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Abstract—Computational Physics, i.e. computational 

methods applied to physics, is much older than computers, 

dating back to Bernoulli, Newton and Gauss. Yet true 

application of stochastic algorithms or applications of finite 

differences to partial differential equations is feasible only by 

electronic calculators. We will briefly review the development of 

Computational Physics, with a focus on the solution of partial 

differential equations and boundary value problems and a 

particular attention to the field of Computational 

Electromagnetics. If all areas of physics had benefited from 

computer algorithms, in the area of Electromagnetics Computer 

Aided Design and Computer Aided Engineering allowed the 

opening of thousands of engineering applications, especially in 

the area of telecommunications, with a striking impact on 

society and our way of life. 
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I. INTRODUCTION 

Computational Physics is almost as old as modern science 
itself. Modern science beginning can be set around 1611, 
when Galileo Galilei [Pisa, Italy, 1564 – Arcetri, Florence, 
Italy, 1642] first wrote about the moon not being a perfect 
sphere but having mountains “per sensata esperienza et per 
necessaria dimostrazione [for manifest experiences and 
necessary demonstration]” [1]. 

The point on demonstration was a critical one, needing 
mathematics and calculus. And indeed only two years later we 
have the first recorded occurrence of the word “computer” as 
referred to a person doing computations [2]. And calculus was 
fundamental to another contemporary of Galileo, Johannes 
Kepler [Weil der Stadt, Germany, 1571 – Regensburg, 
Germany, 1630] to devise his laws and shortly later to Ole 
Rømer [Ä arhus, Denmark, 1644 – Copenhagen, Denmark, 
1710] who manage to make the first extimation of the speed 
of light [4]. 

We might recognize a fundamental step forward in this 
path towards computational physics in the “Brachistochrone 
challenge” issued by Johann Bernoulli [Basel, Switzerland, 
1667 – Basel, Switzerland, 1748] on the June 1696 issue of 
the Acta Eruditorum [3] (Fig. 1): 

Given in a vertical plane two points A and B, 
assign to the moving body M, the path AMB, by 
means of which, descending by its own weight from 
point A, it would arrive at the other point B in the 
shortest time. 

Seldom in the history of science a challenge lead to so 
fruitful results. Five mathematicians responded with 
solutions: Isaac Newton, Jakob Bernoulli (Johann’s brother), 
Gottfried Wilhelm Leibniz, Ehrenfried Walther von 
Tschirnhaus and Guillaume de l’Hôpital. 

 

Fig. 1 The “Brachistochrone challenge” as published in [3]. 

What really matters is not the problem itself and indeed 
nor the relevant, particular, solution proposed, but how the 
problem was solved. The new method was to be elaborated by 
Leonard Euler [Basel, Switzerland, 1707 – Saint Petersburg, 
Russia, 1783] who worked on the geodesic problem in 1732, 
and significantly improved an intuition by Joseph-Louis 
Lagrange [Turin, Italy, 1736 – Paris, France, 1813] which the 
latter communicated to the former in a letter dated August 12, 
1755. Finally, in 1756, Euler himself gave this technique it its 
current name: Calculus of Variations [5], [6]. 

Further fundamental steps were due to Johann Friedrich 
Carl Gauss [Brunswick, Germany, 1777 – Göttingen, 
Germany, 1855] – let’s only remember Gaussian quadrature 
and Gaussian distribution among his numberless contributions 
– and to Carl Gustav Jacob Jacobi [Potsdam, Germany, 1804 
– Berlin, Germany, 1851] – we shall mention only his linear 
algebra contributions and its application to the solution of 
partial differential equations. 

Indeed, the essential point in computational 
physics is not the use of machines, but the system- 
atic application of numerical techniques in place of, 
and in addition to, analytical methods, in order to 
render accessible to computation as large a part of 
physical reality as possible [7]. 

Such a computation was made by hand, or at most with 
mechanical aids for long. Indeed these mechanical aids could 
be very sophisticated, from Charles Babbage’s [London, 
England, 1791 – London, England, 1871] engines (1823) [8] 
to Enrico Fermi’s [Rome, Italy, – Chicago, Illinois, 1954] 
FERMIAC or trolley (1946) [9] used to compute statistics of 
neutron behavior in nuclear fission while waiting for ENIAC 
computer to be fully operational. It is indeed well known that 
JPL and NASA exploited pools of human computers (Fig. 2) 
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for their rocket design up to 1950 and beyond, not fully 
trusting the new electronic computers. 

Yet it was the introduction of electronic computers, and 
more precisely of Turing complete ones to make 
Computational Physics eventually blossom. 

Among the various branches of Computational Physics we 
will focus on Computational Electromagnetics. Maxwell’s 
equations have closed-form solutions only in simple cases and 
under simplified assumptions. An early fundamental 
contribution for an electromagnetic diffraction problem was 
due to Arnold Sommerfeld [Königsberg, Russia, 1868 – 
Munich, Germany, 1951] who gave the first exact solution of 
an electromagnetic diffraction problem [10], suitable for 
approximate computations via saddle point method. 
Sommerfeld’s approach, extended by Joseph Keller [Paterson, 
New Jersey, 1923 – Palo Alto, California, 2016] [11] is at the 
basis of the geometrical theory of diffraction, and its 
evolutions, an approach to Computational Electromagnetics 
pertaining to the class of High Frequency methods, to which 
also physical optics belong. These will be analyzed in the 
following section and rely on approximation of the solutions. 

A completely different approach, that of Full Wave 
Methods, has ancient roots, indeed it somewhat dates back to 
the brachistochrone problem sketched in the introduction, but 
of course it flourished after the introduction of computers. 
These will be matter of the third section and rely on the 
approximation of the equations. 

These two main branches, and their further subdivision, 
can be seen in Fig. 3. 

 

Fig. 2 The classification of Computational Electromagnetics 

techniques. 

II. HIGH-FREQUENCY METHODS 

In high-frequency methods the aim is to find an 
approximation of the solution of Maxwell equations via 
simplifying hypothesis which can hold if the wavelength is 
much smaller than the geometrical characteristics of the 
object, that is lengths, curvature radii etc. 

It develops in two lines, as Fig. 3 shows, field-based and 
current-based. 

A. Field-based High-Frequency Methods 

In a nutshell, given the incident electromagnetic field and 
a complex, large, object, the evaluation of the scattered field 

is reduced to the computation of a limited number of 
contributions. These are computed, on the basis of Fermat’s 
minimum path principle, on the basis of incident, reflected and 
diffracted rays. 

Reflected rays form the Geometrical Optics (GO) 
solution, which is very approximate and unphysically 
discontinuous. Better approximations are achieved via the 
introduction of diffracted rays, in a Geometrical Theory of 
Diffraction (GTD) framework [11] or in a more refined 
Uniform Geometrical Theory of Diffraction (UTD) 
framework [12]. 

Of all diffracted ray contributions, those arising at abrupt 
discontinuities of the structure are the most relevant. These 
can be modeled via the wedge canonical problem, which is a 
generalization of the original Sommerfeld half plane problem, 
which has attracted much attention and has been solved with 
various techniques. The interested reader might refer to [13] 
for a survey. 

B. Current-based High-Frequency Methods 

A different approach is that of approximating the currents 
induced on the object by the impinging field. A first 
approximation, taking into account just the incident and 
reflected (GO) field leads to a discontinuous uniform current 
distribution which, if let to radiate, produces a field which is 
said to be a Physical Optics (PO) solution. The original idea 
behind this is due to Hector Munro McDonald [Edinburgh, 
Scotland, 1865 – Aberdeen, Scotland, 1935] [14]. 

More physical currents are obtained in the more refined 
Physical Theory of Diffraction (PTD) where a corrective term, 
extracted form the solution of the wedge problem, is applied 
[15]. he interested reader might refer to [16] for a survey. 

C. High-frequency codes 

Historically, researchers produced their own codes 
implementing their own solution. While these were important 
at a scientific level, true impact on engineering came with 
codes actually capable of handling generic and complex 
objects. 

The first company to explore this field was TICRA, 
founded in 1971 as a company focused on satellite antennas. 
In 1976 TICRA launched GRASP, the world’s first 
commercial reflector antenna code implementing GTD/UTD 
and PO-PTD. GRASP is still in use and, as many commercial 
electro- magnetic analysis software, now implements hybrid 
methods which includes also some of those in the next section. 

We might also remember some early codes: NEC-BSC 
(Ohio State University, 1979) MISCAT (Northrop Grumman, 
1981), McPTD (DEMACO, 1992) and Xpatch (DEMACO 
1992), all based on GO-GTD/UTD or PO-PTD and mainly 
aimed at the evaluation of the radar cross section (RCS). 

III. FULL-WAVE METHODS 

When the solution is not available, then the equations 

must be approximated. This is done by the so-called Full- 

Wave methods This indeed is something tracing back to the 

brachistochrone method and the calculus of variation 

stemmed from there, which is at the basis of indeed all these 

methods, since both the variational Rayleigh-Ritz and the 

projective Faedo-Galerkin are equivalent [17]. 
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Full wave techniques can be divided into two broad 

families, depending of the version of Maxwell’s equation 

which is approximated, either integral or differential. Indeed 

even if the naming is different, this subdivision matches the 

one in the previous section, since integral equations based 

techniques are indeed current-based, while differential 

equations based are, on the other hand, field-based. 

A. Integral Equations-based Full-Wave Methods 

Given a generic complex, perfectly conducting, object, the 
total field at its surface must satisfy the well known boundary 
condition of null tangential electric field. Such a total field is 
the sum of the incident field plus the scattered field radiated 
by the currents induced on the object by the incident field. 

Unknowns are hence the induced currents, which 
generates, via an electric (or magnetic) field integral equation 
such a scattered field. Such a continuous, distributed, 
unknown is approximated with its expansion on a finite set of 
bases and a linear system of equation eventually obtained. 

This system of linear equation is obtained in a projective 
framework: the residual error between the approximated and 
exact solution is forced to have a null projection over the 
subspace generated by the basis chosen for the unknown 
expansion. The development of this technique, known as 
Method of Moments (MoM) dates to the sixties [18], [19]. 
This method, typical of electromagnetism, belongs to the 
general class of methods called Boundary Element Methods 
(BEM). 

From original simple wires, treated via the Thin Wire 
Approximation (TWA), the method evolved to treat surfaces 
subdivided into planar or curved patches (Surface patch 
Model, SPM), as well as non-perfectly conducting metals and 
dielectric materials. An early history of the method can be 
found in [17], [20]. The Method was meant initially for open, 
radiation and scattering problems, since the integral 
formulation naturally includes the radiation boundary 
condition. 

Figure 3 indeed places MoM under the label “frequency 
domain” but MoM exist also in time domain [21], [22], even 
if its application is less widespread, due to stability issues. The 
same figure places the Finite Volume Time Domain (FVTD) 
technique in the integral-equation time-domain niche. This 
much more recent technique [23], [24] is indeed a derivation 
of finite differences time domain (FDTD, see below) and is 
field based, and not current based. 

B. Differential Equations-based Full-Wave Methods 

The last group, but not of least importance, is that of the 
differential equation based methods, the first of which has 
been Finite Differences (FD), firstly applied by Euler in one 
dimension (ca. 1768) and Carl Runge [Bremen, Germany, 
1856 – Göttingen, Germany, 1927] in two dimensions (ca. 
1908), by hand to non-electromagnetic problems. Early 
simple electromagnetic applications were due, for example, to 
Frederick C. Trutt in 1962 [25], but the first application to time 
varying fields in three dimensions is due to Kane S. Yee 
[Guangzhou, China, 1934] in 1966 [26]. 

FDTD has a very simple implementation, as compared to 
all other method, but, by discretizing a three dimensional 
domain, needs the domain to be bounded and is limited by the 
memory available and CPU speed. These latter issue gradually 
become less and less critical, as computer technology 

advanced; the first, after many different approaches, was 
excellently solved by Jean-Pierre Berenger (1994) [27] with 
the introduction of the Perfectly Matched Layer (PML) in two 
dimensions to simulate open, infinite, domains. A technique 
soon extended to three dimensions [28]. The interested reader 
may refer to [29] for an accurate history. 

On the Frequency domain side we can find the Finite 
Element Method (FEM) which originated in a variational 
paradigm in structural engineering [30], [31], but which soon 
moved into a Galerkin framework. Its first application to 
electromagnetics is due to Peter P. Silvester [Tallin, Estonia, 
1935 – Victoria, British Columbia, 1996] in 1969 [32]. FEM 
relies on an unstructured grid of elements, as opposed to the 
structured FDTD grid. On such a grid the field is 
approximated by piecewise polynomial functions of arbitrary 
order and, by field integration over the elements, a matrix 
system of equations is obtained. Even if born in frequency 
domain, FEM has been extended to time domain in the 
eighties [33]. The interested reader may refer to [34], [35] for 
a detailed history of FEM. 

C. Full wave codes 

Historically, many different approaches fall within the full 
wave techniques, but all of them can be classified in either one 
of the two previous classes. 

For what concerns the Method of Moments Jack H. 
Richmond and Kenneth Kwai-Hsiang Mei [Shangai, China, 
1932 – Oakland, California, 2017] independently developed 
point- matching solutions for Pocklington and Hallen 
equations, respectively. This lead to a first code, BRACT (Air 
Force Space and Missile System Organzation, 1967) which 
under- went several evolutions (and name changes) eventually 
to be released as NEC (Numerical Electromagnetic Code – Air 
Force Weapons Lab, 1977) [36]. NEC, even if limited to the 
thin wire approximation, become the basic for several 
evolutions and was the benchmark for commercial codes. 

For FEM we must acknowledge that first softwares were 
for structural mechanics (like for example SAP-IV, 1974) and 
then extended to electromagnetics. In particular the author of 
SAP-IV then started ADINA which went commercial in 1986 
featuring also an Electromagnetic module. Zoltan Cendes 
developed the High Frequency Structure Simulator (HFSS) in 
the eghties and commercialized it since 1989 through Hewlett- 
Packard, than via Ansoft, later to become part of ANSYS, a 
general-purpose code appeared in 1970. 

We might also remember early codes such as MacFEM 
(Pierre et Marie Curie University, 1987) later developed in 
FreeFEM and still maintained, and JMAG, (JSol Co. 1983) for 
magnetostatic problems. 

IV. CONCLUSIONS 

While, historically, computational electromagnetics 
followed several different paths, as outlined in this paper, and 
indeed still does, the pressure to solve more and more complex 
problems called for the hybridization of techniques, so as to 
get the advantages of two or more numerical approaches at the 
same time. 

Currently available codes hence tend to present more 
numerical solutions within an integrated framework, so that 
the user, once the modelization is done, can choose one of the 
many techniques here presented (and many more) as well as 
hybridization between two or more different technique. This 
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makes the distinction between state-of-the art codes hazy and 
the user’s preference often focuses on the interface rather than 
on the underlying mathematics soundness, which, in most 
case, is nowadays well assessed. 
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