
386 IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY, AND REGULATION, VOL. 1, NO. 4, DECEMBER 2023

Modelling the Interdependence of Multiple
Electricity Markets in the Distribution System

Aggregator Bidding
Mohammad Afkousi-Paqaleh , Graduate Student Member, IEEE, Mohammad Jafarian ,

and Andrew Keane , Senior Member, IEEE

Abstract—The volatility of market prices and the interdepen-
dence of multiple markets make it challenging for Distribution Sys-
tem Aggregators (DSAs) to model these prices. In this paper, a novel
statistical model based on Gaussian process regression and mutual
information screening technique is developed. This model is able
to predict different market prices and quantify their uncertainty
whilst incorporating the interdependence of different markets. The
proposed model is employed to assist DSAs with market price
modelling. Price scenarios for various markets generated by this
model make it viable to formulate the optimal involvement of DSAs
in multiple markets as a stochastic multi-step two-stage problem.
Other than providing a set of scenarios that efficaciously model
multiple electricity market prices, after the clearing of each market,
the proposed model leverages market clearing results to improve
the accuracy of price prediction of subsequent markets. Extensive
simulation results on large price datasets demonstrate that the
proposed methodology will result in a considerable increase in
the profit of the DSA compared to state-of-the-art price prediction
approaches.

Index Terms—Bidding strategy, distribution system aggregator,
electricity markets, Gaussian process regression, uncertainty
modelling.

I. INTRODUCTION

A S MORE Distributed Energy Resources (DERs) are in-
stalled in the distribution network and with the ongoing

electrification of heating and transport sectors, the distribution
system is increasingly encountered with more flexibility and
control potentials. An underappreciated opportunity for the
power systems pursuing to drive the energy transition lies in
the identification of these potentials. These potentials could be
aggregated by a Distribution System Aggregator (DSA) and
offered to the electricity markets. DSAs should determine an
optimal bidding strategy for participation in multiple energy
markets to maximise their profit. Nevertheless, determining an
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optimal bidding strategy is difficult due to the need to account
for the uncertainty of market prices and resources, the interde-
pendence of different markets, and the network’s operational
constraints.

A. Literature Review

To tackle the bidding strategy challenges of an aggregator of
small prosumers, [1] applies a two-stage stochastic optimisation
technique to minimise the net cost of buying and selling energy.
In [2], a model of the Day-Ahead (DA) bidding strategy for a
load aggregator is presented, wherein Demand Response (DR)
is utilised to mitigate the risk. A new distributionally robust
optimisation is proposed in [3] to design a collaborative DA
bidding strategy for a DSA of intermittent resources. It is shown
that the collaborative bidding strategy yields a more significant
financial gain than independent bidding. The authors in [4]
propose a secure and effective bidding strategy and Real-Time
(RT) operation of a DSA that incorporates distribution network
constraints. However, the above studies, [1], [2], [3], [4], have
failed to address the uncertainties of market prices.

A growing body of literature recognises the importance of
factoring in the price uncertainties in the bidding strategy prob-
lem of the DSA. Integrating demand flexibility with DERs, [5]
presents a bidding strategy optimisation model for DA mar-
ket involvement, modelling uncertain parameters of DERs and
market prices. In [6], a stochastic decision-making model of a
DSA’s bidding strategy for the DA market is developed, coor-
dinating renewable resources, DR, and Electric Vehicles (EVs).
Taking into account the price elasticity of the retail loads, [7]
proposes a bidding strategy for the DSA of DR resources in the
DA wholesale market. The bidding strategy of a small-scale
microgrids aggregator for participation in the RT balancing
market is introduced in [8]; their proposed model aims to achieve
maximum returns while mitigating the effects of uncertainties.
However, such studies, [5], [6], [7], [8], remain narrow in focus
dealing only with one market.

Some research studies investigated the involvement in multi-
ple energy markets in an attempt to improve the DSA’s profitabil-
ity. In a study investigating the bidding strategy of a DR aggrega-
tor participating in DA and balancing markets, Vahid-Ghavidel
et al. [9] report that the information-gap decision theory could
be employed to gain a guaranteed predefined profit, taking into
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account consumers’ and market prices’ uncertainties. In [10], a
model is provided to optimise an EV aggregator’s DA and RT
bidding strategy in the presence of price uncertainty. Accord-
ing to [11], the hybrid stochastic-interval approach could be
employed to reflect the uncertainties associated with renewable
resources and different market prices in the bidding strategy
problem of hybrid power plants. In [12] a bidding strategy
model of a DR aggregator participating in DA and RT markets
is presented. The problem’s uncertainties are represented by a
set of scenarios based on historical data. Using satisficing theory
principles, [13] models the customer behaviour for the portfolio
design of a DR aggregator. The proposed model determines the
optimal DR premium for participation in DA and RT markets. In
all the studies reviewed so far, different markets are recognised as
independent and the interdependency of markets is overlooked.
In [14] a coordinated strategy for a DSA that aggregates wind
power and compressed air energy storage to participate in DA,
Intra-Day (ID), and balancing markets is presented. The cor-
relation among prices of different markets is considered via a
constant factor.

B. Contributions

To maximise their profits, DSAs are expected to engage in
multiple electricity markets. In this study, a stochastic multi-step,
two-stage bidding strategy problem is formulated and solved
for DSAs participating in multiple markets. In this regard, to
properly allocate their resources, DSAs should first identify
and model the interdependencies of these markets as well as
the price uncertainties. Although extensive research has been
carried out on the bidding strategy problem of DSAs, no single
study exists that models and integrates the interdependencies of
multiple electricity markets into this problem. Merely consid-
ering different markets as independent is too simplistic. This
assumption increases the risk of non-optimal allocation of re-
sources in different markets, putting the DSA’s profit at risk.
Conversely, if the interdependence of markets is simplistically
modelled by a constant correlation factor, there is the risk of
under or over-estimating markets’ dependence, thus diminishing
the DSA’s profit.

A framework based on Gaussian Process Regression (GPR)
is proposed to model multiple electricity market prices. As GPR
employs a kernel-based method, different data can be considered
as explanatory parameters by specifying the respective kernel
function. In addition, since GPR is a nonparametric Bayesian
model, it is immune to data over-fitting, as is the case with linear
models applied to non-linear data [15]. These characteristics
allow GPR to capture and model 1) the interdependence between
different electricity markets and 2) the uncertainties of market
prices. Contrarily, neural networks can model the former but face
unresolved challenges to model the latter [16], and ARIMA can
only model the latter [17]. The GPR-based model complexity
expands as the number of explanatory parameters increases. The
Mutual Information Screening (MIS) technique is employed to
limit the number of explanatory parameters to the proposed
model by identifying the most relevant historical prices of all
markets. In addition, a platform is developed to optimise the

Fig. 1. Market structure and bidding strategy mechanism considering network
constraints.

structure of the GPR by optimising and assigning different
functions and parameters of the GPR. Finally, the trained model
is implemented to generate price scenarios that incorporate the
uncertainties and dependencies of various markets. These sce-
narios make it possible to optimise the bidding strategy problem
of a price-taker DSA for participation in multiple markets.

In the bidding process, new data becomes available after
each market clearing that could be exploited to increase the
prediction accuracy for the upcoming markets. The DSA’s bid-
ding strategy problem is modelled as a multi-step two-stage
problem to address this issue, wherein each step corresponds
to a market. Following the clearing of each market, the resulting
market prices are used to update the GPR-based model, thereby
enhancing the accuracy of prediction for succeeding markets.

The results of solving the DSA bidding problem incorporating
the multiple market price scenarios generated by the proposed
GPR-based approach are compared to state-of-the-art price mod-
elling approaches including, ARIMA, Lasso Estimated AutoRe-
gressive (LEAR), and Long Short-Term Memory (LSTM) neural
network.

II. METHODOLOGY

A. Market Structure

The DSA’s involvement in the energy markets in this research
follows the market rules provided in [18]. Nonetheless, the
approaches outlined here could be applied to different markets
with slight adjustments. In this section, only the DA and ID
markets are modelled. However, the proposed approach could
be easily expanded to encompass all existing markets. Fig. 1
schematically illustrates the structure of the bidding strategy
problem and the mechanisms of the market. Three separate
agents are illustrated: the Independent System Operator (ISO),
the DSA, and the Distribution Network Operator (DNO). The
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Fig. 2. Price prediction model.

ISO publishes historical market prices and releases market re-
sults following each market clearing. The DNO is responsible
for ensuring that the electricity service is not imperilled while
having limited monitoring infrastructure.

The DSA must submit its offers to tomorrow’s DA market
before 11:00. At this step, the DSA should have decided on its
final DA bids and its vision of ID bids. After the DA market
clearing, DSA leverages the DA market results to improve its
prediction of ID prices. Finally, the DSA submits its bids for
participation in the ID market. The DSA should strategically
allocate its resources to different markets using a mathematical
formulation that considers its resources’ characteristics and price
scenarios. Moreover, the DNO’s provision of representative data
enables DSA to build a set of equations with low computational
cost to effectively construct constraints that reflect the bids’
effect on the network’s operational constraints.

B. Price Prediction Model

The DSA should strategise its offerings in the energy markets.
To achieve this, DSA should first predict the DA and ID market
prices using the ISO-supplied data. The price prediction could
be accomplished using a set of scenarios that integrates the
interdependencies between the two markets and represent the
volatility of market prices. The proposed model for predicting
prices is depicted in Fig. 2. A model based on GPR is devel-
oped to capture and integrate the interdependencies between
markets to improve the accuracy of predictions. Owing to a
kernel method, the GPR can model the interrelation dependency
between different market prices as it accepts different types
of explanatory parameters by configuring the kernel function
of each parameter [19]. Being able to capture the input-output
mapping from empirical data and to quantify the uncertainties
of the outcome, GPR has been applied for short-term power
forecast of photovoltaic [20], capacity estimation of lithium-ion
batteries [21], and probabilistic load forecasting [22].

GPR is a nonparametric Bayesian model where its complexity
grows as data size inflates. Therefore, GPR-based model training
becomes computationally intensive when all historical prices
across all markets are considered. The MIS technique is applied
to identify the most relevant historical prices across all markets

regarding the price to be predicted to make the proposed model
computationally efficient. The proposed approach consists of
two phases. First, the model is trained using historical data of
different markets that contain the most amount of information,
identified by MIS. Next, the trained model is implemented to
predict future prices. In the implementation phase, the same
structure of explanatory parameters (with new data) is given
to the trained GPR-based model to predict the desired market
prices.

A separate GPR-based model is developed for predicting the
price of each hour of the day (and hence in total, 24 models).
The dependent parameter obtained from the GPR-based model
for each hour is a Gaussian distribution of the price at that
hour. These Gaussian distributions are combined by employing
Cholesky decomposition to generate a multivariate PDF of the
market prices, considering the correlations between different
hours. Finally, this multivariate PDF is used to generate the
24-hour price scenarios. The dependence of electricity prices
across markets is described as scenario trees. Therefore, each
DA market price scenario will have several ID price offspring.
In other words, the ID price scenarios represent prospective ID
market prices if that DA market price materialises. A high num-
ber of scenarios are generated and later reduced to thoroughly
model market prices. In the first step (before DA market closure),
the GPR-based model is used to create price scenarios for both
markets, while in the second step (after DA market clearing), the
GPR-based model is updated with actual DA prices to improve
the ID price prediction accuracy.

1) Mutual Information Screening Technique: Mutual Infor-
mation (MI) is a measure of mutual dependency between two
random parameters. Specifically, it reveals how much informa-
tion can be gleaned for one random parameter from observing
another. Using the MIS technique, historical prices of all mar-
kets containing the most information about the to-be-predicted
market price are identified. The primary distinction between
correlation and the MIS technique is that correlation measures
linear dependence, whereas the MIS technique measures generic
dependence (including non-linear reliance). Suppose (X,Y ) are
two uncertain parameters (two market prices in this study) over
the space X× Y, with the joint probability distribution function
of Π(X,Y ), and the marginal distributions of ΠX and ΠY . The
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MI of the pair is:

MI(X;Y ) = DKL(Π(X,Y )‖ΠX ⊗ΠY ) (1)

where DKL(A‖B) is the Kullback–Leibler divergence, known
as relative entropy, that measures the statistical distance of
probability distribution A and reference probability distribution
B. ⊗ indicates the tensor product. For discrete parameters, MI
is defined as:

MI(X;Y ) =
∑
y∈Y

∑
x∈X

[
Π(X,Y ) log

(
Π(X,Y )

ΠXΠY

)]
(2)

MI could also be defined in terms of entropy. Denoting
marginal entropies of X and Y by H(X) and H(Y ), and joint
entropy by H(X,Y ), MI could equivalently be expressed as:

MI(X;Y ) � H(X) +H(Y )−H(X,Y ) (3)

The entropy of an uncertain parameter, H(X), is the aver-
age degree of unpredictability and uncertainty inherent in the
parameter’s potential outcomes and is expressed as follows:

H(X) = −
∑
x∈X

Π(X = x) log (Π(X = x)) (4)

The joint entropy, H(X,Y ), quantifies the uncertainty when
two uncertain parameters are evaluated jointly.

H(X,Y ) = −
∑
x∈X

∑
y∈Y

[Π(X = x, Y = y)

log (Π(X = x, Y = y))] (5)

In other words, H(X) is the degree of uncertainty of X ,
while MI(X;Y ) is the degree to which knowing Y reduces
X’s uncertainty. A larger MI value signifies a greater reduc-
tion in uncertainty of X , which corresponds to Y being more
dependable. The unit of MI in this study is Shannon (bit).

2) Gaussian Process Regression: The GPR model describes
the relationship between multivariate explanatory parameters
(historical prices of different markets) and a scalar-dependent
parameter (market price to be predicted). GPR uses the Gaus-
sian process and Bayesian inference to estimate the nonlin-
ear and nonparametric model between explanatory parameters
and a dependent parameter [15]. Let �train = {(Xn, yn)|n =
1, . . ., N} be the training data set, and �test = {(X∗

m, y∗m)|m =
1, . . .,M} be the test data set, where Xn is a vector, with the
elements of (x1n, x

2
n, . . ., x

D
n) (N being the number of samples

of explanatory parameters and D being the dimension of each
sample of explanatory parameters) and yn a scalar dependent
parameter for thenth sample of explanatory parameters. The ex-
planatory parameters-dependent parameter relation model could
be expressed as follows:

yn = f(Xn) + εn (6)

where f(X) is a noise-free latent function and ε represents the
noise with a Gaussian distribution N(0, σ2

n).
Assuming X = [X1;X2; . . .;XN ]N×D be the matrix of all

samples of explanatory parameters, Y be a column vector of
all dependent parameters, with the elements of (y1, y2, . . ., yN),
and f(X) be a column vector of all latent function values of the

training data, with the elements of (f(X1), f(X2), . . ., f(XN ));
for all the training data set it can be stated that:

Y = f(X) + ε (7)

where ε denotes the noise vector with a Gaussian distribution
N(0, σ2

nI). The latent function f(X), is characterised by a
multivariate Gaussian distribution:

f(X) ∼ N(0,K(X,X)) (8)

where K(X,X) = KN is the kernel matrix:

K(X,X) =

⎡⎢⎢⎢⎣
k(X1,X1) . . . k(X1,XN )

k(X2,X1) . . . k(X2,XN )

. . . . . . . . .

k(XN ,X1) . . . k(XN ,XN )

⎤⎥⎥⎥⎦ (9)

The marginal distribution of Y, p(Y|X), given that dependent
parameters are normalised to a zero mean, could be obtained:

p(Y|X) =
∫

p(Y|f(X))p(f(X)|X)df(X)

∼ N(0,K(X,X) + σ2
nI) (10)

The primary objective of GPR is to infer the distributions
of test data-dependent parameters, y∗m, given a fresh vector
of explanatory parameters, X∗

m. The joint distribution of the
training and test data for the function values f(Xn) and f(X∗

m)
is given by:

p(f(Xn), f(X
∗
m)|Xn,X

∗
m) = N

([
f(Xn)

f(X∗
m)

]
; 0,KN+M

)
(11)

KN+M =

[
KN KNM

KMN KM

]
(12)

where KM is the kernel matrix of test samples, and KNM =
Ktr

MN (tr denoting transpose) are the kernel matrix between
training and test samples. The joint distribution of yn and y∗m
could be expressed as:

p (yn, y
∗
m|Xn,X

∗
m) = N

([
f(Xn)

f(X∗
m)

]
; 0,KN+M + σ2

nI

)
(13)

The predicted distribution of dependent parameters in the test
data set can be determined by:

p(y∗m|yn,Xn,X
∗
m) = N(y∗m;μm,KN+M +Σm) (14)

μm = KMN

[
KN + σ2

nI
]−1

y∗m (15)

Σm = KM −KMN

[
KN + σ2

nI
]−1

KNM (16)

Almost O(N3) computational cost is required to calculate
the [KN + σ2

nI]
−1 [19]. For practical application, the parameter

vector ϑ = [KN + σ2
nI]

−1yn is calculated in the training phase.
The number of parameters in ϑ corresponds to the number of
samples in the training data (N). Consequently, (15) could be



390 IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY, AND REGULATION, VOL. 1, NO. 4, DECEMBER 2023

rewritten as follows (incurring only O(NM) computing cost):

μm = KMNϑ (17)

To optimise the structure of the GPR-based model, a plat-
form is developed which optimises the basis function, kernel
function, kernel function’s hyperparameters, kernel scale (when
applicable), and sigma of GPR for each hour to improve per-
formance. Depending on the characteristics of each hour, these
parameters/functions are optimised or assigned. A function of
each explanatory parameter could replace that parameter to
better model the relationship between explanatory parameters
and the dependent parameter. This function, known as the basis
function, is affine, for which the coefficient and intercept are
optimised. The kernel function is chosen from quadratic, expo-
nential, squared exponential, Matern 5/2, Matern 3/2, or rational.
The assigned kernel function’s hyperparameters are optimised to
achieve the best performance. Moreover, the platform searches
among values within the range of explanatory parameters and
values within the range of 0.0001 to 10 times the standard
deviation of the dependent parameter to determine the kernel
scale and sigma, respectively. Additionally, the explanatory
parameters are normalised to a mean of zero and a standard
deviation of one to eliminate the dependence on arbitrary scales
in the explanatory parameters and enhance performance. The
exact form of matrix representation used for the training phase
will be used for the implementation (test) phase. The process
mentioned above is done for each hour of the 24-hour ID market
separately.

C. Problem Formulation

The bidding strategy for a DSA to partake in the DA and ID
energy markets is modelled as a multi-step, two-stage stochastic
optimisation problem aiming at profit maximisation. Each step
represents a market. Prior to the closure of each market, the of-
ferings in that market are considered first-stage variables, while
the offerings in all future markets are considered second-stage
variables. This problem is formulated as a Mixed Integer Linear
Programming (MILP). Four types of resources for DSA are
considered, including dispatchable DERs, wind farms, Battery
Energy Storage (BES), and DRs.

1) First Step Objective Function, Before DA Market Closure:
Initially, the DSA should determine bids for participation in
the DA market and visions of bids in the ID market. The
objective function of the DSA is profit (Υ) maximisation, which
is comprised of the total profits from electricity markets minus
the operational expenses, could be written as follows:

Max Υ =

T∑
t=1

S∑
s=1

πs

{(
PDA
t λDA

s,t + P ID
s,t λID

s,t

−
G∑

g=1

P g
s,tβ

g

)
τ −

B∑
b=1

Eb,tp
s,t βb − CostDR

s,t

}
(18)

where T is the number of time periods (hours) indexed by t, S is
the number of scenarios indexed by s, andπs is the probability of

scenario s. Moreover,PDA
t (MW) andP ID

s,t (MW) are the DSA’s
DA and ID offers, in scenario s and at time step t, respectively.
λDA
s,t (€ /MWh) and λID

s,t (€ /MWh) indicate the DA and ID prices
of scenario s at time step t. On the second line of (18), G is the
number of DERs indexed by g, and B is the number of BESs
indexed by b. The power generation of DER g is denoted with
P g
s,t(MW), and Eb,tp

s,t (MWh) is the throughput energy of BES
b, in scenario s and at time step t. The generation cost of DER
g is signified by βg(€ /MWh), while βb(€ /MWh-throughput)
denotes the degradation cost of BES b, and τ (h) symbolises the
time step. Finally, the deployment cost of DR is represented by
CostDR

s,t . It should be noted that the total offering at each hour of
the DA market (PDA

t ) is a first-stage variable and constant in all
scenarios, while the total offering at each hour of the ID market
(P ID

s,t ) could vary over scenarios. PDA
t and P ID

s,t are calculated
using (19) and (20), respectively:

PDA
t =

W∑
w=1

Pw,DA
s,t +

D∑
d=1

P d,DA
s,t +

G∑
g=1

P g,DA
s,t

+

B∑
b=1

P b,DA
s,t −

B∑
b=1

Lb,DA
s,t (19)

P ID
s,t =

W∑
w=1

PW,ID
s,t +

D∑
d=1

P d,ID
s,t +

G∑
g=1

P g,ID
s,t

+

B∑
b=1

P b,ID
s,t −

B∑
b=1

Lb,ID
s,t (20)

in the above equations, superscripts DA and ID represent the
DA and ID markets. W is the number of wind farms indexed
by w, and D is the number of DR participants indexed by d.
Moreover,Pw

s,t,P
d
s,t, andP b

s,t are the power provision of the wind
farm, DR resource, and BES in scenario s at hour t, respectively.
The power used for charging BES at scenario s and period t
is denoted by Lb

s,t. In Appendix VI-A, resource models and
limitations are given.

Network Constraints Modelling: Untrammelled actions of
DSAs could result in violation of network constraints and poor
quality of service for customers. Therefore, DSAs should ensure
that their bids do not violate network constraints.

ΩMin
i ≤ Ωi,t ≤ ΩMax

i ∀i, t (21)

where Ω is the vector of network variables, i.e., nodal voltages
and line currents, indexed by i, and t is the hour index. The
maximum and minimum permissible ranges of network vari-
ables are denoted byΩMax

i andΩMin
i , respectively. The proposed

bidding strategy takes the network operational constraints into
account using the approach provided in [4], where the DNO
does not interfere with the DSA’s decision-making and there
is no need for constant negotiation and data sharing between
the two entities. This approach matches the state-of-the-art, and
futuristic operation practices [23].
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As DSAs have no access to network data, network constraints
cannot be handled using a traditional OPF formulation [4]. Net-
work sensitivity coefficients, which yield satisfactory results un-
der different topologies and resource configurations [24], [25],
[26], can be employed to measure the fluctuation in network vari-
ables (Ωi,t), due to changes in power generation/consumption
by each resource. The approach to sensitivity analysis described
in [26] is utilised because it has been demonstrated to be suitable
for unbalanced feeders.

The DNO executes a series of calculations summarised in [4]
and produces a linear regression that describes the variables of
interest with a linear model. In other words, the degree to which
the network variable Ωi,t will change as a result of active and
reactive power variation of resources is determined. Leveraging
network variable estimates and sensitivity coefficients acquired
from the DNO, DSAs can represent the magnitude of the network
variables, Ωi,t, as a function of active and reactive power vari-
ation of resources. Consequently, these representations allow
DSA to construct the set of network constraints, where each
network variable Ωi,t is bound within its permissible range.
In contrast to conventional power flow equations, DSA does
not require access to the network admittance matrix and thus is
not responsible for network modelling (the DNO provides the
network variable estimates and sensitivities).

2) Second Step Objective Function, After DA Market Clear-
ing: Once the DA market has been cleared, the DSA leverages
the DA market prices to update the GPR-based model. The up-
dated GPR-based model is then used to create ID price scenarios.
Moreover, in this step, the DSA’s objective function will change.
The DA offers should be fulfilled, however, considering the
simultaneous delivery of DA and ID market offers during the RT
operation of the grid, only the DA offers as a whole value (PDA

t )
are meaningful at this stage, and the exact utilisation of each
resource in (19) and (20) is irrelevant and could change. Now,
using all resources, the DSA should decide how to participate
in the ID market, provided that the accepted DA offers are
delivered.

Max ΥID =

T∑
t=1

S∑
s=1

π̂s

{(
P ID
t λ̂ID

s,t −
G∑

g=1

P g
s,tβ

g

)
τ

−
B∑

b=1

Eb,tp
s,t βb − CostDR

s,t

}
(22)

where λ̂ID
s,t and π̂s indicate the ID market prices and probability

of scenario s obtained from the updated GPR-based model with
actual DA prices. P ID

t is determined using (23).

P ID
t =

W∑
w=1

Pw
s,t +

B∑
b=1

P b
s,t +

D∑
d=1

P d
s,t

+
G∑

g=1

P g
s,t −

B∑
b=1

Lb
s,t − PDA

t (23)

The ID offers are the accumulated utilisation of all resources
minus the accepted DA offer. In other words, DSA may utilise
the full capacity of its resources to participate in the ID market,

Fig. 3. The IEEE 37 node test feeder.

provided that DA offers are delivered. The constraints provided
in (25), (26), (30), (32), (34), (36), (38)-(41), and (21) curb the
DSA’s offer in the ID market.

III. CASE DATA

A. Network Models

The IEEE 37 node [27] in Fig. 3, and IEEE 123-bus test
feeder [28] are used as test systems. These systems operate at
nominal voltages of 4.8 and 4.16 kV and include unbalanced
loads. The daily load variations are modelled based on a repre-
sentative of the Irish distribution system [29]. The IEEE 37-node
test system is upgraded with a dispatchable DER, four storage
units, and a wind farm. In addition, it is presumed that all load
buses (red-highlighted in Fig. 3) engage in DR programs (see
subsection III-C). The energy production cost of the 500 KW
DER, βg , is set at 60€ /MWh [30]. Four BESs with capacities
150, 200, 100, and 80 kWh are located on buses 6, 10, 18, and
22, respectively [31]. δbConv of all BESs is set at 25 per cent. The
degradation cost of BES is modelled as 9€ /MWh-throughput, as
determined by averaging the values presented in [32]. Moreover,
the initial and final SOCs are fixed at 50%, while the minimum
and maximum SOCs are set at 10% and 90%, respectively.
Characteristics of the wind farm, located at bus 7, are given
in subsection III-B3. The statutory voltage limits are 0.95 and
1.05 p.u. [33]. For comparative and reproducibility purposes,
the IEEE 37 node test feeders’ data and the optimization scripts
in different cases for all approaches have been made available
at the online repository [34].

B. Uncertainty Handling

1) Scenario Generation: For each day of the test data, 12,500
scenarios are generated. Each scenario has 72 parameters; the
first 24 are the DA prices, the second 24 are the ID prices, and the
final 24 represent the hourly wind generation. These scenarios
are modelled as scenario trees, which means that for each DA
price scenario, there are multiple ID price scenarios, and for
each combination of DA and ID prices, there are several wind
scenarios. After the DA market clearing, to determine the ID
offers, the scenarios will have 48 parameters reflecting the ID
prices and wind generation.
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Fig. 4. Correlation matrix of DA and ID prices. Diagonal subplots depict the
histogram of the distribution of market prices, and off-diagonal subplots depict
a scatter plot of a pair of market prices, while the numbers show Pearson’s
correlation coefficients.

2) Price Scenarios: The historical DA and ID market prices
are obtained from the Irish SEM Operator [35]. The price data
from 1st October 2018 through 29th June 2021 are used. Of
1003 days, the first 802 days are used for training the model,
and the remaining 201 days are considered test data. Each test
day is analysed separately. It is worth noting that the Irish
electricity market is highly volatile, and the price is negative in
the early hours of some days due to excess wind generation. This
volatility makes price prediction more challenging and complex,
accentuating the necessity for price uncertainty modelling. The
correlations of each day’s DA (λDA

d ) and ID (λID
d ) electricity

market prices respecting each other and also the previous day’s
DA (λDA

d−1) and ID (λID
d−1) market prices are illustrated in Fig. 4.

It is interesting to note that the highest value of Pearson’s linear
correlation coefficients belongs to the correlation between λDA

d

and λID
d . This higher value of correlation shows that more

information could be gleaned from the DA market clearing
results regarding the ID market prices than the ID market prices
of the previous day.

To generate price samples, first, the MIS technique is used
to evaluate and identify the historical data that contains the
highest amount of information regarding the next day’s market
prices. Fig. 5 depicts the amount of information included in the
previous DA and ID prices regarding the ID prices. In Fig. 5(a),
zero days ago means the DA prices of the same day after DA
market clearing, and they have shown the highest degree of
dependency. Similar to the findings of the correlation analysis,
provided in Fig. 4, historical DA market prices contain more
information regarding the expected ID prices than historical ID
prices, confirming the need to model the interdependence of
markets. As a threshold to restrict the number of explanatory
parameters to the GPR-based, 0.3 b is used. Therefore, the

Fig. 5. MI of ID prices with historical DA and ID prices.

Fig. 6. ID price prediction results.

explanatory parameters to the GPR-based model consist of DA
prices of all hours of the same day and all the preceding DA and
ID prices that meet the threshold.

The GPR-based model is then trained using these prices (see
II-B2). Next, employing the trained GPR-based model, hourly
DA and ID price samples are generated, neglecting the corre-
lations between hours. Cholesky decomposition is then used to
incorporate correlations between various hours [33].

Fig. 6 displays the mean of predicted ID prices and the 95%
confidence interval for ARIMA and GPR-based model for the
first day of the test data. In this figure, “GPR with predicted DA
prices” uses DA price predictions, whereas “GPR with actual
DA prices” uses the real DA market prices following market
clearing. The results of both GPR-based models show superior
performance relative to the ARIMA. Moreover, when actual DA
prices are used, the prediction accuracy dramatically increases,
and the confidence interval shrinks.

3) Wind Generation Scenarios: The Beal Hill wind farm
with a nominal power of 1.75 MW is modelled. The bias-
corrected reanalysis approach [36] is utilised to determine the
daily power generation of the wind farm across the study hori-
zon. The acquired wind power generation is regarded as the mean
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of a normal distribution, and a standard deviation of 2 per cent
is used to reflect the volatility of the wind generation.

4) Scenario Reduction: Gams/Scenred2 [37] is used to re-
duce the sample size to 250, using a backward reduction ap-
proach. In the reduction phase, the probability of eliminated
sample is added to the probability of the closest sample.

C. Demand Response

At each node and hour, it is estimated that 10% of the demand
is willing to participate in the DR program. It is anticipated that
customers will reduce their electricity usage in response to the
incentive offered by DSA and that their demand will not shift to
other hours. The self-elasticity of demand is set at −0.1 for all
hours and buses, and consumers’ electricity prices before and
after partaking in the DR program are fixed at € 100/MWh [29].
The cost function of the DR program is approximated by ten
segments. The DR is assumed to represent a variety of resources,
including domestic load control, small storage, EVs, and electric
heat pumps.

IV. RESULTS AND DISCUSSION

In this section, the results of applying the proposed method-
ology are presented. Unless otherwise specified, all results
pertain to the situation where network operational constraints
are considered. In this regard, the results for a single day are
first reported and discussed. The effect of considering network
operational limitations is then evaluated. Next, the long-term
analysis is provided, detailing the 201-day test data results.
Finally, the implementation results of the proposed methodology
on the IEEE 123-bus test system are given. All case studies are
modelled and solved on a desktop computer with a 3-GHz i7
CPU and 16 GB of RAM using MATLAB R2020b and the MILP
solver of Gurobi [38] in GAMS [37].

A. IEEE 37 Node Single-Day Results

As an example, the results of applying the proposed bidding
strategy to the first day of test data are depicted in Fig. 7. This
example illustrates how the proposed bidding strategy scheme
allocates resources and determines optimal offerings in each
market. These results reflect the DSA’s bids following DA mar-
ket clearing; thus, they are final. Fig. 7(a) shows the stochastic
market prices derived using the GPR-based model. The final
market offerings are depicted in Fig. 7(b). As noted before, the
total resource utilisation for market participation should be a
constant value across all scenarios, as shown in Fig. 7(b). This
constraint is enforced by (19) for the DA market and (23) for the
ID market. The DA bids result from solving (18), whereas the
ID offers result from solving (22). Comparing the offers with
hourly price data reveals that when DA prices are higher than
ID prices, the resources are offered to the DA market and vice
versa. Negative DA offers at hours 15 and 24 imply that the
DSA purchases energy from the DA market to charge the BESs.
The DSA also procures energy for BESs charging during other
hours; however, since this energy is subtracted from other bids,
it does not result in an overall negative value.

Fig. 7. The daily usage of resources.

Fig. 7 c illustrates wind power generation at various hours.
This figure shows that the proposed approach incorporates the
wind generation in the bids based on the model indicated in
subsection III-B3. It depicts the adoption of a normal distribution
with a standard deviation of a fixed per cent of the hourly mean
generation to simulate the uncertainties associated with wind
power generation. It is worth noting that wind spillage is zero in
most scenarios and hours; however, there are a few scenarios
in which wind spillage occurs at certain hours. The average
utilisation of BESs for market participation is shown in Fig. 7(d).
In the early hours of the day, when energy prices are relatively
low, BESs are charged with energy bought from both the DA
and ID markets. As electricity prices rise in the ensuing hours,
the stored energy is sold back to the market, as indicated by
a fall in the average SOC of BESs. Then, at hours 14-17, the
BESs are recharged to be able to provide energy to the market
at hours 18-20. In the last four hours, the average SOC of BESs
increases as they are charged to satisfy the limit presented in
(41). This figure demonstrates that the solution algorithm, across
all scenarios, satisfies all constraints for the BES, including
SOCMin

s,t =0.1, SOCMax
s,t =0.9, and SOCb

s,t=24=0.5.
Fig. 7(e) displays the deployment of DER at various hours

and scenarios. Since the DER has a fixed generating cost, it
is beneficial to engage in the market when market prices are
greater than βg , and it is financially sensible to remain inactive
when market prices are lower than βg . During hours 10-11, for
instance, market prices in all scenarios are higher thanβg; hence,
the DER produces at its highest rate in all scenarios. However,
when the difference between market prices and βg is marginal
(e.g., hours 7-8 and 17), DER is deployed in scenarios that
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Fig. 8. Three phase bus voltages with and without network limits.

exhibit DA or ID market prices above βg . Fig. 7(f) exhibits the
accumulated utilisation of DR. As its application cost quadrati-
cally increases, DR is exploited moderately when market prices
are relatively low. Alternatively, DR is implemented at a high
level when market prices are high and can compensate for the
expenses of the DR application.

B. Effect of Network Operational Constraints

Considering the sensitivities and magnitude of network vari-
ables provided by the DNO, the DSA should allocate its re-
sources in a way that does not compromise the network’s safety.
Fig. 8 exhibits the three-phase node voltages of the network with
and without voltage constraints. This figure represents the results
for one hour (t = 9) across all scenarios, buses, and network
phases. The marginal distribution of voltages shows the number
of scenarios for each voltage level. According to Fig. 8(a), the
voltages exceed the safe limit when no voltage limitations are
imposed. As revealed by the marginal distribution of voltages,
approximately 5 per cent of all nodal voltages exceed this
constraint. In contrast, Fig. 8(b) shows the constrained network
voltages, demonstrating that when the voltage limitations are
applied, the proposed bidding strategy manages the resources
in such a way that the network voltages across all scenarios,
buses and phases are under the maximum limit. The marginal
distribution of voltages above the permissible range is thus zero.

C. IEEE 37 Node Long-Term Analysis

Five case studies (CSs) are defined and compared to thor-
oughly investigate the significance of the uncertainty and
dependency modelling of different markets. CS1 represents the

Fig. 9. Comparison of the profit of DSA in different cases over 201 days.

proposed methodology in which the DSA participate in both
markets, taking into account the uncertainties and interdepen-
dencies. CS2 is similar to CS1 except that ARIMA is utilised
instead of the GPR-based model for price prediction. Thus mar-
ket uncertainties are modelled, but interdependence is neglected
in this case. The distinction between CS3 and CS1 is that in
CS3, the DSA solely engages in the DA market. Similar to CS3,
the DSA in CS4 only participates in one market; however, in this
case, it is the ID market.CS3 andCS4 are defined to demonstrate
how participation in only one market might vastly impact the
DSA’s revenue. The last case,CS5, describes a situation in which
a deterministic approach is used, and uncertainties associated
with the bidding strategy problem are disregarded. In this case,
the average of market prices and wind scenarios of CS1 are
given to the proposed methodology as a single scenario with the
probability of 1.

Fig. 9 compares the profit of the DSA in these five cases and
the perfect prediction case. The middle dot for each case repre-
sents the median value. The perfect prediction case represents
the best possible solution with 100% accurate price predictions.
The values depicted in this figure for the DSA’s average daily
profit are derived from solving (18). However, these values
represent the actual profits of the DSA, which are calculated
by substituting the DA and ID price scenarios with their actual
values. On certain days in some cases, the profit of the DSA is
negative, indicating that the price prediction was inaccurate and
that the DSA incurred a loss. The average profit of the DSA in
the perfect prediction case (the highest theoretically achievable
profit) is € 1,957.5/day. This value is € 1,809.1 per day for the
proposed methodology reported in CS1. On average, the DSA
could make € 1,737.9 per day if ARIMA is used to predict both
DA and ID prices (CS2). It is apparent from this figure that
participating in only one market immensely reduces the profit
as the average daily profit of the DSA is € 1,526.4 and € 1,580
per day inCS3 andCS4, respectively. If uncertainties are entirely
disregarded, and fixed values are used for uncertain parameters
(CS5), the DSA can still earn an average of € 1,776/day.

The results demonstrate that modelling the uncertainties and
interdependencies of markets significantly increases the DSA’s
profit. The observed 4.1% increase in the DSA’s profit when the
GPR-based model is used as opposed to ARIMA will equal €
14,311 over 201 days, which is considerable. The most inter-
esting aspect of the results is that despite using a deterministic
approach based on the mean of the price scenarios of CS1 in CS5
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TABLE I
THE DEFINITION OF CASE STUDIES

TABLE II
RESULTS OF CASE STUDIES FOR IEEE 123-BUS TEST SYSTEM (€)

(interdependence modelled, uncertainty neglected), the DSA
makes more profit than when a stochastic approach based on
ARIMA is used in CS2 (uncertainty modelled, interdependence
neglected), confirming that modelling interdependence could be
more important than modelling uncertainty.

D. IEEE 123-Bus Test Feeder

The proposed methodology is also implemented on the IEEE
123-bus test feeder. All data regarding this test feeder and the
DERs’ locations are obtained from [28]. However, the DERs are
quadrupled in size. All other case data are the same as the pre-
vious system. Table II summarizes the results of the case studies
outlined in Table I for this test system. The network operational
variables are determined by employing the approach provided
in [4] to ensure they are within the permissible range for this
highly unbalanced feeder with overhead lines and underground
cables.

In Table II, the DSA’s profit in each market is given. The
obtained results for this test feeder align with the results of the
IEEE 37-node test system and corroborate the superiority of
the proposed methodology. When markets’ interdependence is
modelled (CS1), the average daily profit of the DSA rises by
4.3% as opposed to when it is neglected (CS2). Comparing the
average ID profit of the DSA in CS1 and CS2 with the per-
fect prediction case demonstrates that the proposed GPR-based
methodology makes better decisions than ARIMA in the ID
markets by leveraging the DA market clearing results. Moreover,
the lack of diversity in DSA’s resources in this test feeder (only
dispatchable DERs) makes the profit of the DSA more dependent
on the interdependence and uncertainty modelling of markets.

E. Comparison to State-of-The-Art Approaches

This subsection compares the bidding strategy results ob-
tained by implementing the proposed GPR-based approach with
state-of-the-art price prediction approaches, including ARIMA,
LEAR and LSTM neural networks. The same structure of input
data, as proposed in [39] is utilised for ARIMA. The LEAR

TABLE III
COMPARISON OF THE AVERAGE DAILY PROFIT (€) GAINED THROUGH

DIFFERENT APPROACHES

approach is discussed in [40]. The LSTM parameters including
the optimization algorithm, the number of epochs, gradient
threshold, initial learning rate, and minimum batch size of LSTM
are defined based on the values reported in [41]. The same
structure of input data as those fed to GPR (the previous prices
that have the highest amount of information identified by the
MIS approach) is used in LSTM.

Table III presents the values for the DSA’s profit for each
test system with actual market prices. The results for both test
systems demonstrate the efficacy of the proposed approach in
better modelling the multiple market prices and thus improving
the average daily profit of the DSA. Moreover, considering that
the DA and ID price predictions are the same in these two test
systems, the differences in the obtained solution to the bidding
strategy problem are not only related to the efficacy of the price
prediction approach but also related to the mix of resources
available in each test system. Nonetheless, the proposed model
shows superior performance in both cases.

V. CONCLUSION

DSAs should accurately model the market uncertainties and
dependencies to engage in different energy markets. This work
proposed a novel methodology based on the MIS technique and
GPR to capture the uncertainties and dependence of different
market prices. The DSA uses this data-driven uncertainty and in-
terdependence handling model to determine resource allocation
in multiple markets. Such resource allocation follows the relative
price variation of markets, indicating the overall performance
of the proposed methodology. The proposed bidding strategy
was tested in various operating scenarios (201 days). The long-
term analysis results indicate that the revenue will reduce if
the DSA participates in only one market or fails to model
the interdependencies between markets. The comparison of the
bidding strategy results obtained utilising the proposed GPR-
based approach with the state-of-the-art approaches unequivo-
cally indicates the efficacy of the proposed markets-dependence
modelling methodology.

It is envisaged that new markets of energy and services will be
incorporated into the power system. It provides an opportunity
for DSAs to increase their profits which could facilitate the
integration of more DERs into the distribution network. This
in turn defers or eliminates the need for distribution network
upgrade investments, thereby enhancing social welfare. How-
ever, to exploit the multiple-market participation opportunity,
the uncertainties and interdependence of these markets should
be captured and factored into the bidding strategy problem
as demonstrated by the obtained results. These points were
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showcased and discussed at length for DA and ID markets
in this paper. Moreover, as balancing markets are growing in
importance and trading volumes across the world, the results of
the application of the proposed method in these markets will be
considered in future work.

APPENDIX

A. Resource Modelling

1) Wind Modelling: The total wind power generation is con-
sidered a stochastic parameter. Therefore, in each scenario, the
upper bound is wind power available (Pw,Max

s,t ) in that scenario
as indicated by (24) and (25). Moreover, since the price could
be negative at some hours, spillage (Pw,Spill) is introduced into
the model to give the DSA the option of not providing its wind
generation to the market. The spillage (Pw,Spill

s,t ) should be less
than the maximum available wind power at each scenario and
each period as imposed by (26).

Pw
s,t = Pw,DA

s,t + Pw,ID
s,t ∀w, s, t (24)

Pw
s,t + Pw,Spill

s,t = Pw,Max
s,t ∀w, s, t (25)

Pw,Spill
s,t ≤ Pw,Max

s,t ∀w, s, t (26)

2) DR Modelling: Incentive-based voluntary DR programs
model as proposed in [29] is used to formulate the customers’
behaviour. The total incentive paid to the DR resources at each
hour and each scenario is calculated as follows:

CostDR
s,t =

D∑
d=1

Incdt P d
s,tτ ∀d, s, t (27)

P d
s,t = Ld

t − Ld,DR
s,t ∀d, s, t (28)

where Incdt (€ /MWh) is the incentive offered to the customers
for each MWh reduction in their typical demand pattern. Ld

t

and Ld,DR
t are the demands (MW) of dth DR resource before

and after DR programs, respectively. DR expenses are modelled
using the concept of price elasticity of demand and linearised
as proposed in [29]. The DR provision in DA and ID markets is
bounded by the upper capacity of DR resources (P d,Max

t ).

P d
s,t = P d,DA

s,t + P d,ID
s,t ∀ d, s, t (29)

P d
s,t ≤ P d,Max

t ∀ d, s, t (30)

In the proposed DR program, the DSA is only concerned about
the aggregate demand reduction of customers when they are
asked to provide DR, thus, there is no need for detailed behind-
the-meter data sharing. The DR participation in this paper is in
line with the approach provided in [42] to preserve the privacy
of the customers.

3) DER Modelling: DERs are deemed dispatchable genera-
tors. Equations (31) and (32) restrict the generation of DERs;
while the former calculates the total offered generation of DERs
to both markets, the latter caps the DERs’ generation by their
maximum limits (P g,Max).

P g
s,t = P g,DA

s,t + P g,ID
s,t ∀g, s, t (31)

P g
s,t ≤ P g,Max ∀g, s, t (32)

4) BES Modelling: The constraints governing the operation
and employment of BES are as follows:

P b
s,t = P b,DA

s,t + P b,ID
s,t ∀b, s, t (33)

P b
s,t ≤ P b,Max ∀b, s, t (34)

Lb
s,t = Lb,DA

s,t + Lb,ID
s,t ∀b, s, t (35)

Lb
s,t ≤ P b,Max ∀b, s, t (36)

Eb,tp
s,t = (P b

s,t + Lb
s,t)τ ∀b, s, t (37)

P b,Max = δbConvE
b,Max ∀b, s, t (38)

SOCb
s,t = SOCb

s,t−1

+

(
Lb
s,tη

b
ch,Conv −

P b
s,t

ηbdc,Conv

)
τ ∀b, s, t (39)

SOCb,Min
s,t ≤ SOCb

s,t ≤ SOCb,Max
s,t ∀b, s, t (40)

SOCb
s,t=T = SOCb

s,t=0 ∀b, s (41)

The throughput energy of each BES at each scenario and time
step is calculated using (37). The converter capacity, P b,Max,
bounds the total power provision or demand of each BES in
all markets as indicated in (33)-(36). The converter capacity,
which limits the maximum power transfer between the BES
and the network at any moment, is modelled as a portion,
δbConv , of the BES energy capacity, Eb,Max, as expressed in
(38). The SOC of each BES at each time step of each scenario
is calculated using (39) incorporating charging, ηbch,Conv, and
discharging, ηbdc,Conv efficiencies. Moreover, in all times and
scenarios, the SOC of BESs should be within their acceptable
range (40). It should be noted that Lb

s,t and P b
s,t are modelled on

the network side of the connection. Considering the converter’s
efficiencies, charging and discharging at the same hour in the
same market is not profitable. Therefore, the model does not
need to enforce such a constraint. To this end, only charging
and discharging at the same hour in different markets should be
modelled. Therefore, using this concept, the number of binary
variables, i.e., U , to prevent the charging and discharging at the
same hour is halved using the following equations:

Lb,DA
s,t ≤ P b,MaxU b,DA

s,t ∀b, s, t (42)

P b,ID
s,t ≤ P b,Max(1− U b,DA

s,t ) ∀b, s, t (43)

Lb,ID
s,t ≤ P b,MaxU b,ID

s,t ∀b, s, t (44)

P b,DA
s,t ≤ P b,Max(1− U b,ID

s,t ) ∀b, s, t (45)
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