Intuitively, TMC complements
ASR and measures attack efficacy from another perspec-
tive. For two attacks with the same ASR, we consider the
one with higher TMC a stronger one.

Clean accuracy drop (CAD) – which measures the dif-
ference of the classification accuracy of benign and trojan
models; CAD measures whether the attack directs its in-
fluence to trigger inputs only.

Clean classification confidence (CCC) – which is the
average confidence assigned to the ground-truth classes
of clean inputs; CCC complements CAD by measuring
attack specificity from the perspective of classification
confidence.

Efficacy-specificity AUC (AUC) – which quantifies the
aggregated trade-off between attack efficacy (measured
by ASR) and attack specificity (measured by CAD). As
revealed in [43], there exists an intricate balance: at a
proper cost of specificity, it is possible to significantly
improve efficacy, and vice versa; AUC measures the area
under the ASR-CAD curve. Intuitively, smaller AUC implies
a more significant trade-off effect.

Neuron-separation ratio (NSR) – which measures the
intersection between neurons activated by clean and trig-
ger inputs. In the penultimate layer of the model, we find
Nc and Nt, the top-k active neurons with respect to clean
and trigger inputs, respectively, and calculate their jaccard
index:

Neuron Separation Ratio (NSR) = 1− |Nt ∩Nc|
|Nt ∪Nc|

(4)

Intuitively, NSR compares the neural activation patterns of
clean and trigger inputs.

4.3. Defense Library

The existing defenses against neural backdoors, ac-
cording to their strategies, can be classified into 4 major
categories, as summarized in Table 3. Notably, we focus
on the setting of transfer learning or outsourced training,
which precludes certain other defenses such as purging
poisoning training data [53]. Next, we detail the 14 repre-
sentative defenses currently implemented in TROJANZOO.

Input reformation – which, before feeding an incom-
ing input to the model, first reforms it to mitigate the
influence of the potential trigger, yet without explicitly
detecting whether it is a trigger input. It typically exploits
the high fidelity of attack A, that is, A tends to retain
the perceptual similarity of a clean input x and its trigger
counterpart x∗.

– Randomized-Smoothing (RS) [14] exploits the
premise that A retains the similarity of x and x∗ in terms
of their surrounding class boundaries and classifies an
input by averaging the predictions within its vicinity (via
adding Gaussian noise).

– Down-Upsampling (DU) [66] exploits the premise
that A retains the similarity of x and x∗ in terms of
their high-level features while the trigger r is typically
not perturbation-tolerant. By downsampling and then up-
sampling x∗, it is possible to mitigate r’s influence.

– Manifold-Projection (MP) [41] exploits the premise
that A retains the similarity of x and x∗ in terms of
their projections to the data manifold. Thus, it trains
an autoencoder to learn an approximate manifold, which
projects x∗ to the manifold.

Input filtering – which detects whether an incoming
input is embedded with a trigger and possibly recovers
the clean input. It typically distinguishes clean and trigger
inputs using their distinct characteristics.

– Activation-Clustering (AC) [10] distinguishes clean
and trigger inputs by clustering their latent representa-
tions. While AC is also applicable for purging poisoning
data, we consider its use as an input filtering method at
inference time.

688

– Spectral-Signature (SS) [59] exploits the similar
property in the spectral space.

– STRIP [19] mixes a given input with a clean input
and measures the self-entropy of its prediction. If the input
is trigger-embedded, the mixture remains dominated by
the trigger and tends to be misclassified, resulting in low
self-entropy.

– NEO [60] detects a trigger input by searching for a
position, if replaced by a “blocker”, changes its prediction,
and uses this substitution to recover its original prediction.

Model sanitization – which, before using a pre-
trained model f , sanitizes it to mitigate the potential
backdoor, yet without explicitly detecting whether f is
tampered.

– Adversarial-Retraining (AR) [40] treats trigger in-
puts as one type of adversarial inputs and applies adver-
sarial training over the pre-trained model to improves its
robustness to backdoor attacks.

– Fine-Pruning (FP) [36] uses the property that the
attack exploits spare model capacity. It thus prunes rarely
used neurons and then applies fine-tuning to defend
against pruning-aware attacks.

Model inspection – which determines whether f is a
trojan model and, if so, recovers the target class and the
potential trigger, at the model checking stage.

– NeuralCleanse (NC) [62] searches for potential trig-
gers in each class t. If t is trigger-embedded, the minimum
perturbation required to change the predictions of the
inputs in other classes to t is abnormally small.

– DeepInspect (DI) [11] follows a similar pipeline but
uses a generative network to generate trigger candidates.

– TABOR [23] extends NC by adding a new regularizer
to control the trigger search space.

– NeuronInspect (NI) [26] exploits the property that
the explanation heatmaps of benign and trojan models
manifest distinct characteristics. Using the features ex-
tracted from such heatmaps, NI detects trojan models as
outliers.

– ABS [37] inspects f to sift out abnormal neurons
with large elevation difference (i.e., active only with re-
spect to one specific class) and identifies triggers by
maximizing abnormal neuron activation while preserving
normal neuron behaviors.

4.4. Defense Utility Metrics

Currently, TROJANZOO incorporates 10 metrics to eval-
uate the robustness, utility-preservation, and genericity of
given defenses. The metrics are tailored to the objectives
of each defense category (e.g., trigger input detection). For
ease of exposition, below we consider the performance of
a given defense D with respect to a given attack A.

Attack rate deduction (ARD) – which measures the
difference of A’s ASR before and after D. Intuitively,
ARD indicates D’s impact on A’s efficacy. Intuitively,
larger ARD indicates more effective defense. We also use
A’s TMC to measure D’s influence on the classification
confidence of trigger inputs.

Clean accuracy drop (CAD) – which measures the dif-
ference of the ACC of clean inputs before and after D
is applied. It measures D’s impact on clean inputs. Note
that CAD here is defined differently from its counterpart in

attack performance metrics. We also use CCC to measure
D’s influence on the classification confidence of clean
inputs.

True positive rate (TPR) – which, for input-filtering
methods, measures the performance of detecting trigger
inputs.

True Positive Rate (TPR) =
detected trigger inputs

total trigger inputs
(5)

Correspondingly, we use false positive rate (FPR) to mea-
sure the error of misclassifying clean inputs as trigger
inputs.

Anomaly index value (AIV) – which measures the
anomaly of trojan models in model-inspection defenses.
Most existing methods (e.g., [11], [23], [37], [62]) formal-
ize finding trojan models as outlier detection: each class t
is associated with a score (e.g., minimum perturbation); if
its score significantly deviates from others, t is considered
to contain a backdoor. AIV, the absolute deviations from
median normalized by median absolute deviation (MAD),
provide a reliable measure for such dispersion. Typically,
t with AIV larger than 2 has over 95% probability of being
anomaly.

Mask L1 norm (MLN) – which measures the �1-norm
of the triggers recovered by model-inspection methods.

Mask jaccard similarity (MJS) – which further mea-
sures the intersection between the recovered trigger and
the ground-truth trigger (injected by the adversary). Let
mo and mr be the masks of original and recovered trig-
gers. We define MJS as the Jaccard similarity of mo and
mr :

Mask Jaccard Similarity (MJS) =
|O(mo) ∩O(mr)|
|O(mo) ∪O(mr)| (6)

where O(m) denotes the set of non-zero elements in m.

Average running time (ART) – which measures D’s
overhead. For model sanitization or inspection, which is
performed offline, ART is measured as the running time
per model; while for input filtering or reformation, which
is executed online, ART is measured as the execution time
per input.

5. Assessment

Leveraging TROJANZOO, we conduct a systematic as-
sessment of the existing attacks and defenses and un-
veil their complex design spectrum: both attacks and de-
fenses tend to manifest intricate trade-offs among multiple
desiderata. We begin by describing the setting of the
evaluation.

5.1. Experimental Setting

Datasets – In the evaluation, we primarily use 5
datasets: CIFAR10 [29], CIFAR100 [29], ImageNet [16],
GTSRB [52], and VGGFace2 [9], with their statistics sum-
marized in Table 4.

Models – We consider 3 representative DNN mod-
els: VGG [51], ResNet [24], and DenseNet [25]. Us-
ing models of distinct architectures (e.g., residual blocks
versus skip connections), we factor out the influence of
individual model characteristics. By default, we assume

689

Dataset # Class # Dimension Model ACC

CIFAR10 10 32×32

ResNet18 95.37%

DenseNet121 93.84%

VGG13 92.44%

CIFAR100 100 32×32

ResNet18

73.97%

GTSRB 43 32×32 98.18%

ImageNet 10 224×224 92.40%

VGGFace2 20 224×224 90.77%

Table 4. ACC of benign models over different datasets.

the downstream classifier comprising one fully-connected
layer with softmax activation (1FCN). We also consider
other types of classifiers, including Bayes, SVM, and
Random Forest. The ACC of benign models is summarized
in Table 4.

Attacks, Defenses, and Metrics – In the evaluation,
we exemplify with 8 attacks in Table 2 and 12 defenses in
Table 3, and measure them using all the metrics in § 4.2
and § 4.4. In all the experiments, we generate 10 trojan
models for a given attack under each setting and 100 pairs
of clean-trigger inputs with respect to each trojan model.
The reported results are averaged over these cases.

Implementation – All the models, algorithms, and
measurements are implemented in PyTorch. The default
parameter setting is summarized in Table 20 and 21 (§ A).

5.2. Attack Evaluation

We evaluate the existing attacks under the vanilla
setting (without defenses), aiming to understand the im-
pact of various design choices on the attack performance.
Due to space limitations, we mainly report the results
on CIFAR10 and defer the results on other datasets to
§ B. Overall, different attacks manifest intricate trade-offs
among effectiveness, evasiveness, and transferability, as
detailed below.

5.2.1. Effectiveness vs. Evasiveness (Trigger) . We start
with the effectiveness-evasiveness trade-off. Intuitively,
the effectiveness measures whether the trigger inputs are
successfully misclassified into the target class, while the
evasiveness measures whether the trigger inputs and trojan
models are distinguishable from their normal counterparts.
Here, we first consider the evasiveness of triggers.

A
S

R
 (%

)

Trigger size ()

BN LBTNN IMCRB TB ESB ABE

T
M

C

0

20

40

60

80

100

0.0

1.0

2 2 3 3 4 4 5 5

Figure 3: ASR and TMC with respect to trigger size (α= 0.8).

Trigger size – Recall that the trigger definition com-
prises maskm, transparencyα, and pattern p. We mea-
sure how the attack effectiveness varies with the trigger
size |m|. To make fair comparison, we bound the clean
accuracy drop (CAD) of all the attacks below 3% via

controlling the number of optimization iterationsniter.
Figure 3 plots the attack success rate (ASR) and trojan mis-
classification confidence (TMC) of various attacks under
varying |m| (with fixed α = 0.8).

Observe that most attacks seem insensitive to |m|:
as |m| varies from 2×2 to 5×5, the ASR of most at-
tacks increases by less than 10%, except RB with over
30% growth. This may be attributed to its additional
constraints: RB defines the trigger to be the reflection
of another image; thus, increasing |m| may improve its
perturbation spaces. Compared with other attacks, TB and
ESB perform poorly because TB aims to force inputs with
random triggers to be misclassified while ESB is unable
to account for trigger transparency during training. Also
observe that the TMC of most attacks remains close to 1.0
regardless of |m|.

A
S

R
 (%

)

0

20

40

60

80

100

Trigger transparency ()
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BN LB

TNN

IMC

RB

TB

ESB

ABE

Figure 4: ASR with respect to trigger transparency (|m| = 3×3).

Trigger transparency – Under the same setting, we
evaluate the impact of trigger transparencyα. Figure 4
plots the ASR of various attacks as a function of α (|m| =
3×3).

Compared with trigger size, α has a more profound
impact. The ASR of most attacks drops sharply once α
exceeds 0.6, among which TB approaches 10% if α ≥ 0.8,
and ESB works only if α is close to 0, due to its reliance
on recognizing the trigger precisely to overwrite the model
prediction. Meanwhile, LB and IMC seem insensitive to
α. This may be attributed to that LB optimizes trojan
models with respect to latent representations (rather than
final predictions), while IMC optimizes trigger patterns
and trojan models jointly. Both strategies may mitigate
α’s impact.

Attack
CIFAR10 CIFAR100 ImageNet

|m|= 3, α= 0.8 |m|= 3, α= 0.8 |m|= 3, α= 0 |m|= 7, α= 0.8

BN 72.4 (0.96) 64.5 (0.96) 90.0 (0.98) 11.4 (0.56)

TNN 91.5 (0.97) 89.8 (0.98) 95.2 (0.99) 11.6 (0.62)

RB 52.1 (1.0) 42.8 (0.95) 94.6 (0.98) 11.2 (0.59)

TB 11.5 (0.66) 23.4 (0.75) 82.8 (0.97) 11.4 (0.58)

LB 100.0 (1.0) 97.8 (0.99) 97.4 (0.99) 11.4 (0.59)

ESB 10.3 (0.43) 1.0 (0.72) 100.0 (0.50) N/A

ABE 74.3 (0.91) 67.9 (0.96) 82.6 (0.97) 12.00 (0.50)

IMC 100.0 (1.0) 98.8 (0.99) 98.4 (1.0) 96.6 (0.99)

Table 5. Impact of data complexity on ASR and TMC.

Data complexity – The trade-off between attack ef-
fectiveness and trigger evasiveness is especially evident
for complex data. We compare the ASR and TMC of given
attacks on different datasets, with results in Table 5 (more
in Table 22).

We observe that the class-space size (the number of
classes) negatively affects the attack effectiveness. For

690

example, the ASR of BN drops by 7.9% from CIFAR10 to
CIFAR100. Intuitively, it is more difficult to force trigger
inputs from all the classes to be misclassified in larger
output space. Moreover, it tends to require more signif-
icant triggers to achieve comparable attack performance
on more complex data. For instance, for IMC to attain
similar ASR on CIFAR10 and ImageNet, it needs to either
increase trigger size (from 3×3 to 7×7) or reduce trigger
transparency (from 0.8 to 0.0).

Remark 1 – There exists a trade-off between attack effective-
ness and trigger evasiveness (in terms of transparency), which
is especially evident for complex data.

5.2.2. Effectiveness vs. Evasiveness (Model) . Further,
we consider the evasiveness of trojan models, which is
measured by their difference from benign models in terms
of classifying clean inputs. One intriguing property of the
attacks is the trade-off between maximizing the attack
effectiveness with respect to trigger inputs and minimizing
the influence over clean inputs. Here, we characterize
this trade-off via varying the fraction of trigger inputs
in the training data. For each attack, we bound its CAD
within 3%, measure its highest and lowest ASR (which
corresponds to its lowest and highest CAD respectively),
and then normalize the ASR and CAD measures to [0, 1].

BN (0.852) LB (0.850)

IMC (0.966)RB (0.931)
TB (0.852)

TNN (0.903) ABE (0.837)

N
or

m
al

iz
ed

 A
S

R

0.0

0.2

0.4

0.6

0.8

1.0

Normalized CAD
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Trade-off between attack effectiveness and model
evasiveness (|m| = 3× 3, α= 0.8).

Figure 5 visualizes the normalized CAD-ASR trade-off.
Observe that the curves of all the attacks manifest strong
convexity, indicating the “leverage” effects [43]: it is
practical to greatly improve ASR at a disproportionally
small cost of CAD. Also, observe that different attacks
feature varying Area Under the Curve (AUC). Intuitively,
a smaller AUC implies a stronger leverage effect. Among
all the attacks, IMC shows the smallest AUC. This may
be explained by that IMC uses the trigger-model co-
optimization framework, which allows the adversary to
maximally optimize ASR at given CAD.

Remark 2 – The trade-off between attack effectiveness and
model evasiveness demonstrates strong “leverage” effects.

5.2.3. Effectiveness vs. Transferability. Next, we eval-
uate the transferability of different attacks to the down-
stream tasks. We consider two scenarios: (i) the pre-
training and downstream tasks share the same dataset; and
(ii) the downstream task uses a different dataset.

Transferability (classifier) – In (i), we focus on eval-
uating the impact of downstream-classifier selection and
fine-tuning strategy on the attacks. We consider 5 different

classifiers (1/2 fully-connected layer, Bayes, SVM, and
Random Forest) and 3 fine-tuning strategies (none, partial
tuning, and full tuning). Notably, the adversary is unaware
of such settings.

Attack
Fine-Tuning Downstream Classifier

None Partial Full 2-FCN Bayes SVM RF

BN 72.4 72.3 30.4 72.2 73.5 64.7 66.0

TNN 91.5 89.6 27.1 90.8 90.3 82.9 81.1

RB 79.2 77.0 12.4 78.3 76.8 61.5 63.7

LB 100.0 100.0 95.3 99.9 99.9 99.9 99.8

IMC 100.0 99.9 88.7 99.9 100.0 99.9 99.8

Table 6. Impact of fine-tuning and downstream-model selection.

Table 6 compares the ASR of 5 attacks with respect to
varying downstream classifiers and fine-tuning strategies.
Observe that fine-tuning has a large impact on attack
effectiveness. For instance, the ASR of TNN drops by
62.5% from partial- to full-tuning. Yet, LB and IMC are
less sensitive to fine-tuning, due to their optimization
strategies. Also, note that the attack performance seems
agnostic to the downstream classifier. This may be ex-
plained by that the downstream classifier in practice tends
to manifest “pseudo-linearity” [27] (details in § A).

Transferability (data) – In (ii), we focus on eval-
uating the transferability of the attacks across different
datasets.

Transfer Attack

Setting BN TNN RB LB IMC

C → C 94.5 (0.99) 100.0 (1.0) 100.0 (1.0) 100.0 (1.0) 100.0 (1.0)

C → I 8.4 (0.29) 7.8 (0.29) 8.6 (0.30) 8.2 (0.30) 9.4 (0.32)

I → I 90.0 (0.98) 95.2 (0.99) 94.6 (0.98) 97.4 (0.99) 98.4 (1.0)

I → C 77.0 (0.84)) 26.9 (0.72) 11.0 (0.38) 10.0 (0.38) 14.3 (0.48)

Table 7. ASR and TMC of transfer attacks across CIFAR10 (C)
and ImageNet (I) (|m|= 3×3, α= 0.0).

We evaluate the effectiveness of transferring attacks
across two datasets, CIFAR10 and ImageNet, with re-
sults summarized in Table 7. We have the following find-
ings. Several attacks (e.g., BN) are able to transfer from
ImageNet to CIFAR10 to a certain extent, but most at-
tacks fail to transfer from CIFAR10 to ImageNet. The
finding may be justified as follows. A model pre-trained
on complex data (i.e., ImageNet) tends to maintain its
effectiveness of feature extraction on simple data (i.e.,
CIFAR10) [17]; as a side effect, it may also preserve its
effectiveness of propagating trigger patterns. Meanwhile,
a model pre-trained on simple data may not generalize
well to complex data. Moreover, compared with stronger
attacks in non-transfer cases (e.g., LB), BN shows much
higher transferability. This may be explained by that to
maximize the attack efficacy, the trigger and trojan model
often need to “over-fit” the training data, resulting in poor
transferability.

Remark 3 – Most attacks transfer across classifiers; how-
ever, weaker attacks demonstrate higher transferability across
datasets.

5.3. Defense Evaluation

As the defenses from different categories bear distinct
objectives (e.g., detecting trigger inputs versus cleansing
trojan models), below we evaluate each defense category
separately.

691

Defense
Attack

BN TNN RB TB LB ESB ABE IMC

– 93.3 (0.99) 99.9 (1.0) 99.8 (1.0) 96.7 (0.99) 100.0 (1.0) 100.0 (0.86) 95.3 (0.99) 100.0 (1.0)

RS
-0.5 (0.99) -0.0 (1.0) -0.0 -(1.0) -0.3 (0.99) -0.0 (1.0) -89.1 (0.86) -0.5 (0.99) -0.0 (1.0)

(±0.2) (±0.0) (±0.0) (±0.1) (±0.0) (±7.3) (±0.1) (±0.0)

DU
-2.2 (0.99) -0.4 (1.0) -5.4 (1.0) -67.8 (1.0) -4.1 (1.0) -89.9 (0.86) -0.5 (0.99) -0.2 (1.0)

(±0.7) (±0.1) (±1.4) (±12.8) (±1.4) (±22.7) (±0.3) (±0.0)

MP
-6.0 (0.99) -37.4 (1.0) -78.6 (1.0) -11.0 (0.99) -42.6 (1.0) -87.8 (0.86) -4.6 (0.99) -16.0 (1.0)

(±2.1) (±5.5) (±14.2) (±4.1) (±1.5) (±6.6) (±0.4) (±2.3)

FP
-82.9 (0.60) -86.5 (0.64) -89.1 (0.73) -38.0 (0.89) -27.6 (0.82) -100.0 (0.81) -84.5 (0.64) -26.9 (0.83)

(±1.8) (±4.3) (±2.6) (±6.1) (±3.7) (±0.0) (±9.3) (±4.6)

AR
-83.2 (0.84) -89.6 (0.85) -89.8 (0.62) -86.2 (0.63) -90.1 (0.83) -100.0 (0.86) -85.3 (0.81) -89.7 (0.83)

(±2.2) (±1.9) (±0.7) (±4.5) (±2.8) (±0.0) (±4.4) (±1.8)

Table 8. ARD and TMC of attack-agnostic defenses against various attacks (±: standard deviation).

5.3.1. Robustness vs. Utility. As input transformation
and model sanitization mitigate backdoors in an attack-
agnostic manner, while input filtering and model inspec-
tion have no direct influence on clean accuracy, we focus
on evaluating attack-agnostic defenses to study the trade-
off between robustness and utility preservation.

Robustness – With the no-defense (vanilla) case as
reference, we compare different defences in terms of
attack rate deduction (ARD) and trojan misclassification
confidence (TMC), with results shown in Table 8. We have
the following observations: (i) MP and AR are the most
robust methods in the categories of input transforma-
tion and model sanitization, respectively. (ii) FP seems
robust against most attacks except LB and IMC, which
is explained as follows: unlike attacks (e.g., TNN) that
optimize the trigger with respect to selected neurons, LB

and IMC perform optimization with respect to all the
neurons, making them immune to the pruning of FP. (iii)
Most defenses are able to defend against ESB (over 85%
ARD), which is attributed to its hard-coded trigger pattern
and modified DNN architecture: slight perturbation to the
trigger input or trojan model may destroy the embedded
backdoor.

Defense Attack
– BN TNN RB TB LB ESB ABE IMC

– 95.4 95.3 95.2 95.4 95.3 95.5 95.3 95.0 95.5

RS
-0.3 -0.6 -0.3 -0.4 -0.4 -0.3 -0.3 -0.4 -0.5

(±0.2) (±0.3) (±0.1) (±0.1) (±0.3) (±0.1) (±0.1) (±0.1) (±0.2)

DU
-4.0 -4.5 -4.5 -4.4 -4.3 -4.3 -4.0 -4.9 -4.6

(±0.1) (±0.4) (±0.3) (±0.3) (±0.1) (±0.2) (±0.2) (±0.6) (±0.3)

MP
-11.2 -11.9 -11.3 -10.8 -11.3 -11.4 -11.2 -11.9 -11.0

(±3.3) (±2.1) (±2.3) (±1.8) (±3.7) (±3.2) (±3.6) (±3.5) (±2.8)

FP
-0.1 -0.2 +0.0 +0.0 +0.0 -0.2 -0.2 +0.3 -0.4

(±0.0) (±0.0) (±0.0) (±0.0) (±0.0) (±0.1) (±0.0) (±0.0) (±0.1)

AR
-11.1 -11.1 -10.4 -10.4 -10.4 -10.9 -10.9 -10.5 -11.4

(±4.6) (±3.7) (±4.4) (±2.8) (±3.6) (±5.1) (±3.0) (±3.1) (±3.6)

Table 9. Impact of defenses on classification accuracy (−: clean
model without attack/defense; ±: standard deviation).

Utility – We now measure the impact of defenses on
the accuracy of classifying clean inputs. Table 9 summa-
rizes the results. With the vanilla setting as the baseline,
most defenses tend to negatively affect clean accuracy, yet
with varying impact. For instance, across all the cases, FP

attains the least CAD across all the cases, mainly due to
its fine-tuning; RS and AR cause about 0.4% and 11%
CAD, respectively. This is explained by the difference of

their underlying mechanisms: although both attempt to
alleviate the influence of trigger patterns, RS smooths
the prediction of an input x over its vicinity, while AR

forces the model to make consistent predictions in x’s
vicinity. Notably, comparing with Table 8, while MP and
AR seem generically effective against all the attacks, they
also suffer over 10% CAD, indicating the trade-off between
robustness and utility preservation.

Remark 4 – The design of attack-agnostic defenses faces the
trade-off between robustness and utility preservation.

5.3.2. Detection Accuracy of Different Attacks. We
evaluate the effectiveness of input filtering by measuring
its accuracy in detecting trigger inputs.

Detection accuracy – For each attack, we randomly
generate 100 pairs of trigger-clean inputs and measure
the true positive (TPR) and false positive (FPR) rates of
STRIP and NEO, two input filtering methods. To make
comparison, we fix FPR as 0.05 and report TPR in Table 10
(statistics in § B).

Defense
Attack

BN TNN RB TB LB ESB ABE IMC

STRIP
0.07 0.13 0.34 0.27 0.91 0.10 0.07 0.99

(±0.01) (±0.01) (±0.13) (±0.08) (±0.20) (±0.01) (±0.01) (±0.02)

NEO
0.29 0.23 0.29 0.36 0.29 0.64 0.28 0.29

(±0.09) (±0.10) (±0.07) (±0.11) (±0.06) (±0.24) (±0.05) (±0.05)

Table 10. TPR of NEO and STRIP (FPR = 0.05, α= 0.0, ±
standard deviation).

We have the following findings. (i) STRIP is particu-
larly effective against LB and IMC (over 0.9 TPR). Recall
that STRIP detects a trigger input using the self-entropy
of its mixture with a clean input. This indicates that the
triggers produced by LB and IMC effectively dominate the
mixtures, which is consistent with the findings in other
experiments (cf. Figure 2). (ii) NEO is effective against
most attacks to a limited extent (less than 0.3 TPR), but
especially effective against ESB (over 0.6 TPR), due to its
requirement for recognizing the trigger pattern precisely
to overwrite the model prediction.

Impact of trigger definition – We also evaluate the
impact of trigger definition on input filtering, with results
in Figure 6 (results for other defenses in § B). With fixed
trigger transparency, NEO constantly attains higher TPR
under larger triggers; in comparison, STRIP seems less
sensitive but also less effective under larger triggers. This
is attributed to the difference of their detection rationale:

692

0.0

0.2

0.4

0.8

0.6

Figure 6: TPR of NEO and STRIP under varying trigger definition (left: |m| = 3 × 3, right: |m| = 6 × 6; lower: α = 0.0, upper:
α = 0.8).

given input x, NEO searches for the “tipping” position in
x to cause prediction change, which is clearly subjective
to the trigger size; while STRIP measures the self-entropy
of x’s mixture with a clean input, which does not rely on
the trigger size.

Remark 5 – The design of input filtering defenses needs
to balance the detection accuracy with respect to different
attacks.

Defense
Attack

BN TNN RB TB LB ESB ABE IMC

NC
3.08 2.69 2.48 2.44 2.12 0.04 2.67 1.66

(±0.65) (±0.47) (±0.51) (±0.38) (±0.20) (±0.02) (±0.51) (±0.25)

DI
0.54 0.46 0.39 0.29 0.21 0.01 0.76 0.26

(±0.06) (±0.04) (±0.04) (±0.03) (±0.04) (±0.00) (±0.10) (±0.03)

TABOR
3.26 2.49 2.32 2.15 2.01 0.89 2.44 1.89

(±0.77) (±0.49) (±0.51) (±0.29) (±0.63) (±0.04) (±0.22) (±0.19)

NI
1.28 0.59 0.78 1.11 0.86 0.71 0.41 0.52

(±0.21) (±0.11) (±0.06) (±0.34) (±0.87) (±0.10) (±0.05) (±0.13)

ABS
3.02 4.16 4.10 15.55 2.88 8.45 3.15

(±0.81) (±1.33) (±1.27) (±6.59) (±0.25) (±3.22) (±0.43)

Table 11. AIV of clean models and trojan models by various attacks.

5.3.3. Detection Accuracy vs. Recovery Capability. We
evaluate model-inspection defenses in terms of their effec-
tiveness of (i) identifying trojan models and (ii) recovering
trigger patterns.

Detection Accuracy – Given defense D and model
f , we measure the anomaly index value (AIV) of all the
classes; if f is a trojan model, we use the AIV of the target
class to quantify D’s TPR of detecting trojan models and
target classes; if f is a clean model, we use the largest
AIV to quantify D’s FPR of misclassifying clean models.

The results are shown in Table 11. We observe: (i)
compared with other defenses, ABS is highly effective in
detecting trojan models (with largest AIV), attributed to
its neuron sifting strategy; (ii) IMC seems evasive to most
defenses (with AIV below 2), explainable by its trigger-
model co-optimization strategy that minimizes model dis-
tortion; (iii) most model-inspection defenses are either
ineffective or inapplicable against ESB, as it keeps the
original DNN intact but adds an additional module. This
contrasts the high effectiveness of other defenses against
ESB (cf. Table 8).

Recovery Capability – For successfully detected tro-
jan models, we further evaluate the trigger recovery of
various defenses by measuring the mask �1 norm (MLN)
of recovered triggers and mask jaccard similarity (MJS)
between the recovered and injected triggers, with results
shown in Table 12. While the ground-truth trigger has MLN

= 9 (α = 0.0, |m|= 3×3), most defenses recover triggers
of varying MLN and non-zero MJS, indicating that they
recover triggers different from, yet overlapping with, the
injected ones. In contrast to Table 11, NC and TABOR out-
perform ABS in trigger recovery, which may be explained
by that while ABS relies on the most abnormal neuron to
recover the trigger, the actual trigger may be embedded
into multiple neurons. This may also be corroborated by
that ABS attains the highest MJS on LB and IMC, which
tend to generate triggers embedded in a few neurons
(Table 10).

Remark 6 – The design of model-inspection defenses faces
the trade-off between the accuracy of detecting trojan models
and the effectiveness of recovering trigger patterns.

5.3.4. Execution Time. We compare the overhead of var-
ious defenses by measuring their ART (§ 4.4) on a NVIDIA
Quodro RTX6000. The results are listed in Table 13. Note
that online defenses (e.g., STRIP) have negligible over-
head, while offline methods (e.g., ABS) require longer but
acceptable running time (103∼104 seconds).

Remark 7 – Most defenses have marginal execution overhead
with respect to practical datasets and models.

5.4. Summary

Although the defense from different categories bear
distinct objectives (e.g., detecting trigger inputs versus
cleansing trojan models), the evaluation above leads to
the following observations: (i) attack-agnostic defenses
often face a dilemma of trade-off between robustness and
accuracy: input transformation retains high accuracy but is
often ineffective against most attacks; model sanitization
is effective to mitigate neural backdoors but at the cost
of significant accuracy drop; (ii) input-filtering is com-
putationally efficient but only effective against a limited
set of attacks; (iii) model-inspection requires extensive
optimization but the recovered trigger is able to serve
as a guidance for possible backdoor unlearning. These
observations may provide guidance for choosing suitable
defense strategies for given application scenarios.

6. Exploration

Next, we examine the current practices of operating
backdoor attacks and defenses and explore potential im-
provement.

693

Defense

Attack

BN TNN RB TB LB ESB ABE IMC

MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS

NC 4.98 0.55 4.65 0.70 2.64 0.89 3.53 7.52 0.21 35.16 0.00 5.84 0.42 8.63 0.13

DI 9.65 0.25 6.88 0.17 4.77 0.30 8.44 20.17 0.21 0.00 0.06 10.21 0.30 12.78 0.25

TABOR 5.63 0.70 4.47 0.42 3.03 0.70 3.67 7.65 0.21 43.37 0.00 5.65 0.42 8.69 0.13

ABS 17.74 0.42 17.91 0.55 17.60 0.70 16.00 17.29 0.42 17.46 0.31 17.67 0.31

Table 12. MLN and MJS of triggers recovered by model-inspection defenses with respect to various attacks (Note: as the trigger
position is randomly chosen in TB, its MJS is un-defined).

MP NEO STRIP AR FP

2.4×101 7.7×100 1.8×10−1 1.7×104 2.1×103

NC TABOR ABS NI DI

1.8×103 4.2×103 1.9×103 4.6×101 4.1×102

Table 13. Running time of various defenses (second).

6.1. Attack – Trigger

We first explore improving the trigger definition by
answering the following questions.

RQ1: Is it necessary to use large triggers? – It is found
in § 5.2 that attack efficacy seems insensitive to trigger
size. We now consider the extreme case that the trigger
is defined as a single pixel and evaluate the efficacy of
different attacks (constrained by CAD below 5%), with
results show in Table 14. Note that the trigger definition
is inapplicable to ESB, due to its requirement for trigger
size.

BN TNN RB TB LB ESB ABE IMC

95.1 98.1 77.7 98.0 100.0 90.0 99.7

(0.99) (0.96) (0.96) (0.99) (0.99) (0.97) (0.99)

Table 14. ASR and TMC of single-pixel triggers (α= 0.0, CAD ≤ 5%).

Note that single-pixel adversarial attacks have been
explored in the literature [54]; however, its study in the
context of backdoor attacks is fairly limited. While it is
mentioned in blind backdoor attacks [5], the discussion
is limited to the specific attack and does not explore
the global pattern of neural backdoors. Interestingly, with
single-pixel triggers, most attacks attain ASR compara-
ble with the cases of larger triggers (cf. Figure 3). This
implies the existence of universal, single-pixel perturba-
tion [42] with respect to trojan models (but not clean
models!), highlighting the mutual-reinforcement effects
between trigger inputs and trojan models [43].

Remark 8 – There often exists universal, single-pixel pertur-
bation with respect to trojan models (but not clean models).

RQ2: Is it necessary to use regular-shaped triggers? –
The triggers in the existing attacks are mostly regular-
shaped (e.g., square), which seems a common design
choice. We explore the impact of trigger shape on attack
efficacy. We fix |m|= 9 but select the positions of |m|
pixels independently and randomly. Table 15 compares
ASR under the settings of regular and random triggers.

Trigger BN TNN RB LB IMC

Regular 72.4 91.5 79.2 100.0 100.0

Random 97.6 98.5 92.7 97.6 94.5

Table 15. Comparison of regular and random triggers.

Except for LB and IMC which already attain extremely
high ASR under the regular-trigger setting, all the other at-
tacks achieve higher ASR under the random-trigger setting.
For instance, the ASR of BN increases by 25.2%. This may

be explained by that lifting the spatial constraint on the
trigger entails a larger optimization space for the attacks.

Remark 9 – Lifting spatial constraints on trigger patterns
tends to lead to more effective attacks.

RQ3: Is the “neuron-separation” guidance effective?
– A common search strategy for trigger patterns is using
the neuron-separation guidance: searching for triggers that
activate neurons rarely used by clean inputs [38]. Here,
we validate this guidance by measuring the NSR (§ 4.2) of
benign and trojan models before and after FP, as shown
in Table 16.

Fine-Pruning – BN TNN RB LB ABE IMC

Before 0.03 0.59 0.61 0.65 0.61 0.54 0.64

After 0.03 0.20 0.19 0.27 0.37 0.18 0.38

Table 16. NSR of benign and trojan models before and after FP.

Across all the cases, compared with its benign counter-
part, the trojan model tends to have higher NSR, while fine-
tuning reduces NSR significantly. More effective attacks
(cf. Figure 2) tend to have higher NSR (e.g., IMC). We thus
conclude that the neuron-separation heuristic is in general
valid.

Remark 10 – The separation between the neurons activated by
clean and trigger inputs is an indicator of attack effectiveness.

6.2. Attack – Optimization

We now examine the optimization strategies used by
the existing attacks and explore potential improvements.

RQ4: Is it necessary to start from benign models? –
To forge a trojan model, a common strategy is to re-
train a benign, pre-trained model. Here, we challenge this
practice by evaluating whether re-training a benign model
leads to more effective attacks than training a trojan model
from scratch.

Training Strategy BN TNN RB LB IMC

Benign model re-training
ASR 72.4 91.5 79.2 100.0 100.0

CAD -1.3 -0.4 -0.6 -0.5 -2.8

Training from scratch
ASR 76.9 98.9 81.2 100.0 100.0

CAD -0.7 -0.6 -0.7 -0.8 -0.9

Table 17. ASR and CAD of trojan models by training from
scratch and re-training from benign models.

Table 17 compares the ASR of trojan models generated
using the two strategies. Except for LB and IMC achieving
similar ASR in both settings, the other attacks observe
marginal improvement if they are trained from scratch. For
instance, the ASR of TNN improves by 7.4%. One possible
explanation is as follows. Let f and f ∗ represent the
benign and trojan models, respectively. In the parameter

694

space, re-training constrains the search for f ∗ within in
f ’s vicinity, while training from scratch searches for f ∗ in
the vicinity of a randomly initialized configuration, which
may lead to better starting points.

Remark 11 – Training from scratch tends to lead to more
effective attacks than benign-model re-training.

RQ5: Is it feasible to exploit model architectures?
–Most attacks train trojan models in a model-agnostic
manner, ignoring their unique architectures (e.g., resid-
ual block). We explore the possibility of exploiting such
features.

ASR (%)
80 84 88 92 96 100

BN

LB

TNN

IMC

RB

TB

ESB

ABE

A
at

ta
ck

ResNet DenseNet VGG

Figure 7: Impact of DNN architecture on attack efficacy.

We first compare the attack performance on three
DNN models, VGG, ResNet, and DenseNet, with re-
sults shown in Figure 7. First, different model archi-
tectures manifest varying attack vulnerabilities, ranked
as ResNet>DenseNet>VGG. This may be explained
as follows. Compared with traditional convolutional net-
works (e.g., VGG), the unique constructs of ResNet
(i.e., residual block) and DenseNet (i.e., dense connection)
enable more effective feature extraction, but also allow
more effective propagation of trigger patterns. Second,
among all the attacks, LB, IMC, and ESB seem insensitive
to model architectures, which may be attributed to the
optimization strategies of LB and IMC, and the direct
modification of DNN architectures by ESB.

We then consider the skip-connect structures and
attempt to improve the gradient backprop in training
trojan models. In such networks, gradients propagate
through both skip-connects and residual blocks. By setting
the weights of gradients from skip-connects or residual
blocks, it amplifies the gradient update towards inputs
or model parameters [64]. Specifically, we modify the
backprop procedure in IMC by setting a decay coefficient
γ = 0.5 for the gradient through skip connections, with
ASR improvement over normal training shown in Figure 8.

A
S

R
 im

p
ro

ve
m

en
t (

%
)

2 2 3 3 4 4 5 51 1
Trigger size ()

0

1

2

0.69
(+1.13)

1.80
(-2.21)

0.06
(+0.73)

0.01
(+0.13)

0.00
(+0.07)

Figure 8: ASR improvement (and CAD change) by reducing skip-
connection gradients (α= 0.9).

Observe that by reducing the skip-connection gradi-
ents, it marginally improves the ASR of IMC especially for

small triggers (e.g., |m|= 2×2). We consider searching for
the optimal γ to maximize attack efficacy as our ongoing
work.

Remark 12 – It is feasible to exploit skip-connect structures
to improve attack efficacy marginally.

RQ6: How to mix clean and trigger inputs in training?
– To balance attack efficacy and specificity, the adversary
often mixes clean and trigger inputs in training trojan
models. There are typically three mixing strategies: (i)
dataset-level – mixing trigger inputs Tt with clean inputs
Tc directly, (ii) batch-level – adding trigger inputs to each
batch of clean inputs during training, and (iii) loss-level
– computing and aggregating the average losses of Tt
and Tc. Here, we fix the mixing coefficient λ= 0.01 and
compare the effectiveness of different strategies.

Mixing Strategy BN TNN RB LB IMC

Dataset-level 59.3 72.2 46.2 99.6 92.0

Batch-level 72.4 91.5 79.2 100.0 100.0

Loss-level 21.6 22.9 18.1 33.6 96.5

Table 18. Impact of mixing strategies on attack efficacy (α= 0.0,
λ= 0.01).

We observe in Table 18 that across all the cases, the
batch-level mixing strategy leads to the highest ASR. This
can be explained as follows. With dataset-level mixing,
the ratio of trigger inputs in each batch tends to fluctuate
significantly due to random shuffling, resulting in inferior
training quality. With loss-level mixing, λ= 0.01 results
in fairly small gradients of trigger inputs, equivalent to
setting an overly small learning rate. In comparison, batch-
level mixing asserts every poisoning instance and its clean
version must share the same batch, making the model
focus more on the trigger as the classification evidence
of target class.

Here, we provide a potential explanation: the loss-level
mixing involves the gradient scale of poisoning data. If the
loss is defined as L = Lclean+λ·Lpoison and optimization

step as Δ = lr· ∂(Lclean+λ·Lpoison)
∂θ , where lr is the learning

rate and Lclean and Lpoison are the losses on the clean

and poisoning data. Observe that Δ = lr · ∂Lclean

∂θ + lr ·
λ · ∂Lpoison

∂θ . The real gradient scale is lr ·λ rather than lr,
which makes the step size smaller than expected.

Remark 13 – Batch-level mixing tends to lead to the most
effective training of trojan models.

RQ7: How to optimize the trigger pattern? – An attack
involves optimizing both the trigger pattern and the trojan
model. The existing attacks use 3 typical strategies: (i)
Pre-defined trigger – it fixes the trigger pattern and only
optimizes the trojan model. (ii) Partially optimized trigger
– it optimizes the trigger pattern in a pre-processing stage
and optimizes the trojan model. (iii) Trigger-model co-
optimization – it optimizes the trigger pattern and the
trojan model jointly during training. Here, we implement
3 variants of BN that use these optimization strategies,
respectively. Figure 9 compares their ASR under varying
trigger transparency. Observe that the trigger-optimization
strategy has a significant impact on ASR, especially un-
der high transparency. For instance, if α = 0.9, the co-
optimization strategy improves ASR by over 60% from the

695

non-optimization strategy.

Remark 14 – Optimizing the trigger pattern and the trojan
model jointly leads to more effective attacks.

Trigger transparency ()
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
S

R
 (%

)

40

60

80

100

pre-defined trigger

partially optimized trigger

trigger-model co-optimization

Figure 9: Impact of trigger optimization.

6.3. Defense – Evadability

RQ8: Are the existing defenses evadable? – We now
explore whether the existing defenses are potentially evad-
able by adaptive attacks. We select IMC as the basic attack,
due to its flexible optimization framework, and consider
MP, AR, STRIP, and ABS as the representative defenses
from the categories in Table 3. Specifically, we adapt IMC

to each defense.

Recall that MP uses an auto-encoder to downsample
then upsample a given input, during which the trigger
pattern tends to be blurred and loses effect. To adapt IMC

to MP, we train a surrogate autoencoder h and conduct
optimization with inputs reformed by h.

Recall that AR considers trigger inputs as one type
of adversarial inputs and applies adversarial training to
improve model robustness against backdoor attacks. To
adapt IMC to AR, during training f ∗, we replace clean
accuracy loss with adversarial accuracy loss; thus, the
process is a combination of adversarial training and trojan
model training, resulting in a robust but trojan model. This
way, AR has a limited impact on the embedded backdoor,
as the model is already robust.

Recall that STRIP mixes up given inputs with clean
inputs and measures the self-entropy of their predictions.
Note that in the mixture, the transparency of the orig-
inal trigger is doubled; yet, STRIP works as the high-
transparency trigger remains effective. To adapt IMC to
STRIP, we use trigger inputs with high-transparency trig-
gers together with their ground-truth classes to re-train
f ∗. The re-training reduces the effectiveness of high-
transparency triggers while keeping low-transparency trig-
gers effective.

Recall that ABS identifies triggers by maximizing ab-
normal activation while preserving normal neuron behav-
ior. To adapt IMC to ABS, we integrate the cost function
(Algorithm 2 in [37]) in the loss function to train f ∗.

We compare the efficacy of non-adaptive and adaptive
IMC, as shown in Figure 10. Observe that across all the
cases, the adaptive IMC significantly outperforms the non-
adaptive one. For instance, under |m|= 6×6, it increases
the ASR with respect to MP by 80% and reduces the TPR
of STRIP by over 0.85. Also note that a larger trigger
size leads to more effective adaptive attacks, as it entails
a larger optimization space.

Remark 15 – Most existing defenses are potentially evadable
by adaptive attacks.

6.4. Defense – Interpretability

RQ9: Does interpretability help mitigate backdoor at-
tacks? – The interpretability of DNNs explain how they
make predictions for given inputs [18], [48]. Recent stud-
ies [22], [58] show that such interpretability helps defend
against adversarial attacks. Here, we explore whether it
mitigates backdoor attacks. Specifically, for a pair of
benign-trojan models and 100 pairs of clean-trigger inputs,
we generate the attribution map [48] of each input with
respect to both models and ground and target classes, with
an example shown in Figure 11.

We measure the difference (�1-norm normalized by
image size) of attribution maps of clean and trigger in-
puts. Observe in Table 19 that their attribution maps with
respect to the target class differ significantly on the trojan
model, indicating the possibility of using interpretability
to detect the attack. This finding also corroborates recent
work on using interpretability to identify possibly tam-
pered regions in images [13]. However, it may require
further study whether the adversary may adapt the attack
to deceive such detection [71].

Benign model Trojan model

Original class Target class Original class Target class

0.08% 0.12% 0.63% 8.52%

Table 19. Distance between the heatmaps of clean and trigger
inputs (α= 0.0).

Remark 16 – It seems promising to exploit model inter-
pretability to enhance defense robustness.

6.5. Summary

Based on the study above, we recommend the follow-
ing testing strategy for a new neural backdoor attack: (i)
attacks that optimize models only (e.g., BN), (ii) attacks
that partially optimize triggers (e.g., TNN), (iii) attacks
that optimize both models and triggers (e.g., IMC), and
(iv) attacks adaptive to the given defense. The increasing
level of complexity gives the adversary more flexibility to
optimize various settings (e.g., trigger transparency and
size) to evade the defense, leading to stronger attacks.

Looking forward, the study also opens several research
directions for future defenses: (i) ensemble defenses that
leverage the strengths of individual ones (e.g., input trans-
formation and model sanitization), (ii) defenses that in-
volve human in the loop via interpretability, and (iii)
defenses that provide theoretical guarantees based on the
invariant properties of various attacks.

7. Limitations

First, to date TROJANZOO has integrated 8 attacks and
14 defenses, representing the state of the art of neural
backdoor research. Yet, as a highly active research field,
a set of concurrent work has proposed new backdoor at-
tacks/defenses [34], [44], [49], [56], [63], [67], which are
not included in the current implementation of TROJANZOO.

696

Trigger size ()
6 63 3 6 63 3 6 63 3 6 63 3

ARMP STRIP ABS
A

C
C

 (%
)

A
S

R
 (%

)

A
IV

0
25

50
75

100

0

100

0

100 0

1

2

3

4

5

A
C

C
 (%

)
A

S
R

 (%
)

T
P

R

0

.2

.4

.6

.8

1

0
25

50
75

100

Figure 10: Performance of non-adaptive and adaptive IMC against representative defenses (α= 0.0).

Benign model

C
le

an
 in

p
u

t
Tr

ig
ge

r
in

p
u

t

 Trojan model

 Original
 class

 Target
 class

 Original
 class

 Target
 class

Figure 11: Sample attribution maps of clean and trigger inputs
with respect to benign and trojan models (α= 0.0, ImageNet).

As examples, [56] presents a new attack that obscures the
representations of benign and trigger inputs; [49] proposes
to leverage interpretability to improve attack effectiveness;
while [44] investigates data augmentation-based defenses.
However, thanks to its modular design, TROJANZOO can be
readily extended to incorporate new attacks, defenses, and
metrics. Moreover, we plan to open-source all the code
and data of TROJANZOO and encourage the community to
contribute.

Second, to conduct a unified evaluation, we mainly
consider the attack vector of re-using pre-trained trojan
models. There are other attack vectors through which
backdoor attacks can be launched, including poisoning
victims’ training data [50], [73] and knowledge distilla-
tion [69], which entail additional constraints for attacks
or defenses. For instance, the poisoning data needs to
be evasive to bypass inspection. We consider studying
alternative attack vectors as our ongoing work.

Third, due to space limitations, our evaluation focuses
on popular DNN models (e.g., ResNet) and assumes fixed
training/test data split. We consider evaluating the impact
of model configuration and data split on neural backdoor
attacks/defenses as our ongoing work.

Finally, because of the plethora of work on neural
backdoors in the computer vision domain, TROJANZOO

focuses on the image classification task, while recent
work has also explored neural backdoors in other settings,
including natural language processing [30], [46], [72],
reinforcement learning [28], and federated learning [6],
[65]. We plan to extend TROJANZOO to support such
settings in its future releases.

8. Conclusion

We design and implement TROJANZOO, the first
platform dedicated to assessing neural backdoor at-
tacks/defenses in a holistic, unified, and practical manner.
Leveraging TROJANZOO, we conduct a systematic eval-
uation of existing attacks/defenses, which demystifies a

number of open questions, reveals various design trade-
offs, and sheds light on further improvement. We envision
TROJANZOO will serve as a useful benchmark to facilitate
neural backdoor research.

Acknowledgment

We thank anonymous reviewers and shepherd for valu-
able feedback. This work is supported by the National
Science Foundation under Grant No. 1951729, 1953813,
and 1953893. Any opinions, findings, and conclusions
or recommendations are those of the authors and do
not necessarily reflect the views of the National Science
Foundation. X. Luo is partly supported by Hong Kong
RGC Project (No. PolyU15222320).

697

References

[1] Advbox. https://github.com/advboxes/AdvBox/.

[2] CleverHans Adversarial Examples Library. https://github.com/
tensorflow/cleverhans/.

[3] IBM Adversarial Robustness Toolbox (ART). https://github.com/
Trusted-AI/adversarial-robustness-toolbox/.

[4] Trojai. https://trojai.readthedocs.io.

[5] Eugene Bagdasaryan and Vitaly Shmatikov. Blind Backdoors in
Deep Learning Models. Proceedings of USENIX Security Sympo-
sium (SEC), 2021.

[6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin,
and Vitaly Shmatikov. How To Backdoor Federated Learning. In
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

[7] Battista Biggio, Giorgio Fumera, Fabio Roli, and Luca Didaci.
Poisoning Adaptive Biometric Systems. In Proceedings of Joint
IAPR International Workshop on Structural, Syntactic, and Statis-
tical Pattern Recognition (SSPR&SPR), 2012.

[8] BVLC. Model zoo. https://github.com/BVLC/caffe/wiki/
Model-Zoo, 2017.

[9] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew
Zisserman. Vggface2: A dataset for recognising faces across pose
and age. In 13th IEEE International Conference on Automatic Face
& Gesture Recognition, 2018.

[10] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig,
Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivas-
tava. Detecting Backdoor Attacks on Deep Neural Networks by
Activation Clustering. In ArXiv e-prints, 2018.

[11] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
DeepInspect: A Black-box Trojan Detection and Mitigation Frame-
work for Deep Neural Networks. In Proceedings of International
Joint Conference on Artificial Intelligence, 2019.

[12] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted Backdoor Attacks on Deep Learning Systems Using Data
Poisoning. ArXiv e-prints, 2017.

[13] Edward Chou, Florian Tramer, Giancarlo Pellegrino, and Dan
Boneh. SentiNet: Detecting Physical Attacks Against Deep Learn-
ing Systems. In ArXiv e-prints, 2018.

[14] Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified Ad-
versarial Robustness via Randomized Smoothing. In Proceedings
of IEEE Conference on Machine Learning (ICML), 2019.

[15] Paul Cooper. Meet AISight: The scary CCTV network completely
run by AI. http://www.itproportal.com/, 2014.

[16] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A Large-scale Hierarchical Image Database. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[17] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko,
Susan M. Swetter, Helen M. Blau, and Sebastian Thrun.
Dermatologist-level classification of skin cancer with deep neural
networks. Nature, 542(7639):115–118, 2017.

[18] Ruth C Fong and Andrea Vedaldi. Interpretable Explanations of
Black Boxes by Meaningful Perturbation. In Proceedings of IEEE
International Conference on Computer Vision (ICCV), 2017.

[19] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith
Ranasinghe, and Surya Nepal. STRIP: A Defence Against Trojan
Attacks on Deep Neural Networks. In Proceedings of Annual
Computer Security Applications Conference (ACSAC), 2019.

[20] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative Adversarial Networks. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS),
2014.

[21] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets:
Identifying Vulnerabilities in the Machine Learning Model Supply
Chain. ArXiv e-prints, 2017.

[22] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and
Xinyu Xing. LEMNA: Explaining Deep Learning Based Security
Applications. In Proceedings of ACM Conference on Computer
and Communications (CCS), 2018.

[23] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song.
TABOR: A Highly Accurate Approach to Inspecting and Restor-
ing Trojan Backdoors in AI Systems. In Proceedings of IEEE
International Conference on Data Mining (ICDM), 2019.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[25] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. Densely Connected Convolutional Networks. In
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[26] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. Neu-
ronInspect: Detecting Backdoors in Neural Networks via Output
Explanations. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), 2019.

[27] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang.
Model-Reuse Attacks on Deep Learning Systems. In Proceed-
ings of ACM SAC Conference on Computer and Communications
(CCS), 2018.

[28] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li.
TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents.
ArXiv e-prints, 2019.

[29] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers
of Features from Tiny Images. Technical report, University of
Toronto, 2009.

[30] Keita Kurita, Paul Michel, and Graham Neubig. Weight Poisoning
Attacks on Pre-trained Models. In Proceedings of Annual Meeting
of the Association for Computational Linguistics (ACL), 2020.

[31] Te Lester Juin Tan and Reza Shokri. Bypassing Backdoor Detection
Algorithms in Deep Learning. In Proceedings of IEEE European
Symposium on Security and Privacy (Euro S&P), 2020.

[32] Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue, Dali
Kaafar, and Haojin Zhu. Invisible Backdoor Attacks Against Deep
Neural Networks. ArXiv e-prints, 2019.

[33] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao
Xia. Backdoor Learning: A Survey. ArXiv e-prints, 2020.

[34] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite
Backdoor Attack for Deep Neural Network by Mixing Existing
Benign Features. In Proceedings of ACM SAC Conference on
Computer and Communications (CCS), 2020.

[35] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang.
DEEPSEC: A Uniform Platform for Security Analysis of Deep
Learning Model. In Proceedings of IEEE Symposium on Security
and Privacy (S&P), 2019.

[36] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
Pruning: Defending Against Backdooring Attacks on Deep Neural
Networks. In Proceedings of Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2018.

[37] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra
Aafer, and Xiangyu Zhang. ABS: Scanning Neural Networks for
Back-Doors by Artificial Brain Stimulation. In Proceedings of
ACM SAC Conference on Computer and Communications (CCS),
2019.

[38] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural
networks. In Proceedings of Network and Distributed System
Security Symposium (NDSS), 2018.

[39] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflec-
tion Backdoor: A Natural Backdoor Attack on Deep Neural Net-
works. In Proceedings of European Conference on Computer
Vision (ECCV), 2020.

[40] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dim-
itris Tsipras, and Adrian Vladu. Towards Deep Learning Models
Resistant to Adversarial Attacks. In Proceedings of International
Conference on Learning Representations (ICLR), 2018.

698

[41] Dongyu Meng and Hao Chen. MagNet: A Two-Pronged Defense
Against Adversarial Examples. In Proceedings of ACM SAC
Conference on Computer and Communications (CCS), 2017.

[42] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi,
Pascal Frossard, and Stefano Soatto. Analysis of Universal Adver-
sarial Perturbations. ArXiv e-prints, 2017.

[43] Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy
Vorobeychik, Xiapu Luo, Alex Liu, and Ting Wang. A Tale of Evil
Twins: Adversarial Inputs versus Poisoned Models. In Proceed-
ings of ACM SAC Conference on Computer and Communications
(CCS), 2020.

[44] Han Qiu, Yi Zeng, Shangwei Guo, Tianwei Zhang, Meikang Qiu,
and Bhavani Thuraisingham. Deepsweep: An evaluation framework
for mitigating dnn backdoor attacks using data augmentation. In
Proceedings of ACM Symposium on Information, Computer and
Communications Security (AsiaCCS), 2021.

[45] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang
Zhang. Dynamic Backdoor Attacks Against Machine Learning
Models. ArXiv e-prints, 2020.

[46] Roei Schuster, Tal Schuster, Yoav Meri, and Vitaly Shmatikov.
Humpty Dumpty: Controlling Word Meanings via Corpus Poison-
ing. In Proceedings of IEEE Symposium on Security and Privacy
(S&P), 2020.

[47] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. Hidden Technical Debt in
Machine Learning Systems. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2015.

[48] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra. Grad-CAM: Visual Explanations from Deep Net-
works via Gradient-Based Localization. In Proceedings of IEEE
International Conference on Computer Vision (ICCV), 2017.

[49] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea.
Explanation-Guided Backdoor Poisoning Attacks Against Malware
Classifiers. 2021.

[50] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison
Frogs! Targeted Clean-Label Poisoning Attacks on Neural Net-
works. In Proceedings of Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2018.

[51] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Proceedings
of International Conference on Learning Representations (ICLR),
2014.

[52] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian
Igel. Man vs. Computer: Benchmarking Machine Learning Al-
gorithms for Traffic Sign Recognition. Neural Metworks, pages
323–32, 2012.

[53] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified
Defenses for Data Poisoning Attacks. In Proceedings of Advances
in Neural Information Processing Systems (NeurIPS), 2017.

[54] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One
pixel attack for fooling deep neural networks. IEEE Transactions
on Evolutionary Computation, 23(5):828–841, 2019.

[55] Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé,
III, and Tudor Dumitraş. When Does Machine Learning FAIL?
Generalized Transferability for Evasion and Poisoning Attacks. In
Proceedings of USENIX Security Symposium (SEC), 2018.

[56] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon
in the Variant: Statistical Analysis of DNNs for Robust Backdoor
Contamination Detection. 2021.

[57] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu.
An Embarrassingly Simple Approach for Trojan Attack in Deep
Neural Networks. In Proceedings of ACM International Conference
on Knowledge Discovery and Data Mining (KDD), 2020.

[58] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. At-
tacks Meet Interpretability: Attribute-Steered Detection of Adver-
sarial Samples. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[59] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral Signatures
in Backdoor Attacks. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[60] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell Loh, Louth
Rawshan, and Sudipta Chattopadhyay. Model Agnostic Defence
against Backdoor Attacks in Machine Learning. ArXiv e-prints,
2019.

[61] Allyson Versprille. Researchers Hack Into Driverless Car System,
Take Control of Vehicle. http://www.nationaldefensemagazine.org/,
2015.

[62] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao. Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks. In Proceedings of IEEE Symposium
on Security and Privacy (S&P), 2019.

[63] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li.
RAB: Provable Robustness Against Backdoor Attacks. ArXiv e-
prints, 2020.

[64] Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and
Xingjun Ma. Skip Connections Matter: On the Transferability of
Adversarial Examples Generated with ResNets. In Proceedings
of International Conference on Learning Representations (ICLR),
2020.

[65] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. DBA: Dis-
tributed Backdoor Attacks against Federated Learning. In Pro-
ceedings of International Conference on Learning Representations
(ICLR), 2020.

[66] W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. In Proceedings
of Network and Distributed System Security Symposium (NDSS),
2018.

[67] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter,
and Bo Li. Detecting AI Trojans Using Meta Neural Analysis. In
Proceedings of IEEE Symposium on Security and Privacy (S&P),
2020.

[68] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao. Latent
Backdoor Attacks on Deep Neural Networks. In Proceedings of
ACM SAC Conference on Computer and Communications (CCS),
2019.

[69] Kota Yoshida and Takeshi Fujino. Disabling Backdoor and Iden-
tifying Poison Data by Using Knowledge Distillation in Backdoor
Attacks on Deep Neural Networks. In Proceedings of ACM
Workshop on Artificial Intelligence and Security (AISec), 2020.

[70] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
Transferable Are Features in Deep Neural Networks? In Pro-
ceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2014.

[71] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu
Luo, and Ting Wang. Interpretable Deep Learning under Fire.
In Proceedings of USENIX Security Symposium (SEC), 2020.

[72] Xinyang Zhang, Zheng Zhang, and Ting Wang. Trojaning Lan-
guage Models for Fun and Profit. ArXiv e-prints, 2020.

[73] Chen Zhu, W. Ronny Huang, Ali Shafahi, Hengduo Li, Gavin
Taylor, Christoph Studer, and Tom Goldstein. Transferable Clean-
Label Poisoning Attacks on Deep Neural Nets. In Proceedings of
IEEE Conference on Machine Learning (ICML), 2019.

699

Appendix A.
Implementation Details

Below we elaborate on the implementation of attacks
and defenses in this paper.

A.1. Default Parameter Setting

Table 20 and Table 21 summarize the default parameter
setting in our empirical evaluation (§ 5).

Attack Parameter Setting

Training

learning rate 0.01

retrain epoch 50

optimizer SGD (nesterov)

momentum 0.9

weight decay 2e-4

BN toxic data percent 1%

TNN

preprocess layer penultimate logits

neuron number 2

preprocess optimizer PGD

preprocess lr 0.015

preprocess iter 20

threshold 5

target value 10

RB

candidate number 50

selection number 10

selection iter 5

inner epoch 5

LB

preprocess layer penultimate logits

preprocess lr 0.1

preprocess optimizer Adam (tanh constrained)

preprocess iter 100

samples per class 1000

MSE loss weight 0.5

ESB

TrojanNet 4-layer MLP

hidden neurons per layer 8

single layer structure [fc, bn, relu]

TrojanNet influence α =0.7

amplify rate 100

temperature 0.1

ABE
discriminator loss weight λ =0.1

discriminator lr 1e-3

IMC

trigger optimizer PGD

PGD lr α =20/255

PGD iter 20

Table 20. Attack default parameter setting.

A.2. Pseudo-linearity of downstream model

We have shown in § 5 that most attacks seem agnostic
to the downstream model. Here, we provide possible
explanations. Consider a binary classification setting and
a trigger input x with ground-truth class “-” and target
class “+”. Recall that a backdoor attack essentially shifts
x in the feature space by maximizing the quantity of

Δf = Eμ+ [f(x)]− Eμ− [f(x)] (7)

where μ+ and μ− respectively denote the data distribution
of the ground-truth positive and negative classes.

Now consider the end-to-end system g ◦ f . The like-
lihood that x is misclassified into “+” is given by:

Δg◦f = Eμ+ [g ◦ f(x)]− Eμ− [g ◦ f(x)] (8)

Defense Parameter Setting

RS

sample distribution Gaussian

sample number 100

sample std 0.01

DU
downsample filter Anti Alias

downsample ratio 0.95

MP
training noise std 0.1

structure [32]

STRIP
mixing weight 0.5 (equal)

sample number 64

NEO

sample number 100

Kmeans cluster number 3

threshold 80

AR

PGD lr α =2/255

perturbation threshold ε =8/255

PGD iter 7

learning rate 0.01

epoch 50

FP prune ratio 0.95

NC

norm regularization weight 1e-3

remask lr 0.1

remask epoch per label 10

DI

sample dataset ratio 0.1

noise dimension 100

remask lr 0.01

remask epoch per label 20

TABOR regularization weight

λ1 =1e-6

λ2 =1e-5

λ3 =1e-7

λ4 =1e-8

λ5 =0

λ6 =1e-2

NI

weighting coefficient

λsp =1e-5

λsm =1e-5

λpe =1

threshold 0

sample ratio 0.1

ABS

sample k 1

sample number 5

max trojan size 16

remask lr 0.1

remask iter per neuron 1000

remask weight

0.1 if norm< 16

10 if 16 <norm< 100

100 if norm> 100

Table 21. Defense default parameter setting.

One sufficient condition for the attack to succeed is
that Δg◦f is linearly correlated with Δf (i.e., Δg◦f ∝
Δf). If so, we say that the function represented by g
is pseudo-linear. Unfortunately, in practice, most down-
stream models are fairly simple (e.g., one fully-connected
layer), showing pseudo-linearity. Possible reasons include:
(i) complex architectures are difficult to train especially
when the training data is limited; (ii) they imply much
higher computational overhead; (iii) the ground-truth map-
ping from the feature space to the output space may indeed
be pseudo-linear.

700

Appendix B.
Additional Experiments

B.1. Attack

Figure 12 and 13 complement the results of attack
performance evaluation on ImageNet with respect to trig-
ger size and trigger transparency in Section 5.2. Note that
Figure 13 uses α = 0.3, which is more transparent than
α = 0.0 used in Table 14. Therefore, all attacks at 1 × 1
trigger size are not working and their ASR are close to
10%. This is not conflict to the observation in Table 14.

The attacks tend to be sensitive to the trigger trans-
parency but insensitive to the trigger size (claimed in
Section 4.2.1). All the attacks fail under |m| = 1 × 1
and are excluded from Figure 3 in Section 4.2.1. Table 14
and Figure 13 use different settings. Table 14: α = 0.0 on
CIFAR10, Figure 13: α = 0.3 on ImageNet, which cause
the difference in terms of trigger transparency and data
complexity.

The attacks tend to be sensitive to the trigger trans-
parency but insensitive to the trigger size (claimed in
Section 4.2.1). |m| = 1× 1 is not working for all attacks
and are excluded from Figure 3 in Section 4.2.1. Table 14
and Figure 13 use different settings. Table 14: α = 0.0 on
CIFAR10, Figure 13: α = 0.3 on ImageNet, which cause
the difference in terms of trigger transparency and data
complexity.

A
S

R
 (%

)

0

20

40

60

80

100

Trigger transparency ()
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 12: ASR with respect to trigger transparency (|m| = 3×3,
ImageNet).

Trigger size ()

A
S

R
 (%

)

0

20

40

60

80

100

2 21 1 3 3 4 4 5 5 6 6 7 7

Figure 13: ASR with respect to trigger size (α = 0.3, ImageNet).

Table 22 complements the results in Table 5.

B.2. Defense

Table 23 presents more information (F1-score, preci-
sion, recall, and accuracy), which complements Table 10.

BN TNN RB TB LB ESB ABE IMC

GTSRB 65.63 71.70 0.94 0.58 98.42 68.41 68.41 97.58

CIFAR100 64.53 89.76 42.77 23.44 97.83 0.98 67.86 98.75

VGGFace2 85.62 97.30 92.31 88.75 98.08 100.00 72.74 98.43

Table 22. Impact of data complexity on ASR (|m| = 3× 3 and
α = 0.8 for GTSRB and CIFAR100, |m| = 25×25 and α = 0.0
for VGGFace2).

Defense Measure BN TNN RB TB LB ESB ABE IMC

STRIP

F1 Score 0.12 0.21 0.47 0.39 0.91 0.18 0.13 0.95

Precision 0.41 0.56 0.77 0.73 0.90 0.52 0.43 0.91

Recall 0.07 0.13 0.34 0.27 0.91 0.10 0.07 0.99

Accuracy 0.48 0.51 0.62 0.58 0.91 0.50 0.49 0.95

NEO

F1 Score 0.45 0.37 0.45 0.34 0.45 0.77 0.43 0.45

Precision 1.00 1.00 1.00 0.35 1.00 0.96 0.90 1.00

Recall 0.29 0.23 0.29 0.36 0.29 0.64 0.28 0.29

Accuracy 0.65 0.62 0.65 0.36 0.65 0.81 0.63 0.65

Table 23. Additional statistics of input filtering.

Figure 14 and 15 shows the influence of DNN archi-
tecture and trigger definition on the performance of attack-
agnostic defenses (MP, AR, RS, DU).

Figure 16 illustrate the impact of DNN architecture on
the performance of input filtering defenses (NEO, STRIP),
which complements Figure 6.

Figure 17 and 18 illustrate the impact of DNN architec-
ture and trigger definition on the performance of model-
inspection defenses (ABS, NI, TABOR, DI, NC).

0

20

40

60

80

100

Figure 14: Impact of DNN architecture on attack-agnostic de-
fenses (lower: ResNet18, middle: DenseNet121; upper: VGG13).

701

0

20

40

60

80

100

Figure 15: Impact of trigger definition on attack-agnostic de-
fenses (left: |m| = 3 × 3, right: |m| = 6 × 6; lower: α = 0.0,
upper: α = 0.8).

0.0

0.2

0.4

0.6

0.8

Figure 16: Impact of DNN architecture on input filtering de-
fenses (lower: ResNet18, middle: DenseNet121; upper: VGG13).

0.0

1.0

1.5

2.0

2.5

3.0

0.5

Figure 17: Impact of DNN architecture on model filtering de-
fenses (lower: ResNet18, middle: DenseNet121; upper: VGG13;
note: ESB–ABS pair is inapplicable).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 18: Impact of trigger definition on model filtering de-
fenses (left: |m| = 3 × 3, right: |m| = 6 × 6; lower: α = 0.0,
upper: α = 0.8; note: ESB–ABS pair is inapplicable).

702

