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Modeling and Analyzing the Effect of Human
Preferences on a Local Electricity Market
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Abstract—Local electricity markets (LEMs) have progressed
significantly in recent years, but a research gap exists in under-
standing the influence of human preferences on the effectiveness
of LEMs when home energy management systems (HEMSs) are
involved. Motivated by this, this work aims to model and inte-
grate human preferences into a HEMS, bridging the gap between
end-participant and LEM. A sensitivity analysis of the parameter
choices of the HEMS and their impact on the performance and
outcomes of a LEM is done. Hereby, a behavior model is used to
formulate the preferences and motives of households within a LEM
in a bottom-up approach. Various distributed energy resources are
modeled and controlled via a HEMS, allowing households to input
their preferences and motives to output a tailor-made bidcurve for
the LEM. A sensitivity analysis reveals that different preference
settings result in different consumption profiles, which to a large
extent align with the preferences. In addition, the importance of
aligning market mechanisms and steering signals with the partici-
pants’ goals is highlighted.

Index Terms—Distribution grid, home energy management
system, human preferences, local electricity market.

I. INTRODUCTION

THE energy transition is significantly gaining in importance
and speed, affecting many parts of the electricity distribu-

tion. Along with this transition, problems such as congestion
or more fluctuating demand and supply arise and must be ad-
dressed to ensure a stable electricity distribution in the future.
One promising approach to these problems are local electricity
markets (LEMs), in which small-scale end participants, such as
individual households, can trade with each other or with whole-
sale electricity markets [1], [2]. These LEMs typically operate in
the distribution grid and can thereby connect households within
a neighborhood or city with each other. Quite some progress
has been made with LEMs in recent years, though challenges
for large-scale implementation still exist [1], [2]. The most
prominent difference to wholesale electricity markets, such as
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the day-ahead wholesale market, is the ability of small end-users,
such as households, to participate directly. In addition, LEMs
usually operate in a much smaller area than classical electricity
markets.

One of these challenges is the effect human behavior may
have on the effectiveness of LEMs [1], [3], for example, by
strategically curtailing photovoltaic (PV) generation [4]. It is
clear that human decisions affect distributed energy resources
(DERs), such as electric vehicles (EVs) and PVs, via charging
and usage preferences [5]. Furthermore, in LEMs, small-scale
end participants can create bids for the DERs in their houses [6].
Hereby, these participants create these bids on their own or
via individual settings in a home energy management system
(HEMS). As such, human preferences, behavior, and decisions
(regarding DERs and objectives) will be a part of LEMs and
should therefore be considered when designing or analyzing
LEMs. However, both [1] and [3] point out that this is rarely
done. Within the area of energy management approaches, on
the other hand, the idea of using multiple objectives, poten-
tially representing different human preferences, has already
been proposed, [7], [8], [9]. At the same time, most of these
approaches focus on a microgrid level and include objectives
that may not be of interest to individual households (e.g., voltage
constraints, [8], [9]) some of the literature already relates the
different objectives of a multi-objective energy management
system to human behavior and preferences, [7]. This mod-
eling on a household level allows the prosumer to integrate
their own individual preferences into the energy management
system. With the inclusion of electricity markets, the focus
shifts more to multi-objective portfolio optimization, [10], or to
multi-objective planning within industries, [11], and therefore
does not consider the impact of human preferences. Hence, what
is still missing in current research is the link between human
behavior and LEMs and the impact of different preferences on
the performance and outcome of such a LEM.

LEM research, on the other hand, has focused mainly on
optimal bidding strategies for individuals ([12], [13]) as well
as market frameworks for flexibility services [14]. Research on
bidding often uses game-theoretic tools to analyze the impact of
individual bids on markets and to derive optimal strategies [3].
However, these approaches often rely on very simplistic settings,
considering only one DER, and therefore do not fit well for
future scenarios where households will have multiple DERs.
On the other hand, market-oriented research on LEMs often
overlooks the impact of human preferences within market de-
sign [1]. Human preferences can change the requirements for
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DERs, affecting how market participants bid and reducing the
effectiveness of LEMs. With access to HEMSs, humans can
optimize their bidding strategies, which may negatively impact
LEM performance [13].

Hence, a research gap exists in understanding the influence
of human preferences on the effectiveness of LEMs. Currently,
limited attention has been given to incorporating multiple DERs
and considering the impact of human preferences on bidding
strategies and market design. Further research is needed to
bridge this gap by integrating human preferences, considering
the complexities of future scenarios with multiple DERs, and
exploring the role of HEMSs in optimizing bidding strategies
while ensuring the overall performance of LEMs. To do so, this
work uses the Attitude-Behavior-Context (ABC) model, [15],
to integrate human preferences into HEMSs. The ABC model
hereby combines internal motives with external factors to model
and explain human behavior. The study translates the ABC
model into a mathematical optimization model as the central
part of the HEMS, which then creates tailor-made bidcurves for
the individual household. Based on this, a sensitivity analysis is
carried out on the impact of human preferences in the form of
HEMS parameter preferences on the LEM’s ability to operate,
trade energy, and reduce grid congestion. The main contributions
of this paper are:
� A bottom-up approach linking the Attitude-Behavior-

Context (ABC) model, [15] with human preferences and
distributed energy resources in the context of participation
in a local electricity market (LEM).

� A case study highlighting the importance of aligning steer-
ing signals of LEMs with the participants’ goals to ensure
proper working of the market.

� A sensitivity analysis emphasizing the need to properly
analyze the interactions between different motives/goals
before the implementation to avoid unwanted side effects.

This paper continues earlier work and, therefore, shares simi-
larities in approach and methodology with [5]. Major extensions
are the introduction of a LEM, the usage of a behavior model, as
well as additional considered DERs and motives. Furthermore,
the central mathematical formulation, which depicts the applied
behavior model, is newly introduced.

The paper is structured as follows: Section II explores human
preferences and behavior models and the method used. The LEM
is presented in Section III. In Section IV, the household bidding
model is introduced. The results are presented and analyzed in
Section V. We summarize the results and discuss our work in
Section VII.

II. METHODOLOGY

This section builds toward the overall method of modeling
human preferences and understanding its effect on LEMs used
in this study. This is done by first specifying the understanding of
behavior within this study and, second, by introducing different
concepts for modeling human preferences and elaborating on
the used approach in more detail. The section is concluded
by applying the above-mentioned approach to the considered
setting.

A. Understanding of Behavior

Turning off the lights, lowering the temperature settings, or
charging the battery is not directly human behavior but is the
consequence or result of human behavior. Within the area of
energy-related topics, human behavior has already been studied
and researched for many decades [16], [17].

Most of the work on this topic has focused on changes in
human behavior in energy consumption and savings [16], [18].
While many of these results are still valid, the situation in which
households must make decisions has changed considerably
within the last few years and will continue to change drastically
within the coming years [19]. LEMs give individual household
access to electricity markets, either directly, or indirectly via
an intermediary, such as an aggregator. However, in both cases,
DER flexibility and human preferences will influence the bid-
ding in markets.

This study therefore focuses on the consequences of human
behavior and preferences on the considered DERs and their
effect on the LEM. Other decisions, such as turning off the
lights, or long-term investments, such as improving the house’s
insulation, are not considered.

B. Behavior Models

Three different behavior models, which have been applied to
pro-environmental behavior research focusing on energy con-
sumption, are presented in the following.

The Rational Choice Theory from economics suggests that
consumers evaluate the pros and cons of all possible actions
and choose the best one based on external factors like prices
and energy savings, [16], [18]. However, this model does not
consider internal factors like norms, beliefs, and habits.

In contrast, Sterns’ Value Belief Norm Theory [20] includes
these internal factors and links several theories from psychology
and social science to explain pro-environmental behavior. It
creates a causal chain among five internal variables and is mainly
based on internal factors, unlike the Rational Choice Theory,
which only considers external factors.

A model that combines both internal and external factors is the
Attitude-Behavior-Context (ABC) model [15]. The core idea be-
hind this model is that “behavior (B) is an interactive product of
personal sphere attitudinal variables (A) and contextual factors
(C)” ([21], p. 415). The ABC model closes the gaps between the
Rational Choice Theory and the Value Believe Norm Theory
by including internal and external factors. These factors and
variables can be described as follows:
� Attitude: These are the internal variables and factors, such

as norms, motives, (inner) beliefs, or values.
� Behavior: Within this model, the behavior can be observed

via decisions or outcomes.
� Context: The context contains the external factors influ-

encing the behavior. Among these are monetary incentives
such as costs or profit, access to technology or devices,
social norms in the form of peer pressure, regulatory frame-
works, and laws.

In addition, the ABC model not only includes both types of
factors but also explains how these factors may interact with
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each other. It claims that the influence of attitude on behavior is
strongest when the context is neutral and that a strong context
leaves little room for the attitude. Stern also provides evidence
for this claim in the form of a research project on recycling,
see [15]. The model has been applied in behavior research,
mainly in pro-environmental behavior analysis, such as energy
savings or usage [22], [23], [24], [25].

C. Applying the Attitude-Behavior-Context Model

The main principles of the ABC model fit well into the
setting of a LEM that is affected by human behavior. This
allows us to model human preferences (attitude) and their DERs
(context) influencing the bidcurve (behavior) that affects the
LEM from the bottom up. The general attitudes, behavior, and
context factors and variables in this context are defined as
follows:
� Attitude: Three main internal variables in the form of

motives are introduced. The first one is an ecological
motive, in which households prefer to use electricity from
fossil-fuel-free energy generation, such as PV or wind
power. The second motive is the comfort motive, which
tries to minimize temperature deviations from the desired
set point and charge the EV as fast as possible. The last
motive is the financial motive, which aims to maximize the
profit gained from buying and selling electricity at different
time slots. Both ecological and financial motives have been
used extensively throughout behavior research in energy
savings [26], [27], and are, therefore, included in this
study. The comfort motive has yet to see much attention in
electricity savings or management, which can partially be
attributed to the past’s lack of electric heating and mobility
opportunities. However, this will likely change soon with
the increase of EVs and HPs [28], [29]. In addition, early
behavior research on energy savings by Becker et al. [17]
already analyzed the importance of house temperature as an
indicator of energy savings. Furthermore, EV range anxiety
makes people want to charge when the state of charge (SoC)
is lower [30]. Therefore, we integrate these factors into this
study by including the house temperature and the SoC of
the EVs as factors for the comfort motive. The remaining
DERs in the form of PV and batteries, on the other hand,
do not affect the comfort. Apart from these four DERs,
comfort is also affected by household load. This load is,
however, assumed to be non-steerable.
In addition to these motives, different household pref-
erences that may affect the operation of DERs are also
considered. These preferences are a temperature range in
which the house temperature should be and a desired SoC
for the EV. Note that setting an individual temperature
range also limits the loss of comfort, which has been shown
to reduce the willingness of prosumers to participate in
energy management approaches, [31].

� Behavior: In this research, behavior is represented by the
bids of the household on the LEM, as bidcurves are the
output of a HEMS.

Fig. 1. Overview of the applied Attitude-Behavior-Context model in a bottom-
up approach, with the attitude variables in red, the contextual factors in blue,
and the behavioral outcome in yellow; the household preferences and distributed
energy resources at the bottom provide flexibility, while the motives and other
data inputs mostly define the preferred usage of flexibility.

� Context: This study focuses on a future scenario where
households can access various DERs. These DERs are
PV, batteries, EVs, and HPs, as these devices are among
the most common DERs in LEM literature, [32], and the
sales of HPs and EVs are rising [28], [29]. Apart from
these DERs, we consider electricity prices, CO2 emissions,
and grid constraints as external factors. The interactions
between households, such as peer pressure within a neigh-
borhood, are deliberately excluded from this study.

Note that depending on the setting or situation, the proposed
ABC model can easily be extended by further internal motives,
such as risk adverseness, or external DERs, such as washing
machines or dishwashers.

This general list of internal and external factors and variables
must be adjusted for every household to make up for personal
preferences and conditions. Regarding the three different mo-
tives, households may have different preferences and do not sim-
ply follow a single motive. Hence, we introduce the (individual)
motive weights we, wc, and wf corresponding to the ecological,
comfort, and financial motives and representing the individual
preferences of each household over these motives. It is assumed
that we + wc + wf = 1 and we, wc, wf ≥ 0. Therefore, these
weights can be seen as percentages of the corresponding motives
on the overall attitude of each household. Note that even though
these motive weights may be changed over time, we assume
them to be fixed for the time horizons considered in LEMs.

Fig. 1 depicts the ABC model applied to the process of cre-
ating a bid for an individual household. The HEMS, connecting
all aspects, corresponds to the automated implementation of the
ABC model, which is explained in detail in Section IV. Note that
the households can control all of the attitude variables, apart from
the driving decisions. These driving decisions are assumed to be
fixed and already included in the EV data. All of the contextual
factors are also fixed and cannot be controlled directly by the
households.
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Fig. 2. Created example of an aggregated household bidcurve and the com-
bined bidcurve of the three energy providers for twenty price points.

III. MARKET AND ENERGY PROVIDER

A. Local Electricity Market

Due to the scoping of this study, the LEM needs to allow
humans to set parameters in a HEMS influencing the bidcurve,
meaning that the HEMS creates a bidcurve based on parameter
values and constraints set by the households. Therefore, the LEM
chosen for this study is similar to the LEM in [33] and focuses on
the low-voltage sections of the distribution grid, enabling small-
scale participants, such as individual households, to submit bids
and thereby directly participate in the energy market. The LEM
allows participants to bid directly into the LEM, but an energy
supplier purchases electricity for the neighborhood day ahead
on the wholesale market to ensure sufficient market liquidity.

The considered LEM is based on a double-sided auction and
operates in an intraday fashion, meaning that it works with
fifteen-minute time slots and the price-forming process takes
place just before the start of each time slot. Due to the time
slot length, households need to use forecasts and predictions
of their household demand to compute the bidcurves submitted
to the LEM. Deviations in these predictions mainly stem from a
varying utilization of wet appliances, however, it has been shown
that clever usage of the flexibility of DERs may alleviate these
deviations sufficiently [34].

It should be noted that the LEM focuses on electricity pro-
curement rather than flexibility. However, the HEMS uses the
flexibility of DERs to optimize for its objective. For each market
iteration, there are two bidcurves in a double-sided auction. In
this study, the demand bidcurve of the households represents the
possible buying decisions and actions of the household, whereas
a negative value of the bidcurve implies the intention of sell-
ing electricity. The energy providers submit supply bidcurves,
in which a positive value represents selling electricity to the
households, while a negative value represents the action to buy
electricity. Fig. 2 displays an example of these two bidcurves.
It should be noted that both bidcurves can represent buying and
selling of electricity and that each bidcurve consists of pairs of
prices and corresponding energy.

The market mechanism works as follows: After receiving the
bidcurves from the households and from the energy supplier
and providers, the household bidcurves are first aggregated.
The same happens for the bidcurves of the energy supplier
and providers. Next, the crossing point of the two aggregated
bidcurves is determined. This point then defines the initial
clearing price and the corresponding energy volume. If the

volume of cleared energy is within the grid constraints, the
clearing price is communicated to the participants, who then act
according to their submitted bidcurves. Otherwise, if the initial
clearing volume exceeds the grid constraints by consuming or
producing too much power, the clearing price is adjusted to the
corresponding volume within the grid limits. This procedure
is introduced and explained in detail in [35]. Any imbalance
between demand and supply caused by this approach is then
assumed to be handled by predetermined agreements between
the energy supplier and balancing responsible parties, which are
not part of this study.

B. Energy Providers

In this study, the focus is on human preferences in the house-
hold and, therefore, does not consider its effect on the bidcurves
of the energy providers. The LEM presented in the previous
subsection allows for an energy supplier and multiple energy
providers to provide a bid. This could involve multiple suppliers,
various local PV plants, wind turbines, or other entities in a
real-world scenario. However, in this study, a limited number
of fifty households is considered requiring a more controlled
approach. Therefore, we ensure that whatever the household
bids, there is always a match between the bidcurves.

The aggregated bidcurve of the energy providers for a fixed
time slot t0 consists of three parts. The first part corresponds to
the purchases of an energy supplier at the clearing price of the
wholesale day-ahead market. The amount the supplier buys or
sells is decided based on its prediction of the energy demand of
all households. This prediction is based on the household loads,
the PV generation and the demand for the HPs and EVs:

∑
h∈house

(
pht0 − pPV,h

t0
+ gHP (h, to)

)
+ cEV (t0) · p̄EV , (1)

In this (1), cEV (t0) represents the expected share of EVs con-
nected to the grid at time slot t0, while p̄EV corresponds to
the average EV demand based on historical data. gHP (h, to)
estimates the required power to keep the desired house temper-
ature of house h given the outside temperatures at time slot t0.
pht0 and pPV,h

t0
correspond to the estimated household demand,

respectively PV generation of household h during time slot t0.
To account for the bids of the remaining energy providers, we
reduce this predicted demand by a factor α, 0 < α < 1. In this
study, the other energy providers are a wind power farm and
providers of short-term flexibility.

The second part of the bidcurve represents a surplus of wind
generation compared to the expected wind generation. This
surplus may be sold at the local intraday market. Given the
intermittent nature of wind generation, this leads to higher fluc-
tuations in the aggregated bidcurve of the providers over time.
The amount of wind surplus is a percentage of the purchased
energy from the energy supplier to ensure a match between
the provider and household bidcurves. This percentage depends
on the national wind production in the Netherlands [36] and is
chosen in such a way that the overall energy at the market is in
the same order of magnitude as the bidcurve of the households,
but differences may still occur.
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Algorithm 1: Bidcurve Model for Time Slot t0 for a Single
Household.

initialize BidCurve = [0, 0, . . ., 0, 0] of length N
initialize PriceSteps (equal for each household)
for i ∈ [1, .., N ] do

solve localHEMS(t0, t0 +Hz, PriceSteps[i], Data)
BidCurve[i] = xbuy − xsell is the market interaction
given price PriceSteps[i]
save PV, battery, EV, and HP usage

end for
Interpolate BidCurve
return BidCurve and other saved data points

To ensure that in this limited market setup, an intersection
always exists between the bidcurves of the households and the
energy provider, we introduce an additional energy provider,
offering expensive, short-term flexibility. We assume that this
energy provider can sell and buy energy from the LEM, thereby
ensuring that the two bidcurves intersect.

IV. HOUSEHOLD BIDDING MODEL

In this section, we introduce a bidding model for an individual
household based on the ABC model whose output fits the input
of the previously presented LEM. We first provide the general
framework for computing the bidcurve and then present insights
into the details of the mathematical formulation.

A. Framework

Given the presented LEM, each household must submit a
bidcurve to clear the LEM, which occurs at the beginning of each
time slot. As introduced, the bidcurve for the LEM consists of a
set of price-volume pairs. To reduce the computational burden,
we choose a fixed number N of price points, equally distributed
within the given price range, and compute the optimal buying and
selling decisions for each given price point individually. Based
on this, we linearly interpolate the solution between the price
points and construct the bidcurve, which can then be submitted
to the LEM. Algorithm 1 displays the scheme for approximating
the individual bidcurve for a given household for time slot t0.
� BidCurve is a vector used to store each price’s buying

and selling decisions.
� PriceSteps represents the given choice of price points

within the price range.
� localHEMS is the local decision problem of finding

optimal buying and selling decisions for a price point
PriceSteps[i], a time horizon [t0, t0 +Hz] with Hz ∈
N>0, as well as the house-dependent Data, such as the
individual motive weights, the DER parameters, or further
information, such as prices or weather data.

Based on this framework to compute the bidcurve for a single
house, the decision problem of finding optimal buying and sell-
ing amounts (localHEMS in Algorithm 1) can be specified in
more detail. For this, we use a mathematical optimization model
to achieve a tractable approach, allowing the usage of standard
software solvers to get an optimal solution. Within the model,

the operating limits of the DERs are represented as constraints,
while the different motives build up the objective function. Let
T ′ denote the time horizon [t0, t0 +Hz], and w.l.o.g. index the
time slots, such that the first one starts with 1.

B. Variables

The variables used in the bidding model are:
� xPV

t ≥ 0 denotes the energy of the PV system, which is
not curtailed during time slot t.

� xB,C
t ≥ 0 and xB,D

t ≥ 0 denote the charged and dis-
charged energy of the battery within time slot t.

� xEV,C
t ≥ 0 denotes the charged energy of EV during time

slot t.
� xHP

t ≥ 0 denotes the charged electrical energy of the HP
during time slot t. Closely connected, hHP

t denotes the
heating output of the HP within time slot t, whilehHP,house

t

denotes the heat taken out of the buffer tank during time slot
t to heat the house. Furthermore, tHP,tank

t denotes the tank
temperature of the buffer tank at the beginning of time slot
t, while tHP,house

t ∈ R
4 is a vector of length four, denoting

four different temperature points within the house, see [37]
for further details.

� xbuy
t ≥ 0 and xsell

t ≥ 0 denote the volume of bought and
sold energy of the household for time slot t.

C. Constraints

The given variables are the base for the device constraints,
describing the flexibility offered by the devices and the human
preferences:

PV constraint: The PV generation pPV
t , which depends on the

solar input and the size of the installed system, can be curtailed:

xPV
t ≤ pPV

t ∀t ∈ T ′. (2)

Battery constraint: The energy within the battery for each time
slot has to be between 0 and the capacity CB of the battery,
given the charging and discharging efficiency 0 < γB ≤ 1. The
charging and discharging energy is limited by constraint (4),
which limits the sum of charging and discharging energy to the
battery’s maximum energy limitUB . The maximum energy limit
is equal to the maximum power limit divided by the number of
time slots per hour:

0 ≤ iEB +
t∑

s=1

γBxB,C
s − 1

γB
xB,D
s ≤ CB ∀t ∈ T ′, (3)

xB,C
t + xB,D

t ≤ UB ∀t ∈ T ′. (4)

EV constraint: The energy within the EV has to be within 0, and
it is capacity CEV given the charging decisions xEV,C

t , and its
energy demand pEV

t , and the EV can only be charged when it is
available. Let I(EV ) ⊆ T ′ denote the set of time slots when the
EV is not at home. In addition, the charging energy is limited to
the maximum charging power. In contrast to the battery, the EV
does not consider charging efficiencies, as no discharging to the
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grid is allowed:

0 ≤ iEEV +

t∑
s=1

xEV,C
s − pEV

s ≤ CB ∀t ∈ T ′, (5)

xEV,C
t ≤ UEV ∀t ∈ T ′, (6)

xEV,C
t = 0 ∀t ∈ I(EV ). (7)

HP constraint: The HP model is substantially more complex
than the previous DER models. For this study, we use the model
introduced in [37], as both model and data are freely available.
In general, the HP model can be split up into three parts: the HP,
the hot water buffer tank, and the house. The model of the HP
contains the transformation of electrical energy to heat energy
(8) and a capacity limit (9), while the buffer tank accounts for
the changes in temperature in the tank (10) and its limits (11).
Note that no loss of heat over time is considered in this formu-
lation. The house model considers the thermo-dynamics of the
household based on the heat input into the house, the individual
parameter of insulation of the house as well as time-dependent
parameters, such as the sun’s influence on the house’s heating
or the outside temperature (12). The thermo-dynamic changes
are modeled utilizing a linear function f(·). In addition, the
user-dependent house temperature limits are modeled (13) and
may differ between households:

xHP
t =

hHP
t /Δt

COP (tat , t
tank
set )

∀t ∈ T ′ (8)

hHP
t ≤ CHP ∀t ∈ T ′ (9)

tHP,tank
t+1 = tHP,tank

t +
hHP
t − hHP,house

t

mtankcp,water
∀t ∈ T ′ (10)

lHP,tank
t ≤ tHP,tank

t ≤ uHP,tank
t ∀t ∈ T ′ (11)

tHP,house
t+1 = f(tHP,house

t , hHP,house
t , house) ∀t ∈ T ′ (12)

lHP,house
t ≤ tHP,house

t ≤ uHP,house
t ∀t ∈ T ′, (13)

where Δt corresponds to the time slot length in seconds. The
cooling function of the HP is modeled in a similar way, with a
different coefficient of performance function, and without the
buffer tank. For further details of the HP model, see [37].

Grid constraint: The buying and selling decisions are limited
to the energy capacity of the household connection to the grid:

xbuy
t + xsell

t ≤ Chouse ∀t ∈ T ′. (14)

Balancing constraint: The buying and selling decisions and the
device consumption and production for each time slot t ∈ T ′

have to match the fixed household demand pht :

xbuy
t − xsell

t + xPV
t + xB,D

t − xB,C
t − xEV,C

t − xHP
t = pht .

(15)
Constraints (2)-(15), and the non-negativity constraints of the

variables describe the set of feasible solutions of our model. Note
that all constraints are linear, resulting in a convex polyhedron.
This implies that the convex combination of any two feasible
solutions lies within the polyhedron and is, therefore, feasible.

Hence, we can interpolate any two feasible solutions and again
receive a feasible solution.

D. Objective Function

The objective function is a combination of the already in-
troduced three motives. We first formulate each motive as an
individual objective function before combining them into the
final objective function.

Ecological Motive: The goal of the ecological motive is to
account for and reduce the CO2 emissions of the consumed
electricity, leading to the following objective function:

minOFe =
∑
t∈T ′

λtx
buy
t , (16)

where λt is a forecast of the time-varying average grid emission
factor [38].

Comfort Motive: Within this study, we define comfort as
related to the house temperature as well as the SoC of the EV.
Hence, maximizing comfort relates to minimizing the deviations
in temperature from a pre-defined preferred temperature, as well
as to maximizing the SoC of the EV:

minOFc =
∑
t∈T ′

(
tHP,house
t,1 − thouse,sett

)2

− ηSoCEV
t ,

(17)
Where thouse,sett denotes the preferred temperature in time slot
t, and SoCEV

t denotes the SoC of the EV at the end of time slot
t. Note that SoCEV

t can be computed by dividing the energy
balance of constraint (5) by its capacity CEV . The additional
factor η ≥ 0 represents the individual balance between the two
components of the objective function.

Financial Motive: The financial motive aims to decrease
the costs and increase the profit of participating in the LEM.
Hence, the objective function is based on the buying and selling
decisions:

minOFf =
∑
t∈T ′

πbuy
t xbuy

t − πsell
t xsell

t . (18)

The main challenge with the financial objective is that it depends
on the future clearing pricesπt of the LEM, which are not known
yet and which can be seen as a highly correlated, stochastic
process. Hence, the decision problem of submitting a bidcurve
is a highly complex problem, which depends on future, uncertain
demands and supplies of households and energy providers.
However, the LEM operates in an iterative fashion, in which only
the bidcurve for the current time slot t0 is required. Therefore,
we restrict the price dynamics to the current time slot. For
future prices, we use predictions of the clearing price of the
LEM, which, in this case, are based on the day-ahead market
clearing prices. These prices are slightly adapted to reflect the
decisions of the supplier side by assuming a small increase
in price for buying decisions and a small decrease for selling
decisions. The price dynamic for time slot t0 is based on the price
range PriceSteps, as introduced in Algorithm 1. This choice
of modeling the prices is an approximation of the underlying
stochastic pricing process. However, due to the limited impact
of a single household bidcurve on the clearing process of the
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LEM, as well as the increasing uncertainty for future demand
and supply, this decomposition of the pricing process still holds
approximately.

The individual motive weights are used to combine the three
objective functions. However, similar to the linear scalarization
method from multi-objective optimization [39], we first normal-
ize each objective function to the interval [0,1] by analytically
deriving upper and lower bounds on each objective function.
This normalization process ensures that the weights actually
represent the intended preferences and that no single motive
dominates the others due to a large objective value, even if its
motive weight may be small. Let OF ′

e, OF ′
c, and OF ′

f represent
the normalized versions of the objective functions. Then the final
objective function is:

minweOF ′
e + wcOF ′

c + wfOF ′
f . (19)

Combing the constraints, describing the set of feasible solutions,
with the objective function (19), gives the optimization problem
for the current time slot t0 for a single household to decide how
much to buy or sell based on the given price. This procedure can
be applied to each household, and the resulting bidcurves can
be added up for the final bidcurve for the LEM.

V. NUMERICAL RESULTS AND ANALYSIS

A. Simulation

It is possible to analyze the effect of specific motives behind
human decisions on the LEM using the introduced LEM and
bidding models. The following gives the data considered, time
horizon, and motive weights.

Data: All test scenarios include a LEM with fifty households,
each equipped with PV, an EV, a battery, and an HP. The house-
hold and PV data is taken from [33], and the household load is
based on the yearly average Dutch household load profile and
scaled to match an average yearly consumption of 3250 kWh.
The PV generation is created by combining solar irradiance data
with the expected yearly PV generation, corrected for roof area
and angles of the Dutch city of Arnhem.

The EV data is taken from [40], where EVs have a 50 or
75 kWh battery and a home charger of 11 kW. As mentioned in
Section II, the driving decisions and EV demand are included
in the data and assumed to be known to the household. The
battery is modeled after a Tesla wall-mounted battery with a
capacity of 13.5 kWh and charging and discharging limits of
5 kW. The HP is a simplified version of the HP model presented
in [37], whereby differences are the lack of a minimum operating
limit and the omission of a minimum downtime requirement. In
addition, the demand for domestic hot water is not considered.

The wind data used as input for the bidding model of the
energy provider comes from [36]. The day-ahead prices used for
the LEM and the financial motive are from the Dutch wholesale
market in the year 2020, and the average CO2 emissions are
based on the energy contribution per production type in the
Netherlands during the year 2020 [41], [42]. The price range
considered in the LEM ranges from the day-ahead price in kWh
minus 0.03€/kWh to the day-ahead price plus 0.07€/kWh to
align with the aggregator’s purchase. The household grid limit

is 3× 25A or 17.25 kW to allow the households to use the
DERs simultaneously. The grid limit where LEM intervenes and
adjusts the bidcurves is 141 kW.

Each simulation run was conducted for one week with a time
slot of fifteen minutes, resulting in 672 runs of the LEM. Two
weeks, one winter and one summer week, are chosen based on
outside temperature and solar irradiance.

Horizon: The time horizon for the optimization model and
data availability is set at four hours or sixteen-time slots. In a
sensitivity analysis, this duration was found to be a good balance
between results, future knowledge, and simulation duration. The
data for these four hours available to the HEMS is the outside
temperature, EV arrival/leave times and energy requirements,
future PV generation, wholesale day-ahead prices for the finan-
cial motive, and emission factors for the ecological motive. In
this window, HEMSs cannot access LEM data such as wind
generation and clearing prices.

Motive Weights: To analyze the impact of the parameters
on the LEM, three main lines of scenarios, each corresponding
to one defining motive, are created to cover large parts of
the parameter space. All individual scenarios are built up as
follows: The defining motive has a motive weight of α, while
the remaining two motives equally share the remaining weight,
that is (1− α)/2 for α ∈ [0.1, 0.9]. This choice of α, coupled
with the objective functions leads to a non-increasing bidcurve
for the households. Individual scenarios are referred to via the
defining motive and the α value.

Number of Price Points: The influence of the number of
price points N on the bidcurves, and thereby on the clearing
of the LEM, is mainly based on the distance between the price
points. Given the used price range around the day-ahead price
of 0.1€, we choose N = 20, resulting in a distance of 0.00526€
between two consecutive price points. Therefore, the clearing
price is at most 0.00263€ away from the nearest price point and
thereby from an optimal solution. We deem this difference to be
small enough in a real-world implementation to assume that the
difference between an optimal solution at the clearing price and
the submitted bid is negligible.

B. Results

Fifty simulations are run in total, whereby each of the twenty-
five motive scenarios (the balanced is identical for all) is used
once for the winter and once for the summer week. Fig. 3 shows
the results of the various scenarios regarding the cost and the
CO2 emissions. Fig. 4 displays the grid-oriented metrics, namely
how often the consumed power was within 5% of the grid limit
as well as the root-mean-square differences (RMSD), which
measures the differences in power from one-time slot to the
other. Given a power profile p of length T , it is computed as
follows:

RMSD =

√
1

T − 1

∑T−1

i=1
(p(i)− p(i+ 1))2. (20)

Fig. 5 shows the overall power profile for the extreme and
balanced motive scenarios for the winter and summer. Note that
the scales during the summer and winter weeks are different.
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Fig. 3. Overview of the individual objectives (total cost, total CO2 emissions, average CO2 emissions) for all three scenario lines (motive dominance ranging
from 0.1 to 0.9) for winter and summer. The comfort objectives (EV SoC, house temperature) showed no unforeseen behavior and are thus left out.

Fig. 4. Overview of the grid metrics for all three scenario lines (motive dominance ranging from 0.1 to 0.9). The grid limitation metric is only shown for the
winter simulation, as the summer simulation showed non-zero values only for large α values for the ecological scenario line.

Fig. 5. Aggregated power profile of all households for winter (a-d) and summer (e-h) simulations of the balanced 0.33 and 0.9 scenarios.
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Fig. 6. Aggregated power profile of all households for the 0.9 ecological and
0.9 financial scenarios and the CO2 emission factors for the summer week.

Fig. 6 overlays the power profile of the extreme ecological
motive in summer with the CO2 emissions as well as the power
profile of the extreme financial motive.

C. Analysis

Three main insights can be observed from the results. First,
based on Fig. 3, it can be observed that, in general, the motives
accomplish their respective goals. A clear trend regarding its cor-
responding objective can be seen for each of the three motives.
In general, it holds that the higher the weight of the motive, the
better the corresponding objective, independent of the summer
or winter week. However, that does not necessarily imply that
no other motive mixture may perform better, as can be seen for
the total CO2 emissions, in which comfort-oriented scenarios
outperform the ecological motive. The considered extreme sce-
narios, with weights of 90% and 5%, perform the best compared
to all other motive mixtures, except for the extreme ecological
scenario in summer.

This outlier can be explained by analyzing how the market
and HEMSs work. Given the large weight of the ecological
motive, a household’s HEMS suggests buying most of the
necessary electricity at the one time slot during the considered
time horizon, in which the CO2 emission is the lowest. As
the underlying CO2 data and motive weights are the same for
all households, all households want to buy a large amount of
electricity simultaneously. Given these bidcurves, the LEM has
to clear the market given the grid constraints, which often limits
the amount of traded electricity, as shown in Fig. 6 at time step
311 for the ecological scenario. Due to this electricity limitation,
households are forced to consume less during this time slot and
therefore have to shift their electricity to buy at a later time,
in which the CO2 emissions are already higher. Other motive
mixtures with a smaller weight on the ecological motive do not
strictly aim to buy electricity at one specific time slot, resulting in
solutions in which electricity is already bought beforehand, e.g.,
at time slots 280-300 in Fig. 6, in which the CO2 emissions are
lower. Hence, the problem of the ecological motive is the focus
on buying at specific time slots coupled with the market clearing
of the LEM, potentially resulting in worse results compared to
other motive mixtures.

This analysis of the extreme ecological motive also explains
why more balanced motives usually perform quite well regard-
ing all considered objectives. As no single motive dominates

the others, the bidcurves allow a larger range of flexibility w.r.t.
buying and selling electricity, which works better for the LEM
clearing mechanism. In addition, devices such as batteries, EVs,
or the buffer tank of the HP provide enough flexibility to buy
electricity beforehand and only use it later on. This also explains
the good performance of the 0.6 to 0.8 comfort scenario for the
total CO2 emissions for summer (Fig. 3(e)). Instead of trying
to sell surplus PV generation, as done by the financial or the
ecological scenarios, it stores it in the EV battery or the HP. It can
thereby reduce the total amount of electricity to buy compared
to, for example, the 0.8 ecological scenario. Hence, even though,
in total, it consumes more electricity to run the HP or charge the
EV, it needs to buy less from the LEM, resulting in lower CO2

emissions.
The second observation focuses on a grid-oriented view of the

outcome of the LEM. Human preferences and behavior affect
the LEM beyond individual objectives. When analyzing the
resulting power profiles, as displayed in Fig. 5, large differences
in the quality of the profiles can be observed. In particular, the
extreme ecological scenario for the winter week, see Fig. 4(c),
seems to perform quite poorly, with many large fluctuations
and peaks. Such peaks in power profiles can be explained due
to homogeneous bidcurves over many households, which are
caused by the usage of the same data and underlying (optimiza-
tion) models. Fig. 4 also summarizes the power profile for each
scenario into a single value using the RMSD (see (20)). These
values confirm that the ecological motive is worse in winter
and summer than the power profiles of the financial, comfort,
and balanced scenarios. The results also show that, in particular,
during the summer, the differences in traded electricity between
neighboring time slots are much smaller than in the winter week.
This insight aligns with the observations of the power profiles
in Fig. 5.

The third observation is based on the results of the previous
analysis in that even though the LEM may not perform well for
extreme cases, it is generally robust against smaller deviations in
the motive mixture. In particular, for scenarios where no single
motive is larger than 0.7, all considered metrics, both from a grid
perspective and the objectives from a household perspective, do
not change rapidly and show nearly constant behavior. Only
the ecological motive may still cause problems due to its focus
on specific time slots, which counteracts the goal of a LEM in
distributing flexibility across time.

VI. IMPLICATIONS ON FUTURE MARKETS

Summarizing the results of the previous section, we have seen
that different motive mixtures can successfully model human
behavior and, in turn, significantly impact the outcome of a LEM,
both on an individual level, as well as on a grid level. In the
following, we look at the implications of this for the application
and design of future LEMs.

First of all, research on household participation in local energy
trading and market approaches has identified multiple drivers of
participation in LEMs or local trading approaches, ranging from
environmental, [43], to financial, [44] or self-supportive (au-
tarky) reasons, [45]. Hence, allowing households to follow their
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preferences regarding local trading may enlarge the group of
potential participants compared to a fixed (black box) approach.
This increase in participation aligns well with the European
Union’s Clean Energy Package, [46]. However, based on the
observations and analysis of the results in the previous section,
allowing households to follow their preferences may result in
additional grid congestion. Therefore, LEM operators must pay
close attention to the chosen distribution of the motive weights
to ensure a well-working market. This could be achieved by, e.g.,
limiting extreme motive weights on a household level, restricting
the averaged motive weights over the whole set of participating
households, or implementing a default mixture, which comes in
place in case the grid gets strained for a longer period of time.

Another important insight from the above results can be
gained when analyzing the impact of various motive mixtures
on the LEM. We have seen that even if the motive objectives
do not directly align with the steering signals of the market,
the LEM can still produce promising results, as seen for the
results of the comfort motive. However, this effect only occurs
when the steering signals and the motive objectives are not
opposing each other. In the case of the comfort motive, the
objective is to consume a sufficient amount of electricity, but
the time of consumption is largely not important, while the
steering signals focus on when to buy electricity. If, however,
the motive objective and the steering signal directly oppose each
other (as observed and analyzed for the ecological objective),
the steering function of the market becomes ineffective. This
highlights the need to pay special attention to the design of the
objective function behind the various motives.

In the proposed approach, the households were given a choice
between three different motives. However, they could not change
the underlying objective functions on their own. Hence, it is
possible to alter the underlying objective functions of motives to
better align them with the steering signals of the market without
deviating too much from the motive. For the ecological motive,
an alternative objective could be to maximize the consumption
of your own PV generation instead of only considering CO2

emissions. If the CO2 emissions should stay the main focus of
the ecological motive, a discretization of the CO2 emissions into
pre-defined levels, such as high, medium, and low could shift the
focus from a single time slot to a larger set of time slots, which
allows the steering signal of the LEM to better reach their goal
within each of the levels.

VII. DISCUSSION AND CONCLUSION

This work aimed to model human preferences and motives
and analyze the impact of home energy management system
(HEMS) parameter choices on the outcome and performance
of a local electricity market (LEM). This was done by explor-
ing various motives behind human preferences and using the
Attitude-Behavior-Context (ABC) model to combine internal
motives with the external flexibility of DERs on a household
level to create individual bidcurves. Finally, a sensitivity analysis
of the input parameters gave insights in the connections between
motives and their impact on a LEM.

It was found that the ABC model, which models human
preferences and their motive weights as input to a HEMS,

can align the achieved power profiles to the goals of these
motives and that a balanced motive mixture accounts for both
the individual objectives and the grid constraints. On the other
hand, extreme cases and a large weight for the ecological motive
can lead to large fluctuations and peaks due to synchronized
bidcurves, which is often not desired. The analysis highlights
the importance of aligning market steering signals with the
participants’ motives in future LEM design to ensure a func-
tioning market, as misalignment can lead to undesirable results.
Another key insight is the importance of thoroughly analyzing
the interactions between objectives and their implementation
to avoid undesirable side effects and ensure optimal bidding
strategies.

Some limitations to this work should, however, be mentioned.
First, the results are based on two simulated weeks with slightly
simplified DERs. A longer simulation with more detailed DERs
may provide more details and could alter the conclusions of this
work. Second, this research focused on household bidding in
a LEM rather than on the bidding of the energy providers and
other strategic bidding possibilities. Thirdly, only one type of
LEM was considered, and different results and conclusions may
be found with different LEMs. Fourthly, we assumed human
behavior to be static, that is, households do not change or adjust
their parameter setting over time or react to previous (undesired)
outcomes. This choice was made to reduce additional complex-
ity of the considered problem and also to avoid the problem of
specifying when household start changing their motive mixture.
In practice, this may happen, however it has also been shown that
only a relatively small percentage of people (10− 15%) actually
change their behavior based on feedback and messages, [47].
Finally, the authors realize that human preferences and behavior
are already complex to research in real life, and it is even more
challenging in simulations where minor omissions and changes
can influence the results considerably.

Nevertheless, the authors believe that the conclusions and
results of the analysis are relevant and that future research on
LEMs should consider the impact of human preferences as an
important aspect. Using the ABC model to include individual
motives and preferences as parameter choices of the HEMS is a
practical and reasonable approach. Finally, given these insights
and conclusions, some interesting research directions for future
work arise. Firstly, a study or survey could be done regarding
the distribution of the motive weights. In addition to the three
considered motives, other driving factors may be identified. Sec-
ondly, it may be of interest to extend the chosen price dynamic
and investigate the impact on the financial objective. A last
research direction could investigate the impact of the similarity
of the motives on the outcome. Within the sensitivity analysis,
the motive mixtures of each household were the same, while in
practice, the motive mixtures may change from one household
to another. It would be interesting to investigate whether this
would further impact the LEM.
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