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Abstract—This paper describes the programming 

architecture of Konrad Zuse’s Z4 computer. The machine’s 

logic was implemented with telephone relays while the memory 

was a mechanical attachment. It was the successor to the Z3 

machine completed in 1941. The Z4 was assembled over the next 

four years, until German capitulation. In its first embodiment, 

the machine featured 64 words of mechanical memory, two CPU 

registers, one punched tape reader and one tape puncher. The 

keyboard accepted decimal input, but the internal numerical 

representation was fully binary, based on a particular floating-

point format. The computer had a relatively large instruction 

set of arithmetical operations. In 1949, the Swiss Federal 

Institute of Technology in Zürich decided to lease-buy the Z4 

from Zuse’s fledgling computer company. An additional 

punched tape unit for reading auxiliary programs or number 

tables was added, and the instructions necessary for calling 

subprograms, as well as the conditional jump, were included in 

the instruction set. 

Keywords—Konrad Zuse, Versuchsmaschine 4, computer 

architecture 

I. INTRODUCTION 

The Z4 was a computer designed and built by Konrad Zuse 
between 1941 and 1945 (the original name was 
“Versuchsmaschine 4”, or V4). It represents a milestone in the 
history of computing in Germany. This machine was the 
culmination of the chain of innovations launched by the 
German inventor with the Z1, a mechanical computer 
completed in 1938 in Berlin. The further embodiment of the 
same general architecture was the Z3, a machine built from 
telephone relays and demonstrated in 1941. The completed Z4 
was the commercial computer Zuse had been struggling to 
build for so many years. The Z1, Z3 and Z4 shared a few 
fundamental principles that we recognize today as constitutive 
of modern computers: all ofthem had a processor distinct from 
memory, their design was fully binary with decimal input, 
computations were performed using floating-point hardware, 
registers were available in the CPU, and all operations were 
microprogrammed. However, the programs were held in an 
external medium, i.e., a punched tape. This control tape could 
be made to loop just by gluing its two ends. The Z4 was 
Konrad Zuse’s vision finally materialized: it took him nine 
years to arrive at this concluding iteration. He had started 
working long before the war, in 1936, but the bulk of the 
development effort for the Z4 was done while WWII was 
raging in Europe [1]. 

The story of the Z1 and Z3 machines has been well 
documented [2, 3, 4]. The Z1 was built between 1936 and 
1938 using mechanical logic gates. They consisted of rods and 
plates whose movement or non-movement could be 
interpreted as a binary 1 or a 0 [5, 6]. But the mechanical 
components of the Z1 were not reliable enough. Therefore, 
Zuse decided to use telephone relays for the Z3 instead [7]. He 
built a small “proof of concept” prototype of the processor, 
called the Z2, a machine which was never meant to be a 
complete computer. After this experiment, he started building 

the Z3, which was like the Z1, but worked with electricity. In 
this paper, I refer the reader to the studies cited above, which 
explain in detail the floating-point circuits used by Zuse, in 
part also for the Z4. Here, I will describe mainly the 
architecture of the Z4 from the point of view of the 
programmer. This is what is sometimes called the “functional” 
or “programming” architecture of a computer. Fig. 1 shows 
the Z4 as it stands today in the history of computing hall of 
Deutsches Museum in Munich. The console is in the front and 
the circuits built from relays are in the back. 

 

Fig. 1 The Z4 at Deutsches Museum. The console is visible in the 

foreground. In the background, we can see the racks of telephone 

relays used for the logic components. The two tape readers are 

visible in the center of the console. The right side of the console is 

used for entering instructions and addresses. The left side is used 

for entering decimal numbers, which are displayed in a lamp array 

similar to the keyboard of a vintage cash register. Results could be 

printed with the electric typewriter on the left. 

Konrad Zuse’s relatives and a Berlin instrument maker 
financed the construction of the Z1. The Z3 was built while 
Zuse was working part time for the Henschel Werke 
developing airplanes and flying bombs during WWII. Zuse 
dedicated the bulk of his working time to his own company, 
which was classified as necessary for the war effort. After the 
successful demonstration of the Z3, Zuse obtained a contract 
from an aerodynamics institute (Deutsche Versuchsanstalt für 
Luftfahrt) for the development of a more ambitious machine, 
that is, the Z4, which was assembled in Zuse’s workshop [2]. 
A few weeks before the Russian Army occupied Berlin, the 
Z4 was transported to Bavaria, where it remained until 1949. 

II. BLOCK ARCHITECTURE 

It is easier to describe the architecture of the Z4 from the 
point of view of a programmer by referring to a block diagram 
containing the essential components (Fig. 2, based on [8]). 

Programs for the Z4 were encoded in punched tapes. The 
main reader, At0, could read one instruction at a time and 
advance the tape. The control unit transformed each 
instruction into a sequence of microinstructions for the central 
processing unit. The processor contained two registers (OR-I 
and OR-II, also called register 𝑥 and register 𝑦, respectively). 
Data read from memory was loaded to these registers and then 
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operations requiring two arguments, such as addition or 
multiplication, were executed with their contents. The result 
was always rewritten into the first register (OR-I). There was 
an instruction for storing the contents of OR-I to a specified 
memory address. The machine had 64 memory words, with 
addresses 0 to 63. 

 

Fig. 2 The block architecture of the Z4 with its main components, 

as explained in the text. The diagram is based on [8]. 

The processor of the Z4 computed all arithmetical 
operations using floating-point. The format in memory was 
similar to alternatives used today. The Z4 used seven bits of 
each memory word for encoding the exponent (in two’s 
complement representation), 23 bits for encoding the 
mantissa, and one bit for encoding the sign of the number [8]. 
An additional bit was used to flag “special values”, such as 
infinity and “indefinite”, or “not a number”, as we would say 
today (NaN). Therefore, each word of memory consisted of 
32 bits. 

The Z4 could be used as a kind of manually triggered 
calculator: the operator could enter decimal numbers through 
the decimal keyboard, these were transformed into the 
floatingpoint representation of the Z4, and were loaded to the 
CPU registers, first to OR-I, then to ORII. Then, it was 
possible to start an operation using the “operations keyboard” 
(an addition, for example). The result was held in OR-I and 
the user could continue loading numbers and computing. The 
result in OR-I could be made visible in decimal notation by 
transferring it to a decimal lamp array (at the push of a button). 
It could also be printed using an electric typewriter. 

The operator could also use the instructions keyboard to 
punch a program directly to a tape. Electronics in the console 
translated keypunches into the appropriate binary code for 
each instruction. This procedure semi-automated the creation 
of new programs, which for the Z3 still had to be manually 
encoded by the programmer in binary notation. The CPU 
could also control the tape puncher directly. It was then 
possible to store the binary representation of tables of numbers 
in punched tapes. The table could be reused later, using the 
secondary tape reader. It was even possible to compute the 
binary code for program instructions and punch them in a tape 
(the program doing this was then a “superprogram”; today it 
would be a kind of compiler). 

The secondary tape reader, At1, could be used to execute 
a subprogram. While At0 was reading instructions from the 
main program, control could be transferred to At1 by the 
control unit. The operator would have previously loaded a tape 
from a library of subprograms in At1. When control returned 

to At0, a new tape could be loaded in At1, in case a new 
subprogram would be needed afterwards. At1 could also be 
loaded with a table of numbers produced by the tape puncher, 
and when one of those numbers was needed during execution, 
the appropriate instruction could load the next number 
available at At1 to one of the registers. 

The Z4 could only use absolute addresses (there was no 
relative addressing). Therefore, even when it wa feasible to 
simulate a programming a loop through the simple expedient 
of gluing the ends of a tape, it was not possible to make an 
indexing variable point sequentially to a range of addresses, 
with the purpose of reading them one by one. But in that case, 
the tape reader At1 could be used as a kind of substitute, since 
the tape advanced each time a number was read from it. 

If I had to summarize the Z4 (of 1950) for an audience of 
modern computer practitioners in just a few words, I would 
say that the Z4 was a programmable machine featuring 64 
words of memory. It had a floating-point CPU with two 
registers, and used two punched tape readers to read 
programming code, one of which could be also used as an 
external numerical memory or for library tapes. The bulk of 
the instruction set was dedicated to arithmetical operations, 
but subroutines could be called (one level deep) and there was 
a conditional jump instruction. The output of the machine 
could be visualized in the console using lamps, or printed. 

III. ARCHITECTURAL DETAILS 

There are a few idiosyncrasies of the Z4 that it is 
convenient to explain at this point. The first surprise is that 
while the control part of the Z4 was designed using telephone 
relays, the memory was a mechanical apparatus. Zuse was a 
master of mechanical design and his first computer was built 
using entirely mechanical components. For the Z4, Zuse 
returned to a mechanical memory because telephone relays 
were expensive and bulky at that time. He reckoned that he 
could build the mechanical components necessary for storing 
memory bits more economically and needing much less 
volume using his so-called “mechanical relays”. His original 
intention was to build a mechanical memory of up to one 
thousand words in a small volume. The first iteration of the Z4 
contained only one bank of memory of 64 words. But it 
required much less space than the equivalent memory built 
with relays (as had been done for the Z3). We don’t know how 
much calculating speed was lost by reading from a mechanical 
instead of a relay-memory. However, such loss was lessened 
by making the memory work in parallel with the processor. It 
must be said, though, that the mechanical memory proved to 
be reliable enough during the many years the Swiss Federal 
Institute of Technology (ETH) operated the machine in 
Zürich, although it had been the main concern when the 
machine was leased [9]. However, assiduous users of the 
machine complained about occasional problems when parts of 
the mechanical memory jammed [10]. 
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Fig. 3 Picture of the mechanical memory of the Z4 at the ETH in 

Zurich 

As explained before, the floating-point format used by 
Zuse reserved 7 bits for the exponent, in two’s complement 
representation, so that the range of possible binary exponents 
ran from -64 to +63. The mantissa was stored using 
normalized floating-point, where the leading bit before the 
binary point is always one. In total, 23 bits were needed to 
store the mantissa in memory, but the representation was 
expanded to 24 bits in the processor (supplying the leading 
one). One bit was used for the sign of the number, and another 
to signal the presence of a special value, so that a total of 32 
bits were necessary to store a number in memory. There was 
a special coding for zero (which cannot be represented as a 
normalized floating-point number), and also for infinity and 
not a number (NaN) which was called an “indefinite value” 
and was represented symbolically by Zuse as “?”. Dividing 
zero by zero, for example, could produce a “?”. The special 
coding for zero, infinity and NaN is not documented in the 
programming manual. We only know about the additional bit 
that was used to differentiate between normal numbers and 
special values [8]. 

Entering a decimal number through the decimal keyboard 
required pushing one of ten buttons for each specific decimal 
digit, one by one, and then the exponent. The result was 
visualized with an array of nine columns of lamps. Every 
column had a lamp for the digits zero to nine. The specific 
decimal digit at each decimal position, for every one of the 
nine columns, was lit and the operator could write down the 
result produced by the machine. That lamp array can be seen 
on the upper left of the console in Fig. 1. The nine full columns 
for decimal digits are evident. The position of the decimal 
point in the mantissa was indicated with an additional row of 
lamps under every column (only one “decimal point” lamp 
would be switched on). The exponent of the result was shown 
with additional lamps. There were also lamps for the sign, and 
to indicate underflow, overflow (infinity) or not a number, 
indicated by a lamp with a question mark. 

IV. THE ARITHMETICAL INSTRUCTION SET 

The instructions for the Z4 were implemented using 
microoperations, as in the Z3. For every operation there was a 
control sequencer, which was just a circular mechanical 
stepper advancing from one position to the next, like a clock. 
At every microstep, different circuits of the processor were 
activated and this produced the information flow in the Z4. 
Such a microcoded architecture was first developed for the Z1, 
and rotary microsteppers were used for the Z3 [7] and Z4. 

Microcoding made Zuse’s machines very flexible. New 
operations could be created by simply installing a new stepper. 

Every program (punched tape) for the Z4 started with the 
instruction “St”. The end of the code was signaled with the 
instruction “Fin”. The Z4 advanced a new tape until the first 
“St” appeared. 

The Z4 performed arithmetical operations with one or two 
arguments. In what follows, the first register (OR-I) is 
abbreviated as “𝑥” and the second as “𝑦”. The operations with 
a single argument included nine multiplications by constants 
(the divisions were transformed into multiplications). The 
binary representation of the constants was hardwired in the 
machine: 

−𝑥 2𝑥 10𝑥 𝜋𝑥 𝑥/2 𝑥/3 𝑥/5 𝑥/7 𝑥/𝜋 

Additional one single argument operations were: 

𝑥2 √𝑥 |𝑥| sgn(𝑥) max(0, 𝑥) 

Two argument operations were: 

𝑥 + 𝑦 𝑥 − 𝑦 𝑦 − 𝑥 𝑥 × 𝑦 𝑥/𝑦 max(𝑥, 𝑦) min (𝑥, 𝑦) 

The instructions for reading and writing to memory were 
“A n” and “S n”, where n represents the memory address. The 
first A-instruction would load register 1, while the next A-
instruction would load register 2. It was also possible to read 
a number from the tape reader using the command ↗ 𝑚, where 
m is a number which has been stored in the punched tape 
immediately after the arrow-up command. 

When the Z4 was running, it could request decimal input 
from the operator. The instruction to request manual input was 
↗. The result contained in register 𝑥 could be shown activating 
the console decimal lamps using the instruction ↘, or it could 
be printed using the instruction D, immediately after ↘. 

There were a few additional special commands used for 
formatting the output, or for making possible certain 
combinations of otherwise prohibited instruction sequences. 
For example, due to the slow mechanical memory, the 
processor would be too fast. It was not possible to store a result 
to an address and read the address immediately. The 
programmer had to be careful and wait a certain number of 
instructions for the memory to be addressable again. This 
confirms that access to memory was partly asynchronous, 
relative to the processor, in order not to slow the latter down. 
Prohibited sequences of operations, in terms of timing, made 
the machine stop during execution [9]. An expert programmer 
reviewed the code of the users to make sure that forbidden 
combinations of instructions were not present. 

And that’s it. This was the instruction set used by the Z4 
until 1945 [11]. It was effectively a superset of the instruction 
set of the Z3 and the main missing ingredient is, of course, 
conditional branching and being able to call subroutines. In 
fact, the tape reader At1 in Fig. 1 was included after 1945, and 
the instruction set was extended to deal with conditionals. 

Fig. 4 shows a diagram produced by Zuse’s company 
before the Z4 was leased to the ETH in Zurich. The 
mechanical memory has the label 10. There is only one tape 
reader (8) and the tape puncher (7). The processor logic was 
housed in the relay casings 1 to 4. There is no electrical 
typewriter. A planar array of lamps (5b) organized in rows and 
columns could be used to light up a specific lamp under a sheet 
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of paper, signaling to the operator the name of the variable that 
had to be entered if the machine stopped for manual input. The 
programmer had to take care of switching on the correct lamp, 
which was reached by going down in the rows and to the right, 
using special instructions embedded in the code stream. This 
was the state of development of the Z4 until 1945 and before 
the ETH became interested in the machine. 

 

Fig. 4 The Z4 after 1945 und until 1949 [12]. 

V. CONDITIONALS AND CONTROL TRANSFER 

Konrad Zuse explains in his memoirs that the Z4 was 
transported out of Berlin a few days before the downfall of the 
city. The machine spent several years in a cellar in Bavaria. 
The Swiss mathematician Stifel heard about the computer, 
visited Zuse in 1949, and was able to see the Z4 working 
properly. His university, the ETH, decided to lease the 
machine, with an option to buy it at the end of five years, but 
important modifications had to be made beforehand, the main 
one being the inclusion of conditional branching. Zuse 
complied, and in 1950 the Z4 was delivered to the ETH [13, 
10]. It was the first commercial computer rented or sold by 
any company in continental Europe. 

The conditional jump promised to Stifel was implemented 
by Zuse using the new instruction “Sp” (for “Sprung”, in 
German). If the contents of register 𝑥 is +1, then the punched 
tape is rolled down until a new start instruction is found in the 
tape (that is, “St”). Execution continues normally from that 
point on. 

Before a conditional instruction could be executed, it was 
necessary to compute a logical result in register 𝑥. For this 
purpose, there were five arithmetical test operations. The 
operations prove if a condition is fulfilled. The test “𝑥 =? ", 
for example, verifies whether the result of the previous 
operation was a NaN or not. A successful test fills the register 
𝑥 with +1, otherwise with −1. The logical-test operations 
were: 

𝑥 = 0 𝑥 ≥ 0 |𝑥| = ∞ 𝑥 =? |𝑥| >= 1 

The instruction “Up” was used for transferring control to 
subroutines. Execution continued at the current position of the 
punched tape in At1 and control was returned to At0 when the 
instruction “Fin” was reached in the subprogram. There was a 
conditional variation of Up and Fin which is less relevant to 

the discussion here (see [14] for a full discussion of subroutine 
transfer and conditional jumps in the Z4). 

Fig. 3 shows the lamps in the console for the complete 
instruction set. 

 

Fig. 5 The complete instruction set in the console lamps of the Z4. 

The last row of logical operations to the left is not covered in the 

programming handbook. 

After the new conditional and control transfer instructions 
were introduced, it was possible to call subroutines. The 
additional tape reader also allowed the programmer to use the 
secondary tape for reading numbers punched by another 
program. 

However, there is a problem with this implementation of 
the conditional jump. The program can only jump down in the 
code. But programming loops require reusing previous code, 
so that the jump has to be taken upwards in the instruction 
sequence. The solution in the Z4 was to glue the punched tape, 
making the code execute in a cycle. The programming manual 
of the Z4 explains how to glue the tape and also that a 
minimum length of 50 cm is required so that the tape does not 
jam. If the loop was shorter, several copies of the code had to 
be punched one after the other until the minimum tape length 
was attained. This is called “loop unrolling” and it was used 
in the Z4 so that the punched tape could meet the minimum 
specified length. 

Zuse’s way of implementing the conditional jump is 
unsatisfactory, because either the programmer resigns to 
having a single loop in the code, or several possible tricks have 
to be applied [15]. One trick would be to have the body of the 
loop as external code in At1 that can be called a fixed number 
of times in the main program. The other would be to assign a 
sequential number to all loops in a program and arrange them 
into a single loop of tape. Then, during execution, we would 
only enter in the loop guarded by a conditional comparison 
placed before the loop body. This is cumbersome and it would 
be interesting if actual code of the Z4 users could be found to 
see how they solved this problem. Notice that Charles 
Babbage, who used punched cards strung together, designed 
the conditional jump to go up into the stream of cards precisely 
so that loops could be implemented easily [16]. 

Since the Z4 did not have indirect addressing capabilities, 
notice that loops that need to address memory sequentially are 
difficult to implement. Adding 20 numbers in memory, for 
example, would require specifying the 20 addressing 
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instructions with the consecutive absolute addresses. The 
alternative would be to use the tape reader At1 so that the 
numbers can be read one by one from that reader without 
having to specify absolute addresses. The sequencing of the 
data is then done automatically when the reader advances. 
Charles Babbage had the same difficulty with the Analytical 
Engine, but he envisioned making the stream of “number 
cards” bidirectionally steerable, so that interesting 
combinations of data input could be achieved when running 
loops [17]. 

VI. CONCLUSIONS 

From a contemporary point of view, the architecture of the 
Z4 can be readily explained using modern terminology. And 
that is actually the biggest surprise when thinking about this 
machine and comparing it with the computers designed up to 
1945. 

The first comparison that comes to mind is with the 
Analytical Engine. Zuse’s Z1 was actually something like 
Babbage’s dream materialized, in the sense that all important 
arithmetical operations were implemented using only 
mechanical means. The AE went further, though, since it 
included conditional instructions, so important for universal 
computation, at least on paper. Curiously, Zuse did not include 
the conditional jump as a programming instruction in the Z1 
or Z3, or in the Z4 (until 1945). Zuse referred to the programs 
that could be written in this way as “rigid” because he was 
fully aware that conditional instructions could make 
programming “flexible”. In fact, the microcode in all his 
machines was based on conditional execution. Not including 
it for the high-level programming was the main shortcoming 
of the Z1, Z3 and Z4, which could not be fully avoided using 
the glued-tape approach (although there are ways of 
programming a universal computer with a single loop, [15]). 

The Z4 was a floating-point machine. Neither the Harvard 
Mark I, nor the ENIAC used floating point. Both of them used 
a fixed-point representation. Actually, neither the Mark I nor 
the ENIAC was fully binary. The internal representation for 
numbers was decimal, using gears in the case of the Mark I, 
and arrays of vacuum tubes in the case of the ENIAC. The Z1 
was already completely binary when it was finished in 1938. 

The separation of memory and processor is also complete 
and pervasive in Zuse’s machines. In the Mark I and the 
ENIAC, memory and processor are still intermixed, since 
memory words are used as accumulators for arithmetical 
operations. Even the Analytical Engine is superior in that 
respect, since the storage was completely separated from the 
mill, and they even ran independently, each one using its own 
set of punched cards. 

The ENIAC did not have a conditional jump until a trick 
was found so that data cables could be used to provide start 
pulses for accumulators. This required hardwiring the 
machine appropriately. Curiously, the ENIAC did not execute 
code. The code was embedded in the way the machine was 
hardwired, and the connections had to be rearranged for each 
new problem. 

As we can see, all of these machines brought something 
new in terms of the computing architectures that would 
become possible in later years. At some point, all of them have 
been called the “first computer”. However, I think that a 
comparison of their architectures confirms that we can only 
talk about the “first computers”, in plural, since the dawn of 

the third industrial revolution was an endeavor that went 
beyond national boundaries. The start of the computer age was 
a collective enterprise whose first creative spark actually 
flashed during the heyday of the first industrial revolution with 
the inception of the Analytical Engine. 
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