
978-1-6654-7847-2/21/$31.00 ©2021 IEEE

43

The Architecture of Konrad Zuse’s Z4 Computer

Raúl Rojas

Freie Universität Berlin

Berlin, Germany

rojas@inf.fu-berlin.de

Abstract—This paper describes the programming

architecture of Konrad Zuse’s Z4 computer. The machine’s

logic was implemented with telephone relays while the memory

was a mechanical attachment. It was the successor to the Z3

machine completed in 1941. The Z4 was assembled over the next

four years, until German capitulation. In its first embodiment,

the machine featured 64 words of mechanical memory, two CPU

registers, one punched tape reader and one tape puncher. The

keyboard accepted decimal input, but the internal numerical

representation was fully binary, based on a particular floating-

point format. The computer had a relatively large instruction

set of arithmetical operations. In 1949, the Swiss Federal

Institute of Technology in Zürich decided to lease-buy the Z4

from Zuse’s fledgling computer company. An additional

punched tape unit for reading auxiliary programs or number

tables was added, and the instructions necessary for calling

subprograms, as well as the conditional jump, were included in

the instruction set.

Keywords—Konrad Zuse, Versuchsmaschine 4, computer

architecture

I. INTRODUCTION

The Z4 was a computer designed and built by Konrad Zuse
between 1941 and 1945 (the original name was
“Versuchsmaschine 4”, or V4). It represents a milestone in the
history of computing in Germany. This machine was the
culmination of the chain of innovations launched by the
German inventor with the Z1, a mechanical computer
completed in 1938 in Berlin. The further embodiment of the
same general architecture was the Z3, a machine built from
telephone relays and demonstrated in 1941. The completed Z4
was the commercial computer Zuse had been struggling to
build for so many years. The Z1, Z3 and Z4 shared a few
fundamental principles that we recognize today as constitutive
of modern computers: all ofthem had a processor distinct from
memory, their design was fully binary with decimal input,
computations were performed using floating-point hardware,
registers were available in the CPU, and all operations were
microprogrammed. However, the programs were held in an
external medium, i.e., a punched tape. This control tape could
be made to loop just by gluing its two ends. The Z4 was
Konrad Zuse’s vision finally materialized: it took him nine
years to arrive at this concluding iteration. He had started
working long before the war, in 1936, but the bulk of the
development effort for the Z4 was done while WWII was
raging in Europe [1].

The story of the Z1 and Z3 machines has been well
documented [2, 3, 4]. The Z1 was built between 1936 and
1938 using mechanical logic gates. They consisted of rods and
plates whose movement or non-movement could be
interpreted as a binary 1 or a 0 [5, 6]. But the mechanical
components of the Z1 were not reliable enough. Therefore,
Zuse decided to use telephone relays for the Z3 instead [7]. He
built a small “proof of concept” prototype of the processor,
called the Z2, a machine which was never meant to be a
complete computer. After this experiment, he started building

the Z3, which was like the Z1, but worked with electricity. In
this paper, I refer the reader to the studies cited above, which
explain in detail the floating-point circuits used by Zuse, in
part also for the Z4. Here, I will describe mainly the
architecture of the Z4 from the point of view of the
programmer. This is what is sometimes called the “functional”
or “programming” architecture of a computer. Fig. 1 shows
the Z4 as it stands today in the history of computing hall of
Deutsches Museum in Munich. The console is in the front and
the circuits built from relays are in the back.

Fig. 1 The Z4 at Deutsches Museum. The console is visible in the

foreground. In the background, we can see the racks of telephone

relays used for the logic components. The two tape readers are

visible in the center of the console. The right side of the console is

used for entering instructions and addresses. The left side is used

for entering decimal numbers, which are displayed in a lamp array

similar to the keyboard of a vintage cash register. Results could be

printed with the electric typewriter on the left.

Konrad Zuse’s relatives and a Berlin instrument maker
financed the construction of the Z1. The Z3 was built while
Zuse was working part time for the Henschel Werke
developing airplanes and flying bombs during WWII. Zuse
dedicated the bulk of his working time to his own company,
which was classified as necessary for the war effort. After the
successful demonstration of the Z3, Zuse obtained a contract
from an aerodynamics institute (Deutsche Versuchsanstalt für
Luftfahrt) for the development of a more ambitious machine,
that is, the Z4, which was assembled in Zuse’s workshop [2].
A few weeks before the Russian Army occupied Berlin, the
Z4 was transported to Bavaria, where it remained until 1949.

II. BLOCK ARCHITECTURE

It is easier to describe the architecture of the Z4 from the
point of view of a programmer by referring to a block diagram
containing the essential components (Fig. 2, based on [8]).

Programs for the Z4 were encoded in punched tapes. The
main reader, At0, could read one instruction at a time and
advance the tape. The control unit transformed each
instruction into a sequence of microinstructions for the central
processing unit. The processor contained two registers (OR-I
and OR-II, also called register 𝑥 and register 𝑦, respectively).
Data read from memory was loaded to these registers and then

20
21

 7
th

 IE
EE

 H
is

to
ry

 o
f E

le
ct

ro
te

ch
no

lo
gy

 C
on

fe
re

nc
e

(H
IS

TE
LC

O
N

) |
 9

78
-1

-6
65

4-
78

47
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
IS

TE
LC

O
N

52
39

4.
20

21
.9

78
73

24

44

operations requiring two arguments, such as addition or
multiplication, were executed with their contents. The result
was always rewritten into the first register (OR-I). There was
an instruction for storing the contents of OR-I to a specified
memory address. The machine had 64 memory words, with
addresses 0 to 63.

Fig. 2 The block architecture of the Z4 with its main components,

as explained in the text. The diagram is based on [8].

The processor of the Z4 computed all arithmetical
operations using floating-point. The format in memory was
similar to alternatives used today. The Z4 used seven bits of
each memory word for encoding the exponent (in two’s
complement representation), 23 bits for encoding the
mantissa, and one bit for encoding the sign of the number [8].
An additional bit was used to flag “special values”, such as
infinity and “indefinite”, or “not a number”, as we would say
today (NaN). Therefore, each word of memory consisted of
32 bits.

The Z4 could be used as a kind of manually triggered
calculator: the operator could enter decimal numbers through
the decimal keyboard, these were transformed into the
floatingpoint representation of the Z4, and were loaded to the
CPU registers, first to OR-I, then to ORII. Then, it was
possible to start an operation using the “operations keyboard”
(an addition, for example). The result was held in OR-I and
the user could continue loading numbers and computing. The
result in OR-I could be made visible in decimal notation by
transferring it to a decimal lamp array (at the push of a button).
It could also be printed using an electric typewriter.

The operator could also use the instructions keyboard to
punch a program directly to a tape. Electronics in the console
translated keypunches into the appropriate binary code for
each instruction. This procedure semi-automated the creation
of new programs, which for the Z3 still had to be manually
encoded by the programmer in binary notation. The CPU
could also control the tape puncher directly. It was then
possible to store the binary representation of tables of numbers
in punched tapes. The table could be reused later, using the
secondary tape reader. It was even possible to compute the
binary code for program instructions and punch them in a tape
(the program doing this was then a “superprogram”; today it
would be a kind of compiler).

The secondary tape reader, At1, could be used to execute
a subprogram. While At0 was reading instructions from the
main program, control could be transferred to At1 by the
control unit. The operator would have previously loaded a tape
from a library of subprograms in At1. When control returned

to At0, a new tape could be loaded in At1, in case a new
subprogram would be needed afterwards. At1 could also be
loaded with a table of numbers produced by the tape puncher,
and when one of those numbers was needed during execution,
the appropriate instruction could load the next number
available at At1 to one of the registers.

The Z4 could only use absolute addresses (there was no
relative addressing). Therefore, even when it wa feasible to
simulate a programming a loop through the simple expedient
of gluing the ends of a tape, it was not possible to make an
indexing variable point sequentially to a range of addresses,
with the purpose of reading them one by one. But in that case,
the tape reader At1 could be used as a kind of substitute, since
the tape advanced each time a number was read from it.

If I had to summarize the Z4 (of 1950) for an audience of
modern computer practitioners in just a few words, I would
say that the Z4 was a programmable machine featuring 64
words of memory. It had a floating-point CPU with two
registers, and used two punched tape readers to read
programming code, one of which could be also used as an
external numerical memory or for library tapes. The bulk of
the instruction set was dedicated to arithmetical operations,
but subroutines could be called (one level deep) and there was
a conditional jump instruction. The output of the machine
could be visualized in the console using lamps, or printed.

III. ARCHITECTURAL DETAILS

There are a few idiosyncrasies of the Z4 that it is
convenient to explain at this point. The first surprise is that
while the control part of the Z4 was designed using telephone
relays, the memory was a mechanical apparatus. Zuse was a
master of mechanical design and his first computer was built
using entirely mechanical components. For the Z4, Zuse
returned to a mechanical memory because telephone relays
were expensive and bulky at that time. He reckoned that he
could build the mechanical components necessary for storing
memory bits more economically and needing much less
volume using his so-called “mechanical relays”. His original
intention was to build a mechanical memory of up to one
thousand words in a small volume. The first iteration of the Z4
contained only one bank of memory of 64 words. But it
required much less space than the equivalent memory built
with relays (as had been done for the Z3). We don’t know how
much calculating speed was lost by reading from a mechanical
instead of a relay-memory. However, such loss was lessened
by making the memory work in parallel with the processor. It
must be said, though, that the mechanical memory proved to
be reliable enough during the many years the Swiss Federal
Institute of Technology (ETH) operated the machine in
Zürich, although it had been the main concern when the
machine was leased [9]. However, assiduous users of the
machine complained about occasional problems when parts of
the mechanical memory jammed [10].

45

Fig. 3 Picture of the mechanical memory of the Z4 at the ETH in

Zurich

As explained before, the floating-point format used by
Zuse reserved 7 bits for the exponent, in two’s complement
representation, so that the range of possible binary exponents
ran from -64 to +63. The mantissa was stored using
normalized floating-point, where the leading bit before the
binary point is always one. In total, 23 bits were needed to
store the mantissa in memory, but the representation was
expanded to 24 bits in the processor (supplying the leading
one). One bit was used for the sign of the number, and another
to signal the presence of a special value, so that a total of 32
bits were necessary to store a number in memory. There was
a special coding for zero (which cannot be represented as a
normalized floating-point number), and also for infinity and
not a number (NaN) which was called an “indefinite value”
and was represented symbolically by Zuse as “?”. Dividing
zero by zero, for example, could produce a “?”. The special
coding for zero, infinity and NaN is not documented in the
programming manual. We only know about the additional bit
that was used to differentiate between normal numbers and
special values [8].

Entering a decimal number through the decimal keyboard
required pushing one of ten buttons for each specific decimal
digit, one by one, and then the exponent. The result was
visualized with an array of nine columns of lamps. Every
column had a lamp for the digits zero to nine. The specific
decimal digit at each decimal position, for every one of the
nine columns, was lit and the operator could write down the
result produced by the machine. That lamp array can be seen
on the upper left of the console in Fig. 1. The nine full columns
for decimal digits are evident. The position of the decimal
point in the mantissa was indicated with an additional row of
lamps under every column (only one “decimal point” lamp
would be switched on). The exponent of the result was shown
with additional lamps. There were also lamps for the sign, and
to indicate underflow, overflow (infinity) or not a number,
indicated by a lamp with a question mark.

IV. THE ARITHMETICAL INSTRUCTION SET

The instructions for the Z4 were implemented using
microoperations, as in the Z3. For every operation there was a
control sequencer, which was just a circular mechanical
stepper advancing from one position to the next, like a clock.
At every microstep, different circuits of the processor were
activated and this produced the information flow in the Z4.
Such a microcoded architecture was first developed for the Z1,
and rotary microsteppers were used for the Z3 [7] and Z4.

Microcoding made Zuse’s machines very flexible. New
operations could be created by simply installing a new stepper.

Every program (punched tape) for the Z4 started with the
instruction “St”. The end of the code was signaled with the
instruction “Fin”. The Z4 advanced a new tape until the first
“St” appeared.

The Z4 performed arithmetical operations with one or two
arguments. In what follows, the first register (OR-I) is
abbreviated as “𝑥” and the second as “𝑦”. The operations with
a single argument included nine multiplications by constants
(the divisions were transformed into multiplications). The
binary representation of the constants was hardwired in the
machine:

−𝑥 2𝑥 10𝑥 𝜋𝑥 𝑥/2 𝑥/3 𝑥/5 𝑥/7 𝑥/𝜋

Additional one single argument operations were:

𝑥2 √𝑥 |𝑥| sgn(𝑥) max(0, 𝑥)

Two argument operations were:

𝑥 + 𝑦 𝑥 − 𝑦 𝑦 − 𝑥 𝑥 × 𝑦 𝑥/𝑦 max(𝑥, 𝑦) min (𝑥, 𝑦)

The instructions for reading and writing to memory were
“A n” and “S n”, where n represents the memory address. The
first A-instruction would load register 1, while the next A-
instruction would load register 2. It was also possible to read
a number from the tape reader using the command ↗ 𝑚, where
m is a number which has been stored in the punched tape
immediately after the arrow-up command.

When the Z4 was running, it could request decimal input
from the operator. The instruction to request manual input was
↗. The result contained in register 𝑥 could be shown activating
the console decimal lamps using the instruction ↘, or it could
be printed using the instruction D, immediately after ↘.

There were a few additional special commands used for
formatting the output, or for making possible certain
combinations of otherwise prohibited instruction sequences.
For example, due to the slow mechanical memory, the
processor would be too fast. It was not possible to store a result
to an address and read the address immediately. The
programmer had to be careful and wait a certain number of
instructions for the memory to be addressable again. This
confirms that access to memory was partly asynchronous,
relative to the processor, in order not to slow the latter down.
Prohibited sequences of operations, in terms of timing, made
the machine stop during execution [9]. An expert programmer
reviewed the code of the users to make sure that forbidden
combinations of instructions were not present.

And that’s it. This was the instruction set used by the Z4
until 1945 [11]. It was effectively a superset of the instruction
set of the Z3 and the main missing ingredient is, of course,
conditional branching and being able to call subroutines. In
fact, the tape reader At1 in Fig. 1 was included after 1945, and
the instruction set was extended to deal with conditionals.

Fig. 4 shows a diagram produced by Zuse’s company
before the Z4 was leased to the ETH in Zurich. The
mechanical memory has the label 10. There is only one tape
reader (8) and the tape puncher (7). The processor logic was
housed in the relay casings 1 to 4. There is no electrical
typewriter. A planar array of lamps (5b) organized in rows and
columns could be used to light up a specific lamp under a sheet

46

of paper, signaling to the operator the name of the variable that
had to be entered if the machine stopped for manual input. The
programmer had to take care of switching on the correct lamp,
which was reached by going down in the rows and to the right,
using special instructions embedded in the code stream. This
was the state of development of the Z4 until 1945 and before
the ETH became interested in the machine.

Fig. 4 The Z4 after 1945 und until 1949 [12].

V. CONDITIONALS AND CONTROL TRANSFER

Konrad Zuse explains in his memoirs that the Z4 was
transported out of Berlin a few days before the downfall of the
city. The machine spent several years in a cellar in Bavaria.
The Swiss mathematician Stifel heard about the computer,
visited Zuse in 1949, and was able to see the Z4 working
properly. His university, the ETH, decided to lease the
machine, with an option to buy it at the end of five years, but
important modifications had to be made beforehand, the main
one being the inclusion of conditional branching. Zuse
complied, and in 1950 the Z4 was delivered to the ETH [13,
10]. It was the first commercial computer rented or sold by
any company in continental Europe.

The conditional jump promised to Stifel was implemented
by Zuse using the new instruction “Sp” (for “Sprung”, in
German). If the contents of register 𝑥 is +1, then the punched
tape is rolled down until a new start instruction is found in the
tape (that is, “St”). Execution continues normally from that
point on.

Before a conditional instruction could be executed, it was
necessary to compute a logical result in register 𝑥. For this
purpose, there were five arithmetical test operations. The
operations prove if a condition is fulfilled. The test “𝑥 =? ",
for example, verifies whether the result of the previous
operation was a NaN or not. A successful test fills the register
𝑥 with +1, otherwise with −1. The logical-test operations
were:

𝑥 = 0 𝑥 ≥ 0 |𝑥| = ∞ 𝑥 =? |𝑥| >= 1

The instruction “Up” was used for transferring control to
subroutines. Execution continued at the current position of the
punched tape in At1 and control was returned to At0 when the
instruction “Fin” was reached in the subprogram. There was a
conditional variation of Up and Fin which is less relevant to

the discussion here (see [14] for a full discussion of subroutine
transfer and conditional jumps in the Z4).

Fig. 3 shows the lamps in the console for the complete
instruction set.

Fig. 5 The complete instruction set in the console lamps of the Z4.

The last row of logical operations to the left is not covered in the

programming handbook.

After the new conditional and control transfer instructions
were introduced, it was possible to call subroutines. The
additional tape reader also allowed the programmer to use the
secondary tape for reading numbers punched by another
program.

However, there is a problem with this implementation of
the conditional jump. The program can only jump down in the
code. But programming loops require reusing previous code,
so that the jump has to be taken upwards in the instruction
sequence. The solution in the Z4 was to glue the punched tape,
making the code execute in a cycle. The programming manual
of the Z4 explains how to glue the tape and also that a
minimum length of 50 cm is required so that the tape does not
jam. If the loop was shorter, several copies of the code had to
be punched one after the other until the minimum tape length
was attained. This is called “loop unrolling” and it was used
in the Z4 so that the punched tape could meet the minimum
specified length.

Zuse’s way of implementing the conditional jump is
unsatisfactory, because either the programmer resigns to
having a single loop in the code, or several possible tricks have
to be applied [15]. One trick would be to have the body of the
loop as external code in At1 that can be called a fixed number
of times in the main program. The other would be to assign a
sequential number to all loops in a program and arrange them
into a single loop of tape. Then, during execution, we would
only enter in the loop guarded by a conditional comparison
placed before the loop body. This is cumbersome and it would
be interesting if actual code of the Z4 users could be found to
see how they solved this problem. Notice that Charles
Babbage, who used punched cards strung together, designed
the conditional jump to go up into the stream of cards precisely
so that loops could be implemented easily [16].

Since the Z4 did not have indirect addressing capabilities,
notice that loops that need to address memory sequentially are
difficult to implement. Adding 20 numbers in memory, for
example, would require specifying the 20 addressing

47

instructions with the consecutive absolute addresses. The
alternative would be to use the tape reader At1 so that the
numbers can be read one by one from that reader without
having to specify absolute addresses. The sequencing of the
data is then done automatically when the reader advances.
Charles Babbage had the same difficulty with the Analytical
Engine, but he envisioned making the stream of “number
cards” bidirectionally steerable, so that interesting
combinations of data input could be achieved when running
loops [17].

VI. CONCLUSIONS

From a contemporary point of view, the architecture of the
Z4 can be readily explained using modern terminology. And
that is actually the biggest surprise when thinking about this
machine and comparing it with the computers designed up to
1945.

The first comparison that comes to mind is with the
Analytical Engine. Zuse’s Z1 was actually something like
Babbage’s dream materialized, in the sense that all important
arithmetical operations were implemented using only
mechanical means. The AE went further, though, since it
included conditional instructions, so important for universal
computation, at least on paper. Curiously, Zuse did not include
the conditional jump as a programming instruction in the Z1
or Z3, or in the Z4 (until 1945). Zuse referred to the programs
that could be written in this way as “rigid” because he was
fully aware that conditional instructions could make
programming “flexible”. In fact, the microcode in all his
machines was based on conditional execution. Not including
it for the high-level programming was the main shortcoming
of the Z1, Z3 and Z4, which could not be fully avoided using
the glued-tape approach (although there are ways of
programming a universal computer with a single loop, [15]).

The Z4 was a floating-point machine. Neither the Harvard
Mark I, nor the ENIAC used floating point. Both of them used
a fixed-point representation. Actually, neither the Mark I nor
the ENIAC was fully binary. The internal representation for
numbers was decimal, using gears in the case of the Mark I,
and arrays of vacuum tubes in the case of the ENIAC. The Z1
was already completely binary when it was finished in 1938.

The separation of memory and processor is also complete
and pervasive in Zuse’s machines. In the Mark I and the
ENIAC, memory and processor are still intermixed, since
memory words are used as accumulators for arithmetical
operations. Even the Analytical Engine is superior in that
respect, since the storage was completely separated from the
mill, and they even ran independently, each one using its own
set of punched cards.

The ENIAC did not have a conditional jump until a trick
was found so that data cables could be used to provide start
pulses for accumulators. This required hardwiring the
machine appropriately. Curiously, the ENIAC did not execute
code. The code was embedded in the way the machine was
hardwired, and the connections had to be rearranged for each
new problem.

As we can see, all of these machines brought something
new in terms of the computing architectures that would
become possible in later years. At some point, all of them have
been called the “first computer”. However, I think that a
comparison of their architectures confirms that we can only
talk about the “first computers”, in plural, since the dawn of

the third industrial revolution was an endeavor that went
beyond national boundaries. The start of the computer age was
a collective enterprise whose first creative spark actually
flashed during the heyday of the first industrial revolution with
the inception of the Analytical Engine.

REFERENCES

[1] K. Zuse, Der Computer - Mein Lebenswerk, Springer-Verlag, Berlin,
1984.G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
(references)

[2] H. Petzold, Moderne Rechenkünstler, C.H. Beck Verlag, 1992.

[3] R. Rojas, “How to make Konrad Zuse's Z3 a universal computer”,
IEEE Annals of the History of Computing, Vol. 20, N. 3, pp. 51-54,
1998.

[4] R. Rojas, J. Röder, H. Nguyen, “Die Prozessorarchitektur der
Rechenmaschine Z1”, Informatik-Spektrum, Vol. 37, N. 4, Springer-
Verlag, June 2014.

[5] R. Rojas, “The Z1: Architecture and Algorithms of Konrad Zuse’s First
Computer“, arXiv 1406.1886, June 2014.

[6] R. Rojas, “The Design Principles of Konrad Zuse’s Mechanical
Computers”, arXiv, March 2016.

[7] R. Rojas, “Konrad Zuse's legacy: the architecture of the Z1 and Z3”,
Annals of the History of Computing, Vol. 19, N. 2, 1997, pp. 5-16.

[8] K. Zuse, „Bedienungsanweisung für Zuse Z4“, ETH Zurich, 1952.

[9] A. Speiser, “Über Episoden aus den Anfängen der Informatik an der
ETH“, Informatik Spektrum, V. 31, N. 6, 2008.

[10] H. Bruderer, Konrad Zuse und die Schweiz, Technical Report, ETH
Zurich, permanent link: https://doi.org/10.3929/ethz-a-006517565.

[11] K. Zuse, “Rechenpläne für das Rechengerät V4“, Zuse Papers,
Deutsches Museum NL 207/0230, 1945.

[12] K. Zuse, „Zuse Calculators“, Zuse Papers 010/017, 1946.

[13] A. Speiser, “Konrad Zuse’s Z4: Architecture, Programming, and
Modifications at the ETH Zurich”, in: R. Rojas, U. Hashagen (eds.),
The First Computers - History and Architectures, MIT Press,
Cambridge, Mass., 2000.

[14] R. Rojas, “Konrad Zuse und der bedingte Sprung”, Informatik-
Spektrum, Springer-Verlag, September 2013.

[15] R. Rojas (ed.), Die Rechenmaschinen von Konrad Zuse, Springer-
Verlag, Berlin, 1998.

[16] Allan Bromley, “Babbage’s Analytical Engine Plans 28 and 28a—The
Programmer’s Interface”, in: Annals of the History of Computing, V.
22, N. 4, Oct. 2000.

[17] R. Rojas, “The Computer programs of Charles Babbage”, accepted by
IEEE Annals of the History of Computing, accepted for publication.

