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Abstract—Machine learning (ML) has made tremendous
progress during the past decade and is being adopted in
various critical real-world applications. However, recent re-
search has shown that ML models are vulnerable to multiple
security and privacy attacks. In particular, backdoor attacks
against ML models have recently raised a lot of awareness.
A successful backdoor attack can cause severe consequences,
such as allowing an adversary to bypass critical authentica-
tion systems.

Current backdooring techniques rely on adding static
triggers (with fixed patterns and locations) on ML model
inputs which are prone to detection by the current backdoor
detection mechanisms. In this paper, we propose the first
class of dynamic backdooring techniques against deep neural
networks (DNN), namely Random Backdoor, Backdoor Gen-
erating Network (BaN), and conditional Backdoor Generat-
ing Network (c-BaN). Triggers generated by our techniques
can have random patterns and locations, which reduce the
efficacy of the current backdoor detection mechanisms. In
particular, BaN and c-BaN based on a novel generative
network are the first two schemes that algorithmically
generate triggers. Moreover, c-BaN is the first conditional
backdooring technique that given a target label, it can
generate a target-specific trigger. Both BaN and c-BaN are
essentially a general framework which renders the adversary
the flexibility for further customizing backdoor attacks.

We extensively evaluate our techniques on three bench-
mark datasets: MNIST, CelebA, and CIFAR-10. Our tech-
niques achieve almost perfect attack performance on back-
doored data with a negligible utility loss. We further show
that our techniques can bypass current state-of-the-art de-
fense mechanisms against backdoor attacks, including ABS,
Februus, MNTD, Neural Cleanse, and STRIP.

1. Introduction

Machine learning (ML), represented by Deep Neural
Network (DNN), has made tremendous progress during
the past decade, and ML models have been adopted in a
wide range of real-world applications including those that
play critical roles. For instance, Apple’s FacelD [I] is
using ML-based facial recognition systems for unlocking
the mobile device and authenticating purchases in Apple
Pay. However, recent research has shown that machine
learning models are vulnerable to various security and
privacy attacks [4], [14], [19], [25], [33], [36], [37], [42],
[46], [49], [52], [54], [57], [59].

In this work, we focus on backdoor attacks against
DNN models on image classification tasks, which are
among the most successful ML applications deployed in
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the real world. In the backdoor attack setting, an adversary
trains an ML model which can intentionally misclassify
any input with an added trigger (a secret pattern con-
structed from a set of neighboring pixels, e.g., a white
square) to a specific target label. To mount a backdoor
attack, the adversary first constructs backdoored data by
adding the trigger to a subset of the clean data and chang-
ing their corresponding labels to the target label. Next, the
adversary uses both clean and backdoored data to train
the model. The clean and backdoored data are needed so
the model can learn its original task and the backdoor
behavior, simultaneously. Backdoor attacks can cause se-
vere security and privacy consequences. For instance, an
adversary can implant a backdoor in an authentication
system to grant themselves unauthorized access.

Current state-of-the-art backdoor attacks [14], [25],
[59] generate static triggers, in terms of fixed trigger
pattern and location (on the input). For instance, Figure 1a
shows an example of triggers constructed by Badnets [14],
one of the most popular backdoor attack methods. As we
can see, Badnets in this case uses a white square as a
trigger and always places it in the top-left corner of all
inputs. This static nature of triggers -with respect to their
patterns and locations- is leveraged to create most of the
current defenses against the backdoor attack [24], [55].
Moreover, it facilitates linking backdoored data together,
since they all have the same trigger at the same location.
This can result in efficiently patching the backdoored
model without the need for any defense technique, if the
defender gets access to a single backdoored input, i.e., the
defender can extract the trigger from the backdoored input
and use it to create a dataset to fine-tune and patch the
backdoored model.

1.1. Our Contributions

In this work, we propose the first class of backdooring
techniques against deep neural networks (DNN) models
that generate dynamic triggers, in terms of trigger pattern
and location. We refer to our techniques as dynamic
backdoor attacks. Dynamic backdoor attacks offer the
adversary more flexibility, as they allow triggers to have
different patterns and locations. Moreover, our techniques
largely reduce the efficacy of the current defense mecha-
nisms demonstrated by our empirical evaluation. Figure 1b
shows an example of our dynamic backdoor attacks imple-
mented in a model trained on the CelebA dataset [28]. In
addition, we extend our techniques to work for all labels
of the backdoored ML model, while the current backdoor
attacks only focus on a single or a few target labels. This
further increases the difficulty of our backdoors being
mitigated.



(b) Dynamic backdoor

Figure 1: A comparison between static and dynamic backdoors. Figure 1a shows an example for static backdoors with
a fixed trigger (white square at top left corner of the image). Figure 1b show examples for the dynamic backdoor with
different triggers for the same target label. As the figures show, the dynamic backdoor trigger have different location
and patterns, compared to the static backdoor where there is only a single trigger with a fixed location and pattern.

In total, we propose 3 different dynamic backdoor
techniques, namely, Random Backdoor, Backdoor Gener-
ating Network (BaN), and conditional Backdoor Generat-
ing Network (c-BaN). In particular, the latter two attacks
algorithmically generate triggers to mount backdoor at-
tacks which are first of their kind. In the following, we
abstractly introduce each of our techniques.

Random Backdoor: In this approach, we construct trig-
gers by sampling them from a uniform distribution. Then,
we place each randomly generated trigger at a random
location for each input, which is then mixed with clean
data to train the backdoor model.

Backdoor Generating Network (BaN): In our second
technique, we propose a generative ML model, i.e., BaN,
to generate triggers. To the best of our knowledge, this is
the first backdoor attack which uses a generative network
to automatically construct triggers, which increases the
flexibility of the adversary to perform backdoor attacks.
BaN is trained jointly with the backdoor model, it takes
a latent code sampled from a uniform distribution to
generate a trigger, then place it at a random location
on the input, thus making the trigger dynamic in terms
of pattern and location. Moreover, BaN is essentially a
general framework under which the adversary can change
and adapt its loss function to their requirements. For
instance, if there is a specific backdoor defense in place,
the adversary can evade the defense by adding a tailored
discriminative loss in BaN.

conditional Backdoor Generating Network (c-BaN):
Both of our Random Backdoor and the BaN techniques
can implement a dynamic backdoor for either a single
target label or multiple target labels. However, for the case
of the multiple target labels, both techniques require each
target label to have its unique trigger locations. In other
words, a single location cannot have triggers for different
target labels.

Our last and most advanced technique overcomes the
previous two techniques’ limitation of having disjoint
location sets for the multiple target labels. In this tech-
nique, we transform the BaN into a conditional BaN (c-
BaN), to force it to generate label specific triggers. More
specifically, we modify the BaN’s architecture to include
the target label as an input, to generate a trigger for this
specific label. This target specific triggers property allows
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the triggers for different target labels to be positioned at
any location. In other words, each target label does not
need to have its unique trigger locations.

To demonstrate the effectiveness of our proposed tech-
niques, we perform empirical analysis with three ML
model architectures over three benchmark datasets. All
of our techniques achieve almost a perfect backdoor ac-
curacy, i.e., the accuracy of the backdoored model on the
backdoored data is approximately 100%, with a negligible
utility loss. For instance, our BaN trained models on
CelebA [28] and MNIST [2] datasets achieve 70% and
99% accuracy, respectively, which is the same accuracy
as the clean models. Also, c-BaN, BaN, and Random
Backdoor trained models achieve 92%, 92.1%, and 92%
accuracy on the CIFAR-10 [3] dataset, respectively, which
is almost the same as the performance of a clean model
(92.4%). Moreover, we evaluate our techniques against
three of the current state-of-the-art backdoor defense
techniques, namely Neural Cleanse [55], ABS [24], and
STRIP [12]. Our results show that our techniques can
bypass these defenses.

In general, our contributions can be summarized as
follows:

o We broaden the class of backdoor attacks against
deep neural networks (DNN) models by introduc-
ing the dynamic backdoor attacks.

e We propose both Backdoor Generating Network
(BaN) and conditional Backdoor Generating Net-
work (c-BaN), which are the first algorithmic
backdoor paradigm.

e Our dynamic backdoor attacks achieve strong per-
formance, while bypassing the current state-of-the-
art backdoor defense techniques.

2. Preliminaries

In this section, we first introduce the machine learning
classification setting. Then we formalize backdoor attacks
against ML models, and finally, we discuss the threat
model we consider throughout the paper.

2.1. Machine Learning Classification

A machine learning classification model M is essen-
tially a function that maps a feature vector x from the



feature space X to an output vector y from the output
space ), i.e., M(z) = y. Each entry y; in the vector
y, corresponds to the posterior probability of the input
vector = being affiliated with the label ¢; € L, where £
is the set of all possible labels. In this work, instead of y,
we only consider the output of M as the label with the
highest probability, i.e., M(x) = argmax, y. To train M,
we need a dataset D which consists of pairs of labels and
features vectors, i.e., D = {(x;, £;) }ienr With A/ being the
size of the dataset, and adopt some optimization algorithm,
such as Adam, to learn the parameters of M following a
defined loss function.

2.2. Backdoor in Machine Learning Models

Intuitively, a backdoor in the ML settings resembles a
hidden behavior of the model, which only happens when
it is queried with an input containing a secret trigger. This
hidden behavior is usually the misclassification of an input
feature vector to a desired target label.

A backdoored model My, is expected to learn the
mapping from feature vectors with triggers to their cor-
responding target label, i.e., any input with the trigger t;
should have the label ¢; as its output. To train such a
model, an adversary needs both clean D, (to preserve the
model’s utility) and backdoored data Dy (to implement
the backdoor behaviour), where Dy, is constructed by
adding triggers on a subset of D,.

Current backdoor attacks construct backdoors with
static triggers, in terms of fixed trigger’s pattern and loca-
tion. In this work, we introduce dynamic backdoors, where
the trigger’s pattern and location are dynamic. In other
words, a dynamic backdoor should have triggers with
different values (pattern) and can be placed at different
positions on the input (location).

A backdoor in an ML model is associated with a set
of triggers T, set of target labels £', and a backdoor
adding function .A. We first define the backdoor adding
function A as: A(x,t;,k) = xpq, where x is the input
vector, t; € T 1is the trigger, x is the desired location
to add the backdoor, and x4 is the input vector x with
the backdoor inserted at the location x. More formally,
A(x,t;,k) =t;-k+2- (1 — k), where k is a binary mask
with ones at the specified location of the trigger.

Compared to the static backdoor attacks, dynamic
backdoor attacks introduce new features for triggers,
which give the adversary more flexibility and increase
the difficulty of detecting such backdoors. Namely, dy-
namic backdoors introduce different locations and patterns
for the backdoor triggers. These multiple patterns and
locations for the triggers harden the detection of such
backdoors, since the current design of defenses assumes
a static behavior of backdoors. Moreover, these triggers
can be algorithmically generated, as will be shown later
in Section 3.2 and Section 3.3, which allows the adversary
to customize the generated triggers.

2.3. Threat Model

As previously mentioned, the dynamic backdoor at-
tacks are training time attacks, i.e., the adversary interferes
with the training of the target model. To implement our
attacks, we assume the adversary controls the training
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of the target model and has access to the training data,
following previous works on backdoor attacks [14]. We
further relax this assumption (in Section 4.8) to only
assume the ability to poison the target model’s training
data.

To launch the attack -after publishing the model-, the
adversary first adds a trigger to the input and then uses
it to query the backdoored model. This can happen either
digitally, where the adversary digitally adds the trigger
to the image, or physically, where the adversary prints
the trigger and places it on the image similar to previous
works [14]. This added trigger makes the backdoored
model misclassify the input to the target label. In prac-
tice, this can allow an adversary to bypass authentication
systems to achieve their goal.

3. Dynamic Backdoors

In this section, we propose three different techniques
for performing dynamic backdoor attacks, namely, Ran-
dom Backdoor, Backdoor Generating Network (BaN), and
conditional Backdoor Generating Network (c-BaN).

3.1. Random Backdoor

We start with our simplest approach, i.e., the Random
Backdoor technique. Abstractly, the Random Backdoor
technique constructs triggers by sampling them from a
uniform distribution, and adding them to the inputs at ran-
dom locations. We first introduce how to use our Random
Backdoor technique to implement a dynamic backdoor for
a single target label, then we generalize it to consider
multiple target labels.

Single Target Label: We start with the simple case of
considering dynamic backdoors for a single target label.
Intuitively, we construct a set of triggers (7°) and a set of
possible locations (K), such that for any trigger sampled
from 7 and added to any input at a random location
sampled from /C, the model will output the specified target
label. More formally, for any location x; € KC, any trigger
t; € T, and any input x; € X

Mbd(.A(fL'i, ti7 RZ)) =/

where /¢ is the target label, 7 is the set of triggers, and K
is the set of locations.

To implement such a backdoor in a model, an adver-
sary needs first to select their desired trigger locations,
and create the set of possible locations K. Then, they
use both clean and backdoored data to update the model
for each epoch. More concretely, the adversary trains the
model as mentioned in Section 2.2 with the following two
differences.

1) First, instead of using a fixed trigger for all
inputs, each time the adversary wants to add a
trigger to an input, they sample a new trigger
from a uniform distribution, i.e., ¢ ~ 2(0,1).
Here, the set of possible triggers 7 contains the
full range of all possible values for the triggers,
since the trigger is randomly sampled from a
uniform distribution.

Second, instead of placing the trigger in a fixed
location, they place it at a random location &,

2)



Figure 2: An illustration of our location setting technique
for 6 target labels. The red dotted line demonstrates the
boundary of the vertical movement for each target label.

sampled from the predefined set of location, i.e.,
k€ K.

This technique is not only limited to the uniform dis-
tribution, but the adversary can use different distributions
like the Gaussian distribution to construct triggers. Using
different distributions can, for example, help the adversary
to change the appearance of the used triggers.

Finally, the adversary does not need access to the
training of the target model for this technique. Instead,
they can backdoor a target model by only adding the
backdoored data to its training set, i.e., poison the training
set.

Multiple Target Labels: Next, we consider the more
complex case of having multiple target labels. Without
loss of generality, we consider implementing a backdoor
for each label in the dataset, since this is the most chal-
lenging setting. However, our techniques can be applied
to any smaller subset of labels. This means that for any
label ¢; € L, there exists a trigger ¢ which when added
to the input = at a location x, will make the model My,
output ¢;. More formally,

Ve € LItk Mpg( Az, t, k) ={;

To achieve the dynamic backdoor behaviour in this
setting, each target label should have a set of possible
triggers and a set of possible locations. More formally,

where 7, is the set of possible triggers and K; is the set
of possible locations for the target label /;.

We generalize the Random Backdoor technique by
dividing the set of possible locations K into disjoint
subsets for each target label, while keeping the trigger
construction method the same as in the single target label
case, i.e., the triggers are still sampled from a uniform
distribution. For instance, for the target label ¢;, we sample
a set of possible locations /C;, where /C; is a subset of

The adversary can construct the disjoint sets of possi-
ble locations as follows:

1) First, the adversary selects all possible triggers
locations and constructs the set K.
2) Second, for each target label ¢;, they construct

the set of possible locations for this label C;
by sampling the set /C. Then, they remove the
sampled locations from the set K.

We propose the following simple algorithm to assign
the locations for the different target labels. However, an
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adversary can construct the location sets arbitrarily with
the only restriction that no location can be used for more
than one target label.

We uniformly split the image into non-intersecting
regions, and assign a region for each target label, in which
the triggers’ locations can move vertically. Figure 2 shows
an example of our location setting technique for a use
case with 6 target labels. As the figure shows, each target
label has its own region, for example, label 1 occupies
the top left region of the image. We stress that this is one
way of dividing the location set K to the different target
labels. However, an adversary can choose a different way
of splitting the locations inside K to the different target
labels. The only requirement the adversary has to fulfill
is to avoid assigning a location for different target labels.
Later, we will show how to overcome this limitation with
our more advanced c-BaN technique.

3.2. Backdoor Generating Network (BaN)

Our Random Backdoor technique successfully imple-
ments dynamic triggers, however, it offers the adversary
limited flexibility as triggers are sampled from a preset
distribution. Moreover, the triggers are sampled indepen-
dently of the target model. In other words, the Random
Backdoor technique does not search for the best triggers
to implement the backdoor attack. To address these limi-
tations, we introduce our second technique to implement
dynamic backdoors, namely, Backdoor Generating Net-
work (BaN). BaN is the first approach to algorithmically
generate backdoor triggers, instead of using fixed triggers
or sampling triggers from a uniform distribution (as in
Section 3.1).

BaN is inspired by the state-of-the-art generative mod-
els, i.e., Generative Adversarial Networks (GANs) [13].
However, it is different from the original GANs in the
following aspects. First, instead of generating images,
it generates backdoor triggers. Second, we jointly train
the BaN’s generator with the target model instead of the
discriminator, to learn (the generator) and implement (the
target model) the best patterns for the backdoor triggers.

After training, the BaN can generate a trigger (¢) for
each noise vector (z ~ U(0, 1)). This trigger is then added
to an input using the backdoor adding function A, to create
the backdoored input as shown in Figure 3a. Similar to
the previous approach (Random Backdoor), the generated
triggers are placed at random locations.

In this section, we first introduce the BaN technique
for a single target label, then we generalize it for multiple
target labels.

Single Target Label: We start with presenting how to
implement a dynamic backdoor for a single target label,
using our BaN technique. First, the adversary creates the
set IC of the possible locations. They then jointly train the
BaN with the backdoored My model as follows:

1) The adversary starts each training epoch by
querying the clean data to the backdoored model
Mpq. Then, they calculate the clean loss ¢,
between the ground truth and the output labels.
We use the cross-entropy loss for our clean loss,
which is defined as follows:

Z yi log (7))
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Figure 3: An overview of the BaN and c-BaN techniques.

where y; is the true probability of label /; and y;
is our predicted probability of label /;.

They then generate n noise vectors, where n is
the batch size.

On the input of the n noise vectors, the BaN
generates n triggers.

The adversary then creates the backdoored data
by adding the generated triggers to the clean data
using the backdoor adding function .A.

They then query the backdoored data to the back-
doored model My, and calculates the backdoor
loss @pq on the model’s output and the target
label. Similar to the clean loss, we use the cross-
entropy loss as our loss function for ¢p4.
Finally, the adversary updates the backdoor
model M,y using both the clean and backdoor
losses (. + pq) and updates the BaN with the
backdoor loss (ppq)-

2)
3)

4)

5)

6)

We show later in Section 4.8 how to simplify the
threat model for the BaN technique to only assume the
ability to poison the training data, i.e., the adversary
backdoors the target model without interfering with its
training algorithm.

Multiple Target Labels: We now consider the more
complex case of building a dynamic backdoor for multiple
target labels using our BaN technique. To recap, our
BaN generates general triggers and does not label specific
triggers. In other words, the same trigger pattern can be
used to trigger multiple target labels. Thus similar to the
Random Backdoor, we depend on the location of the
triggers to determine the output label.

We follow the same approach of the Random Back-
door technique to assign different locations for different
target labels (Section 3.1), to generalize the BaN tech-
nique. More concretely, the adversary implements the
dynamic backdoor for multiple target labels using the BaN
technique as follows:

1) The adversary starts by creating disjoint sets of
locations for all target labels.
2) Next, they follow the same steps as in training the

backdoor for a single target label, while repeating
from step 2 to 5 for each target label and adding
all their backdoor losses together. More formally,
for the multiple target label case the backdoor
loss is defined as: Z‘f ! ©bd;» Where L' is the set
of target labels, and ¢y, is the backdoor loss for
target label /;.
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3.3. conditional Backdoor Generating Network
(c-BaN)

So far, we have proposed two techniques to implement
dynamic backdoors for both single and multiple target
labels, i.e, Random Backdoor (Section 3.1) and BaN (Sec-
tion 3.2). To recap, both techniques have the limitation
of not having label specific triggers and only depending
on the trigger location to determine the target label. We
now introduce our third and most advanced technique,
the conditional Backdoor Generating Network (c-BaN),
which overcomes this limitation. More concretely, with
the c-BaN technique any location « inside the location
set /C can be used to trigger any target label. To achieve
this location independency, the triggers need to be label
specific. Therefore, we convert the Backdoor Generating
Network (BaN) into a conditional Backdoor Generating
Network (c-BaN). More specifically, we add the target
label as an additional input to the BaN for conditioning it
to generate target specific triggers.

We construct c-BaN by adding an additional input
layer to BaN to include the target label as an input.
Figure 3b represents an illustration of c-BaN. As the
figure shows, the noise vector and the target label are
encoded to latent vectors with the same size (to give equal
weights for both inputs). These two latent vectors are then
concatenated and used as an input to the next layer.

The c-BaN is trained similarly to the BaN, with the
following two exceptions.

1) First, the adversary does not have to create dis-
joint sets of locations for all target labels (step
1), they can use the complete location set XC for
all target labels.

2) Second, instead of using only the noise vectors

as an input to the BaN, the adversary one-hot
encodes the target label, then use it together with
the noise vectors as the input to the c-BaN.

Similar to BaN, we later (Section 4.8) show how to
simplify the threat model for the c-BaN.

To use the c-BaN, the adversary first samples a noise
vector and one-hot encodes the label. Then, they input
both of them to the c-BaN, which generates a trigger.
The adversary uses the backdoor adding function A to
add the trigger to the target input. Finally, they query the
backdoored input to the backdoored model, which will
output the target label. We visualize the complete pipeline
of using the c-BaN technique in Figure 3b.

In this section, we have introduced three techniques
for implementing dynamic backdoors, namely, the Ran-



dom Backdoor, the Backdoor Generating Network (BaN),
and the conditional Backdoor Generating Network (c-
BaN). These three dynamic backdoor techniques present
a framework to generate dynamic backdoors for different
settings. For instance, our framework can generate target
specific triggers’ pattern using the c-BaN, or target specific
triggers’ location like the Random Backdoor and BaN.
More interestingly, our framework allows the adversary
to customize their backdoor by adapting the backdoor
loss functions. For instance, the adversary can adapt to
different defenses against the backdoor attack that can
be modeled as a machine learning model. This can be
achieved by adding any defense as a discriminator into the
training of the BaN or c-BaN. Adding this discriminator
will penalize/guide the backdoored model to bypass the
modeled defense.

4. Evaluation

In this section, we first introduce our datasets and
experimental settings. Next, we evaluate all of our three
techniques, i.e., Random Backdoor, Backdoor Generating
Network (BaN), and conditional Backdoor Generating
Network (c-BaN). We then evaluate our three dynamic
backdoor techniques against the current state-of-the-art
backdoor defense techniques, and study the effect of dif-
ferent hyperparameters on their performance. Finally, we
demonstrate how to relax the threat model and propose
new defenses against dynamic backdoor attacks.

4.1. Datasets Description

We utilize three image datasets to evaluate our tech-
niques, including MNIST, CelebA, and CIFAR-10. We use
these three datasets since they are widely used as bench-
mark datasets for various security/privacy and computer
vision tasks, however, our attack can be easily generalized
to other datasets with different types of data (by adapting
the architectures of the BaN and c-BaN). We briefly
describe each of them below.

MNIST: The MNIST dataset [2] is a 10-class dataset
consisting of 70,000 grey-scale 28 x 28 images. Each of
these images contains a handwritten digit in its center.
The MNIST dataset is a balanced dataset, i.e, each class
is represented with 7,000 images.

CIFAR-10: The CIFAR-10 dataset [3] is composed of
60,000 32 x 32 colored images which are equally dis-
tributed on the following 10 classes: Airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck.

CelebA: The CelebA dataset [28] is a large-scale face
attributes dataset with more than 200K colored celebrity
images, each annotated with 40 binary attributes. We
select the top three most balanced attributes including
Heavy Makeup, Mouth Slightly Open, and Smiling. Then
we concatenate them into 8 classes to create a multiple
label classification task. For our experiments, we scale the
images to 64 x 64 and randomly sample 10,000 images
for training, and another 10,000 for testing. Finally, it is
important to mention that unlike the MNIST and CIFAR-
10 datasets, this dataset is highly imbalanced.
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4.2. Experimental Setup

We first present our target models, then the evaluation
metrics. For the target models’ architecture, we use the
VGG-19 [47] for the CIFAR-10 dataset, and build our own
convolution neural networks (CNN) for the CelebA and
MNIST datasets. More concretely, we use 3 convolution
layers and 5 fully connected layers for the CelebA CNN.
And 2 convolution layers and 2 fully connected layers for
the MNIST CNN. Moreover, we use dropout for both the
CelebA and MNIST models to avoid overfitting.

For BaN, we use the following architecture:

(Backdoor Generating Network (BaN)’s architecture:

2z — FullyConnected (64)
FullyConnected (128)
FullyConnected (128)
FullyConnected (|t |)

Sigmoid — ¢

Here, FullyConnected (x) denotes a fully connected
layer with x hidden units, |¢| denotes the size of the
required trigger, and Sigmoid is the Sigmoid function.
We adopt ReLU as the activation function for all layers,
and apply dropout after all layers except the first and last
ones.

For c-BaN, we use the following architecture:

conditional Backdoor Generating Network (c-BaN)’s
architecture:

z,f — 2 X FullyConnected (64)
FullyConnected (128)
FullyConnected (128)
FullyConnected (128)
FullyConnected (|t ])

Sigmoid — ¢

\.

The first layer consists of two separate fully connected
layers, where each one of them takes an independent input,
i.e., the first takes the noise vector z and the second takes
the target label ¢. The outputs of these two layers are
then concatenated and used as an input to the next layer
(see Section 3.3). Similar to BaN, we adopt ReLU as the
activation function for all layers and apply dropout after
all layers except the first and last one.

For evaluating the dynamic backdoor attacks’ perfor-
mance, we define the following two metrics: Backdoor
success rate which calculates the backdoored model’s
accuracy on the backdoored data; Model utility which
measures the original functionality of the backdoored
model. We quantify the model utility by comparing the
accuracy of the backdoored model with the accuracy of
a clean model on clean data. Closer accuracies imply a
better model utility. All of our experiments are imple-
mented using Pytorch and our code will be published for
reproducibility.

4.3. Random Backdoor

We now evaluate the performance of our first dynamic
backdooring technique, namely, the Random Backdoor.
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Figure 4: The result of our dynamic backdoor techniques
for a single target label on the clean testing dataset.

We use all three datasets for the evaluation. First, we eval-
uate the single target label case, where we only implement
a backdoor for a single target label. Then we evaluate the
more generalized case, i.e., the multiple target labels case,
where we implement a backdoor for all possible labels in
the dataset.

For both the single and multiple target label cases,
we split each dataset into training and testing datasets.
The training dataset is used to train the MNIST and
CelebA models from scratch. For CIFAR-10, we use a
pre-trained VGG-19 model. For evaluating our models, we
use the testing dataset as our clean testing dataset. And
construct a backdoored testing dataset, by adding triggers
to all members of the testing dataset. To recap, for the
Random Backdoor technique, we construct the triggers
by sampling them from uniform distribution, and add
them to the images using the backdoor adding function
A. We use the backdoored testing dataset to calculate the
backdoor success rate, and the training dataset to train a
clean model -for each dataset- to evaluate the backdoored
model’s (Myg) utility.

We follow Section 3.1 to train our backdoored model
Mg for both the single and multiple target labels cases.
Abstractly, for each epoch, we update the backdoored
model My using both the clean and backdoor losses
we + wpq. For the set of possible locations X, we use
four possible locations.

The backdoor success rate is always 100% for both the
single and multiple target labels cases on all three datasets,
hence, we only focus on the backdoored model’s (Mjq)
utility.

Single Target Label: We first present our results for the
single target label case. Figure 4 compares the accuracies
of the backdoored model My, and the clean model M. As
the figure shows, our backdoored models achieve the same
performance as the clean models for both the MNIST
and CelebA datasets, i.e., 99% for MNIST and 70% for
CelebA. For the CIFAR-10 dataset, there is a slight drop in
performance, which is less than 2%. This shows that our
Random Backdoor technique can implement a perfectly
functioning backdoor, i.e., the backdoor success rate of
Mg is 100% on the backdoored testing dataset, with a
negligible utility loss.

To visualize the output of our Random Backdoor
technique, we first randomly sample 8 images from the
MNIST dataset, and then use the Random Backdoor tech-
nique to construct triggers for them. Finally, we add these
triggers to the images using the backdoor adding function
A, and show the result in Figure 5a. As the figure shows,
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Figure 5: The result of our Random Backdoor (Figure 5a),
BaN (Figure 5b), and BaN with higher randomness (Fig-
ure 5c¢) techniques for a single target label (0).

the triggers all look distinctly different and are located at
different locations as expected.

Multiple Target Labels: Second, we present our results
for the multiple target label case. To recap, we consider all
possible labels for this case. For instance, for the MNIST
dataset, we consider all digits from O to 9 as our target
labels. We train our Random Backdoor models for the
multiple target labels as mentioned in Section 3.1.

We use a similar evaluation setting to the single target
label case, with the following exception. To evaluate the
performance of the backdoored model My, with multiple
target labels, we construct a backdoored testing dataset for
each target label by generating and adding triggers to the
clean testing dataset. In other words, we use all images in
the testing dataset to evaluate all possible labels.

Similar to the single target label case, we focus on the
accuracy on the clean testing dataset, since the backdoor
success rate for all models on the backdoored testing
datasets are approximately 100% for all target labels.

We use the clean testing datasets to evaluate the
backdoored model’s My, utility, i.e., we compare the
performance of the backdoored model My, with the clean
model M in Figure 6. As the figure shows, using our
Random Backdoor technique, we are able to train back-
doored models that achieve similar performance as the
clean models for all datasets. For instance, for the CIFAR-
10 dataset, our Random Backdoor technique achieves 92%
accuracy, which is very similar to the accuracy of the
clean model (92.4%). For the CelebA dataset, the Random
Backdoor technique achieves a slightly (about 2%) better
performance than the clean model. We believe this is
due to the regularization effect of the Random Backdoor
technique. Finally, for the MNIST dataset, both models
achieve a similar performance with just 1% difference
between the clean model (99%) and the backdoored one
(98%).

To visualize the output of our Random Backdoor tech-
nique on multiple target labels, we construct triggers for
all possible labels in the CIFAR-10 dataset, and use A to
add them to a randomly sampled image from the CIFAR-
10 clean testing dataset. Figure 7a shows the image with
different triggers. The different patterns and locations used
for the different target labels can be clearly demonstrated
in Figure 7a. For instance, comparing the location of the
trigger for the first and sixth images, the triggers are in the
same horizontal position but a different vertical position,
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Figure 6: The result of our dynamic backdoor techniques
for multiple target label on the clean testing dataset.
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as previously illustrated in Figure 2.

Moreover, we further visualize in Figure 9a the dy-
namic behavior of the triggers generated by our Ran-
dom Backdoor technique. Without loss of generality, we
generate triggers for the target label 5 (plane) and add
them to randomly sampled CIFAR-10 images. To make it
clear, we train the backdoor model M,y for all possible
labels set as target labels, but we visualize the triggers
for a single label to show the dynamic behaviour of our
Random Backdoor technique with respect to the triggers’
pattern and locations. As Figure 9a shows, the generated
triggers have different patterns and locations for the same
target label, which achieves our desired dynamic behavior.

4.4. Backdoor Generating Network (BaN)

Next, we evaluate our BaN technique. We follow
the same evaluation settings for the Random Backdoor
technique, except with respect to how the triggers are
generated. We train our BaN model and generate the
triggers as mentioned in Section 3.2.

Single Target Label: Similar to the Random Backdoor,
the BaN technique achieves a perfect backdoor success
rate with a negligible utility loss. Figure 4 compares the
performance of the backdoored models -trained using the
BaN technique- with the clean models, when tested using
the clean testing dataset. As Figure 4 shows, our BaN
trained backdoored models achieve 99%, 92.4% and 70%
accuracy on the MNIST, CIFAR-10, and CelebA datasets,
respectively, which is the same performance of the clean
models.

We visualize the BaN generated triggers using the
MNIST dataset in Figure 5b. To construct the figure, we
use the BaN to generate multiple triggers -for the target
label 0-, then we add them on a set of randomly sampled
MNIST images using the backdoor adding function A.

The generated triggers look very similar as shown
in Figure 5b. This behaviour is expected as the MNIST
dataset is simple, and the BaN technique does not have any
explicit loss to enforce the network to generate different
triggers. However, to show the flexibility of our approach,
we increase the randomness of the BaN network by simply
adding one more dropout layer after the last layer, to avoid
the overfitting of the BaN model to a unique pattern. We
show the results of the BaN model with higher random-
ness in Figure 5c. The resulting model still achieves the
same performance, i.e., 99% accuracy on the clean data
and 100% backdoor success rate, but as the figure shows
the triggers look significantly different. This again shows
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that our framework can easily adapt to the requirements
of an adversary.

These results together with the results of the Random
Backdoor (Section 4.3) clearly show the effectiveness of
both of our proposed techniques, for the single target
label case. They are both able to achieve almost the
same accuracy of a clean model, with a 100% working
backdoor, for a single target label.

Multiple Target Labels: Similar to the single target label
case, we focus on the backdoored models’ performance on
the clean testing dataset, as our BaN backdoored models
achieve a perfect accuracy on the backdoored testing
dataset, i.e., the backdoor success rate for all datasets is
approximately 100% for all target labels.

We compare the performance of the BaN backdoored
models with one of clean models using the clean testing
dataset in Figure 6. Our BaN backdoored models are able
to achieve almost the same accuracy as the clean model for
all datasets, as can be shown in Figure 6. For instance, for
the CIFAR-10 dataset, our BaN achieves 92.1% accuracy,
which is only 0.3% less than the performance of the
clean model (92.4%). Similar to the Random Backdoor
backdoored models, our BaN backdoored models achieve
a marginally better performance for the CelebA dataset.
More concretely, our BaN backdoored models trained for
the CelebA dataset achieve about 2% better performance
than the clean model, on the clean testing dataset. We also
believe this improvement is due to the regularization effect
of the BaN technique. Finally, for the MNIST dataset, our
BaN backdoored models achieve strong performance on
the clean testing dataset (98%), which is just 1% lower
than the performance of the clean models (99%).

Similar to the Random Backdoor, we visualize the
results of the BaN backdoored models with two figures.
The first (Figure 7b) shows the different triggers for the
different target labels on the same CIFAR-10 image, and
the second (Figure 9b) shows the different triggers for the
same target label (plane) on randomly sampled CIFAR-10
images. As both figures show, the BaN generated triggers
achieves the dynamic behaviour in both locations and pat-
terns. For instance, for the same target label (Figure 9b),
the patterns of the triggers look significantly different and
the locations vary vertically. Similarly, for different target
labels (Figure 7b), both the pattern and location of triggers
are significantly different.

4.5. conditional Backdoor Generating Network
(c-BaN)

Next, we evaluate our conditional Backdoor Gener-
ating Network (c-BaN) technique. For the single target
label case, the c-BaN technique is the same as the BaN
technique. Thus, we only consider the multiple target
labels case in this section.

We follow a similar setup as the one introduced in
Section 4.4, with the exception on how to train the back-
doored model M,y and generate the triggers. We follow
Section 3.3 to train the backdoored model and generate
the triggers. For the set of possible locations X, we use
four possible locations.

We compare the performance of the c-BaN with the
other two techniques in addition to the clean model. All of
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Figure 7: The visualization result of our Random Backdoor (Figure 7a), BaN (Figure 7b), and c-BaN (Figure 7c)

techniques for all labels of the CIFAR-10 dataset.

our three dynamic backdoor techniques achieve an almost
perfect backdoor success rate on the backdoored testing
datasets, hence similar to the previous sections, we focus
on the performance on the clean testing datasets.

Figure 6 compares the accuracy of the backdoored
and clean models using the clean testing dataset, for all
of our three dynamic backdoor techniques. As the figure
shows, all of our dynamic backdoored models have similar
performance as the clean models. For instance, for the
CIFAR-10 dataset, our c-BaN, BaN and Random Back-
door achieve 92%, 92.1% and 92% accuracy, respectively,
which is very similar to the accuracy of the clean model
(92.4%). Also for the MNIST dataset, all models achieve
very similar performance with no difference between the
clean and c-BaN models (99%) and only 1% difference
between them, and the BaN and Random Backdoor mod-
els (98%).

Similar to the previous two techniques, we visualize
the dynamic behaviour of the c-BaN backdoored models
using two different figures. First, by generating triggers
for all possible labels and adding them on a CIFAR-10
image in Figure 7c. More generally, Figure 7 shows the
visualization of all three dynamic backdoor techniques in
the same settings, i.e., backdooring a single image to all
possible labels. As the figure shows, the Random Back-
door Figure 7a has the most random patterns, which is
expected as they are sampled from a uniform distribution.
The figure also shows the different triggers’ patterns and
locations used for the different techniques. For instance,
each target label in the Random Backdoor (Figure 7a) and
BaN (Figure 7b) techniques have a unique (horizontal)
location, unlike the c-BaN (Figure 7c) generated triggers,
which different target labels can share the same locations,
as can be shown for example in the first, second, and ninth
images. To recap, both the Random Backdoor and BaN
techniques split the location set KC on all target labels,
such that no two labels share a location, unlike the c-BaN
technique which does not have this limitation.

Second, we visualize the dynamic behaviour of our
techniques, by generating triggers for the same target label
5 (plane) and adding them to a set of randomly sampled
CIFAR-10 images. Figure 9 compares the visualization of
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(c) BaN

(d) c-BaN

Figure 8: Visualization of attention maps for all our tech-
niques using the Grad-CAM technique.

our three different dynamic backdoor techniques in this
setting. More concretely, we train the backdoor model
My for all possible labels set as target labels. Then,
for space restrictions, we plot the backdoored inputs for
a single target label. As the figure shows, the Random
Backdoor (Figure 9a) and BaN (Figure 9b) generated
triggers can move vertically, however, they have a fixed
position horizontally as mentioned in Section 3.1 and
illustrated in Figure 2. The c-BaN (Figure 9c) triggers
also show different locations. However, the locations of
these triggers are more distant and can be shared for
different target labels, unlike the other two techniques.
Furthermore, the figure shows that most of our triggers
have different patterns for our techniques for the same
target label, which achieves our targeted dynamic behavior
concerning the patterns and locations of the triggers.

Finally, we compare the attention of the backdoored
models on both clean and backdoored inputs. We use
the Gradient-weighted Class Activation Mapping (Grad-
CAM) technique [43] to compute the attention maps for
our backdoored models. These maps show the most in-
fluential parts of the input that resulted in the model’s
output. Figure 8 depicts the results of our three different
techniques. As expected all backdoored models mainly
focus on the triggers in backdoored inputs and the main
objects in the clean ones.



(c) c-BaN

Figure 9: The result of our Random Backdoor (Figure 9a),
BaN (Figure 9b), and c-BaN (Figure 9c) techniques for
the target target label 5 (plane).

4.6. Evaluating Against Current State-Of-The-
Art Defenses

We now evaluate our attacks against the current state-
of-the-art backdoor defenses. Backdoor defenses can be
classified into the following two categories, data-based
defenses and model-based defenses. On the one hand,
data-based defenses focus on identifying if a given input
is clean or contains a trigger. On the other hand, model-
based defenses focus on identifying if a given model is
clean or backdoored.

We first evaluate our attacks against model-based de-
fenses, then we evaluate them against data-based ones.

Model-based Defense: We evaluate all of our dynamic
backdoor techniques in the multiple target label case
against three of the current state-of-the-art model-based
defenses, namely, Neural Cleanse [55], ABS [24], and
MNTD [58].

We start by evaluating the ABS defense. We use the
CIFAR-10 dataset to evaluate this defense, since it is the
only supported dataset by the published defense model.
As expected, running the ABS model against our dynamic
backdoored ones does not result in detecting any backdoor
for all of our models.

For Neural Cleanse, we use all three datasets to eval-
uate our techniques against it. Similar to ABS, all of our
models are predicted to be clean models. Moreover, in
multiple cases, our models had a lower anomaly index
(the lower the better) than the clean model.

We believe that both of these defenses fail to detect
our backdoors for two reasons. First, we break one of their
main assumption, i.e., that the triggers are static in terms
of location and pattern. Second, we implement a backdoor
for all possible labels, which makes the detection a more
challenging task.

Finally, we evaluate the MNTD defense. To this end,
we use the CIFAR-10 dataset to evaluate our three back-
door techniques. Following the same setting in [21], we
build 200 shadow benign and backdoored models to train
50 meta-classifiers sequentially for further evaluation. The
meta-classifier takes a target model as its input and outputs
a score. This score represents the likelihood of the model
being backdoored, i.e., a higher score indicates the target
model is more likely to be backdoored.
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Our results show that the score predicted by the
MNTD meta classifier drops from 67.08(+ 20.49) for
static backdoors to 3.05(+ 0.82), 0.54(+ 0.83), and
1.47(£ 0.87) for the random backdoor, BaN, and cBaN
backdoors. This significant reduction of scores (with at
least a factor of 22x) demonstrates the advantage of our
techniques compared to the static ones. In this setting,
each meta-classifier would output a score, then based on
a threshold, the decision if the model is backdoored or
not is made [21]. We use the default threshold (median of
training models’ scores), which results in 98%, 74%, and
98% accuracy for the random backdoor, BaN, and cBaN
techniques, respectively. This percentage corresponds to
the number of meta-classifiers correctly classifying the
model as a backdoored one. To improve the stealthiness
of our backdoored models, we add a discriminator when
training the models, aiming to lower the score predicted
by the MNTD meta classifier. More concretely, we train a
local meta-classifier (with a disjoint dataset compared to
the one used for evaluation) and use it as our discriminator.
We demonstrate this with the cBaN technique; however, it
can be easily extended to the other two techniques. Using
this technique, our results are significantly improved, i.e.,
only a single meta-classifier out of the 50 classified the
model as a backdoored one. In other words, the detection
accuracy is dropped to 2%, with a negligible performance
drop, i.e., the ASR and utility dropped by less than 1%.

This again demonstrates that our dynamic backdoor
techniques are more stealthy than the static ones. More-
over, they can be easily adapted to bypass backdoor
defenses, e.g., by adding the corresponding discriminator
as mentioned in Section 3.3.

Data-based Defense: Next, we evaluate some of the
current state-of-the-art data-based defenses. Namely, we
start by evaluating STRIP [12], then Februus [8].

STRIP tries to identify if a given input is clean or
contains a trigger. It works by creating multiple images
from the input image by fusing it with multiple clean
images one at a time. Then STRIP applies all fused images
to the target model and calculates the entropy of predicted
labels. Backdoored inputs tend to have lower entropy
compared to the clean ones.

We use all of our three datasets to evaluate the c-BaN
models against this defense. First, we scale the patterns
by half while training the backdoored models, to make
them more susceptible to changes. Second, for the MNIST
dataset, we move the possible locations to the middle of
the image to overlap with the image content, since the
value of the MNIST images at the corners are always
0. All trained scaled backdoored models achieve similar
performance to the non-scaled backdoored models.

Our backdoored models successfully flatten the distri-
bution of entropy for the backdoored data, for a subset of
target labels. In other words, the distribution of entropy
for our backdoored data overlaps with the distributions
of entropy of the clean data. This subset of target labels
makes picking a threshold to identify backdoored data
from clean data impossible without increasing the false
positive rate, i.e., various clean images will be detected
as backdoored ones. We visualize the entropy of our best
performing labels against the STRIP defense in Figure 10.
Moreover, since our dynamic backdoors can generate
dynamic triggers for the same input and target label,
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Figure 10: The histogram of the entropy of the backdoored
vs clean input, for our best performing labels against the
STRIP defense, for the CIFAR-10 (Figure 10a), MNIST
(Figure 10b), and CelebA (Figure 10c) datasets.

the adversary can keep querying the target model while
backdooring the input with a freshly generated trigger
until the model accepts it.

Next, we evaluate Februus. Intuitively, Februus first
detects the trigger from backdoored samples before re-
moving it and patching the image. To detect these triggers,
Februus first uses GradCAM to identify the influential
region on the input. Then based on a security hyperpa-
rameter —which is dependent on the underlying task—, it
decides if this area is to be removed and replaced by
a neutral color. Finally, Februus develops a GAN-based
inpainting technique to restore the image before querying
it to the target model.

As the training code of Februus is not public yet,
we only use CIFAR-10 — since it is the only dataset
we consider that has its Februus models available — to
evaluate against our different backdoor techniques.

Our results show that Februus only succeeds in drop-
ping the ASR of our random backdoor, BaN, and cBaN
backdoored models from 100% to approximately 80.5%,
81.7%, and 72%, respectively. This demonstrates the
strong performance of our attack against the data-based
defenses, especially compared to the static backdoored —
whose ASR drops to 0.25% when applying Februus—.

These results against the data and model-based de-
fenses show the effectiveness of our dynamic backdoor
attacks, and opens the door for designing backdoor de-
tection systems that work against both static and dynamic
backdoors.

4.7. Evaluating Different Hyperparameters

We now evaluate the effect of different hyperparame-
ters for our dynamic backdooring techniques. We start by
evaluating the percentage of the backdoored data needed
to implement a dynamic backdoor into the model. Then,
we evaluate the effect of increasing the size of the location
set K. Finally, we evaluate the size of the trigger and
the possibility of making it more transparent, i.e., instead
of replacing the original values in the input with the
backdoor, we fuse them.

Proportion of the Backdoored Data: We start by eval-
uating the percentage of backdoored data needed to im-
plement a dynamic backdoor in the model. We use the
MNIST dataset and the c-BaN technique to perform the
evaluation. First, we construct different training datasets
with different percentages of backdoored data. More con-
cretely, we try all proportions from 10% to 50%, with
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Figure 11: The result of trying different trigger sizes for
the c-BaN technique on the MNIST dataset. The figure
shows for each trigger size the accuracy on the clean and
backdoored testing datasets.

a step of 10. In this setting, 10% means that 10% of
the data is backdoored, and 90% is clean. Our results
show that using 30% is already enough to get a perfectly
working dynamic backdoor, i.e., the model has a similar
performance like a clean model on the clean dataset
(99% accuracy), and 100% backdoor success rate on the
backdoored dataset. For any percentage below 30%, the
accuracy of the model on clean data is still the same,
however, the performance on the backdoored dataset starts
degrading. This demonstrates the ability of the adversary
to implement dynamic backdoor attacks with 30% over-
head for each target label, compared to training a clean
model.

Number of Locations: Second, we explore the effect of
increasing the size of the set of possible locations (K)
for the c-BaN technique. We use the CIFAR-10 dataset
to train a backdoored model using the c-BaN technique,
but with more than double the size of K, i.e., 8 locations.
The trained model achieves similar performance on the
clean (92%) and backdoored (100%) datasets. We then
doubled the size again to have 16 possible locations in
KC, and the model again achieves the same results on both
clean and backdoored datasets. We repeat the experiment
with the CelebA datasets and achieve similar results,
i.e., the performance of the model with a larger set of
possible locations is similar to the previously reported one.
However, when we try to completely remove the location
set K and consider all possible locations with a sliding
window, the performance on both clean and backdoored
datasets drops significantly.

Trigger Size: Next, we evaluate the effect of the trigger
size on our c-BaN technique using the MNIST dataset.
We train different models with the c-BaN technique, while
setting the trigger size from 1 to 6. We define the trigger
size to be the width and height of the trigger. For instance,
a trigger size of 3 means that the trigger is 3 x 3 pixels.

We calculate the accuracy on the clean and backdoored
testing datasets for each trigger size, and show our results
in Figure 11. Our results show that the smaller the trigger,
the harder it is for the model to implement the backdoor
behaviour. Moreover, small triggers confuse the model,
which results in reducing the model’s utility. As Figure 11
shows, a trigger with the size 5 achieves a perfect accuracy
(100%) on the backdoored testing dataset, while preserv-
ing the accuracy on the clean testing dataset (99%).

Transparency of the Triggers: Finally, we evaluate the
effect of making the trigger more transparent. More specif-



Figure 12: An illustration of the effect of using different
transparency scales (from O to 1 with step of 0.25) when
adding the trigger. Scale O (the most left image) shows
the original input, and scale 1 (the most right image) the
original backdoored input without any transparency.

Figure 13: Visualization of the c-BaN backdoored images
when setting the transparency scale to 0.1.

ically, we change the backdoor adding function A to apply
a weighted sum, instead of replacing the original input’s
values. Abstractly, we define the weighted sum of the
trigger and the image as: zpq = s -t + (1 — s) - 2, where
s is the scale controlling the transparency rate, x is the
input and ¢ is the trigger. We implement this weighted
sum only at the location of the trigger, while maintaining
the remaining of the input unchanged.

We use the MNIST dataset and c-BaN technique to
evaluate the scale from 0 to 1, with a step of 0.25.
Figure 12 visualizes the effect of varying the scale when
adding a trigger to an input.

Our results show that our technique can achieve the
same performance on both the clean (99%) and back-
doored (100%) testing datasets, when setting the scale
to 0.5 or higher. However, when the scale is set below
0.5, the performance starts degrading on the backdoored
dataset but stays the same on the clean dataset. We re-
peat the same experiments for the CelebA and CIFAR-10
datasets and find similar results.

We believe that the transparency of our triggers can
be further increased when using triggers with larger sizes.
To this end, we use the CIFAR-10 dataset to repeat the
experiments previously mentioned in this section. How-
ever, we set the trigger size to be the size of the image.
Our experiments show that in this setting, our dynamic
backdoor attacks can still achieve a perfect attack success
rate (100%) with a negligible drop in utility (0.3%) when
setting the scale to 0.1. More concretely, the model’s
accuracy on clean data is 91.7% compared to the 92%
accuracy of the backdoored model trained without any
transparency. We visualize a set of randomly backdoored
samples in Figure 13. As the figure shows, setting the
scale to 0.1 makes the triggers hardly visible.

4.8. Relaxing the Threat Model (Transferability
of the Triggers)

For our dynamic backdoor attacks, we assume the
adversary to control the training of the target model.
We now relax this assumption by only allowing them to
poison the dataset.

First, it is important to mention that our Random
Backdoor technique does not need to change the training
of the target model, i.e., the adversary only needs to
poison the training dataset with backdoored images and
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the corresponding target labels. Second, for both the BaN
and c-BaN techniques, the adversary can rely on pre-
trained BaN and c-BaN models instead of training them
jointly with the target model. In detail, the adversary uses
the pre-trained BaN and c-BaN model to generate multiple
triggers and randomly place them to a set of — randomly
picked — images. Then, they poison the training set with
this set of backdoored images and their corresponding
target labels.

We use the MNIST dataset for evaluation and follow
the same target models’ structure as previously introduced
in Section 4.4 and Section 4.5. However, to show the
flexibility of our techniques, we use data from different
distributions to pre-train the BaN and c-BaN models. We
first use the CIFAR-10 dataset to train backdoored models
with the BaN (Section 3.2) and c-BaN (Section 3.3)
techniques. Next, we use the pre-trained BaN and c-BaN
models to generate the backdoored dataset and poison the
target dataset as previously mentioned. It is important to
mention that the CIFAR-10 based BaN and c-BaN models
generate 3-channel triggers, to use them to poison the
MNIST dataset, we convert them to 1-channel triggers
by taking the mean over the different channels. Finally,
we use the poisoned dataset to train the target model.

As expected, the backdoored models achieve a perfect
attack success rate (100%), while keeping the same utility
as the backdoored models jointly trained with the BaN
and c-BaN. This shows the flexibility of our attacks, i.e.,
the training procedure can be adapted by the adversary
depending on their specific application. However, it is
important to mention that jointly training the models has
the advantage of giving the adversary more power, e.g.,
they can add a customized loss function to the target
model while implanting the backdoor.

Finally, as a side-effect of transferring the BaN and
c-BaN; The poisoning rate for the dynamic backdoor can
now be lowered to about 10%, as there is no joint models
trained with the target model anymore.

4.9. Possible Defenses

Finally, we propose some possible defenses against our
dynamic backdoor attacks. Intuitively, we use a denoising
mechanism to filter triggers (as they can be considered
as anomalies/distortions) out of the backdoored inputs.
To this end, we use one of the most common denoising
mechanisms, namely autoencoder. It works as follows:
First, we train an autoencoder on clean data. Then, we
use this autoencoder to reconstruct/denoise the inputs (by
encoding then decoding them). The noise or triggers in our
case are expected to be filtered out of the inputs due to two
main reasons. First, the overfitting of the autoencoders to
clean data, and second, the lossy reconstruction process.

To implement our defense, we use the autoencoder to
denoise all inputs before forwarding them to the target
model. The autoencoder is expected to remove the trigger
from backdoored data, while not significantly changing
the clean ones.

To evaluate the efficacy of our proposed defense, we
test it against the c-BaN technique, using both the MNIST
and CIFAR-10 datasets. As expected, the backdoored
images are not perfectly reconstructed by the autoen-
coder, i.e., the autoencoder does not fully reconstruct



triggers. Our experiments show that in simple datasets
like MNIST, our approach can successfully defend against
the backdoor attack, with negligible utility loss (less than
1%). However, for more complicated datasets like CIFAR-
10, the performance of our defense degrades. This is
due to the high amount of details which hardens the
reconstruction process of complex datasets (for both clean
and backdoored inputs). For instance, the accuracy of the
target model drops by 4.8% and 25% for the clean and
backdoored dataset, respectively.

Another possible defense approach is first calculating
the distance between the reconstructed input and the orig-
inal input, then taking the decision to forward the input or
not to the model, based on a predetermined threshold. We
plan to explore this approach and other potential methods
in future work.

We now discuss another defense, namely data augmen-
tation. More concretely, we discuss the effect of resizing,
cropping, and flipping the target images on our dynamic
backdoor attacks. To this end, we use the CIFAR-10
dataset and test how resizing, cropping, or flipping the
backdoored image before querying it to the backdoored
model affects the performance, i.e., the ASR and utility.
We evaluate the performance of our simplest and most
complex setting, i.e., the random backdoor with a single
target label and the cBaN with all possible target labels.
We start with the flipping operation, i.e., we flip each input
before querying it to the target model. Our results show
that flipping the inputs reduces the ASR to approximately
88.6% and 93.4%, without having a significant effect on
the utility for the cBaN and random backdoor, respec-
tively. This shows that our dynamic backdoor attacks are
resilient to flipping. Second, we test the resizing, i.e., we
downsize the input image to 16x16 pixels before scaling
it back to 32x32 pixels (the model’s expected input size).
Resizing the inputs reduced our ASR to approximately
57.4% and 66.5%. However, it also dropped the utility by
15.4% and 15.9% for the random backdoor and cBaN,
respectively. This shows that scaling can drop our attack
performance by on average 40%, at the cost of a more than
15% reduction in utility. Finally, for cropping, we pad all
boarder of the input image by 4 black pixels, i.e., with
the value 0, then we randomly select a location to crop
the padded image back to its original size (32x32). Our
results show that cropping drops the ASR to about 73.2%
and 89.2%, while the accuracy drops by 0.7% and 0.25%
for the cBaN and random backdoor models, respectively.

We next include the three data augmentation tech-
niques in the training of the models and repeat the same
experiments, i.e., testing the effect of applying each data
augmentation separately at the inference time. We observe
that the results did not differ significantly from the pre-
vious set of experiments; hence we plot the result in the
Appendix (Figure 14).

These experiments show that data augmentations can
reduce the performance of our dynamic backdoor attacks;
however, they cannot prevent it and can drop the utility
significantly. In other words, our attacks are still applica-
ble but with a reduced ASR when applying different data
augmentation techniques.
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5. Related Work

In this section, we discuss some of the related work.
We start with current state-of-the-art backdoor attacks.
Then we discuss the defenses against backdoor attacks,
and finally mention other attacks against machine learning
models.

Backdoor Attacks: Gu et al. [14] introduce BadNets,
the first backdoor attack on machine learning models.
BadNets uses the MNIST dataset and a square-like trigger
with a fixed location, to show the applicability of the
backdoor attacks in the ML settings. Liu et al. [25] later
propose a more advanced backdooring technique, namely
the Trojan attack. They simplify the threat model of
BadNets by eliminating the need for access to the training
data used to train the target model. The Trojan attack
reverse-engineers the target model to synthesize training
data. Next, it generates the trigger in a way that maximizes
the activation functions of the target model’s internal
neurons related to the target label. In other words, the
Trojan attack reverse-engineers a trigger and training data
to retrain/update the model and implement the backdoor.

The main difference between these two attacks (Bad-
Nets and Trojan attacks) and our work is that both attacks
only consider static backdoors in terms of triggers’ pattern
and location. Our work extends the backdoor attacks to
consider dynamic patterns and locations of the triggers.

Nguyen and Tran [32] present an input-aware dynamic
backdoor. Intuitively, they propose a trigger generating
network that generates independent triggers for each input,
i.e., a new unique trigger is generated for every input.
One main difference between their and our work is the
structure of generated triggers. In our work, we model
the triggers to be square-like, while they model it to be
scattered pixels/patterns across the image. One advantage
of our triggers is that they can be applied to physical
objects/images. For instance, the adversary can print our
triggers and attach them to the image/object. We also show
—in Section 4.8 — how to relax our threat model to only in-
clude poisoning of the training dataset, unlike [32] which
requires full access to the training of the target model.
Finally, using our approach, the adversary can generate
multiple triggers for the same image, which results in
a more flexible attack. More concretely, if the defender
gets access to the backdoored image, the adversary can
still trigger the same image using different triggers for
the same target label.

We focus on backdoor attacks against image classifi-
cation models, but backdoor attacks can be extended to
other scenarios, such as Federated Learning [56], Video
Recognition [62], Transfer Learning [59], and Natural
Language Processing (NLP) [7].

To increase the stealthiness of the backdoor, Saha
et al. [39] propose to transform the backdoored images
into benign-looking ones, which makes them harder to
detect. Lie et al. [27] introduce another approach, namely,
the reflection backdoor (Refool), which hides the triggers
using mathematical modeling of the physical reflection
property. Another line of research focuses on exploring
different methods of implementing backdoors into target
models. Rakin et al. [38] introduce the Targeted Bit Trojan
(TBT) technique, which instead of training the target
model, flips some bits in the target models’ weights to



make it misclassify all the inputs. Tang et al. [50] present
a different approach, where the adversary appends a small
Trojan module (TrojanNet) to the target model instead of
fully retraining it.

Defenses Against Backdoor Attacks: Defenses against
backdoor attacks can be classified into model-based de-
fenses and data-based defenses. First, model-based de-
fenses try to find if a given model contains a backdoor
or not. For instance, Wang et al. [55] propose Neural
Cleanse (NC), a backdoor defense method based on re-
verse engineering. For each output label, NC tries to
generate the smallest trigger, which converts the output of
all inputs applied with this trigger to that label. NC then
uses anomaly detection to find if any of the generated
triggers are actually a backdoor or not. Later, Liu et
al. [24] propose another model-based defense, namely,
ABS. ABS detects if a target model contains a backdoor or
not, by analyzing the behaviour of the target model’s inner
neurons when introducing different levels of stimulation.
Xu et al. [58] present another model-based defense,
namely MNTD. Abstractly, MNTD builds a meta classifier
to detect if a given model is backdoored or not. To this
end, it first starts by using a small set of clean data to
train multiple shadow clean and backdoored models using
different triggers. Next, it optimizes a set of probing points
which is used to query all training models. Finally, the
defender queries each shadow model using the probing
points and uses pairs of corresponding predictions and
ground-truth labels (i.e., clean or backdoored) to train a
meta-classifier. The meta classifier takes as input a model
then outputs a score for each model, indicating if the
model is backdoored or not.

Second, data-based defenses try to find if a given
input is clean or backdoored. For instance, Gao et al. [12]
propose STRIP, a backdoor defense method based on
manipulating the input, to find out if it is backdoored or
not. More concretely, STRIP fuses the input with multiple
clean data, one at a time. Then it queries the target model
with the generated inputs, and calculates the entropy of
the output labels. Backdoored inputs tend to have lower
entropy than clean ones.

Similarly, Doan et al. [8] presents Februus, which
is another data-based defense. Intuitively, Februus uses
GradCAM to find the most contributing regions of the
input (with respect to the model’s output). Then it de-
termines if the assigned regions contain a trigger or not.
If it contains a trigger, then Februus removes this part
from the input and uses a GAN-based inpainting technique
to complete the input again before forwarding it to the
model.

Attacks Against Machine Learning: Poisoning at-
tack [4], [19], [40], [49] is another training time attack,
in which the adversary manipulates the training data to
compromise the target model. For instance, the adversary
can change the ground truth for a subset of the training
data to manipulate the decision boundary, or more gen-
erally influence the model’s behavior. Shafahi et al. [44]
further introduce the clean label poisoning attack. Instead
of changing labels, the clean label poisoning attack al-
lows the adversary to modify the training data itself to
manipulate the behaviour of the target model.

Another class of ML attacks is the adversarial exam-
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ples. Adversarial examples share some similarities with
the backdoor attacks. In this setting, the adversary aims to
trick a target classifier into miss classifying a data point by
adding controlled noise to it. Multiple work has explored
the privacy and security risks of adversarial examples [5],
[23], [36], [37], [51], [53], [57]. Other work explores the
adversarial example’s potentials in preserving the user’s
privacy in multiple domains [20], [22], [34], [61]. The
main difference between adversarial examples and back-
door attacks is that backdoor attacks are performed in
training time, while adversarial examples are performed
after the model is trained and without changing any of
the model’s parameters.

Beside the above, there are multiple other types of
attacks against machine learning models [26], such as
membership inference [6], [15]-[17], [29], [31], [42], [46],
[48], [60], model stealing [35], [45], [52], [54], model
inversion [9], [10], [18], property inference [11], [30],
[63], and dataset reconstruction [41].

6. Conclusion

The tremendous progress of machine learning has lead
to its adoption in multiple critical real-world applications.
However, it has been shown that ML models are vulnera-
ble to various types of security and privacy attacks. In this
paper, we focus on backdoor attacks where an adversary
manipulates the training of the model to intentionally
misclassify any input with an added trigger.

Current backdoor attacks only consider static triggers
in terms of patterns and locations. In this work, we
propose the first set of dynamic backdoor attacks against
deep neural networks (DNN) models, where the trigger
can have multiple patterns and locations. To this end, we
propose three different techniques.

Our first technique Random Backdoor samples triggers
from a uniform distribution and places them at random
locations of an input. For the second technique, i.e.,
Backdoor Generating Network (BaN), we propose a novel
generative network to construct triggers. Finally, we intro-
duce conditional Backdoor Generating Network (c-BaN)
to generate label specific triggers.

We evaluate our techniques using three benchmark
datasets. The evaluation shows that all our techniques
can achieve almost a perfect backdoor success rate while
preserving the model’s utility. Moreover, we show that
our techniques successfully bypass state-of-the-art defense
mechanisms against backdoor attacks.
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Figure 14: The performance of the cBaN technique when
applying data augmentations techniques when training the
target model. Figure 14a and Figure 14b shows the utility
and ASR, respectively.



