
Bus Factor In Practice

Elgun Jabrayilzade∗

elgun@bilkent.edu.tr

Bilkent University

Ankara, Turkey

Mikhail Evtikhiev∗

mikhail.evtikhiev@jetbrains.com

JetBrains Research

Saint Petersburg, Russia

Eray Tüzün
eraytuzun@cs.bilkent.edu.tr

Bilkent University

Ankara, Turkey

Vladimir Kovalenko
Vladimir.Kovalenko@jetbrains.com

JetBrains Research

Amsterdam, The Netherlands

ABSTRACT

Bus factor is a metric that identifies how resilient is the project to

the sudden engineer turnover. It states the minimal number of en-

gineers that have to be hit by a bus for a project to be stalled. Even

though the metric is often discussed in the community, few stud-

ies consider its general relevance. Moreover, the existing tools for

bus factor estimation focus solely on the data from version control

systems, even though there exists other channels for knowledge

generation and distribution. With a survey of 269 engineers, we

find that the bus factor is perceived as an important problem in

collective development, and determine the highest impact channels

of knowledge generation and distribution in software development

teams. We also propose a multimodal bus factor estimation algo-

rithm that uses data on code reviews and meetings together with

the VCS data. We test the algorithm on 13 projects developed at

JetBrains and compared its results to the results of the state-of-the-

art tool by Avelino et al. against the ground truth collected in a

survey of the engineers working on these projects. Our algorithm is

slightly better in terms of both predicting the bus factor as well as

key developers compared to the results of Avelino et al. Finally, we

use the interviews and the surveys to derive a set of best practices

to address the bus factor issue and proposals for the possible bus

factor assessment tool.

CCS CONCEPTS

• Software and its engineering→ Collaboration in software

development.

KEYWORDS

bus factor, truck factor, case study, knowledge management, intelli-

gent collaboration tools

∗Elgun Jabrayilzade and Mikhail Evtikhiev contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513082

1 INTRODUCTION

Software projects are rarely developed by a single person. Accord-

ing to the ISBSG repository [1], the average size of a software

development team, averaged over time, is 7.9 members, and the

median team size is 5 [20]. In collective work, it may be nontrivial to

track the knowledge distribution in the team. Tracking knowledge

distribution is important, as e.g. work by the engineers with low

expertise on a given artifact is known to be more bug-prone [6].

Knowledge tracking may be further impeded by the changes

in team membership. Departure of the key project members can

lead to a situation when a significant part of the project is poorly

understood by the remaining project members. This staff turnover

can result in project stalling. For example, Avelino et al. [4] have

found that out of 1,932 open source projects 16% of the projects have

faced the departure of all key engineers, and in only 41% of these

projects, the development has been continued by other engineers.

Learning how the knowledge about the project is distributed (and

acting on that knowledge) can help to identify projects with high

existential risks. This information enables a team or its manager to

manage risks related to sudden departure of engineers.

One metric that tracks project stalling risk is the bus factor. The

bus factor is the minimal number of engineers that have to leave for

a project to stall. We call the stalling “bus factor problem”. The bus

factor number is usually supplemented by a list of the key engineers

who are responsible for it [5, 10, 18].

There are two possible issues with using bus factor as a health

metric for a project. First, even though a significant share of the

open-source projects have experienced bus factor problem, it is

unclear whether this result was undesirable or it was simply end

of life for a project no longer needed. Engineers may also perceive

bus factor problem risk as unimportant or improbable as compared

to other problems that arise in collective development. While such

a perception does not affect the significance of the metric, it may

mean that the community is more interested in other project health

metrics. It may also mean that for a given project the engineers

may not address the possible risks of the bus factor problem, as

other more urgent or important problems should be addressed first.

Second, while the bus factor metric is easy to comprehend, it is

unclear how to compute it without asking the stakeholders. Asking

stakeholders directly is a feasible approach for small projects (and

can help in tuning the bus factor computation algorithms). For large

and distributed projects there may be no stakeholder with a full

picture of what is going on, so a bus factor computation algorithm

can provide information useful for risk mitigation.

97

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
20

22
 IE

EE
/A

CM
 4

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(IC

SE
-S

EI
P)

 |
 9

78
-1

-6
65

4-
95

90
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-S
EI

P5
53

03
.2

02
2.

97
93

98
5

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tüzün, and Vladimir Kovalenko

A standard approach to evaluate the bus factor hinges on col-

lecting information about the project from the available sources.

This data is used to estimate the bus factor. In the existing papers,

the bus factor is estimated solely from the data collected from the

version control systems (VCS). However, the knowledge is shared

and created not only by writing code [13]. It is possible to con-

tribute to a project or to share knowledge about it through code

reviews, discussions at meetings, chats, mailing lists or issue track-

ers. Leaving out these knowledge distribution modes may result in

an inaccurate bus factor estimation. A particular example is a team

led by a senior engineer, who hardly writes code, but participates

in discussions and performs code reviews. In this case, VCS-based

bus factor algorithm can incorrectly label this senior engineer not

to be a key member of a project, while in practice they may have

the most knowledge about the project. A bus factor algorithm that

in addition to VCS uses project members’ communications data,

and code reviews data, could give better estimation of knowledge

distribution.

These observations have motivated us to pose the following

research questions:

RQ0 Do engineers believe that the bus factor is an important issue

in collective development?

RQ1 How the bus factor metric can be used in practice?

RQ2 What features a bus factor assessment algorithm should

have?

RQ3 How accurate are the results on the bus factor and key project

members, as computed by our algorithm and as estimated

by the baseline algorithm?

To answer these research questions, we did a two-prong re-

search. To answer RQ0 and RQ1, we have first conducted a set of

exploratory interviews to validate general concepts about bus factor

perception in the community. Using the results of the interviews,

we have then created a general bus factor survey of 269 engineers

that was in part designed to collect opinions on the bus factor con-

cept importance and relevance. The survey was available for both

JetBrains employees and engineers that don’t work at JetBrains.

To answer RQ2 and RQ3, we have performed the following steps:

• To validate our choice of the bus factor algorithm, in the bus

factor survey we collect opinions on a set of questions about

the algorithm (full list can be found in Section 4).

• Together with the bus factor survey, we performed a case

study on the projects developed at JetBrains. The engineers

were asked to provide their estimates on the bus factor and

the list of key engineers for the projects they work on. In

total, we have collected estimates for 13 projects hosted at

the internal JetBrains’ Space instance. JetBrains Space is an

all-in-one solution for project management and software

development for software projects and team, that has inte-

gration with Google Calendar, VCS, code reviews, and has

API that allows retrieving information about users’ activities.

• We have then estimated the bus factor of these projects

using our algorithm and the algorithm of Avelino et al. [5],

which we have used as a baseline algorithm. We validated

the results of our algorithm and the algorithm of Avelino et

al. against the estimates collected in the survey.

To use the tool, we gather the data on code reviews, meetings,

and commits from the JetBrains Space instance used by JetBrains.

Our contributions in this paper are the following. First, we pro-

pose a multimodal bus factor algorithm to estimate the existential

risks of a project from a diverse set of data that can be harvested

from JetBrains Space or other platforms that host multiple types

of data. Second, we carry out a survey of engineers that validates

the results of our algorithm and compares it to the baseline algo-

rithm of Avelino et al. [5]. Third, we carry out a survey and a set of

exploratory interviews that show the importance of the bus factor

through the lens of the project members’ experience. Using the

survey and the interviews, we derive a set of recommendations and

requests for the bus factor tool and check our assumptions about

the composition of the bus factor algorithm.

2 BACKGROUND

2.1 Bus factor as a collective development
problem

Most of the software projects are developed by a group of people.

Knowledge about the project can be derived from the code, but

reading, improving, and supporting new code is a very hard task

for an engineer. The files abandoned by their original developers

remain abandoned for a long time [15]. A departure of a significant

number of key engineers can result in an abandonment of an im-

portant part of the codebase. This departure may lead to project

stalling.

Bus factor (also known as truck factor, bus number, lottery fac-

tor, etc.) was defined by Coplien as the minimal number of the

developers that would have to be hit by a bus before the project is

stalled1 [9]. Smaller values of the bus factor correspond to higher

existential risks for projects. Higher values (as compared to the

team size) correspond to a relatively even distribution of knowledge,

so a departure of a project member should have a lesser impact.

Bus factor problem is a collective development problem that

happens when the project bus factor becomes zero. The notion

of collective development problem is close to the notion of the

community smell suggested by Tamburri et al. [22]. A community

smell is a set of sub-optimal organizational structures that lead to

the emergence of both social and technical debt [11]. The differ-

ence between the two concepts is that community smells are not

“show-stoppers” [23], but rather reflect circumstances that with

time manifest in additional project cost. A collective development

problem is a problem perceived as a factor that already hampers

project development. It is possible that every collective develop-

ment problem is a result of aggravation of one or several community

smells, and for some of the problems discussed in this paper we

find plausible relations or one-to-one correspondence. Proving this

assertion is beyond the scope of this paper.

There have been many advances in the study of community

smells in the past few years. A set of community smells have been

first identified in a paper by Tamburri et al. [21]. Tamburri et al. [23]

have created an automated tool that detects the so-called Organiza-

tional Silo, Black Cloud, Lone Wolf, and Radio Silence community

smells. Palomba et al. [17] have studied the relationship between

1Different definitions of the bus factor exist in the literature; sometimes words “inca-
pacitated” or “abandoned” are used instead of “stalled”.

98

Bus Factor In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

community smells and code smells to propose a code smell inten-

sity prediction model that relies on both technical and community-

related aspects. Palomba et al. [16] and Almarimi et al. [3] have

suggested machine learning models that predict the existence of

the community smells from the social and organizational patterns

of the developers’ community. Almarimi et al. identify the Truck

Factor smell related to the bus factor notion and learn to predict it.

Catolino et al. [7] have studied the relationship between various

socio-technical patterns and community smells from the statistical

point of view. They found that communicability is important in

managing community smells, while broadening the collaboration

network does not always help. Finally, Catolino et al. [8] did an em-

pirical study on the relevance of community smells in practice and

the refactoring approaches that can help to eliminate the smells.

2.2 Bus factor algorithms

It is nontrivial to translate the bus factor definition into a bus factor

estimation algorithm. As it may be hard for the project members

to compute the bus factor for a large and distributed project they

work on, an algorithm estimating the bus factor of a project from

the data about the project could decrease the project stalling risks.

There exist several algorithms for bus factor estimation, which

we describe below. In each of these algorithms, the bus factor is

estimated by studying the distribution of the knowledge about the

project derived from the VCS logs and data.

Zazworka et al. [25] suggested a highly configurable algorithm

first implemented by Ricca et al. [18]. The algorithm starts with a

list of files in a project, a list of developers who are considered to be

knowledgeable for each of the files (both are mined from the VCS

history), and a threshold value 𝑋 . The algorithm finds the minimal

set of the developers such that these developers belong to more

than X% of the project files. This developer set is then identified

as a key engineer set and the bus factor is the size of the set. A

standard setup of Ricca et al. [18] was to consider every developer

who has edited the file to be knowledgeable about the file, and the

threshold was varied from 50% to 70%. The authors have applied

the algorithm with various thresholds, finding that:

• The threshold value affects the computed bus factor.

• The idea that every person who did at least one commit to a

file has knowledge about a file may be too strong.

• There are "update" commits that cover many files but proba-

bly do not signify that the committer has knowledge about

them.

• The algorithm performswell for the small projects, but seems

to be problematic for projects with > 30 committers.

Cosentino et al. [10] suggest a set of algorithms to compute the

bus factor. The authors define the notion of primary and secondary

developers. The file is abandoned when none of the primary or

secondary developers who worked on it are present in the project.

The bus factor problem happens when a certain amount of files is

abandoned. The analysis can be carried out at either file-level or line-

level of granularity. The authors suggest four different metrics (M1

to M4) for measuring contribution. The contributions are tracked

at the commit level, and the ownership is tracked per file.

• M1 assigns all knowledge to the last contributor.

• M2 considers every change with equal weight (e.g., if A

committed to a file twice and B committed once, A has 2/3

knowledge and B has 1/3).

• M3 is the same asM2, but consecutive changes are considered

to be one change (in A -> A -> B commit history, both A and

B have knowledge 1/2).

• M4 adds weights to the changes; for a file with N commits,

the oldest commit has weight 1, the second-oldest has weight

2, and so on.

Applying any of these metrics for a file yields a list of contributors

with their shares of contribution to the file, with the shares summing

up to 100%. For a file that has been edited by𝑁 contributors, primary

developers are those who have done at least 100/𝑁% of edits and

secondary developers have done 100/𝑁% > 𝑥 > 50/𝑁% of edits.

Rigby et al. [19] suggest an algorithm for computing knowledge

loss, that can be adapted to estimate the project bus factor. Knowl-

edge loss happens when the developer who owns a line of code

leaves the project. It is calculated as the number of the abandoned

files. A file is abandoned when > 90% of its lines are owned by the

engineers who have left the project. The authors suggest computing

historical knowledge loss distribution, accounting for the pieces

of abandoned code that were easily picked up by other developers.

Rigby et al. [19] use the historical data to estimate the percentage of

knowledge at risk (knowledge that can be lost with > 5% probabil-

ity) and risk from unexpected high losses. This approach quantifies

risks explicitly and thus may be useful for risk mitigation and the

risk/cost/benefit analysis. They also suggest finding successors for

the abandoned code to mitigate the existential risks.

Fritz et al. [13] have suggested a Degree of Knowledge metric to

track the code ownership distribution in the files. Degree of Knowl-

edge (DOK) is a composite metric given by a linear combination of

Degree of Authorship (DOA) and Degree of Interest (DOI) metrics.

Degree of Interest metric was first suggested by Kersten et al. [14]

and is computed based on the amount of engineer’s interactions

with the element. The impact of an interaction decays with time,

so more recent interactions are given higher weights. Degree of

Authorship is a metric computed from the number of commits made

to a file, and also takes into account who created the file:

𝐷𝑂𝐴(𝑒, 𝑓) = 3.293 + 1.098𝐹𝐴+

+ 0.164𝐷𝐿 − 0.321 log(1 +𝐴𝐶), (1)

where 𝐹𝐴 (first authorship) is 1 for 𝑓 file creator and 0 otherwise,
𝐷𝐿 is the number of commits to the file 𝑓 made by the engineer 𝑒 ,
and 𝐴𝐶 is the number of commits to the file 𝑓 made by the other
project members. Only the contributions made in the last 90 days

are considered in the DOA. Their analysis shows that the DOI is

not correlated to any of the variables in the DOAmetric, suggesting

that DOI has a predictive role. The authors do not estimate the bus

factor. However, the finding of Fritz et al. that DOI is a measure of

a developer’s knowledge uncorrelated to the commit-based DOA

metric indicates that considering VCS history may not be enough to

capture the knowledge distribution, and the bus factor of a project.

Avelino et al. [5] have suggested a bus factor computation algo-

rithm based on the Degree of Authorship (DOA) metric suggested

by Fritz et al. [13]. Their algorithm first computes the DOA of each

of the engineers for every file in the project according to the (1).

99

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tüzün, and Vladimir Kovalenko

An engineer 𝑒 is an author of a file 𝑓 if 𝐷𝑂𝐴(𝑒, 𝑓) > 3.293 and

𝐷𝑂𝐴(𝑒, 𝑓) > 0.75 ∗max
𝑒

𝐷𝑂𝐴(𝑒, 𝑓), (2)

where 3.293 is the constant equal to the free term of (1), and

max𝑒 𝐷𝑂𝐴(𝑒, 𝑓) is the highest DOA for file 𝑓 for all project mem-
bers. A file is considered abandoned if all its authors have left the

project. The algorithm of Avelino et al. [5] takes the list of files

with the DOAs of the engineers who have worked on them, and

iteratively moves the top author2 from the list of present developers

to the key engineers list. The bus factor problem is considered to

happen when more than 50% of files have been abandoned, and the

algorithm yields the bus factor together with the key engineers list.

Ferreira et al. [12] have carried out a comparative study of various

bus factor algorithms. In their study, they consider the algorithms

of Rigby et al. [19], Zazworka et al. [25], Avelino et al. [5] and

Cosentino et al [10]. In addition, they consider two algorithms

of Yamashita et al. [24] that identify the core developers (the core

developer definition is close to the key engineer definition). Ferreira

et al. [12] validated the algorithm results on a dataset of 35 open-

source projects. The authors of the study presented the developers

of the open-source projects with the data produced by the algorithm

of Avelino et al. [5] and askedwhether they agreewith the algorithm

assessment. Authors have shown that the algorithms of Avelino et

al. [5] and Cosentino et al. [10] are the most accurate algorithms

for both bus factor and key engineer estimation, with the Avelino

et al. algorithm performing slightly better. However, all studied

algorithms perform worse on projects with high bus factor. The

authors have also shown that the algorithm of Avelino et al. [5]

is better at determining the bus factor than the core developers

algorithms. Finally, the authors have considered the projects where

key engineers (as identified by the project members) have done

very few commits. They have reached out to the developers of

these projects to ask how did the bus factor developers with very

few commits have contributed to the projects. The respondents

have reported that social interactions, code reviews, test writing,

documentation writing, and tool support have been important ways

for them to contribute to the projects.

Almarimi et al. [2, 3] have created a csDetector tool that detects

several community smells, and the Truck Factor smell in particular.

The smell is determined by a machine learning model on a yes/no

basis and no additional information is presented. In [3], authors

have compared their tool to the tool of Avelino et al. [5]. The algo-

rithm of Avelino et al. [5] has shown 0.84 accuracy on the dataset

supplemented by authors, while csDetector tool has 0.97 accuracy.

Almarimi et al. [2] define that the algorithm of Avelino et al. finds

a Truck Factor smell, if the departure of two or fewer contributors

results in the abandonment of more than 40% of the files. As csDe-

tector analyzes a significantly different feature of a project, we did

not compare our tool with theirs.

Existing bus factor estimation algorithms rely solely on the VCS

data to estimate the bus factors. This approach allows collecting a

plethora of data from open-source projects. However, the study of

Ferreira et al. [12] shows that for a third of the projects from the

dataset some of the real key engineers committed to the project

not by writing code, but by doing code-related activities that are

2An author is a top author if they author more files than anyone else

not captured in the repository. Moreover, Fritz et al. [13] show that

considering just the information from the repository is not enough

to capture all the data about the code ownership distribution. The

information about the developers’ interactions with the code that

are not logged in the VCS logs is relevant and uncorrelated with

VCS data. All these findings have motivated us to try creating a

multimodal bus factor algorithm that incorporates code reviews,

VCS data, and meetings data harvested from JetBrains Space.

3 BUS FACTOR ALGORITHM AND TOOL

3.1 Bus Factor Algorithm

We took the DOA formula designed by Fritz et al. [13] as a reference

and adjusted it to incorporate contribution decay, code reviews,

and meetings. The new formula is given below:

𝐷𝑂𝐴𝑖 = 3 · 𝐹𝐴 +
∑

𝑗

𝐷𝐿
𝑗
𝑖 +

1

2

∑

𝑗

𝑅𝑉
𝑗
𝑖 +

∑

𝑙

𝑚𝑖𝑛(1,
∑

𝑗

𝑀𝑇
𝑙, 𝑗
𝑖

𝑀𝑇𝐸
))+

+ 2.4 log(1 +
∑

𝑘

∑

𝑗

𝐷𝐿
𝑗
𝑘
) + 1.2 log(1 +

∑

𝑘

∑

𝑗

𝑅𝑉
𝑗
𝑘
)−

− 2.4 log(1 +
∑

𝑘≠𝑖

∑

𝑗

𝐷𝐿
𝑗
𝑘
) − 1.2 log(1 +

∑

𝑘≠𝑖

∑

𝑗

𝑅𝑉
𝑗
𝑘
)

𝐹𝐴 = exp(
−𝑡𝐹𝐴
𝑆

), 𝐷𝐿
𝑗
𝑖 = exp(

−𝑡𝐷𝐿 𝑗

𝑆
)

𝑅𝑉
𝑗
𝑖 = exp(

−𝑡𝑅𝑉 𝑗

𝑆
), 𝑀𝑇

𝑗
𝑖 = exp(

−𝑡𝑀𝑇 𝑗

𝑆
)

The 𝐷𝑂𝐴𝑖 represents the contribution of an engineer to a specific

file. 𝐹𝐴 represents the first authorship and can be 1 or 0. 𝐷𝐿
𝑗
𝑖 is the

number of commits made by an engineer 𝑖 to the file 𝑗 . Similarly,

𝑅𝑉
𝑗
𝑖 is the number of reviews done by an engineer 𝑖 to the file 𝑗 .

𝑀𝑇
𝑙, 𝑗
𝑖 , on the other hand, represents the number of minutes that

the engineer 𝑖 spends on 𝑗𝑡ℎ meeting about commit 𝑙 .𝑀𝑇𝐸 is the

maximum effective time in a meeting we set at 240 minutes. In

other words, an engineer can get a maximum of 240 minutes from

meetings on an arbitrary commit. The knowledge contributions

from all parts decay exponentially according to the number of days

passed since the contribution made. We set inverse decay speed 𝑆 =
220, which means that the knowledge from a contribution halves

in about five months. An engineer is said to be a major contributor

of a file if the 𝐷𝑂𝐴 >= 1 and the normalized 𝐷𝑂𝐴 >= 0.75.
The bus factor calculation is based on the algorithm developed

by Avelino et al. [5]. The top authors are removed iteratively until

the current engineers’ knowledge covers less than half of the files.

The number of removed engineers represents the bus factor.

3.2 Bus Factor Calculation Tool

3.2.1 Data retrieval. JetBrains uses the Space tool that is an all-

in-one solution for managing the software development lifecycle.

The tool has HTTP API endpoints for retrieving data. We retrieve

the list of the employees (names, emails, profile links), projects, Git

histories of the project repositories, code reviews (status, reviewers,

commits, date), and meetings (participants, duration, date).

3.2.2 Data cleaning. We extract committers’ emails and names

from the Git histories and merge accounts having the same email

since one can use multiple Git accounts. We also map committers

100

Bus Factor In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

to their Space profiles to track their knowledge contributions from

code reviews and meetings. Committers without Space profiles get

knowledge contribution only from commits. We filter code reviews

to include only the pull requests merged to the codebase. To in-

clude only relevant meetings that can contribute to the knowledge,

we exclude the meetings containing seminar, reading, or random

keywords in their descriptions.

3.2.3 Data processing. We use the JGit3 library to parse Git histo-

ries of the given repositories. The bus factor is calculated for each

branch separately. The Git graphs of the branches are traversed via

depth-first search. Contributions from each commit are calculated

by extracting the difference between the current commit and its

parent commit. Contributions from merge conflicts are handled

by taking the intersection of differences between the commit and

its two parents. The file renames are tracked, and such commits

do not contribute toward the knowledge on file. Next, the code

reviews are processed, and the contributions are counted for each

reviewer-commit pair unless the reviewer is the same as the commit-

ter (self-review). Finally, to include the contributions from meetings

as well, we extract the meetings that might be related to a given

commit. We assume that the related meetings are the ones which

were attended by the committer and occurred within one week

of the commit. Then, the number of minutes that the participants

spend on those meetings is counted as a contribution towards the

knowledge.

4 STUDY DESIGN

In addition to the tool development, we have conducted three hu-

man studies. Study 1 is a set of exploratory interviews that inves-

tigate the communication and coordination difficulties engineers

may face in their jobs. Study 2 is a survey that targets engineers’

opinions about the factors that influence the project bus factor, and

their opinions about bus factor importance and using the bus factor

to evaluate project health. Finally, Study 3 is an additional part of

a survey only available to the JetBrains engineers which collected

their opinion on the bus factor of the projects they work on.

4.1 Exploratory interviews

Our exploratory interviews pursued two major goals. First, we

wanted to get a broader picture of what collective development

problems software engineers encounter in practice. This was done

in order to create survey questions to study the relative importance

of the bus factor as compared to the other common collective devel-

opment problems. We identified group of collective development

problems different from the community smells reported in [17], for

the common ones we use the original names suggested by Palomba

et al. The difference may be explained by the difference in the scope

of the research conducted by Palomba et al. [17] and by us. While

Palomba et al. [17] have considered the effect the community smells

exhibit on a particular code smell, we have focused on the collective

development problems that impact the whole project.

Our second goal was to collect a set of cases on the collective

development problems and bus factor problem cases in particular.

The responses allowed us to get a deeper understanding of why and

3https://www.eclipse.org/jgit/

how these problems occur, and how the engineering teams resolve

them. We also learned why these problems were not prevented and

what respondents do now to avoid them.

Recruitment. For our interviews, we have recruited 12 engineers

working at JetBrains and other companies who have at least 3 years

experience of working in the IT teams. Participation in the study

was voluntary and the participants received no compensation.

Participants.We have recruited participants with various work-

ing experiences: engineers, team leads, startup founders, project

managers. The participants also reported working in a variety of

roles, including developers, data scientist, QA, SRE, support en-

gineers. The participants have 3 to 18 years of work experience

(median: 12.5). Participants worked in various kinds of companies

including product companies, outsourcing companies, and startups.

Interview study protocol.We have conducted semi-structured in-

terviews remotely, and have recorded these interviews. First we

have asked the participants about their work experience as an IT

professional in general. We then asked them about coordination and

organization problems that they have witnessed or were wary of, fo-

cusing on the problems that are not due to the personal differences

but can rather be attributed to some ineffective team processes. We

have followed up with a deeper discussion of a recent particular

problem the respondent has witnessed. We focused on the origins

of a problem and the measures respondent and their team has taken

to resolve the problem and prevent it from repeating. If a respon-

dent has reported facing several problems recently, we focused on

the problem that was the closest to the bus factor problem. If a

respondent did not report any problem that was close to the bus

factor scenario, we have asked them directly whether they have

witnessed a bus factor problem at any time during their work expe-

rience. Finally, we have asked the respondents if some kind of tool

could help them to mitigate the bus factor risks and prevent the

bus factor problem. We also discussed possible features of this tool

with the participants. The interviews were from 60 to 90 minutes

long, and the sessions were conducted with a single respondent

and either one or two interviewers.

Informed consent. The participants received an explanation of the

general interview process before the interview and gave explicit

consent for participating in the interview.

Analysis. Mikhail Evtikhiev has processed the interviews and

the transcripts. First, we have processed general demographic in-

formation, which is presented in Table 1. We have assigned short

descriptions to categorize reported general problems and various

development shortcomings that may lead to a bus factor problem.

The collaborators have participated in several meetings to refine

the discovered categories and discuss them.

4.1.1 Results. The data on the participants’ demographics is pre-

sented in Table 1.

Bus factor relative importance Using the interview results,

we selected the following collective development problems to ask

about in the survey:

Bus factor. In the survey, we describe the bus factor as

“Nobody understands the code base of a crucial part of a

project”. Many respondents have reported they had to revive

a project with BF = 0 (IP2, IP4, IP5, IP6, IP7, IP10, IP11, IP12).

The bus factor problem emerges when the project has BF = 1

101

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tüzün, and Vladimir Kovalenko

ID Current Roles
Experience

(years)
Prior Roles

IP1 Software Developer 6
Team Lead

CTO

IP2 Software Developer 3 Not Applicable

IP3
SRE

QA
15

Team Lead

Project Manager

IP4
Support Engineer

QA
10 Software Developer

IP5 Team Lead 13 Software Developer

IP6 Team Lead 18 Software Developer

IP7 Team Lead 6 Software Developer

IP8
Software Developer

Project Manager
18

Team Lead

Tech Lead

IP9 QA 16 Engineer

IP10 Team Lead 10 Software Developer

IP11 Data Scientist 16
Software Developer

Team Lead

IP12 Team Lead 12 Data Scientist

Table 1: Participants of the exploratory interviews.

QA = Quality Assurance Engineer. SRE = Site Reliability Engineer.

CTO = Chief Technology Officer.

due to some crucial subsystem having exactly one engineer

working on it. The bus factor problem then usually happens

when this key engineer suddenly leaves the project, and

the rest of the team has to pick up the development. This

engineer is usually very knowledgeable and may develop the

subsystem in a peculiar way, so it is hard for their colleagues

to continue the development. Restoring ownership of the

project is hard since the departed engineer usually provides

answers with a high level of abstraction, while low-level

abstraction is required (IP7). In some cases it took up to 6

person-months to get the project back on track (IP10), and

certain subsystems even had to be rewritten from scratch

(IP5, IP7).

Code red. In the survey, we describe the code red as “A

crucial part of a project depends on too few people and the

project stalls when they are sick or go on vacation”. This

definition is close to the definition of [17] and the problem

is related to the bus factor. Most of our respondents have

reported they worked on a project with code red problem

(IP1, IP2, IP4, IP5, IP6, IP8, IP9, IP10, IP12). While, according

to our respondents, code red may not always be an acute

problem, some of them explicitly mentioned situations when

corresponding key developers were not able to help and the

productivity was reduced (IP2, IP5, IP8, IP10, IP12). Moreover,

this situation presents risks of the bus factor problem.

Vague responsibility. In the survey, we describe vague

responsibility as “Lack of concrete responsibility, so that it is

unclear who is responsible for a particular feature or piece

of code base”.

Dissensus. In the survey, we describe the dissensus as “It is

hard for the team to agree, what approach to choose to solve

some technical problem”. This problem is very close to the

Dissensus community smell studied by Palomba et al. [17].

Secret problems. In the survey, we describe the secret prob-

lems as “A member of a team has significant technical prob-

lems but doesn’t disclose problems to their colleagues, so

when the release approaches, the team suddenly finds out

that some feature is not ready”.

Lack of documentation. In the survey, we describe the lack

of documentation as “Lack of documentation for a project,

which makes it hard for newcomers to start working on the

project or figure out the details”.

Broken fix. In the survey, we describe the broken fix as “An

engineer tries to fix somebody else’s code for their needs,

but breaks some functionality used by other team members”.

This problem is similar to the Lone Wolf and Dispersion

community smells studied by Palomba et al.

Respondents have suggested several reasons why the collective

development problems are not addressed or fixed, which include:

• Inability to reach consensus within the team on how to

resolve the problem or whether it is a problem at all (IP10).

• Lack of people to resolve issues faced by the team (IP12).

This results in team having to triage the issues and collective

development problems tend to grow if left unattended.

• Having people from outside the team in the decision-making

loop (IP2, IP6).

• Overshadowing of the collective development problems by

the technical problems perceived to be more urgent (IP11).

4.2 General bus factor survey

We have conducted a general bus factor survey that has pursued

two goals. First, we wanted to validate our general concepts about

knowledge distribution and decay in a project and how it impacts

the bus factor of a project or its parts. We also wanted to validate the

credibility of the observations we made during the exploratory in-

terviews and to quantify the importance and occurrence of various

problems that may lead to the bus factor scenario.

Survey protocol.Our survey can be broadly split into several parts.

The first part includes several demographic questions about the

number of years respondents work in IT, the number of projects

they participated in as a line worker and as a leader of some group

of people, and whether they know what bus factor is and have ever

worked on a project where bus factor was tracked. We have filtered

the survey results to include engineers with the current job title

being Developer, Data scientist, Team Lead, Tester, DevOps, PM,

CTO or related to one of these groups.

The second part was related to the perception of the collective

development problems and their relative importance and frequency

as compared to the bus factor scenario. In it, we have asked the

engineers, how often do they encounter some of the collective de-

velopment problems (see 4.1.1), and how significant the problems

are. The order of problems presented was shuffled. For all the ques-

tions in the second part we have used a 5-point Likert-type scale.

We have presented 7 activities in the survey.

The third part involved questions on how the knowledge is dis-

tributed, generated, and forgotten. In particular, we have asked

the participants to rank the relative importance of different modes

102

Bus Factor In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

of knowledge generation and distribution, see Table 2. We have

also asked the participants to estimate the maximal percentage of

knowledge-related files that could be abandoned before a bus factor

problem occurs, to estimate a percentage of files whose develop-

ment could be easily continued by a new engineer without getting

in touch with their colleagues, and to estimate the time scale in

which the knowledge about an artifact changes by a factor of two.

The fourth part was related to the practical perception of the

bus factor data. In it we have asked the engineers about the desired

granularity for the bus factor data, the way they would like to get

the results communicated to them, and possible project-related

actions the engineers may take based on the bus factor data.

Informed consent. The survey included the informed consent

form.

Recruitment.We recruited participants through Slack chats and

JetBrains mailing lists. We have also posted the survey in the so-

cial media such as Twitter or LinkedIn and asked respondents to

forward the survey to other engineers. External respondents par-

ticipated in the $100 Amazon card raffle.

Respondents. In total, 269 respondents of those who have com-

pleted the survey have been working in IT in a code-related role.

4.2.1 General demographics information. 8% of the respondents

have less than 3 years of experience in IT, and 75% of the respon-

dents have more than 6 years of experience in IT. 74% of the re-

spondents were involved in six or more projects during the course

of their career. 77% of the respondents have experience of leading

a group of people.Thus they were responsible for the project devel-

opment and may have been interested in tracking project health.

81% of the respondents are developers at one of their roles.

4.2.2 Bus factor relevance. 51% of the survey participants know,

what bus factor is, but only 19% of the respondents have everworked

on a project, where the bus factor was communicated to them. The

bus factor of a project is perceived to be an important metric of

project health: on a scale from one to five, 75% of the respondents

rated its importance at 3 or higher, and 39% of the respondents have

rated the importance at 4 or higher. This perception is bolstered by

the experience: 63% of the respondents over the course of past year

have worked at least on one project, for which they felt there was

a high risk of the bus factor reaching zero.

Respondents perceive the bus factor as the most important col-

lective development problem out of seven problems that were sug-

gested in the survey (see 4.1.1 for the list of problems), see Figure 1.

Code red collective development problem was perceived as the sec-

ond most important problem. Bus factor and code red were ranked

as the fourth and the second most often occurring problems (Figure

2), which, combined with their high impact as perceived by the

respondents highlights the necessity to avoid them and bolsters the

idea of bus factor being an important metric of the project health.

4.2.3 Bus factor algorithm details. The respondents ranked differ-

ent options for contribution to a project according to their impor-

tance, the results are presented in Table 2.

The survey results support our choice of code reviews as one of

the modes to be considered in the algorithm.

76% respondents believe that the knowledge decays with time,

but there was little agreement for a typical time scale in which the

Figure 1: Perceived importance of collective development

problems. All numbers are percentages

Figure 2: Perceived relevance of collective development

problems. All numbers are percentages

Contribution Mode MRR

Commits 0.560

Code reviews 0.403

Issues (YouTrack / GitHub / Space issues) 0.316

Test cases 0.296

Project documentation 0.268

Code comments 0.222

Online meetings 0.214

Meetings in person 0.203

Open channels in Slack / Space / etc. 0.149

Closed team chats in Slack / Space / etc. 0.146

Direct messages in Slack / Space / etc. 0.140

Other, please specify in the comment below 0.101

Mailing lists 0.092

Table 2: Importance of various modes for knowledge ex-

change and creation, as reported by the survey participants

knowledge about a particular file halves, see Figure 3(a). Reported

median halving time was 4 months. Most respondents believe that

less than 20% of the files can be abandoned before project gets

into trouble, see Figure 3(b). There was also little agreement on

what percentage of files could be easily developed even if every

engineer who worked on them have left the project, see Figure 3(c).

Different respondents want different level of granularity for the

bus factor calculation: 39% of the respondents prefer project-level

calculations, 16% prefer module-level calculations and 40% prefer

team-level computations. All these disagreements may be explained

by differences in the structure of various projects. Thus, a user of a

bus factor tracking tool should be able to tune these parameters.

103

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tüzün, and Vladimir Kovalenko

Figure 3: (a) - Decay time in which knowledge about file halves, (b) - Share of files that could be abandoned before project gets

into trouble, (c) - Share of files that could be developed even if all engineers who worked on them have left

61% of the respondents would like to get information on names

of key engineers and parts of critical (lower bus factor) modules

of the project together with the bus factor number. IP1, IP3, IP6,

IP11 argue that for the small projects everyone in the team usually

knows the project status and the bus factor, and IP4, IP6, IP7, IP10

and some survey respondents reported that they already know the

modules at risk. However, bus factor information may be useful to

persuade management or team to pay more attention to a project

or its certain parts, as mentioned by IP9 and IP10. IP1 and survey

respondents has also mentioned they would like to be able to set

manually the importance weights for the files.

4.2.4 Practical use of the bus factor metric. Both in the survey and

in the interviews we have asked the respondents to weigh in on

the ways bus factor data can be used. Respondents have suggested

various ways they would address low bus factor, which include:

• Delving themselves in the parts at risk or finding other de-

velopers to work on them, trying to gain more knowledge

about them (IP1, IP3, IP5, IP8, IP11, IP12).

• Attaching key engineers to the company by high salaries

and good relationships (IP6, IP12).

• Refactoring and improving the code quality to make the code

base more accessible.

• Designing the system so that the responsibilities are divided

from the beginning (IP1, IP3, IP7, IP12).

• Organizing knowledge sharing on the parts at risk by writing

documentation, organizing talks by key developers, doing

code reviews, or including team into making decisions on

the implicated parts of the project (IP2, IP4, IP10, IP11).

• Rearranging the workforce to ameliorate the risk by rotating

people between the project parts, asking engineers who don’t

work on the parts at risk to work on them, or hiring new

people to increase the knowledge redundancy (IP3, IP5, IP6,

IP8, IP9). Hiring new people may be hard: IP9 reports once

spending 3 years looking for a suitable engineer.

Mentioned as other information to report with bus factor were:

• Information about the documentation available for the low

bus factor parts of the project

• Information on code complexity of the implicated parts.

• Information on criticality of the implicated parts (IP7, IP9).

• Some kind of competence graph to show which project parts

are understood by various project members (IP2, IP10, IP12).

• Some kind of competence graph that would show which

competences are required by the project (IP12).

• Highlighting modules at highest risk (IP1, IP4, IP8, IP9).

• Suggesting how to increase the bus factor (IP2, IP5).

• Information on risks that a particular developer is likely to

leave the project (IP6).

4.2.5 Pitfalls of using bus factor. The bus factor metric and espe-

cially the key engineers part of it may not be received well by the

team. Some of the concerns mentioned by the respondents include:

• Too much attention may be paid to the implicated modules.

• A key engineer may feel irreplaceable, which may negatively

impact their relationship with their employer and teammates

(IP1). One of the ways to ameliorate this is to make general

bus factor data only available to the management, so that

the engineers will know only the data about their direct

participation (IP1). Another option is to support collective

ego against the individual ego (IP11).

• Those not listed as key engineers may feel underestimated

and uncomfortable about their role in the project.

• If the bus factormetric is taken at a face value, overestimation

of the bus factor may result in false feeling of security.

• Engineers who work at the projects with low bus factor may

be discouraged by the risk or even leave the project.

4.3 Bus factor tool validation survey

We have also conducted a survey to check whether the results of

the tool we developed agree with the engineers’ perception. This

survey was the part of the bus factor general survey that was only

available to the JetBrains employees.

Survey protocol. In the first question, the respondents provide a

list of at most 3 projects they are working on. In the next question,

the respondents estimate the bus factor and list the core developers

for these projects. All survey questions were optional.

104

Bus Factor In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Recruitment.We recruited participants through Slack chats and

the internal mailing lists of JetBrains. Respondents received no

compensation for participating in the survey.

Respondents. In total, 14 respondents from 13 different projects

have participated in our survey.

Analysis. For each of the 13 reported projects we compared the

human estimates of the bus factor with the one provided by our

tool and the baseline algorithm (Avelino et al. [5]). There was sig-

nificance variance in reported bus factor for the large projects. To

measure how close the predictions are to the ground truth provided

by the survey respondents, we calculate mean absolute error (MAE).

We got slightly better MAE than the baseline (5.46 and 5.80). We got

answers on key engineers for eight projects. As the key engineers

lists were somewhat different, we took the union of provided lists as

the ground truth. The algorithms predicted the same key engineers

with the same order in seven of them (primarily due to the lack of

code review data), and the F1 score was 0.48 (P: 0.64, R: 0.39). In the

remaining project, the algorithms ranked differently the first key

developer suggested by the respondents. Our tool predicted them

as a second most important engineer, while the baseline’s predicted

them to be third. We also analyzed the key developers predicted

by the baseline algorithm in all 13 projects. We found that for two

projects it predicted a key developer who is not active anymore

(the last commit date was more than 1.5 years ago).

5 DISCUSSION

5.1 Contribution and novelty

The main contribution of this paper is the analysis of engineers’

opinions and requests on the composition of the bus factor estima-

tion algorithm and the corresponding tool. The analysis is further

bolstered by a study of comparative significance and relevance of

the collective development problems which shows that the bus

factor and a related code red collective development problem are

considered to be the most impactful collective development prob-

lems that also appear relatively often during project development.

Based on this analysis, we present the first multimodal bus factor

assessment tool that estimates the bus factor and a list of key engi-

neers using code reviews and meetings metadata in addition to the

VCS data. In contrast, prior works on this subject [5, 10, 18, 19, 25]

only account for VCS knowledge distribution mode. Our algorithm

also accounts for the knowledge decay according to the forget-

ting curve, while the previous works either did not account for

it [5, 10, 25] or considered a time window such that all the data

created outside the window was discarded [13, 19].

Finally, we use exploratory interviews and surveys to derive a

set of suggestions and requests for a bus factor assessment tool that

may be used as a reference in creating other bus factor tools.

5.2 Insights

While respondents agree that the bus factor is a threat to be avoided,

there is little agreement on how the tool should work. For example,

while IP5 requests a tool that would suggest “let engineer X work

on the subsystem Y”, IP7 says that advice like that will be useless.

Nevertheless, it is possible to extract several insights relevant for

the creators of a bus factor assessment tool:

• The bus factor assessment tools in their current form (that

address a bus factor of a particular repo) are probably most

useful for medium-sized teams. The small teams, less than

6-8 people (as estimated by IP1, IP4) have little need in the

tool since the scope of work done in a team is comprehen-

sible. The large teams work on projects consisting of many

modules, and the bus factor problem can happen when even

a single critical module reaches bus factor zero.

• The team using the bus factor tool should be able to tune

the parameters in the bus factor algorithm. Our survey re-

sults highlight that engineers have different opinions on

the relative importance of various knowledge distribution

modes or on the knowledge decay rate. While making the

tool adjustable may result in users fitting tool to their biases,

a one-size-fits-all solution cannot encompass all the diversity

of different software development projects.

• As different engineers have different requests for the output

of the tool, the tool report should be modular with the option

to switch off a particular mode not desired by the user.

• The tool should never be perceived as an ultimate arbiter

on the bus factor (or any other health metric) of a project.

It should be used as an additional source of information on

the project that allows condensing scattered information

about the code ownership into a small description with an

inevitable loss of context. This data can then be used to

highlight the murky parts of the project, can be accompanied

by the competence graph to highlight competencies lacking

on the project, or can be presented as a supporting argument

in a discussion on the project state.

• Even though the bus factor tool is not intended to be used to

make any kind of personnel-related decisions, respondents

were concerned about the concept and especially about the

“key engineer” notion. The concerns were less pronounced

during the interviews. We believe this difference means that

the reasons and the use cases for the tool should be explained

to the team. We also believe that the tool should be used

on an opt-in basis per team, and the opt-in decision should

involve the development team.

6 THREATS TO VALIDITY

There are several possible threats to the validity of our study.

Some of the survey respondents may not have enough experience

to answer the questions. To mitigate this issue, we filtered out the

answers by the respondents with no experience of working in IT.

It is possible that the survey results may not represent the opin-

ion of the industry as a whole. To improve the generalizability of

our results, we used external mailing lists and advertised our survey

in social networks to gather more responses from the engineers

who don’t work at JetBrains. 243 out of 269 completed surveys were

filled out by the engineers external to JetBrains.

Another threat is related to the researcher’s bias when codifying

the interviews and surveys. To mitigate the threat, the authors

discussed the extracted categories.

Our validation study for the algorithm is based on a survey for

the projects developed at a single enterprise company, which may

not be a good representative of the industry practices in general.

105

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tüzün, and Vladimir Kovalenko

The thresholds and parameters for the algorithm formula may

have been chosen suboptimally. All the parameters were chosen

before the survey was run, so there was no risk of unintentional

coefficient overfitting. A better strategy would be to break the

projects sample into train and test parts and fit the coefficients

on the former; however, the sample size did not allow such an

approach.

7 CONCLUSIONS AND FUTUREWORK

Bus factor is an important metric of project health that tracks

one of the most impactful collective development problems. In

this paper, we present a multimodal bus factor assessment tool

that estimates the bus factor and the corresponding list of key

project members from VCS history, code reviews and meetings

metadata. We evaluate the quality of our tool on the dataset of

projects developed at JetBrains to show an improvement of 0.34

MAE over the previous state-of-the-art tool of Avelino et al. [5].

We have analyzed 12 exploratory interviews and a survey of 269

engineers. We present a set of recommendations and requests for

the design of a bus factor tool that is based on the results of these

interviews and survey. Using the interviews and the survey, we

derive a set of best practices to address the bus factor issue, and

why the team may fail to adopt these practices. Based on these

findings, we suggest use cases for the bus factor estimation tool.

In the future, we would like to extend the functionality of our

tool to estimate the bus factor of separate modules in the project.

We would like to add more projects to the evaluation set and split

it into two parts to fit the coefficients of the algorithm on the train

part and evaluate the algorithm on the test part of the dataset. We

would also like to include additional modes of knowledge creation

and distribution, such as documentation, issue trackers data, or test

cases. We are also interested in doing an ablation study to gauge the

relative importance of various modes considered by the tool and

the significance of the forgetting curve factors. Finally, it would be

interesting to augment the tool with additional metrics to provide

a comprehensive picture of project health.

8 ACKNOWLEDGEMENTS

We thank Yanina Ledovaya, Elli Ponomareva, Maria Antropova,

Anastassiya Sichkarenko, and Egor Akhmetzianov for their advice

and help with the qualitative part of this study.

REFERENCES
[1] 2007. ISBSG repository release 10. URL: https://www.isbsg.org/.
[2] Nuri Almarimi, Ali Ouni, Moataz Chouchen, and MohamedWiem Mkaouer. 2021.

csDetector: an open source tool for community smells detection. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1560–1564.

[3] Nuri Almarimi, Ali Ouni, and MohamedWiemMkaouer. 2020. Learning to detect
community smells in open source software projects. Knowledge-Based Systems
204 (2020), 106201.

[4] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: An
empirical investigation. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1–12.

[5] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.
A novel approach for estimating truck factors. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). IEEE, 1–10.

[6] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code! Examining the effects of

ownership on software quality. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering.
4–14.

[7] Gemma Catolino, Fabio Palomba, Damian Andrew Tamburri, and Alexander
Serebrenik. 2021. Understanding community smells variability: A statistical ap-
proach. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS). IEEE, 77–86.

[8] Gemma Catolino, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik,
and Filomena Ferrucci. 2020. Refactoring community smells in the wild: the
practitioner’s field manual. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Society. 25–34.

[9] James O Coplien and Neil B Harrison. 2004. Organizational patterns of agile
software development. Prentice-Hall, Inc.

[10] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2015. Assessing
the bus factor of Git repositories. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 499–503.

[11] Manuel De Stefano, Fabiano Pecorelli, Damian A Tamburri, Fabio Palomba, and
Andrea De Lucia. 2020. Splicing community patterns and smells: A preliminary
study. In Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops. 703–710.

[12] Mívian Ferreira, Marco Tulio Valente, and Kecia Ferreira. 2017. A comparison of
three algorithms for computing truck factors. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). IEEE, 207–217.

[13] Thomas Fritz, Gail C Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily
Hill. 2014. Degree-of-knowledge: Modeling a developer’s knowledge of code.
ACM Transactions on Software Engineering and Methodology (TOSEM) 23, 2 (2014),
1–42.

[14] Mik Kersten and Gail C Murphy. 2005. Mylar: a degree-of-interest model for
IDEs. In Proceedings of the 4th international conference on Aspect-oriented software
development. 159–168.

[15] Mathieu Nassif and Martin P Robillard. 2017. Revisiting turnover-induced knowl-
edge loss in software projects. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 261–272.

[16] Fabio Palomba and Damian Andrew Tamburri. 2021. Predicting the emergence of
community smells using socio-technical metrics: a machine-learning approach.
Journal of Systems and Software 171 (2021), 110847.

[17] Fabio Palomba, Damian Andrew Andrew Tamburri, Francesca Arcelli Fontana,
Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. 2018. Beyond technical
aspects: How do community smells influence the intensity of code smells? IEEE
transactions on software engineering (2018).

[18] Filippo Ricca, AlessandroMarchetto, andMarco Torchiano. 2011. On the difficulty
of computing the truck factor. In International Conference on Product Focused
Software Process Improvement. Springer, 337–351.

[19] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: case studies of
Chrome and a project at Avaya. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 1006–1016.

[20] Daniel Rodríguez, MA Sicilia, E García, and Rachel Harrison. 2012. Empirical
findings on team size and productivity in software development. Journal of
Systems and Software 85, 3 (2012), 562–570.

[21] Damian A Tamburri, Rick Kazman, and Hamed Fahimi. 2016. The architect’s role
in community shepherding. IEEE Software 33, 6 (2016), 70–79.

[22] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans Van Vliet. 2015.
Social debt in software engineering: insights from industry. Journal of Internet
Services and Applications 6, 1 (2015), 1–17.

[23] Damian Andrew Andrew Tamburri, Fabio Palomba, and Rick Kazman. 2019.
Exploring community smells in open-source: An automated approach. IEEE
Transactions on software Engineering (2019).

[24] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E Hassan, and
Naoyasu Ubayashi. 2015. Revisiting the applicability of the pareto principle to
core development teams in open source software projects. In Proceedings of the
14th International Workshop on Principles of Software Evolution. 46–55.

[25] Nico Zazworka, Kai Stapel, Eric Knauss, Forrest Shull, Victor R Basili, and Kurt
Schneider. 2010. Are developers complying with the process: an xp study. In
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. 1–10.

106

