
Exploring Diversity in Introductory Programming Classes:
An Experience Report

Iris Groher
Michael Vierhauser
iris.groher@jku.at

michael.vierhauser@jku.at

Johannes Kepler University Linz

Linz, Austria

Barbara Sabitzer
Lisa Kuka

barbara.sabitzer@jku.at

lisa.kuka@jku.at

Linz School of Education

Linz, Austria

Alexander Hofer
David Muster

alexander.hofer@jku.at

david.muster@jku.at

Johannes Kepler University Linz

Linz, Austria

ABSTRACT

Digitization is becoming part of almost everyone’s life, ranging

from smartphones and tablets, smart devices automatically collect-

ing information, to tools and scripting languages that are widely

available and easy to use. This has recently been reflected in various

university curricula, where courses such as computational think-

ing, and basic programming classes are now included in a broader

range of (non-computer-science) programs. However, these pro-

grams often face challenges in such courses due to their diverse

student body, with students often lacking profound digital compe-

tencies and technical background. While gender diversity aspects

have been broadly studied in the past, other diversity dimensions

such as ethnicity, age, or educational background have largely been

neglected thus far. In this paper, we report on our experiences in

teaching an introductory programming course to first-year Busi-

ness Informatics bachelor students. After undergoing fundamental

changes in our teaching concepts and the provided learning mate-

rial, we explore what diversity factors play an important role when

teaching programming to non-computer science students, and how

diversity is perceived by lecturers and tutors. Our analysis confirms

that a collaborative teaching concept positively supports female

students and students with language barriers.

CCS CONCEPTS

• Social and professional topics→ Computer science educa-

tion; • Applied computing→ E-learning.

KEYWORDS

Introductory Programming, Diversity Dimensions

ACM Reference Format:

Iris Groher, Michael Vierhauser, Barbara Sabitzer, Lisa Kuka, Alexander

Hofer, and David Muster. 2022. Exploring Diversity in Introductory Pro-

gramming Classes: An Experience Report. In 44nd International Conference

on Software Engineering: Software Engineering Education and Training (ICSE-

SEET ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3510456.3514155

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA

© 2022 Association for Computing Machinery.

https://doi.org/10.1145/3510456.3514155

1 INTRODUCTION

Digitization is becoming part of almost everyone’s life, ranging

from smartphones and tablets being used to perform tasks that were

previously done with pen and paper, smart devices automatically

collecting information, to tools and scripting languages that are

widely available, and easy to use. One of such are, for example,

Jupyter Notebooks [1], an easy to use, web-based and open-source

tool, that provides a programming environment for data science

applications, but also for developing simple programs and sharing

educational materials. With this shift from writing programs and

scripts being a skill only relevant for a small number of people

in the domain of computer science (CS), to a vital asset for less

technical domains, more and more non-computer-science students

require technical skills to use, interact with, and sometimes even

write simple programs.

This has been recently reflected in various university curricula,

where courses such as computational thinking, introductory algo-

rithm, and basic programming classes are now included in a broader

range of programs, especially for non-technical fields of study, such

as business administration, or business management [6, 10, 22, 30].

This in turn leads to challenges in these rather technical courses,

due to their often diverse student body. Students in these courses

often lack profound digital competencies and technical background,

leading to high drop-out rates and moderate results by those who

pass [15, 21, 32]. Business Informatics is at the intersection of these

technical and non-technical fields, attracting both students with a

keen interest in computer science, as well as business administra-

tion and management. Unlike the CS curriculum, which typically

puts a strong emphasis on technical skills, algorithms, or formal

methods, Business Informatics incorporates both technical and busi-

ness aspects. While students are provided with a solid set of skills

in programming, software engineering, and software architecture,

an additional focus is on project management skills, information

system management, and digital transformation processes in orga-

nizations. This in turn leads to a heterogeneous and diverse group

of students with different interests, gender, cultural background,

and educational background.

Over the past decade, we have been teaching programming prin-

ciples, an introduction to programming, to first-year Business In-

formatics bachelor students and have observed high drop-out rates

and challenges that students are facing due to their cultural and

educational background [24]. While gender is still an important

factor that needs to be taken into consideration in STEM educa-

tion, there are, however, other aspects that influence how well

students perform in this area [12, 15]. Particularly in the Business

102

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

20
22

 IE
EE

/A
C

M
 4

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
Ed

uc
at

io
n

an
d

Tr
ai

ni
ng

 (I
C

SE
-S

EE
T)

 |
97

8-
1-

66
54

-9
59

2-
9/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
SE

-S
EE

T5
52

99
.2

02
2.

97
94

19
3

ACM ISBN 978-1-6654-9592-9/22/05...$15.00

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA Groher, Vierhauser, Sabitzer, Kuka, Hofer, Muster

Informatics program, we have observed that students have a very

diverse educational background, ranging from extensive program-

ming knowledge taught in high schools with a specialization in

computer science, to no programming knowledge at all. This situa-

tion is exacerbated by second-chance learners, as well as a high ratio

of part-time employed students. Additionally, cultural differences

and language barriers pose additional challenges when teaching

basic programming concepts to students.

In order to tackle these issues, reduce drop-out rates, and foster

an inclusive teaching and learning style, we have introduced several

new teaching concepts to actively engage with students, and create

a collaborative learning experience. Alongside these changes, we

also collected feedback and data from students to assess the impact

of these changes and how the courses, effort, and learning experi-

ence were perceived by students. After their inception, the concepts

underwent several iterations, based on feedback from students and

tutors, and analyzing exercise grading and exam results.

In this experience paper, we report on four years of teaching

an introductory programming class for first-semester students. We

have extensively analyzed data from weekly assignments and ex-

ams, feedback from students provided via pre-and post-semester

questionnaires, and conducted interviews with teaching assistants,

responsible for grading exercises and lecturers teaching the class in

its most recent iteration in 2020. We have observed that a collabora-

tive teaching concept positively supports female students, students

with language barriers, and students with little prior knowledge.

Working besides studying does not influence drop-out. Second

chance learners are not disadvantaged in our course. Based on our

findings we present lessons learned and concrete recommendations

for teaching introductory programming classes to heterogeneous

groups of students.

The remainder of this paper is structured as follows. In Section 2,

we provide a brief overview of our course setup, teaching strategies,

and the evolution of the course since its introduction. In Section 3

we describe our research method, data collection, and our research

questions. We then report on results of our data analysis, evalua-

tion of student questionnaires, and the results and findings of our

interviews with tutors and lecturers in Sections 4 and 5. We then

discuss implications, present lessons learned and recommendations

in Section 6. We finally discuss related work and conclude the paper.

2 COURSE SETUP

In the following, we provide a brief overview of our introductory

programming course, its contents, and structure. The course is a

mandatory course in the first semester of the Business Informatics

bachelor program at our university, with around 150 to 200 students

attending the course each semester. It provides basic programming

principles, and an introduction to software development with Java.

The Java programming language was chosen deliberately, as subse-

quent courses such as Advanced Software Development, Software

Engineering, and Software Architecture also build on this course

and require basic knowledge in Java. With regards to its contents,

the course starts with a basic introduction to programming princi-

ples, covers the foundations of Java programming, and concludes

with object-orientation and basic inheritance principles.

2.1 Course Structure

With 6 ECTS credits, which corresponds to approximately 150 hours

of work per student per semester, the course is divided into two

parts: a weekly lecture, where attendance is optional (but highly

recommended), and a weekly exercise with mandatory attendance.

The lecture part is a 90-minute slide-based lecture covering one

topic each week, over 14 weeks. Additionally, live-coding sessions

during each lecture are used to demonstrate how programming

tasks are performed, to provide students with hands-on experience.

Students have access to the slides before the lecture, an optional

textbook is available, and additional examples can also be down-

loaded. Students are encouraged to read the book chapter before

the lecture and study the slides and prepare questions.

Before we changed our teaching concept to the one described

below, we followed a traditional teaching approach, where both

the lecture and the exercise were purely slide-based. The exercise

typically takes place on the following day of the lecture and is

synchronized in terms of the topics and the homework assignments

that are distributed. For the exercise, students are split into groups

of approximately 30 people, held in smaller seminar rooms. We

regularly had quite high drop-out rates, around or above 50%, and

moderate results by the students who passed our course. Also, we

could observe a significant gender gap concerning both drop-out

and exam results. To improve the learning outcome, and ultimately

reduce drop-out rates, we decided to apply a new teaching concept

in the exercise. The new concept is adapted from the teaching

concept proposed by Sabitzer et al. [25] for STEM classes at the

university level. It has a strong focus on discovery and cooperative

learning [24, 26], and instead of solely relying on front-of-class

teaching, the exercise is split into three parts:

(1) Repetition and Questions:At the beginning of each exercise, for

about 15-20 minutes, the lecturer summarizes the most important

concepts of the previous lecture and provides additional examples

and code snippets. During this time, students are encouraged to ask

clarification questions. It is important to note that this summary

is not meant to be a replacement of the actual lecture, as only

selected parts and a summary are presented, which is also clearly

communicated to the students.

(2) Discovering: In a second step, another 10-15 minutes are dedi-

cated to self-learning. Students have time to take a look at what we

call “Reading Corners”, where we provide sample solutions, step-

by-step exercises, and examples related to the topic (e.g., different

types of loops, and examples of how they are used). We provide

snippets of executable code with additional comments in the code

in a collaborative online Java editor [23].

(3) Pair programming: Finally, the last part, and also the majority

of the 90-minute exercise (about an hour) is dedicated to teamwork

and pair programming. Students work together, in groups of 2 or 3,

on their weekly assignments, following the rules of pair program-

ming as an effective method in programming education [9]. They

can ask their partners for help if they experience any problems, and

the lecturers act as coaches being available to answer questions

and help when needed.

In the semester of 2020, due to the COVID pandemic, lectures

and exercises had to be held online via Zoom. For the exercise, we

tried to follow the same teaching concepts previously introduced

103

Exploring Diversity in Introductory Programming Classes: An Experience Report ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA

as close as possible. Pair programming sessions were performed in

breakout rooms, and the lecturer was called for help when needed.

Students shared their screens or used the collaborative online editor

to work together on the assignments. Additionally, a lecturer visited

each team at least once during the pair programming session.

Structure of homework assignments: In the process of intro-

ducing new teaching concepts, we also made significant changes to

the weekly homework assignments. Before, each assignment con-

sisted of two rather large and complex programming tasks (each

worth half of the assignment points), often including mathematical

concepts. We changed the assignments to multiple smaller exam-

ples, typically five to six individual tasks from different domains.

Also, we included different types of tasks, apart from programming-

only tasks, such as reading and describing code snippets. Each

student has to submit the weekly homework assignment tasks elec-

tronically within one week. Based on our observations, students

typically manage to finish about one third to half of the assignment

during class and the rest has to be completed at home.

Out of ten assignments that are handed out, eight must be sub-

mitted. If more than eight are submitted, we only include the best

eight assignments for calculating the final grade. Each assignment

is manually graded by a tutor (typically a student in a higher semes-

ter, that has already completed the course and follow-up courses)

that provides detailed feedback regarding the assignments, errors

made by the students, and efficiency of the solutions.

In addition to the lecture and exercises, we offer a voluntary

weekly tutorial. The tutorial is typically run by a tutor and he or

she provides support should there any issues or problems occur

before the submission. The tutorial is typically held a few days

before the homework assignment is due, to give students enough

time to work on the assignment at home. Same as the lectures and

exercises, during the semester of 2020, the tutorial was held online

via Zoom, and students were provided individual help in breakout

rooms by the tutors.

Teaching materials: Besides lecture slides and homework as-

signments, the students receive different learningmaterial for study-

ing the course contents. They are provided with supporting liter-

ature in the form of books, summary slides of the exercises with

additional examples, and a weekly Reading Corner that contains

sample solutions and step-by-step examples to foster pattern recog-

nition and discovery learning [25]. In addition, links to videos are

provided that contain further examples and coding sessions.

2.2 Exams and Grading

As students have to take both, the lecture and exercise at the same

time as part of the introduction to programming module, they

receive the same grade for both classes. This means the final grade is

calculated based on a combination of assignments and exam results.

This should also prevent students from handing in assignments

and passing the exercise part, but skipping the exam and delaying

finishing the lecture part. In order to avoid that students only start

learning for the final exam a few weeks before the end of the

semester, as part of the new teaching concept, we introduced a

mid-term exam. Students now have two options on how to pass

the course: They can either participate in the shorter mid-term and

end-term exam, each 45 minutes, or take the final end-of-semester

examwhich lasts 90 minutes. The advantage for the students hereby

is that shorter exams only cover parts of the course, i.e., the mid-

term exam covers lectures 1-6, and the end-term exam covers the

contents of lectures 7-12, whereas the 90 minute exam covers all 12

lectures. As part of our new teaching concept, we did not change

the number of tasks and topics covered in the exams. Similar to

the homework assignments we used tasks from different domains

and avoided mathematical concepts. To pass the course, students

have to (1) receive at least 50% of the total points of either the two

short exams or the end-of-semester exam, and (2) hand in at least

eight of the ten homework assignments, with at least 50% of the

points of the homework assignments. We do not rely on automated

grading, and the course lecturers grade all exams manually (except

for multiple-choice questions), and also try to provide feedback to

students. Grades range from 1 to 5, with 1 being the best grade and

5 the worst.

3 METHOD

To gain insights on how well the new teaching concepts worked,

we collected and analyzed both quantitative and qualitative data

from our introductory programming course. Concerning diversity,

we were particularly interested in exploring the different diversity

factors when teaching basic programming principles, and the extent

to which our course is affected by these factors. We, therefore, i)

analyzed enrollment numbers and grades over four years, as well

as detailed data from assignments and exams from 2020; ii) col-

lected detailed information from students participating in the most

recent class of 2020 using questionnaires; and iii) conducted semi-

structured interviews with lecturers and tutors of that year. Based

on this data, we answer the following three research questions:

RQ1: What is the effect of our new didactic concepts in terms of grades

and gender gap? With this first research question, we investigated

if there are any substantial changes and improvements in grades

(in general and concerning gender gap) and overall results after

introducing our new teaching concepts.

RQ2: What other diversity factors apart from gender play a role in

introductory programming classes? For the second research question,

we analyzed the results of exercises and exams concerning different

factors such as students’ gender, background, and previous educa-

tion. The goal was to gain insights into if and why certain students

perform better than others and/or drop out more frequently, and

how this can be addressed with our teaching concepts.

R3: How is the influence of diversity factors perceived by lecturers and

tutors? For the last research question we performed interviews with

lecturers and tutors to identify diversity factors that are perceived

relevant, and to what extent diversity influences the planning and

execution of the course.

3.1 Data Collection

We collected qualitative and quantitative data from different sources

including data about exercises and exams, as well as feedback from

students using questionnaires, and lecturers and tutors via semi-

structured interviews.

Enrollment Data, Grades, Exercise, and Exam Results:We

collected enrollment data and grades from the introduction of the

new teaching concepts in 2018 until 2020 and compared them

104

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA Groher, Vierhauser, Sabitzer, Kuka, Hofer, Muster

against the last year of the old concepts in 2017. For the class of 2020,

we collected data from the weekly assignments, including points

achieved per assignment, and points achieved for the mid-term and

end-term exams. Additionally, we collected data on to what extent

the provided online material (e.g., self-assessments, links to videos,

or links to additional tutorials) were used by the students.

Student Questionnaires: To collect information from students

throughout the course, we created three online questionnaires

which we asked students to complete. The first questionnaire was

sent to students as part of the first lecture (week 1), collecting so-

ciodemographic data regarding age, gender, nationality, language

skills, professional activity, educational background, prior experi-

ence in programming, and whether they had attended the course

before. Furthermore, we collected data regarding interest in the

topics of the course, self-concept, and how they plan to learn.

A second questionnaire was sent to students after the first mid-

term exam (week 7). We asked how students liked the course so

far, how well they have understood the course contents, and how

and to what extent they were using the provided material. We were

further interested in any problems they experienced, and howmuch

time they spent on preparing for exams and exercises. We again

collected data regarding self-concept, interest in the topic of the

course, and learning.

Finally, at the end of the semester (week 14) we asked students

to answer a final questionnaire and provide overall feedback about

the course. We asked them about the course mode (lecture, exercise,

and exam), and the different material we provided. We also asked

them how important they rate the topic of the course for their

future career and about the knowledge gained during the course.

Interviews:We collected information from two lecturers as well

as two tutors in the form of semi-structured interviews. The first lec-

turer was responsible for the lecture itself and one of the exercises,

and the second lecturer was responsible for another exercise. The

tutors were responsible for grading weekly assignments, providing

feedback on the assignments, and running the weekly tutorial.

For both groups, we first collected demographic data (age, gen-

der, and teaching experience/experience as a tutor). For the lectur-

ers, we asked them about what diversity means in the context of

teaching, and whether they consider this aspect when planning

the lectures. Furthermore, we asked about diversity among col-

leagues and challenges regarding diversity in teaching. As a second

part of the interview, we introduced them to the diversity wheel

by Gardenswartz and Rowe [8] (cf. Fig. 5) and asked them if the

wheel introduces new diversity dimensions they have previously

not taken into consideration. We further were interested in how the

different dimensions and aspects in the diversity wheel influence

teaching, and whether important aspects are missing in the wheel.

For the tutor interviews, we were interested in the weekly tuto-

rials, what type of questions students asked, how the tutors helped

the students solve their problems, and if and how the types of

questions did change during the semester. Same as for the lecturer

interviews, we also introduced them to the diversity wheel and

asked them about diversity factors in the tutorial.

3.2 Data Analysis and Interpretation

For enrollment data and grades we collected information from our

course management system, anonymized the data, and combined

the information with data from the student questionnaires regard-

ing the students’ gender, educational and cultural background (if

the student did provide the optional student id in the questionnaire).

Based on this data, two researchers analyzed students’ performance,

drop-out, etc. over the semester (cf. Section 4). For the interviews,

one researcher created semi-structured interview guides, one for

each target group. We then conducted a pilot interview, with a

senior researcher and made minor adjustments to the questions

to improve clarity. For the lecturers, we interviewed two lecturers

who were not part of this publication and did not have any previ-

ous knowledge or experience of the diversity wheel. All interviews

were conducted via Zoom, were recorded, and lasted approximately

20 minutes. Afterwards, two researchers individually carefully ana-

lyzed the recordings and extracted key statements with regards to

student learning progress and diversity factors. Finally, the two re-

searchers compared the results and discussed extracted findings.We

discuss results and findings from the data analysis and interviews

in the following sections.

4 RESULTS

In this section, we report results of our analysis of the new teaching

concepts and diversity dimensions. We further discuss feedback

from the questionnaires and interviews with lecturers and tutors.

4.1 Course History

As described in Section 2, we followed a traditional teaching ap-

proach in our introductory programming course until the winter

semester of 2017. Starting from 2018, our new didactic concept was

introduced and we made slight modifications and improvements

(e.g., teaching and learning material) in the following years.

In the last year of the old course format in 2017, 200 students

were enrolled in our class. All reported numbers are actual partic-

ipants and we excluded students who were enrolled in the class

but did not show up, or never handed in any of the assignments.

(Negative grades can only be given to students who handed in at

least one homework, or actively participated in class). From our

experience, this number is rather consistent with approximately

150-200 participants every year, with a slightly lower number in

Table 1: Overview of participants, percentage of female par-

ticipants, and course results from 2017-2020. (* 2017 was the

last year before the new teaching concept was introduced).

Year Part. [#] Female [%] Passed [%] Mean

Grade

2017* 200 33% 50% 3.65

2018 152 43% 61% 3.16

2019 137 37% 80% 2.41

2020 176 29% 73% 3.00

105

Exploring Diversity in Introductory Programming Classes: An Experience Report ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA

2019 (cf. Table 1). The rate of female students also remained fairly

constant over the years with a male to female student ratio of ap-

prox. 70/30. For the last year of the old format, 50% of the students

received a negative grade, which was also consistent with previous

years. We noticed a gender gap with 55% of the male students and

only 39% of the female students having passed the course. Overall,

the mean grade was 3.65 for this course in 2017.

In the three years where we employed the new teaching concepts,

from 2018 until 2020, we could observe significant improvements

in terms of the raw course numbers. After the first year, we could

observe that the rate of students that passed the class increased

from 50% in the previous year to 61%, and to 80% in 2019. Finally, in

2020, 74% passed our course. More importantly, we could observe

a positive trend in the rate of male and female students passing

the class. In 2018, 64% of the male students and 55% of the female

students passed, and in 2019 the rate was equal with 80% male and

female students passing the course.

Based on this initial analysis, with regards to the first research

question, we conclude that the new teaching concepts did in fact

improve grades and rates of students passing the class. Furthermore,

the gender gap in terms of negative grades was closed in 2019, after

the second year. It is important to note that these changes were

not due to significant changes in the contents of the course. One

could argue that making the assignments or exams easier, reducing

the contents, or lowering requirements can result in the desired

overall improvements of the course. However, in terms of its con-

tents and the covered topics, the slide-based lectures remained the

same, we only added additional examples and live coding sessions

to the lectures over the years. The topics covered in the course

did not change, we even added one additional topic (dynamic data

structures) to both lecture and exercise. Follow-up courses require

a defined level of knowledge to be taught in our introductory pro-

gramming course and thus changing the contents is not possible

and the topics to be covered are defined in the course syllabus.

To gain additional insights on how the new teaching concept

affects different diversity dimensions, we performed a detailed

analysis of the results of the class of 2020.

In particular, we focused on two different main diversity dimen-

sions: gender and educational background (as they were the ones

Figure 1: Distribution of average exam points by genders

we assumed in the previous semesters had the most influence on

drop-out and results), and also discuss findings related to other

dimensions. The analysis is based on feedback from the surveys, as

well as an in-depth analysis of homework assignment results and

exam results of the semester.

The first questionnaire was handed out during the first lecture

andwas returned by 168 students, resulting in a response rate of 96%.

The second questionnaire was sent to students after the first mid-

term exam. It was filled out by 114 students, which corresponds to

a response rate of 65%. Finally, the third questionnaire was handed

out during the last lecture of the course and was returned by 52

students, which corresponds to a response rate of 30%.

In 2020, 73% of the students passed our course (cf. Table 1) with a

mean grade of 3.0 for the course. In total, 73% of the male students

and 74% of the female students passed the course.

Compared to the previous year, the percentage of the students

who passed the course is slightly lower and the mean grade is

higher. Also, the rate of male and female students who passed is

slightly different. The course in 2020 was held fully online via Zoom

sessions for both the lecture and exercises, due to COVID-19, which

is a possible explanation for the reduced success rate.

4.2 Gender Dimension

As we have observed a noticeable gender gap before changing the

teaching concepts and a reduction thereof afterwards, we were

interested in the factors that contributed to this change and if there

are further improvements that can be made.

In particular, we looked at the exam results and assignment

results with respect to gender differences. Fig. 1 shows the exam

results of female (top orange part) and male (bottom blue part)

students. The results are based on the average points students

received for the shorter mid-term and end-term exams, and where

gender information was available. Each exam has a maximum of

24 points and passing the exams requires an average of at least 12

points. Based on the analysis of the exam results we could observe

that male students received slightly more points on average than

female students (16.23 vs. 14.70). However, more female students are

in the mid point range, ranging from 12.5 and 17.5 points, whereas

for the male students we could observe students with fewer than 7

points and also more than 20 points.

Passing the course requires a positive grade on the exam part as

well as on the homework assignment part. Regarding the homework

assignments, on average female students appear to invest more time

than male students, but still fall slightly behind in points achieved

for the assignments. Based on the self-reported time and effort spent

on each homework, female students spend on average 8.93 hours per

assignment, and male students 6.62 hours. Male students achieved

on average 18.86 points per assignment, while female students

achieved 17.88 points. Fig. 2 shows a comparison of the distribution

of points and the self-reported time spent over the ten assignments.

For assignments 6, 7, and 8, the average points achieved by female

students is considerably lower than the points of the male students.

Assignments 6 and 7 focus on arrays, while assignment 8 focuses

on object orientation. The average of assignments 9 and 10 (also

focusing on object orientation) are a bit higher for female students.

106

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA Groher, Vierhauser, Sabitzer, Kuka, Hofer, Muster

(a) Comparison of distribution of points for assignments (b) Comparison of self-reported time spent per assignment

Figure 2: Gender Dimension Assignments – male (blue)/female (orange)

This suggests that female students have difficulties with the topic

of arrays and need more time for the topic of object orientation.

In summary, our new teaching concepts have almost closed the

gender gap in our course. We thus conclude that a collaborative

teaching concept positively supports female students. Still, more,

and also different learning material for the topics they have diffi-

culties with could be beneficial especially for female students. For

example, it could help to provide videos with step-by-step examples

for the topics of arrays and object orientation.

4.3 Educational Background Dimension

Another diversity dimension we observed in previous years, is the

educational background of students. As Business Informatics typi-

cally attracts students with more diverse educational background,

our assumption was, that this also had an effect on the prior knowl-

edge of students when starting their first semester at the university.

From the survey results, we could confirm that the educational

background of our students is in fact quite diverse. Fig. 3 provides

an overview of the six different types of educational background.

This includes five different types of high schools (typically with a

particular focus on a certain area), as well as second-chance learners

(SCL). This category groups all participants that did not obtain a

high school diploma, which is the requirement for enrolling in a uni-

versity course but have passed a university admissions equivalency

test, which accounts for almost 20% of the students. The majority

of students, almost 35% graduated from a general secondary school,

which is either 8 years (GS-HS, 26.5%), or 4+4 years (UL-HS, 8.2%),

sharing a similar focus in terms of broad general education with no

specialization. The single largest group of students graduated from

a commercial academy (C-HS), which is a school with a special

focus on economy and business (28.6%). Similar to this school is

the economic academy (EC-HS) (6.1%). Only 11.2% of our students

graduated from a technical academy (T-HS). However, it is impor-

tant to note that students who graduated from a school with a focus

on CS are exempted from our course.

Despite the diverse types of high schools our students attended,

78% reported that they had some form of CS lessons during their

four years of high school. However, asking students about their

specific experiences with CS classes in high school revealed that

the vast majority of students only focused on office tools (text

processing, spreadsheets), with only a third that had obtained basic

programming knowledge during these classes, with two-thirds

having no prior programming experience whatsoever.

As part of this diversity dimension, we were particularly inter-

ested if students with a certain background were more likely to

fail our course than others, and if there is a statistically significant

correlation between educational background and passing or failing

our introductory programming class.

Fig. 3 shows the grades of the students in our course for the

different educational backgrounds. The data reveals that, unsurpris-

ingly, students who graduated from a technical school performed

best. Graduates from an upper-level secondary school and an eco-

nomic academy performed the worst. What is interesting is that

students from a general secondary school performed similarly to

second-chance learners. A possible reason for this could be that

second-chance learners might have worked in a technical profes-

sion, or due to their professional experience, their timemanagement

is better. However, we could not detect a statistical significance for

a correlation between educational background and grades.

4.4 Other Dimensions and Observations

Besides the two major aspects of gender and educational back-

ground, the surveys contained a number of additional questions

with regards to the students’ background and their learning experi-

ence throughout the semester.

4.4.1 Personality Dimension &Work Experience. Results of the first

survey indicated that 60% of the students work, at least part-time,

and more than 20% of them work more than 20 hours per week.

To support part-time and working students, we typically offer one

exercise in the early morning, and another one in the late afternoon,

107

Exploring Diversity in Introductory Programming Classes: An Experience Report ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA

(a) Different School Types (b) Course Results grouped by School Types

Figure 3: Educational Dimension Schools Types and Course Results

so that students can attend class before or after their job. The fact

that in 2020 both lecture and exercise classes were held online

further supported working students, as it was not necessary to

attend the class in person at the university.

To gain insights into the personality dimension, we asked stu-

dents about their general interest in the topic. At the beginning of

the course, most students claimed to be interested in the topic of

programming, with 75.9% claiming to be very interested or inter-

ested. This shows us that, even though Business Informatics has

a different focus than CS, programming is not seen as something

that is only a side topic, but is a major factor why students choose

to enroll in the Business Informatics bachelor program.

4.4.2 General Course Difficulty, Concepts, and Learning Material.

At the beginning of the semester, the course was considered difficult,

only 9.6% rated the course as easy or very easy. This number tripled

until the first mid-term exam, where 27.1% rate the course as easy or

very easy. There is also an increase in interest from the beginning

of the course to the mid-term exam. The rating of very interested

increased from 35.8% to 60%.

The self-reported time invested per week differs greatly among

students. 30.1% claimed to have invested less than one hour, 36.1%

invested between one and three hours, 18.1% between four and six

hours and 15.7% invested more than six hours per week.

Regarding the provided learning material, most students would

like to have more material for object orientation and dynamic data

structures. They would also like to have more exercise and lec-

ture units for these topics. Students were happy with the material

provided and time spent on the other topics.

At the end of the course, students gave positive feedback. In

general, students liked the course. 75.5% rated the course (lecture

and exercise) as good or very good and 81.6% rated the exam mode

as good or very good. 57.1% rated the time spent as high or very

high and 28.5% rated the course as difficult or very difficult. Most

students (90%) claimed that they have strongly expanded their

knowledge and 76% rate the importance of programming for their

professional career as important or very important.

One aspect we were concerned about when introducing pair

programming was that this would lead to situations where only one

student would have a positive learning experience by performing

the majority of the work in the team. The other team members only

take a passive role in these cases.

In previous years, where each homework assignment had to be

handed in individually, we performed similarity checks and graded

assignments with 0 points when similarities and copy-paste of code

parts were evident. With group programming activities this was

Figure 4: Comparison of assignment vs. exam points

108

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA Groher, Vierhauser, Sabitzer, Kuka, Hofer, Muster

significantly more difficult and it was easier for students to hand in

exercises without fully solving them by themselves.

To prevent students from not actively engaging in the program-

ming activities, we introduced the split mid-term and end-term

exams to force students to prepare for a test after the first half

of the class. The analysis of the exam points in correlation with

points received for the assignments indicates, however, that the

pair programming activities were an effective strategy, and did not

result in degraded exam grades. Fig. 4 shows a comparison of exam

results (average of mid and end-term exam), with a maximum of

24 points, and assignment points (average of best eight), with also

a maximum of 24 points. The data points at the bottom represent

students who handed in at least some of the assignments but never

took part in any of the exams.

Based on the results from the gender and educational background

analysis and the analysis of other dimensions, with regards to RQ2,

we conclude that cooperation and peer learning, as well as different

kinds of material, positively support heterogeneous groups and

especially those with a lack of prior knowledge. Working besides

studying does, in our case, not influence drop-out, and second-

chance learners are not disadvantaged in our course. In general,

students maintain interest throughout the semester and gave posi-

tive feedback regarding the course format.

5 INTERVIEWS

In addition to the course data we collected from the students, we

also wanted to hear the other side of the story, how lecturers and

tutors think about and perceive diversity factors. We, therefore,

interviewed two lecturers and two tutors from the course of 2020.

The lecturers were both males. The first lecturer was 33 years old

with two years of teaching experience and the second lecturer was

60 years old with more than 30 years of teaching experience at

different universities. The first tutor we interviewed was female

and the second tutor was male. Both were 20 years old and had

one year of experience as a tutor in an introductory programming

course.

In the interviews we focused on i) our teaching approach in

general and ii) on the different diversity aspects in particular.

In general, diversity factors were considered important by all

four interviewees but did not directly influence how they were

preparing and planning the lectures or theweekly tutorial. However,

diversity was taken into account during the course, i.e., during

lectures, exercises, or the tutorial. For example, one tutor said that

she translated parts of the task description into English during the

tutorial for a student with language barriers.

Diversity Factors:When asking about diversity in teaching, di-

versity of students, lecturers, and tutors, the most prominent factor

was Gender, mentioned by 3 out of 4 interviewees. This was also

the prevalent topic (with an emphasis on female students in STEM

in general, and CS in particular) during the diversity discussion

before we introduced them to the other diversity dimensions part

of the diversity wheel. This comes as no surprise, as gender equality

has received significant attention in the past [5, 19, 20]. Among the

aspects mentioned, gender-neutral language and avoiding male and

female stereotypes in lecture and exercise materials were deemed

as very important by both lecturers. Additionally, having both male

and female lecturers, as well as tutors, was mentioned by one lec-

turer, saying that “[...] it is important to also have female teachers

and tutors, as role models for girls/women [...] when starting their

studies”.

Figure 5: Diversity Wheel [8] – Dimensions colored in blue

were mentioned before showing the wheel, dimensions col-

ored in green afterwards.

Furthermore, the Ethnicity dimension, specifically, in the context

of language, and resulting language barriers was mentioned three

times, twice by the tutors and one time by a lecturer.

Additionally, one tutor also mentionedAge and Educational Back-

ground of students, which was largely overlooked by the other three.

The tutor mentioned challenges faced by students with no prior

programming knowledge. She also mentioned that for her it was

strange to “teach” a student that was much older than her.

After showing them the Diversity Wheel, and briefly explaining

the dimensions, all acknowledged that there are additional fac-

tors and dimensions with regards to diversity that they did not

directly consider in the context of “Diversity”, or that they have

previously not thought about. Among these, the interviewees men-

tioned Geographic Location and Parental Status (supported through

online lectures),Work Experience (prior knowledge and better time

management), and Religion (sensible language in assignments). In-

terestingly, none of the interviewees mentioned Personality as a

factor influencing motivation, interest, or learning strategies.

Fig. 5 shows the Diversity Wheel we presented during the inter-

views. Factors mentioned before the wheel was shown are marked

in blue. Factors mentioned after the wheel was shown in green.

Teaching Factors: Besides the diversity dimensions, we were

generally interested in how the new teaching concept was perceived

by the tutors and what additional insights we could gain from their

experiences during the weekly tutorials. One interesting aspect the

109

Exploring Diversity in Introductory Programming Classes: An Experience Report ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA

tutors reported was that students had difficulties with the formal

requirements of the homework assignments. Students had problems

submitting the assignments as specified following the submission

guidelines (one zip file per assignment with strict rules on what

it must contain). Also, students had difficulties following naming

conventions and code formatting rules. We insisted on these rules

as follow-up courses in the curriculum have even stricter rules due

to unit tests and automatic grading.

Another issue that was mentioned was the ability to fully un-

derstand the programming tasks part of the assignments. This was

perceived as sometimes being quite challenging for the students.

One tutor reported that students complained that the assignment

descriptions were not specific enough, sometimes leaving room for

interpretation. For example, it was not always clear what kind of

error handling was expected, and what kinds of invalid input needs

to be dealt with. This was quite surprising for us as, compared to

the old teaching format, the new assignment descriptions contained

much more details regarding what data types to use, what method

parameters to add, or what return values to provide.

However, based on this, for students with little programming

experience, step-by-step instructions are easier to follow and help to

guide them through the assignment and programming tasks. There

is a trade-off between supporting beginners through guidance and

teaching them to develop solutions and algorithms on their own. A

possible solution might be to include one task in each assignment

that requires more creativity and provides less guidance.

One final aspect that was mentioned by the tutors was again due

to the COVID-related shift to online classes. The lack of physical

interaction was perceived as challenging. While support was pro-

vided and questions were answered during the tutorials via Zoom,

the tutors mentioned that it was sometimes hard for them to see if

students had in fact fully understood their explanations on how to

solve a problem. Specifically, the lack of gestures, or how students

behave or ask questions in a physical, in-person tutorial not only

helps the lecturer during class to see if someone needs help, but

also negatively affects tutorials.

With regards to our third research question, we can conclude

that gender was by far the most important factor that is associated

with the term diversity. Nationality and related language barriers

are also regarded as important. However, when being presented

with the whole spectrum of diversity dimensions, all interviewees

identified additional dimensions and stated that when they would

have known the wheel before, they would have thought differently

about diversity.We thus conclude that educating teaching personnel

with respect to diversity and its multiple dimensions will bring a

broader view on this topic into university lectures.

6 DISCUSSION AND LESSONS LEARNED

Based on the results and findings from our analysis, and the addi-

tional data we gained from the interviews we discuss the impact

on diversity and provide a number of recommendations.

6.1 Diversity is more than Gender

In our introductory programming course, we are faced with a quite

heterogeneous group of students, pertaining to several different

factors. Analyzing the demographic data of our students revealed

that, apart from gender diversity, students have diverse educational

background, work experience, prior knowledge, and nationality.

Both lecturers and tutors have also confirmed that our students are

quite diverse and this has an impact on how lectures are held and

how tutorials are conducted. Some dimensions were immediately

obvious and part of people’s mindset when thinking about diversity,

others were only recognized after engaging in a broader discussion.

In total, nine of the dimensions were considered to play a relevant

part in teaching by our interview participants.

Experienced students can act as peer tutors in the course and help

beginners during pair programming. A high percentage of working

students can be supported with additional online material or videos.

Language barriers can be bridged by translating assignment tasks

(partially) into English or by providing feedback in English. Using

gender-sensitive language should, of course, be used, but solely

changing the language does not solve all problems.

Recommendation 1

As one can only support what is known, we recommend col-

lecting basic demographic data at the beginning of the course.

It is important to know about the background of the students

and their prior knowledge.

6.2 Diversity-aware Planning and Preparations

All of our interview participants, both tutors and lecturers, men-

tioned that they did not consider diversity aspects in advance during

planning and that they are more important during class when in-

teracting with students. However, certain things, such as proper

teaching material, do require planning and preparation before the

lecture, or even before the semester. To support heterogeneous

groups of students and respond to diverse needs and abilities, a

portfolio of different teaching and learning material is needed. In

our course, we provided slides, books, videos, and Reading Cor-

ners with step-by-step solutions. The examples should require little

mathematical background. Also, we recommend using examples

where students can be creative and bring in their own ideas. We

further recommend using more but smaller examples instead of a

few large ones. This gives students a sense of positive achievement

when they manage to complete (at least some of) the tasks.

Recommendation 2

We recommend diverse teaching and learning material. This

includes different types of material, such as videos, examples,

and slides, but also examples from a variety of domains.

6.3 Interactive Teaching and Learning supports
Diversity

In our exercises, a majority of the time (approximately two-thirds)

is dedicated to group work and pair programming sessions. This

fosters active student participation and allows the lecturers to get

first-hand experience of how students work on assignments, what

difficulties they experience, and what common mistakes are made.

110

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA Groher, Vierhauser, Sabitzer, Kuka, Hofer, Muster

This in turn helps to improve, and iteratively refine teaching mate-

rial and instructions, to explain and prevent common mistakes in

the future. The feedback we have received with respect to pair pro-

gramming from the students was very good. The data we collected

shows that there is a correlation between exercise points and exam

points which shows that typically students do not simply copy

the solution of their team partner. Or if they do so, they still learn

enough to pass the exam. This further supports diverse levels of

prior knowledge as students can help and support each other during

the coding sessions. Supporting others also helps the experienced

students as they further deepen their knowledge when teaching

their peers. Language barriers can also be positively affected. The

ideal situation would be to create diverse pairs with experienced

and non-experienced students.

Recommendation 3

We recommend adopting active learning and communication

in programming classes. Teamwork and cooperation seem to

positively support female students. Furthermore, when lectur-

ers act as coaches during the coding sessions, this helps them

to better understand the difficulties of the students.

6.4 Tutors are Links between Lecturers and
Students

We provide weekly tutorials for our students to ask questions about

their assignments, problems they experience, or the points and

feedback they received for previous assignments. All assignments

that are handed in are graded and corrected by tutors. Students not

only receive points for assignments but also get weekly feedback

on mistakes they made or guidelines they did not follow. Students

regarded the feedback and the weekly tutorials as very helpful.

Recommendation 4

We recommend installing peers that act as tutors for beginners

programmers. Students rather talk to peers about their prob-

lems and difficulties than to lecturers. We had regular meetings

with the tutors to get feedback regarding the exercises, the

provided material, and the challenges students faced.

7 THREATS TO VALIDITY AND LIMITATIONS

A threat to construct validity comes from the nature of the inter-

views we conducted with tutors and lecturers and the question-

naires we distributed to students. Answers from participants and

students are subjective and may not properly reflect the actual situ-

ation. Also, the fact that we conducted the study during the COVID

pandemic might have influenced the results.

We interviewed lecturers that had several years of teaching ex-

perience and that did not participate in this publication or other

preparations for the study. The interviews have been performed by

a PhD student who was not part of the lecture, nor did she work at

the institute of the lecturer. The semi-structured interviews allowed

us to clarify answers from participants if needed, and to ask for

details on certain diversity aspects. Furthermore, two researchers

independently transcribed the interviews and extracted statements.

All results and diversity dimensions mentioned by interviewees

were discussed extensively among the two researchers.

The experiences and perceptions of this student population may

differ from the ones of other students in the same or other institu-

tions, countries, and cultures. Additionally, students who consent

to participate in interviews about group work and have their an-

swers used in research projects may not reflect the general student

population.

Furthermore, our study is limited to one university and the num-

ber of students participating in the course. Data covers four years,

with three of them covering our new teaching concepts, and one

year of detailed analysis. The reported experiences and percep-

tions of the students might differ from other students who did not

participate in the surveys or from students in the same or other

institutions. With regards to internal validity, a threat is the social

pressure that the students might have felt when providing informa-

tion regarding perceptions about the class, perceived difficulty, and

teaching concepts. However, we experienced that students generally

appeared comfortable discussing issues during the exercises and

mention positive as well as negative aspects of the course, teaching

materials, and teaching concepts. Additionally, as our results and

findings yield similar results as other studies, we are confident that

some observations and our lessons learned are generalizable for

other introductory programming courses.

8 RELATEDWORK

Several authors have discussed gender differences in learning styles

[14, 16] and cultural differences [11]. Gender-sensitive learning en-

vironments and teaching concepts have been identified as important

for young women in CS [27, 28].

The lack of women in CS programs at universities has been stud-

ied by several authors. For example, Cheryan et al. [3] and Master

et al. [17] investigated gender stereotypes related to computing and

uncovered that these act as “gatekeepers” preventing women from

choosing CS studies. Similarly, Borsotti [2] has investigated barri-

ers for gender diversity in Software Development Education. She

empirically investigates the main barriers for female participation

in CS programs and discusses insights and interventions. Similar to

our findings, she identifies the lack of CS education at school as one

important factor. In another study, Margolis and Fisher [7] managed

to increase female student numbers, based on their findings from a

study in an undergraduate CS program.

Other work deals with high failure rates of introductory program-

ming courses. In this domain, Vihavainen et al. [31] have performed

a systematic review of 60 approaches that try to improve the per-

formance in such courses. The results showed that on average, new

teaching formats can improve success rates in programming classes

by nearly one-third when compared to traditional lectures. This is

also confirmed by the improvements in our course after introducing

our new teaching concepts.

Several works have introduced measures and strategies that are

also included in our teaching and learning concepts and materi-

als. Van der Meulen and Aivaloglou [29] introduced group assign-

ments and pair programming and investigate work division and

allocation strategies in group work. Corno et al. [4] propose so-

called Code Recipes, consisting of summarized and well-defined

111

Exploring Diversity in Introductory Programming Classes: An Experience Report ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, P A, USA

documentation modules which can be compared to our reading

corners. Krusche et al. [13] have investigated methods for teaching

modeling by providing guided tutorials for lectures, group work,

and homework assignments. Particularly, pair programming is fre-

quently applied in novice programming courses [18, 34] and studies

have confirmed that it specifically supports female students [9, 33].

Koulouri et al. [12] show in their study that teaching problem-

solving before programming yielded significant improvements in

student performance. This is something we could also include in our

introductory programming course as part of future improvements

and course updates.

9 CONCLUSION

In this paper, we reported on introducing new teaching concepts to

a first-semester programming course. This study aimed to explore

the experiences and diversity dimensions that impact teaching and

learning experiences. As part of the study, we analyzed data from

four years and conducted a detailed analysis of the last year of our

course with questionnaires and interviews. The results indicate that

besides gender, the educational background, as well as the work

experience of students play an important role. Based on this de-

tailed analysis we discussed lessons learned and recommendations

for teaching introductory programming classes to non-computer

science students. Furthermore, our analysis has shown that a col-

laborative teaching concept supports female students as well as

students experiencing learning difficulties due to language barriers.

ACKNOWLEDGMENT

The work in this paper has been funded by the JKU Business School

and the Linz Institute of Technology (LIT-2019-7-INC-316).

REFERENCES
[1] 2021. Project Jupyter. https://jupyter.org [Last accessed 01-01-2022].
[2] Valeria Borsotti. 2018. Barriers to Gender Diversity in Software Development

Education: Actionable Insights from a Danish Case Study. In Proc. of the 2018
IEEE/ACM 40th Int’l Conf. on Software Engineering: Software Engineering Education
and Training. IEEE, 146–152.

[3] Sapna Cheryan, Allison Master, and Andrew N. Meltzoff. 2015. Cultural stereo-
types as gatekeepers: increasing girls’ interest in computer science and engineer-
ing by diversifying stereotypes. Frontiers in Psychology 6 (2015), 49.

[4] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. 2018. Easing IoT Develop-
ment for Novice Programmers through Code Recipes. In Proc. of the 40th Int’l
Conf. on Software Engineering: Software Engineering Education and Training. ACM,
New York, NY, USA, 13–16. https://doi.org/10.1145/3183377.3183385

[5] Joyce Ehrlinger, E Ashby Plant, Marissa K Hartwig, Jordan J Vossen, Corey J
Columb, and Lauren E Brewer. 2018. Do gender differences in perceived proto-
typical computer scientists and engineers contribute to gender gaps in computer
science and engineering? Sex roles 78, 1 (2018), 40–51.

[6] Juan Carlos Farah, Arielle Moro, Kristoffer Bergram, Aditya Kumar Purohit, Denis
Gillet, and Adrian Holzer. 2020. Bringing Computational Thinking to non-STEM
Undergraduates through an Integrated Notebook Application. In Proc. of the 15th
European Conf. on Technology Enhanced Learning.

[7] Allan Fisher and Jane Margolis. 2003. Unlocking the Clubhouse: Women in
Computing. SIGCSE Bull. 35, 1 (Jan. 2003), .23.

[8] L. Gardenswartz and A. Rowe. 1994. Diverse Teams at Work: Capitalizing on the
Power of Diversity. Irwin Professional Pub.

[9] Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie Murphy, and Carol Zander.
2011. Pair programming in education: a literature review. Computer Science
Education 21, 2 (2011), 135–173. https://doi.org/10.1080/08993408.2011.579808

[10] Hsing-Yu Hou, Somya Agrawal, and Chin-Feng Lee. 2020. Computational think-
ing training with technology for non-information undergraduates. Thinking
Skills and Creativity 38 (2020), 100720.

[11] Simy Joy, Simy Joy, and David A. Kolb. 2009. Are there cultural differences
in learning style. International Journal of Intercultural Relations (2009). https:
//doi.org/10.1016/j.ijintrel.2008.11.002

[12] Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. 2015. Teaching
Introductory Programming: A Quantitative Evaluation of Different Approaches.
ACM Trans. Comput. Educ. 14, 4, Article 26 (Dec. 2015), 28 pages. https://doi.org/
10.1145/2662412

[13] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An interactive learning method to engage students in mod-
eling. In Proc. of the ACM/IEEE 42nd Int’l Conf. on Software Engineering: Software
Engineering Education and Training. 12–22.

[14] Sadan Kulturel-Konak, Mary Lou D’Allegro, and Sarah Dickinson. 2011. Review
Of Gender Differences In Learning Styles: Suggestions For STEM Education.
Contemporary Issues in Education Research (2011). https://doi.org/10.19030/cier.
v4i3.4116

[15] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A Study of
the Difficulties of Novice Programmers. SIGCSE Bull. 37, 3 (June 2005), 14–18.
https://doi.org/10.1145/1151954.1067453

[16] Wilfred W. F. Lau and Allan H. K. Yuen. 2010. Gender Differences in Learning
Styles: Nurturing a Gender and Style Sensitive Computer Science Classroom.
Australasian Journal of Educational Technology (2010). https://doi.org/10.14742/
ajet.1036

[17] Allison Master, Sapna Cheryan, and Andrew Meltzoff. 2016. Computing Whether
She Belongs: Stereotypes Undermine Girls’ Interest and Sense of Belonging in
Computer Science. Journal of Educational Psychology 108 (04 2016).

[18] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The
Effects of Pair-Programming on Performance in an Introductory Programming
Course. SIGCSE Bull. 34, 1 (Feb. 2002), 38–42.

[19] Paola Medel and Vahab Pournaghshband. 2017. Eliminating gender bias in
computer science education materials. In Proc. of the 2017 ACM SIGCSE Technical
Symp. on Computer Science Education. 411–416.

[20] Dee Michell, Claudia Szabo, Katrina Falkner, and Anna Szorenyi. 2018. Towards
a socio-ecological framework to address gender inequity in computer science.
Computers & Education 126 (2018), 324–333.

[21] Iain Milne and Glenn Rowe. 2002. Difficulties in Learning and Teaching Program-
ming—Views of Students and Tutors. Education and Information Technologies 7,
1 (March 2002), 55–66. https://doi.org/10.1023/A:1015362608943

[22] Juena Ahmed Noshin and Syed Ishteaque Ahmed. 2018. Teaching programming
to non-Programmers at undergraduate level. International Journal of Engineering
and Management Research (IJEMR) 8, 3 (2018), 191–194.

[23] Replit. 2021. https://repl.it [Last accessed 01-01-2022].
[24] Barbara Sabitzer, Iris Groher, Johannes Sametinger, and Heike Demarle-Meusel.

2020. COOL Programming: Improving Introductory Programming Education
through Cooperative Open Learning. In 2020, Proc. of the 9th Int’l Conf. on Ed-
ucational and Information Technology. ACM, 95–101. https://doi.org/10.1145/
3383923.3383943

[25] Barbara Sabitzer, Iris Groher, Johannes Sametinger, and Heike Demarle-Meusel.
2020. COOL Programming: Improving Introductory Programming Education
through Cooperative Open Learning. In Proc. of the 9th Int’l Conf. on Educational
and Information Technology. ACM, New York, NY, USA, 95–101.

[26] Barbara Sabitzer and Sandra Strutzmann. 2013. Brain-Based Programming: A
New Concept for Computer Science Education. In Proc. of the 18th ACM Conf. on
Innovation and Technology in Computer Science Education. ACM, New York, NY,
USA, 345. https://doi.org/10.1145/2462476.2488328

[27] Sigrid Schmitz and Katrin Nikoleyczik. 2009. Transdisciplinary and gender-
sensitive teaching: didactical concepts and technical support. International Jour-
nal of Innovation in Education 1 (01 2009).

[28] Bernadette Spieler and Wolfgang Slany. 2018. Female Teenagers and Coding:
Create Gender Sensitive and Creative Learning Environments. In Constructionism
2018: Constructionism, Computational Thinking and Educational Innovation.

[29] A. van der Meulen and E. Aivaloglou. 2021. Who Does What? Work Division and
Allocation Strategies of Computer Science Student Teams. In Proc. of the 2021
IEEE/ACM 43rd Int’l Conf. on Software Engineering: Software Engineering Education
and Training. IEEE Computer Society, 273–282. https://doi.org/10.1109/ICSE-
SEET52601.2021.00037

[30] Gregory Vial and Bogdan Negoita. 2018. Teaching programming to non-
programmers: The case of python and Jupyter notebooks. (2018).

[31] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A Systematic
Review of Approaches for Teaching Introductory Programming and Their Influ-
ence on Success. In Proc. of the Tenth Annual Conf. on Int’l Computing Education
Research. ACM, New York, NY, USA, 19–26.

[32] Christopher Watson and Frederick W.B. Li. 2014. Failure Rates in Introductory
Programming Revisited. In Proc. of the 2014 Conf. on Innovation & Technology in
Computer Science Education. Association for Computing Machinery, New York,
NY, USA, 39–44. https://doi.org/10.1145/2591708.2591749

[33] Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-Programming
Helps Female Computer Science Students. J. Educ. Resour. Comput. 4, 1 (March
2004), 4–es. https://doi.org/10.1145/1060071.1060075

[34] Laurie Williams and Richard L. Upchurch. 2001. In Support of Student Pair-
Programming. SIGCSE Bull. 33, 1 (Feb. 2001), 327–331.

112

