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ABSTRACT

We demonstrate the implementation and usage of SymInfer, a

tool that automatically discovers numerical invariants using con-

crete and symbolic states collected from dynamic and symbolic

executions. SymInfer supports expressive invariants under various

forms, including nonlinear equalities, octagonal inequalities, and

disjunctive min/max invariants. Experimental results show that

SymInfer is effective in generating complex invariants and can of-

ten discover unknown, yet useful program properties. Video demo:

https://www.youtube.com/watch?v=VEuhJw1RBUE.

KEYWORDS

invariant inference, symbolic execution, dynamic analysis

ACM Reference Format:

ThanhVu Nguyen, KimHao Nguyen, and Hai Duong. 2022. SymInfer: In-

ferring Numerical Invariants using Symbolic States. In 44th International

Conference on Software Engineering Companion (ICSE ’22 Companion), May

21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3510454.3516833

1 INTRODUCTION

Program invariants describe properties that always hold at a pro-

gram location. Examples of invariants include program pre- and

post-conditions, loop invariants, and assertions. Invariants are orig-

inally used to help program verification in Hoare logic but have also

found uses in many other programming tasks, such as documenta-

tion, testing, debugging, code generation, and synthesis [5, 9, 10].

An important class of invariants captures numerical relations

among program variables. Such numerical invariants can take on dif-

ferentmathematical forms and have various uses. Simple linear poly-

nomial invariants such as 0 ≤ 𝑥 ≤ length(𝐴) − 1 and 𝑥 ≡ 𝑦 − 1 can
be used to capture out-of-bound indexing or off-by-one errors. More

complex nonlinear polynomial relations arise in many scientific, en-

gineering, and safety- and security-critical software [3], and can en-

code disjunctive information, e.g., 𝑥2 ≤ 𝑦2 implies 𝑥 ≤ −𝑦 ∨ 𝑥 ≤ 𝑦.
Max/min-plus relations encode properties that represent a com-

plementary form of disjunctive information, e.g., the inequality

max(𝑥,𝑦) ≥ 2 is equivalent to (𝑥 ≥ 𝑦 ∧ 𝑥 ≥ 2) ∨ (𝑥 < 𝑦 ∧ 𝑦 ≥ 2).

In [8, 10], we introduce SymInfer, a technique that targets the

inference of rich forms of numerical invariants using symbolic pro-

gram states captured by a symbolic execution tool. Among many
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Figure 1: SymInfer Overview

benefits, symbolic states allow SymInfer to check and remove spuri-

ous invariants inferred from concrete states (i.e., program execution

traces) by dynamic invariant generation tools, such as Daikon [5]

and DIG [9]. Moreover, for many types of invariants, SymInfer

can directly compute invariants over symbolic states. Our evalu-

ation demonstrates that SymInfer establishes the state-of-the-art

for inference of complex numerical invariants, especially nonlinear

ones. Across benchmarks consisting of 108 challenging programs

consisting of complex semantics and invariants, SymInfer is able

to infer the ground truth invariants for 106 of 108 programs; the

next best tool can infer only 89.

The envisioned users for SymInfer are researchers, software en-

gineers, and students who are interested in learning program in-

variants and using them in tasks such as program understanding,

verification, and general program analysis. The challenge we ad-

dress is the need for an automatic invariant generation technique

and tool that accurately infer expressive invariants to capture the

precise semantics of complex programs. The methodology we intro-

duce is invariant analysis using a combination of symbolic and con-

crete states, (§2) and SMT solving and optimization. Experimental

results on large benchmarks consisting of complex programs with

nontrivial programs show the effectiveness of SymInfer [8, 10].

The algorithmic and experimental details of SymInfer are avail-

able in [8, 10]. This paper extends that work by providing details

about the implementation and usage of SymInfer, which is open-

source and available at https://github.com/unsat/dig.

2 SYMINFER
The command-line tool SymInfer takes as inputs a programwritten

in C, Java, or Java bytecode (.class) marked with target locations,

and returns invariants found at those locations. Fig. 1 gives an

overview of SymInfer, which composes of the following phases

1 Instrumentation: SymInfer instruments code to obtain

symbolic states using symbolic execution tool and concrete

states during program execution

2 Symbolic states collection: SymInfer invokes a symbolic

execution tool to obtain symbolic states

3 Invariant inference: SymInfer uses several algorithms to

infer different forms of numerical invariants
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int cohendiv(int x, int y){

assert(x >= 0 && y >= 1);

int q=0; int r=x;

while(r >= y){

int a=1; int b=y;

while[L1](r >= 2*b){

a=2*a; b=2*b;

}

r=r-b; q=q+a;

}

[L2]

return q;

}

Concrete States
𝑥 𝑦 𝑎 𝑏 𝑞 𝑟

15 2 1 2 0 15

15 2 2 4 0 15

15 2 1 2 4 7

...

4 1 1 1 0 4

4 1 2 2 0 4

...

Symbolic States

Path Conditions (ΠL1 ) Variable Mappings (𝜎L1 )
0 < 𝑦 ∧ 𝑦 ≤ 𝑥 𝑞 ↦→ 0; 𝑟 ↦→ 𝑥 ;𝑎 ↦→ 1;𝑏 ↦→ 𝑦
0 < 𝑦 ∧ 2𝑦 ≤ 𝑥 𝑞 ↦→ 0; 𝑟 ↦→ 𝑥 ;𝑎 ↦→ 2;𝑏 ↦→ 2𝑦

0 < 𝑦 ∧ 2𝑦 + 𝑦 ≤ 𝑥 < 4𝑦 𝑞 ↦→ 2; 𝑟 ↦→ 𝑥 − 2𝑦;𝑎 ↦→ 1;𝑏 ↦→ 𝑦
...

...

Figure 2: Example program and concrete and symbolic states

observed at location L1.

4 Post-processing: SymInfer performs several simplification

and filtering steps before returning invariants to user

Example. We use the C cohendiv integer division algorithm in

Fig. 2 to demonstrate how SymInfer works. L1 and L2 mark the

locations of interest, i.e., we want to infer the inner loop invariants

at L1 and the program post-conditions at L2.

2.1 Instrumentation and States Collection

SymInfer takes as input a program with marked target locations

using a special vtrace(𝑥1, . . . , 𝑥𝑛) function and infers invariants
over the variables 𝑥1, . . . , 𝑥𝑛 . Using these vtrace calls, SymInfer
instruments the program to invoke symbolic execution tool to col-

lect symbolic states and adds “printf” statements to collect program

execution traces as concrete states.

SymInfer uses symbolic execution to compute symbolic states

at a considered program location L. Symbolic states consist of path

conditions Π describing execution paths to L and mappings 𝜎 from

program variables at L to symbolic values. Intuitively, symbolic

states capture the semantics of the program at L and also compactly

encode a large (potentially infinite) set of concrete states at L.

Example. For cohendiv, the input program is:

void vassume(int c);

void vtraceL1(int x, int y, in q, int r, in a, int b);

void vtraceL2(int x, int y, in q, int r);

int cohendiv(int x, int y){

vassume(x >= 1 && y >= 1);

...

while(1){

vtraceL1(x,y,q,r,a,b); // marked location

if (!(r >= 2*b))break;

a=2*a; b=2*b;

}

...

vtraceL2(x,y,q,r); // marked location

return q;

}

This input uses the function vassume to specify the precondition

that 𝑥,𝑦 begin positive. Note the user can call vtrace over just a
subset of variables to infer invariants only over those variables,

e.g., vtraceL1 is called over six variables while vtraceL2 is called

over only four variables. Also note how the while(c){..} loop is

transformed into while(1){vtrace(..); if (!c) break; ..}.

This is to capture (inductive) loop invariants, which hold the first

time the loop is entered and are preserved through the loop body.

For this C program we use the symbolic execution tool CIVIL

(see §3) and thus instrument code for CIVL usage as follows:

#include "civlc.cvh" //instr specifically for CIVL

$input int x; //instr: symbolic input

$input int y; //instr: symbolic input

//instr: collect concrete and symbolic states

void vtraceL1(int x, int y, in q, int r, in a, int b){

printf("L1; %d; %d; %d; %d; %d; %d\n",x,y,q,r,a,b);

$pathCondition();

}

...

int cohendiv(int x, int y){

$assume(x >= 1 && y >= 1); //instr: assumption

...

while(1){

vtraceL1(x,y,q,r,a,b); // marked location

if (!(r >= 2*b))break;

a=2*a; b=2*b;

}

...

vtraceL2(x,y,q,r); // marked location

return q;

}

Now SymInfer runs CIVL on the instrumented program to ob-

tain symbolic states at the target locations indicated by vtrace.

Fig. 2 shows the symbolic states at location L1 of cohendiv. As can

be seen, symbolic states provide a precise logical representation of

the program semantics at the target locations, and they also com-

pactly represents a large, potentially infinite, set of concrete states.

Fig. 2 also shows the concrete states at L1 when running the pro-

gram on inputs (15,2) and (4,1). Notice how symbolic states encode

these specific concrete states and those obtained when running the

program on different inputs.

2.2 Invariant Inference

SymInfer uses two algorithms to infer invariants: an iterative, coun-

terexample guided invariant refinement (CEGIR) approach to infer

(potentially nonlinear) equalities and an SMT-optimization based

technique to infer inequalities. The CEGIR approach uses symbolic

states to check candidate equalities while the SMT approach ex-

ploits advances in constraint solving to find inequalities directly

from symbolic states.

2.2.1 CEGIR. SymInfer uses a CEGIR algorithm to find polyno-

mial equalities of the form 𝑐1𝑡1 + 𝑐2𝑡2 + · · · + 𝑐𝑛𝑡𝑛 = 0, where 𝑐𝑖 are
coefficients and 𝑡𝑖 are terms that are multiplicative combinations
of relevant program variables. This algorithm iterates between two

phases: dynamic analysis that infers candidate equalities from con-

crete states obtained by running the program from sample inputs

and symbolic checker that checks candidates against the program
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using symbolic states obtained from symbolic execution. If a can-

didate invariant is spurious, the checker also provides counterex-

amples. Concrete states from these counterexamples are obtained

and recycled to repeat the process, and produce more accurate re-

sults. These steps of inferring and checking repeat until no new

counterexamples or (true) invariants are found.

Example. We show how SymInfer find the nonlinear equalities

𝑏 = 𝑦𝑎 and 𝑥 = 𝑞𝑦+𝑟 at location L1 in cohendiv. For demonstration
purpose we only consider nonlinear equations up to degree 𝑑 = 2.

For the six variables {𝑎,𝑏, 𝑞, 𝑟, 𝑥,𝑦} at L1, together with 𝑑 = 2,

SymInfer generates 28 terms {1, 𝑎, . . . , 𝑦2} and uses them to form

the template 𝑐1 + 𝑐2𝑎 + . . . 𝑐28𝑦
2 = 0 with 28 unknown coefficients

𝑐𝑖 . SymInfer then collect concrete states such as those given in
Fig. 2 by executing the program on random inputs and using these

concrete states to form (at least) 28 linear equations. From this set

of initial equations SymInfer extracts six equalities.

Now, SymInfer iteratively refines the inferred invariants. In

iteration #1, SymInfer cannot refute two of these candidates 𝑥 =
𝑞𝑦 + 𝑟, 𝑏 = 𝑦𝑎 (which are actually true invariants) and thus saves
these as invariants. SymInfer finds counterexamples for the other

four equalities and creates new equations from the counterexamples.

SymInfer next combines the old and new equations and solves them

to obtain four candidates, two of which are the already saved ones.

In iteration #2, SymInfer obtains counterexamples for the 2 new

candidates. With the help of the new counterexamples, SymInfer

generates 3 candidates, 2 of which are the saved ones. In iteration

#3, SymInfer obtains counterexamples disproving the remaining

candidate and again uses the new counterexamples to generate new

candidates. This time SymInfer only finds the two saved invariants

𝑥 = 𝑞𝑦 + 𝑟, 𝑏 = 𝑦𝑎 and thus stops.

2.2.2 SMT. To infer inequalities, we previously used [8] a CEGIR

approach that iterates between computing candidates from concrete

states and checking them using symbolic states. In a more recent

work [10], we use symbolic states to directly compute inequality

relations. This approach works by first enumerate octagonal terms,

such as 𝑥 − 𝑦, 𝑥 + 𝑦, and min/max-plus terms, such as𝑚𝑖𝑛(𝑥,𝑦, 𝑧).
Then, for each term 𝑡 , we use an SMT solver to compute the smallest
upperbound 𝑘 for 𝑡 from symbolic states. If 𝑘 is found, we obtain
the candidate invariant 𝑡 ≤ 𝑘 . Otherwise (i.e., if 𝑘 is ∞ or cannot

be determined), we discard the relation 𝑡 ≤ 𝑘 .
Similarly, we also compute the largest lower-bound 𝑘′ to obtain

the inequality 𝑘′ ≤ 𝑡 . This approach leverages the power of modern
constraint solvers, which, in addition to finding satisfiability as-

signments, can find optimal assignments with respect to objective

constraints using linear optimization techniques.

Example. For the six variables at L1, SymInfer enumerates
(6
2

)

pairs of variables (𝑎, 𝑏), (𝑎, 𝑞), . . . (𝑥,𝑦) and for each pair forms

eights terms involving at most two variables such as {𝑎, 𝑏, . . . ,−𝑎 −
𝑏, 𝑎 + 𝑏}. Then, for each term 𝑡 SymInfer computes the smallest
upperbound 𝑘 and the largest lower-bound 𝑘′ to form the invariant

𝑘′ ≤ 𝑡 ≤ 𝑘 . For example, for the term −𝑎 − 𝑦, SymInfer infers
−∞ ≤ −𝑎 − 𝑦 ≤ −2, which simplifies to 2 ≤ 𝑎 + 𝑦 (the input 𝑦 is
assumed to be ≥ 1 but has no upperbound and 𝑎 is initialized with
1 and always doubled).

Similarly, to infer min- and max-plus invariants such as 𝑘′ ≤
𝑚𝑖𝑛(𝑥,𝑦) ≤ 𝑘 , SymInfer performs the same process of generat-
ing terms and computing upper- and lower-bounds. In this exam-

ple, SymInfer found several such invariants, however, our post-

processing step determined that they are weaker than the other

obtained equalities and inequalities and therefore removed them.

2.3 Post-Processing and Invariant Results

Depending on the number of variables and form of invariants,

SymInfer could generate many invariants (e.g., each octagonal and

max/min term can produce an invariant candidate). SymInfer uses

a post-processing step, which consists of two parts, to reduce the

number of reported invariants. The first part simply checks gen-

erated invariants against all cached concrete states and removes

violated ones. This part is efficient (we simply instantiate and check

candidate relations with concrete values), but removes few results

(because most generated invariants are already valid). The second

part removes redundant invariants. From a set of candidate invari-

ants, we extract a subset of independent relations and check if every

member of the set is not implied by other relations in that set. This

part is more time-consuming, but effective in reducing many in-

equalities to just a few strongest and relevant ones–making it much

easier for the user to analyze and use the reported results.

Example. For the cohendiv program, SymInfer got 272 invari-

ants (4 equations, 41 inequalities, and 227 min/max) over the two

locations L1 and L2. After post-processing, the number of invariants

reduced to just 15 (8 at L1 and 7 at L2).

At the end, SymInfer returns at L1 (loop) invariants such as

𝑥 = 𝑞𝑦 + 𝑟 ; 𝑎𝑦 = 𝑏; 𝑏 ≤ 𝑥 ; 𝑦 ≤ 𝑟 ; 0 ≤ 𝑞; 1 ≤ 𝑏; 1 ≤ 𝑦

and at L2 the (post-condition) invariants such as

𝑥 = 𝑞𝑦 + 𝑟 ; 𝑟 ≤ 𝑦 − 1; 0 ≤ 𝑟 ; 𝑟 ≤ 𝑥

These relations are sufficiently strong to understand the seman-

tics and verify the correctness of cohendiv. The key invariant is

the nonlinear equality 𝑥 = 𝑞𝑦 + 𝑟 , which captures the precise be-
havior of integer division: the dividend 𝑥 equals the divisor 𝑦 times
the quotient 𝑞 plus the remainder 𝑟 . The other inequalities also
provide useful information. For example, the invariants at the pro-

gram exit reveal several required properties of the remainder 𝑟 , e.g.,
non-negative (0 ≤ 𝑟 ), at most the dividend (𝑟 ≤ 𝑥 ), but strictly less
than the divisor (𝑟 ≤ 𝑦 − 1).

3 DESIGN AND TOOL USAGE

SymInfer is implemented in Python and uses SymPy for equa-

tion solving (to infer equalities) and represent numerical relations.

SymInfer uses different instrumentation and symbolic execution

tools depending on the input program. For C, we use CIL [7] for

instrumentation and CIVL [11] for symbolic execution. For Java and

Java bytecode, we use the ASM library [2] for instrumentation and

Symbolic PathFinder [1] for symbolic execution. SymInfer uses

the Z3 SMT solver [4] to check and produce models representing

counterexamples. Z3 is also used to identify and remove redundant

invariants in post-processing.
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3.1 Design

SymInfer has several designs to aid development and adoption. In

particular, SymInfer is designed to be configurable, extendable, and

take advantage of multicore (parallel) processing,

Configurability. SymInfer’s is highly configurable and contains

more than 30 settings allowing the user to control how the tool

works. By default, these settings are chosen to allow SymInfer to

work with a wide-range of benchmark programs, e.g., from those

with few simple linear invariants to those with complex nonlinear

relations involving dozen of variables. The user can change these

settings using command-line options or the settings.py file.

Several useful settings include: -maxdepth d (generate invari-

ants only up to degree 𝑑 and can significantly speed up SymInfer);
-nominmax/-noieqs/-noeqts (do not generate certain forms of

invariants); -se_min/maxdepth (controls the depth of symbolic

execution); -noss (do not use symbolic states and performs pure

dynamic invariant generation over randomly generated inputs);

-uterms "t1; t2; .." (infer invariants involving terms represent-

ing specific, complex information, e.g., 𝑡1 = 2𝑥 , 𝑡2 = log(𝑛)).

Extensibility. SymInfer is designed to be modular, allowing the

user to easily extend it to support new form of invariants. To support

new invariants, the user just needs to extend the Invariant and

Inference abstract classes and override abstract methods such as

infer check to take advantage of SymInfer’s current CEGIR and

SMT-based algorithms, post-processing, parallel computing, etc.

Multicore Processing. SymInfer leverages the increasingly popu-

lar and affordable multicore architecture. The tool performs many

independent tasks in parallel, e.g., running symbolic execution, gen-

erating invariants at different locations, computing upper bounds

for terms, and checking candidate invariants. Parallel processing

is crucial to the performance of SymInfer as it allows the tool to

process and analyze thousands of candidate invariants at multiple

program locations simultaneously.

Usage. The Github repository in §1 provides detailed instructions

for obtaining, building, and running SymInfer. The easiest way to

try SymInfer is through the provided Dockerfile, but the user can

also build SymInfer directly from source. SymInfer is designed to

be integrated easily with other projects and tools. The user can call

SymInfer as a blackbox or use its Python API to infer invariants

(e.g., the Dynamite project [6] calls SymInfer as a blackbox to infer

invariants program termination and non-termination analyses).

3.2 Run Output

Fig. 3 shows the results of running SymInfer on the cohendiv

program on a 64-core AMD CPU 4 GHZ Linux system with 64

GB of RAM. Here, SymInfer got 45 symbolic states for the two

target locations in 4.7s. Next, we got 41 inequality, 227 min/max,

and 4 equality invariants. After reprocessing, SymInfer reduced

the number of invariants from 272 to just 15 invariants.

We also see that the real (wall clock) time of the entire process

is just 20.89s even though accumulative time spent by all CPU is

368.18 seconds. This shows that SymInfer is effective in exploiting

multicore processing (i.e., without using multicore, the run time

would be 6 mins instead of just 21s).

# time python3 -O syminfer.py ../tests/cohendiv.c -log 3

alg:INFO:analyzing '../tests/cohendiv.c'

alg:INFO:got 45 symstates at 2 locs in 4.69s

alg:INFO:got 41 ieqs in 0.65s

alg:INFO:got 227 minmax in 1.27s

alg:INFO:got 4 eqts in 13.24s

alg:INFO:check 272 invs using 456 traces (0.25s)

alg:INFO:simplify 272 invs (2.23s)

vtraceL1(8 invs): a*y - b == 0; q*y + r - x == 0; -q <= 0;

a - b <= 0; r - x <= 0; b - r <= 0; -b + y <= 0; -a - y <= -2

vtraceL2(7 invs): q*y + r - x == 0; -q <= 0; -r <= 0;

r - x <= 0; q - x <= 0; r - y <= -1; -q - x <= -1

------------------------------------------

Time: real 20.89 secs; usr 368.18 secs

Figure 3: Running SymInfer

4 EVALUATION

We evaluate SymInfers [10] using four benchmark suites consisting

of 108 programs. These programs come with known or documented

invariants, which we use as ground truths for comparison.

Our experiments show that SymInfer is able to infer the ground

truth invariants for 106 of 108 programs; the next best tool can infer

only 89. In many cases, SymInfer found undocumented but interest-

ing invariants revealing useful facts about program semantics and

complexity bounds. The ability to exploit and reuse symbolic states

allows SymInfer to strike a balance between expressive power and

computational cost, while guaranteeing correctness, to establish

state-of-the-art performance in numerical invariant inference.
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