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ABSTRACT

Software testing is a critical activity in the software development

life cycle for quality assurance. Automated Test Case Generation

(TCG) can assist developers by speeding up this process. It accom-

plishes this by evolving an initial set of randomly generated test

cases over time to optimize for predefined coverage criteria. One

of the key challenges for automated TCG approaches is navigat-

ing the large input space. Existing state-of-the-art TCG algorithms

struggle with generating highly-structured input data and preserv-

ing patterns in test structures, among others. I hypothesize that

combining multiple tribes of AI can improve the effectiveness and

efficiency of automated TCG. To test this hypothesis, I propose

using grammar-based fuzzing and machine learning to augment

evolutionary algorithms for generating more structured input data

and preserving promising patterns within test cases. Additionally,

I propose to use behavioral modeling and interprocedural control

dependency analysis to improve test effectiveness. Finally, I pro-

pose integrating these novel approaches into a testing framework

to promote the adoption of automated TCG in industry.

CCS CONCEPTS

• Software and its engineering→ Search-based software en-

gineering; Software testing and debugging.
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1 RESEARCH PROBLEM AND HYPOTHESIS
Software testing is an important part of quality assurance. Manu-
ally writing test cases is a tedious and error-prone task that can
take up to 50 % of developers’ time [9]. Over the last decades, re-
searchers have developed techniques for automating the process
of generating these test cases [28]. Automated test case genera-
tion (TCG) signi cantly reduces the time needed for testing and
debugging software [43]. Additionally, recent studies have shown
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that search-based approaches can achieve higher code coverage

compared to manually written test cases [30, 36] and can identify

unknown bugs [1, 3, 21]. Moreover, automated test case generation

tools have been successfully used in industry (e.g., [4, 8, 27]).

Although automated TCG is becoming more common in large

software companies, the widespread adoption of these techniques

is lacking behind [10]. One of the key challenges in automated

TCG is the size of the input space [13]. With the ever-increasing

complexity of modern applications, generating test cases, which

consist of input data, test structures, and assertions [46], that satisfy

difficult constraints becomes harder each day. Moreover, studies

have identified that to make these techniques practical for industry

use, automated TCG should not only focus on test coverage but

also on the quality of the test cases [20, 34]. An additional factor for

the lack of adoption of TCG techniques in industry is the shortage

of easy-to-use production-level tooling [14]. The goal of my disser-

tation is to improve automated test case generation to increase the

adoption by developers of these techniques.

The current state-of-the-art TCG approaches use evolutionary

algorithms (EAs) that evolve an initial set of randomly generated

test cases over time to optimize a fitness function. One of the reasons

why EAs are so effective might be because they mimic the process

that developers use to create test cases. Developers copy, paste,

and then either modify the values of a method call or replace it

entirely [5]. Although these EAs could, in theory, generate any

possible input data given enough time, this would, however, be

inefficient for complex data [2, 17].

I hypothesize that by combining multiple tribes of artificial in-

telligence (AI) to narrow down the search space, we can improve the

effectiveness and efficiency of automated test case generation. In my

dissertation, I will test this hypothesis by focussing on the following

research areas:

(1) Generating Test Cases with Highly-structured Input

Data (Section 2.1): Certain types of applications require

highly-structured input data (e.g., parsers). However, auto-

mated TCG has limitations on creating such data. Previous

studies have shown that automatically generated input is

usually unstructured and can be difficult to read and inter-

pret [2, 17]. By combining EAs with grammar-based fuzzing,

I plan to use the information from the grammar to limit the

number of possible actions that can be performed on a sub-

ject under test (SUT) and improve the quality of the test data.

Here, the aim is not to focus on how much of the grammar

is covered but to use the grammar as guidance for the EAs.

(2) PreservingMethod Sequence Patterns in System-level

TCG (Section 2.2): One of the limitations of the current re-

lated work is that while the state-of-the-art TCG approaches

can successfully create promising sequences ofmethods, they

do not directly recognize and preserve them when creating
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new test cases [50]. I argue that detecting and preserving

promising patterns of method sequences improves the ef-

fectiveness and efficiency of the TCG process. Combining

EAs with machine learning allows gaining more insight into

the structure and relationship between the actions within

the test cases. These insights can then be used to reduce the

input space by prioritizing actions that match these patterns.

(3) Creating a Hybrid Crossover Operator for Both Input-

data and Method Sequences (Section 2.3): The encod-

ing of a test case consists of both test data and method se-

quences [46]. Current state-of-the-art EAs for TCG use a

crossover operator (i.e., single-point) that swaps a group of

method sequences between two test cases [12, 35]. These

approaches, however, simply copy over the corresponding

input data. I argue that a hybrid crossover operator that al-

ters both the structure of the test cases as well as the input

data can improve the test case diversity.

(4) Generating Complex Objects during TCG fromBehav-

ioral Models (Section 2.4): One of the challenges of TCG

approaches is the generation of complex objects with logical

(i.e., not random) sequences of method calls. By combining

automated TCG with model inference techniques, I can build

a model based on behavioural patterns. This model can then

be used to seed the EA. Here, the aim is not to focus on all

possible actions that can be performed on the subject but on

the actions that are on the critical path.

(5) Improving SearchGuidance for Explicit Contracts and

Declarative Input Validation Rules (Section 2.5): Most

software makes use of conditional checks to make sure that

the input to a method is valid or preconditions have been

met (e.g., @NotNull in Java). However, since these language
constructs often are not treated as first-class citizens during

testing, they cause a partial flat landscape preventing the

fitness functions from effectively guiding the EA. I plan to

improve the search guidance for these design by contract

constructs by restoring the fitness gradient.

(6) Improving theEffectiveness ofRegression testing (Sec-

tion 2.6): One use case of automated TCG is for regression

testing, where the generated tests are utilized to ensure that

code changes do not impact the functionality of the appli-

cation. However, running the entire test suite quickly be-

comes unfeasible for very large systems. State-of-the-art

approaches use test case selection (TCS) to select a subset of

the test suite to run. I plan to optimize these approaches for

this use case to make them more effective.

(7) Improving the tooling (Section 2.7): One of the reasons

for the lack of adoption of TCG techniques in industry is the

absence of production-level tooling [14]. I plan to create a

new testing framework that will integrate the different re-

search focus areas. Additionally, I aim tomake the framework

modular so that it eases the adoption of different languages.

2 CONTRIBUTIONS AND RESULT SO FAR

This section describes each contribution in the context of the related

work, how I plan to evaluate that contribution, and presents the

results I have obtained so far.

2.1 Generating Test Cases with
Highly-structured Input Data

Automated test case generation has limitations on creating highly-

structured input data. Previous studies have shown that automati-

cally generated input is usually unstructured and can be difficult

to read and interpret [2, 17]. Grammar-based fuzzing, on the other

hand, is very effective in generating highly-structured input data

based on a user-specified grammar [22, 51]. For this reason, fuzzing

has been widely used for security and system testing [11, 23]. When

applied to data formats, fuzzers can generate and manipulate well-

formed input data using grammar derivative rules. However, since

grammar-based fuzzing only generates input data, developers need

to specify the entry points (for system testing), manually write the

method calls, and come up with their own assertions.

To address these limitations, I proposed a novel approach [33]

that combines the strength of grammar-based fuzzing and EAs with

a focus on the JSON data format. At the initialization phase, I make

use of grammar-based fuzzing to inject structured JSON input data

with some probability. This allows the EA to discover if the SUT can

make use of this structured data. Then, the EA creates and evolves

the test case structures (i.e., the sequence of method challenges)

using both randomly generated and injected data. The injected

input data are evolved separately using grammar-based fuzzing,

which mutates the input using grammar derivative rules.

I performed an empirical study [33] to assess the efficacy and

feasibility of this approach, which I implemented in EvoSuite [19],

a state-of-the-art TCG tool for Java. This study was conducted on

20 classes from the three most popular Java JSON parsers, namely

the GSON, fastjson, and org.json. To assess whether the proposed
approach negatively impacts the performance of classes that don’t

make use of highly-structured input, I evaluated both JSON and non-

JSON related classes. Since the approach makes use of randomized

algorithms, I repeat the experiment multiple times and make use of

statistical analysis. Specifically, I use the unpaired Wilcoxon rank-

sum test [16] for the statistical significance and the Vargha-Delaney

statistic [47] for the effect size. In the study, I answer the following

research questions:

RQ1.1 To what extend does grammar-based fuzzing improve the

effectiveness of test case generation in evosuite?

On average, the proposed approach achieves +15 % of branch

coverage compared to the baseline (EvoSuite without fuzzing). The

largest improvement that was observed in the study was +50 % of

branch coverage for one of the classes in the benchmark.

RQ1.2 What is the effectiveness of combining grammar-based fuzzing

and search-based testing over different search budgets?

When comparing the performance of the proposed approach to

the baseline over time, the study showed that the delta difference

does not substantially decrease and in most cases even increases

with a larger search budget. The study also showed that injecting

JSON strings in the initial population is not sufficient by itself to

reach a higher coverage.

Combining EAs with grammar-based fuzzing leads to higher code

coverage for classes that parse and manipulate JSON without

decreasing code coverage for non-JSON related classes.
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2.2 Preserving Method Sequence Patterns in
System-level TCG

EvoMaster is the state-of-the-art test case generation tool for Java

REST API testing. A test case, in this context, is a sequence of API

requests (i.e., HTTP requests) on specific resources [6, 7]. REpresen-

tational State Transfer (REST) APIs deal with states. Each individual

request changes the state of the API, and therefore, its execution

result depends on the state of the application (i.e., the previously

executed requests). This creates patterns of HTTP requests that

depend on each other. While the state-of-the-art algorithms can

successfully create promising sequences of HTTP requests, they do

not directly recognize and preserve them when creating new test

cases [50]. I argue that detecting and preserving patterns of HTTP

requests, hereafter referred to as linkage structures, improves the

effectiveness of the test case generation process.

I proposed a novel approach [44], named LT-MOSA that uses

Agglomerative Hierarchical Clustering (AHC) to infer these linkage

structures from automatically generated test cases in the context of

REST API testing. Specifically, AHC generates a Linkage Tree (LT)

model from the test cases that are the closest to reach uncovered

test targets (i.e., lines and branches). This model is used by the

genetic operators to determine which sequences of HTTP requests

should not be broken up and should be replicated in new tests.

To evaluate the feasibility and effectiveness of this approach, I

implemented this approach within EvoMaster. I performed an

empirical study [44] with 7 real-world benchmark web/enterprise

applications from the EvoMaster Benchmark (EMB) dataset. The

study compares the proposed approach against the two state-of-

the-art algorithms for system-level test generations implemented

in EvoMaster, namely Many Independent Objective (MIO) and

Many Objective Search Algorithm (MOSA). In the study, I answer

the following research questions:

RQ2.1 How does LT-MOSA perform compared to the state-of-the-art

approaches with regard to code coverage?

The results show that LT-MOSA covers significantly more test

targets (i.e., lines and branches) in 4 and 5 out of the 7 applica-

tions compared to MIO and MOSA, respectively. On average, the

approach covered 11.7 % more test targets than MIO (with a max

improvement of 66.5 %) and 8.5 % more than MOSA (with a max

improvement of 37.5 %).

RQ2.2 How effective is LT-MOSA compared to the state-of-the-art

approaches in detecting real-faults?

LT-MOSA can detect, on average, 27 and 18 unique real-faults

that were not detected by MIO and MOSA, respectively.

RQ2.3 How effective is LT-MOSA at covering test targets over time

compared to the state-of-the-art approaches?

LT-MOSA achieves higher AUC values than the baselines. Mean-

ing, it covers more targets in less time. For the largest application

(OCVN), LT-MOSA takes half of the time to reach the same coverage

compared to MOSA, while MIO never reaches this coverage.

Inferring and preserving linkage structures in REST APIs achieves

significantly higher code coverage and fault-detection capability

compared to the state-of-the-art approaches (i.e.,MIO and MOSA).

2.3 Creating a Hybrid Variational Operator for
Both Input-data and Method Sequences

Over the years, related work has used three types of encoding

schemata to represent test cases for search algorithms, namely data-

level, test case-level, and test suite-level. These schemata typically

implement genetic operators at the same level as the encoding. For

example, the crossover operator at the data-level exchanges data

between two input vectors [29]. The test case-level crossover ex-

changes statements between two parent test cases [46]. Lastly, the

test suite-level crossover swaps test cases within two test suites [19].

Recent studies have shown that the test case-level schema com-

bined with many-objective search is the most effective at generating

test cases with high coverage [12, 35]. The current many-objective

approaches use the single-point crossover to recombine groups of

statements within test cases. Test cases consist of both test struc-

tures (method sequences) and test data [46]. Hence, the crossover

operator only changes the test structure and simply copies over the

corresponding input data. Therefore, input data has to be altered

by the mutation operator, usually with a small probability.

I argue that better test case diversity can be obtained by de-

signing a crossover operator that alters both the structure of the

test cases as well as the input data by creating new data that is in

the neighborhood of the parents’ data. To validate this hypothe-

sis, I propose a new operator, called Hybrid Multi-level Crossover

(HMX ) [31], that combines different crossover operators onmultiple

levels. I implemented this hybrid operator within EvoSuite [19].

To evaluate the effectiveness of HMX , I performed an empirical

study [31] where I compare it with the single-point crossover used

in EvoSuite,w.r.t. structural coverage and fault detection capability.

To this aim, I have built a benchmark with 116 classes from the

Apache Commons and Lucene Stemmer projects, which include

classes for numerical operations and string manipulation. In the

study, I answer the following research questions:

RQ3.1 To what extent does HMX improve structural coverage com-

pared to the single-point crossover?

The study shows that HMX achieves higher structural cover-

age for ~30 % of the classes in the benchmark. On average, HMX ,

covered 6.4 % and 7.2 % more branches and lines than the baseline,

respectively (with a max improvement of 19.1 % and 19.4 %).

RQ3.2 How does HMX impact the fault-detection capability of the

generated tests?

HMX improved the fault detection capability in ~25 % of the

classes with an average improvement of 3.9 % (max. 14 %) and 2.1 %

(max. 12.1 %) for weak and strong mutation, respectively.

HMX significantly improves the structural coverage and fault

detection capability of the generated test cases compared to the

standard crossover operator used in EvoSuite (i.e., single-point).

2.4 Generating Complex Objects during TCG
from Behavioural Models

Seeding consists of injecting additional information (e.g., manually-

written test suites) for use in the search process to make it more
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effective [39]. A recent study proposed a method to infer a behav-

ioral model from the usage patterns of applications in the context of

crash reproduction [18]. I plan to build a model based on behavioral

patterns that can be used to seed the search process. I will evaluate

my proposed approach using the following research question:

RQ4.1 To what extend does the complex objection generation improve

the effectiveness of TCG?

2.5 Improving Search Guidance for Explicit
Contracts and Declarative Input Validation
Rules

Popular Java frameworks make use of annotations (e.g., @NotNull)
to check for the validity of input parameters [26]. In Solidity, a

require function exists that is used for authority and validity checks

to protect smart contracts against invalid requests [24]. These con-

structs halt the execution of a method or program when their condi-

tions are not met. Since these constructs are not part of the control

flow of the method they are applied to, the EA has no guidance

on how to satisfy the condition within them. This creates partially

flat fitness landscapes, forcing the EA to resort back to random

testing. I plan to restore the fitness gradient in the landscape by us-

ing interprocedural control dependency analysis to determine how

these constructs influence the execution of the method under test

at runtime and provide this information to the EA. I will evaluate

my proposed approach using the following research question:

RQ5.1 To what extend does interprocedural control dependency anal-

ysis improve the effectiveness of TCG for design by contract

constructs?

2.6 Improving the Effectiveness of Regression
testing

Regression testing aims to assess that changes to the production

code do not affect the behavior of unchanged parts [55]. Running the

entire test suite within a DevOps pipeline quickly becomes unfeasi-

ble for very large systems [48]. Various techniques were developed

to reduce the cost of regression testing [15, 40, 41]. Multi-objective

Evolutionary Algorithms (MOEAs), and NSGA-II in particular, have
been successfully used in the literature to produce Pareto efficient

subsets of the test suites w.r.t. different testing criteria [52, 53, 55].

Test case selection is inherently a multi-objective problem since

developers want to maximize the coverage of the selected subset

but minimize the cost of running it. MOEAs that rely on Pareto

ranking and problem decompositions have been shown to achieve

good performance also compared to greedy algorithms and local

solvers [53]. One limitation for classic MOEAs (including NSGA-II)
is that new solutions are generated using fully randomized recom-

bination (crossover) operators [45, 49]. This could destroy potential

promising patterns that can be created by MOEAs. While linkage

learning has been shown to be effective for single-objective nu-

merical problems [38, 45, 49], we argue that it can also have huge

potential for multi-objective test case selection.

To address these limitations, I proposed a novel approach [32],

named L2-NSGA, a variant of NSGA-II that integrates key elements
of linkage learning for the test case selection problem. In partic-

ular, L2-NSGA uses Agglomerative Hierarchical Clustering (AHC)

to identify linkage structures in the non-dominated solutions pro-

duced by NSGA-II in every other generation. Then, L2-NSGA uses
a novel crossover operator that stochastically selects and replicates

some of the inferred structures into new individuals.

I performed an empirical study [32] on four software systems

with multiple versions and regression faults. The study compares

the quality and fault detection capability of the solutions produced

by L2-NSGA against NSGA-II, which is the most widely-employed
MOEA in the regression testing literature (e.g., [37, 42, 52, 54]). In

the study, I answer the following research questions:

RQ6.1 To what extent does L2-NSGA produce better Pareto efficient
solutions compared to NSGA-II?

The study shows that the sub-test suites produced by L2-NSGA
achieve higher coverage while incurring lower execution costs than

the baseline, as measured by +23% increase in hypervolume for

bash v3.

RQ6.2 What is the cost-effectiveness of the solution produced by

L2-NSGA vs. NSGA-II?

The solutions created by L2-NSGA detect more regression faults
than the solutions produced by NSGA-II, as measured by +18%
increase in fault-detection for bash v3.

L2-NSGA produces better trade-offs between cost and coverage
than its predecessor NSGA-II (the baseline), which is widely used
in the literature.

2.7 Improving the tooling

Two existing state-of-the-art TCG tools for Java are EvoSuite [19]

(unit-level) and EvoMaster [6] (system-level). Recently, a TCG tool

was published for Python [25]. One of the limiting factors for the

lack of adoption of TCG techniques in industry is the absence of

production-level tooling [14]. I plan to create a new testing frame-

work for Javascript that will integrate the different research focus

areas. I will evaluate my proposed framework using the following

research questions:

RQ7.1 How effective is the proposed testing framework w.r.t. code

coverage?

RQ7.2 What is the fault-detection capability of the proposed testing

framework?

3 TIMELINE

I am currently halfway through my 4 year Ph.D. program. In my

third year, I plan to work onmy research focus areas 4 and 5. Tooling

is an ongoing project that I plan to complete in my fourth year.
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