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Abstract—With the continuous rise of the COVID-19 cases
worldwide, it is imperative to ensure that all those vulnerable
countries lacking vaccine resources can receive sufficient support
to contain the risks. COVAX is such an initiative operated by
the WHO to supply vaccines to the most needed countries.
One critical problem faced by the COVAX is how to distribute
the limited amount of vaccines to these countries in the most
efficient and equitable manner. This paper aims to address
this challenge by first proposing a data-driven risk assessment
and prediction model and then developing a decision-making
framework to support the strategic vaccine distribution. The
machine learning-based risk prediction model characterizes how
the risk is influenced by the underlying essential factors, e.g., the
vaccination level among the population in each COVAX country.
This predictive model is then leveraged to design the optimal
vaccine distribution strategy that simultaneously minimizes the
resulting risks while maximizing the vaccination coverage in
these countries targeted by COVAX. Finally, we corroborate the
proposed framework using case studies with real-world data.

Index Terms—Pandemic Risk Assessment, Vaccine Distribu-
tion, Equity, Learning and Optimization

I. INTRODUCTION

The COVID-19 pandemic arose and spread at unexpected
rates causing a great disrupt to everyday life all around the
world. The pandemic highlighted many shortcomings such
as shortages in medical supplies and the urgent need for the
development of a vaccination. The rapid spread of the COVID-
19 virus made it difficult to keep up with the demand for
vaccines, especially for lower income countries. With the lack
of supply for vaccine dosages and the high demand in 2021,
it is difficult to ensure that vaccine allocation will be efficient
to contain the spread of the virus and equitable to different
countries with heterogeneous needs [1].

For the purpose of this work, we focus on vaccine distri-
bution to COVAX countries. COVAX (COVID-19 Vaccines
Global Access) is an initiative under the World Health Orga-
nization (WHO) that focuses on distributing the COVID-19
vaccines to low-to-median-income countries around the world
[2]. This initiative aims to distribute vaccines quickly and
ensure that low-to-median-income countries receive a consid-
erable amount of support during the pandemic as compared to
those countries having abundant vaccine resources.

The WHO’s current framework for vaccine allocation con-
sists of distributing the vaccines in phases due to the limited
supply; the initial distribution aims to cover 20% of the popu-
lation for each COVAX country and then continue to increase
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that percentage as the production of vaccines increases [3].
With limited vaccines, it is urgent to devise an allocation
plan that is both effective and fair to contain the virus in all
those countries targeted by COVAX [4], [5]. In addition, the
allocation strategy should consider that some countries have
a higher risk of virus spreading, and some countries already
have a portion of population vaccinated. Thus, the vaccine
allocation mechanism needs to be adaptive to the changing
situations to those targeted countries.

In this paper, we aim to develop an equitable and efficient
vaccine allocation scheme for COVAX countries for which
we have data available. The vaccine allocation can be seen
as a decision-making problem over a network that consists of
COVAX countries (vaccine recipients) and the WHO (vaccine
supplier). The efficiency of the allocation scheme ensures that
the vaccine distribution minimizes the health risks across all
targeted countries. However, the most efficient allocation may
not be the most equitable to resource recipients, a phenomenon
commonly observed in resource allocation problems [6]. When
merely considering efficiency, it is possible that only several
countries receive most of the vaccine resources. Thus, it is
imperative to consider the equity in the vaccine distribution
scheme [7], in which one needs to incorporate the vaccination
rate in each country into the decision-making framework.

To achieve this goal, our first step is to gather and analyze
COVID-19 data from the COVAX countries. The data-driven
risk assessment yields formal risk metrics. We then resort to
machine learning techniques to learn the relationship between
the risk outcome and their features including vaccination rate,
death rate, etc. The learned models are powerful to predict
the risks under different circumstances which is essential for
the vaccine distribution. Through the predictive model, we
then establish an optimization problem in which the objective
function includes the aggregated risks and the vaccination
levels of all targeted countries. Specifically, the first part of
the objective captures the efficiency while the second part
promotes the equity of vaccine distribution. The proposed
decision-making framework shows promising results using the
collected data for the COVAX countries.

The rest of the paper is organized as follows. Section II
presents the essential steps for data pre-processing and defines
the risk assessment metric. Section III develops and evaluates a
number of machine learning models for risk quantification and
prediction. From there, we develop a mathematical framework
to enable fair and effective vaccine allocation in Section
IV. Section V corroborates the proposed schemes using case
studies. Finally, Section VI concludes the paper.
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II. DATA-DRIVEN RISK ASSESSMENT

This section first describes the essential steps in the data pre-
processing and then develops a metric to quantify the evolving
health risk of those targeted countries.

A. Data Pre-Processing

The data collection consists of records from 31 COVAX
countries, and the dataset is available at Our World in Data
[8]. The values for each country include time series records
for daily new cases, total number of cases, daily new deaths,
total number of deaths, people vaccinated, people fully vacci-
nated, and total vaccinations per day. The numbers of people
vaccinated, people fully vaccinated, and total vaccinations are
accumulated over days. In the modeling, we focus on the
people vaccinated attribute. Our data also includes popula-
tion, hospital beds available per one thousand people, and
the human development index for each country. The human
development index is a measurement of human development
using factors such as the standard of living and education
[9]. Human development index and hospital beds available are
factors that do not immensely influence our model, however,
they provide us with an understanding of why certain countries
with similar economic standards may have different responses
to the pandemic. The data is cleaned by removing values that
are illogical, such as negative case counts and filling empty
data points with values of zero. The data values report records
from the point where COVID-19 was first detected (around
February 2020) to the end of November 2021.

B. Risk Assessment

Using the collected data, we can quantify the death rate,
vaccination rate, and the risk metric. We follow the framework
published by the Center of Disease Control and Prevention’s
(CDC) in which the risk metric is defined to be based on the
new cases values from the dataset [3]. Specifically, we take the
sliding window average over 28 days of new cases and divide
it by the population to obtain the risk and then normalize it.
In other words, the risk on day t, R(t), admits a following
quantification:

R(t) =
∑

t
k=t−27 NewCase(k)
28 ·Population

, (1)

where NewCase(k) denotes new cases on day k. The values
for death rate and vaccination rate are obtained by taking their
values for each day and dividing by the population.

In Fig. 1, we illustrate the raw data values (e.g., daily
new cases) and calculated values (e.g., vaccination rate) for
Cape Verde. The time series plots depict the general trends
and relations between our chosen features. The ‘New Cases’
subplot shows the increases in the first days of the 2021 year,
but after about 130 days into the year they begin to decrease
slowly. We deduce that this is due to the emergence of vaccines
and people taking the vaccines in Cape Verde, since new case
values begin to decrease at around the same time where the
subplot for the vaccination rate begins to increase. To examine
the relationship between the vaccination rate and the risk, we

Fig. 1. New cases, vaccination rate, death rate, and the health risk for Cape
Verde in 2021.

(a) Ghana (b) Madagascar

Fig. 2. Relationship between vaccination rate and risk. It can be observed
that the risk decreases as the vaccination rate increases among the population.

depict the corresponding results for Ghana and Madagascar in
Fig. 2. The results indicate that there is a negative correlation
between the vaccination rate of a country and its pandemic
risk. Specifically, as the vaccination rate begins to increase,
risk begins to decrease significantly with a corresponding rate.
The inherent correlation can be approximately linear over the
interested parameter regime as shown in Fig. 2.

As mentioned earlier, the data source contains information
from the first detection of the COVID-19 virus in the country
to November 2021. Our models are tested for two different
scenarios: one in which the data points for years 2020 and
2021 are split, and the other in which they are not. Due to the
fact that none of the COVAX countries received the vaccine
prior to 2021, generating models on the year 2021 alone is
more logical. We corroborate this idea by testing both cases,
and conclude that the results yielded by the data points from
only year 2021 are more accountable and generalizable.

III. LEARNING THE RISK MODEL

In this section, we aim to construct a model that predicts the
evolving risks using machine learning approaches. The learned
model will be leveraged to determine the vaccine allocation
schemes in the next section. To achieve the goal, three different
models are investigated: artificial neural network (ANN), con-
volutional neural network (CNN), and linear regression (LR)
[10]. For each model, we denote the set of training features
by X and the targeted variable by Y , where X = [normalized
death rate, normalized vaccination rate, hospital beds available
per thousand, human development index] and Y = [normalized
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risk metric]. We train these three models with X as the input
features to most accurately predict the target Y .

In terms of the selected features, the death rate can be an
indicator of how contagious the virus is, which influences
the new infections. The vaccination rate plays an important
role in combating the virus spreading and hence mitigates
the risk. The vaccination and death rates may have inherent
correlation but its extent is unclear based on the currently
available statistics (knowing that the death due to COVID-19
depends on many other factors, such as treatment and medical
history). Thus, we incorporate both death and vaccination rates
as features. We admit that the risk also depends on other
social, political, and informational factors, and they will be
investigated in detail in subsequent works.

A. Artificial Neural Network

We use an ANN model consisting of 4 hidden layers
together with the input and output layers, and the model has
a total of 512 nodes. We split the dataset with 95% used
for training and the remaining 5% used for testing purposes.
The learning accuracy is evaluated by the mean absolute error
(MAE), mean squared error (MSE), mean percentage error,
and mean percentage difference. The results are summarized
in Table I. It can be seen that the performance of the trained
model is satisfying as the values calculated are decently small.
To account for any noise and overfitting, we further test a
model with a dropout function included. However, there is no
significant improvement on the performance so it is omitted.

B. Convolutional Neural Network

We further investigate a CNN model with a total of 5 layers
and 256 nodes. The test size and training size for the CNN
model are the same as the ANN model. The accuracy of the
CNN model is also evaluated with regard to the same metrics
and the results are shown in Table I. To account for any noise
and overfitting, a dropout function is added in the model during
the training. The results indicate that the CNN model also
achieves a good performance.

C. Linear Regression

This section studies the LR model for risk prediction.
Specifically, the constructed LR model admits the following
form:

R j(t) = β0 j +β1 jD j(t)+β2 jVj(t)+β3 jH j(t)+β4 jI j(t), (2)

where R j(t) is the predicted risk metric; Vj(t) is the vaccina-
tion rate; D j(t) is the death rate; H j(t) is the hospital beds
available per thousand (which is time-invariant); I j(t) is the
human development index (which is time-invariant); and all
these variables are associated with the jth country in the set of
COVAX countries on day t. In addition, β0 j,β1 j,β2 j,β3 j, and
β4 j are coefficients associated with the corresponding feature
variables for the targeted country j.

The training and testing sets are split with a 70%/30% scale.
Similarly, MAE, MSE, and r-squared values are computed for
performance evaluation. Table II shows the obtained results. It

Metric ANN CNN

MAE Average 0.0200 0.0150
MAE Median 0.0184 0.0131
MSE Average 0.0012 0.0009
MSE Median 0.0007 0.0004

Mean % Diff. Average 0.7702 0.5455
Mean % Diff. Median 0.6829 0.4124

TABLE I
PERFORMANCE RESULTS OF THE NEURAL NETWORK MODELS.

Metric LR

MAE Average 0.0214
MAE Median 0.0224
MSE Average 0.0009
MSE Median 0.0008
R2 Average 0.4189
R2 Median 0.4189

TABLE II
PERFORMANCE RESULTS OF THE LINEAR REGRESSION MODEL.

(a) Results of LR model for Indonesia (b) Results of LR model for Malawi

Fig. 3. Risk prediction performance using LR model for Indonesia and
Malawi. The prediction errors in both cases are relatively low.

can be concluded that the LR model is efficient in predicting
the risks. In comparison to the ANN and CNN model, LR
has a slightly larger error, but it also yields sufficiently good
performance and is adequate to be used in the decision-making
framework for vaccine allocation in Section IV.

Despite the ANN and CNN model having relatively better
results, the LR model is more explainable with a satisfying
accuracy for our implementation stage. The linear model gives
us sufficient accuracy over the interested parameter regime.
Fig. 3 shows the performance of our model by presenting the
actual risk and the predicted risk for two countries, Indonesia
and Malawi. It can be seen that the model yields satisfying
results in which the prediction error is relatively small. Thus,
our risk prediction model is sufficiently accurate for predicting
the risk for the list of targeted COVAX countries.

IV. MATHEMATICAL FRAMEWORK FOR EQUITABLE
VACCINE ALLOCATION

The previous sections have developed a data-driven risk
quantification and prediction model, and characterized how the
vaccine contributes to mitigating the health risks in COVAX
countries. This section will leverage the obtained model to de-
velop a decision-making framework for equitable and efficient
distribution of limited vaccines to those targeted countries.
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Based on the LR model in (2), we construct the following
metric to capture the aggregated risk of all targeted countries:

∑
j∈J

R j(t) = ∑
j∈J

(β̃0 j +β1 jD j(t)+β2 jVj(t)), (3)

where J := {1,2, ...,J} is the list of COVAX countries.
Note that the only change in this function is that the terms
associated with the coefficients for hospital beds available per
thousand and human development index are combined with β0 j
since those two components are constant based on the learnt
model. Equivalently, we have β̃0 j = β0 j +β3 jH j(t)+β4 jI j(t)
in (3). Based on the learning results, we have the following
observation on the coefficients (shown in Fig. 4(b) later): β0 is
relatively small, whereas β1 and β2 indicate a strong positive
and negative relation, respectively, with the risk outcome.

Our goal is to minimize the risk of COVID-19 across the
targeted countries, captured by (3), by developing an optimal
vaccine allocation scheme. In order to minimize such a risk,
we need to control Vj(t), and all other variables are provided
to us from the data. In this work, we consider a scenario
that the vaccines are distributed on day t to these countries
based on their real-time situation in terms of vaccination rate,
death rate, etc. Here, we do not specify a fixed t, and thus
our framework is flexible with a plug-and-play feature for any
day. To minimize the aggregated risk, we need to solve the
following optimization problem:

(OP) : min
V j(t),∀ j∈J

∑
j∈J

R j(t)

s.t. 0≤ ∑
j∈J

(Vj(t)−Vj(t−1))Pj ≤ TV,

0≤Vj(t)≤ 1, ∀ j ∈J ,

(4)

where Pj is the population of the jth country, and TV is
the total amount of vaccines available for distribution for the
COVAX countries. The first constraint indicates that the total
distributed vaccines is upper bounded by TV . The second
constraint is a natural bound for the vaccination rate. After ob-
taining Vj(t), ∀ j∈J , we then obtain that (Vj(t)−Vj(t−1))Pj
vaccine doses should be allocated to country j ∈J .

One drawback of the optimization framework (4) is that it
does not give an equitable solution. It can be observed that
the resulting vaccine allocation scheme will allocate most of
the resources to a small set of countries where the vaccines
are comparatively effective to mitigate the risk (i.e., those
countries with a smaller β2 j). To achieve an equitable vaccine
allocation, we incorporate an additional fairness metric to
the objective function other than the risk. The optimization
problem for fair vaccine allocation is presented as follows:

(OP−Fair) :

min
V j(t),∀ j∈J

∑
j∈J

R j(t)−ω
(∑ j∈J Vj(t))2

J ∑ j∈J Vj(t)2

s.t. 0≤ ∑
j∈J

(Vj(t)−Vj(t−1))Pj ≤ TV,

0≤Vj(t)≤ 1, ∀ j ∈J ,

(5)

where ω ≥ 0 is a weighing constant for fairness and J = 31 as
there are in total 31 countries considered in our framework.
The fairness term

(∑ j∈J V j(t))2

J ∑ j∈J V j(t)2 is based on the Jain’s fairness
index [11], [12]. One advantage of this fairness term is that the
resulting solution takes into account the vaccination level of
each individual country. Intuitively, the planner will distribute
the vaccine resources with priority to those countries with
a low level of vaccination rate (i.e., generally the countries
with a significant shortage of vaccines), while considering its
trade-off against a high-level of combined risk outcome across
all targeted COVAX countries. Therefore, we can choose an
appropriate ω to balance efficiency and fairness in the vaccine
allocation.

V. CASE STUDIES AND DISCUSSIONS

In this section, we corroborate the developed framework for
equitable vaccine allocation using case studies.

A. Setup and Discussion on the Learned Risk Model

The WHO planned to allocate 300,000,000 vaccine doses
to COVAX countries. We assume that these vaccines will be
distributed over a 100 day period (may not be consecutive),
and thus a total of TV = 3,000,000 vaccines is scheduled for
allocation per each distribution day. In addition, we select t =
100 which is the day on which vaccines are distributed. Note
that the values of TV and t can be chosen according to real
situations. Though our current result does not include every
country enlisted as COVAX, proper data from the remaining
COVAX countries can be added to the allocation framework
in the implementation.

Fig. 4(a) depicts the population statistics for the targeted
countries to which the vaccines will be distributed. Note
that population is a parameter which is utilized in evaluating
various metrics such as the vaccination rate, death rate, and
health risk. It hence plays an important role in determining
an equitable strategy for vaccine distribution among COVAX
countries. It is reasonable to conjecture that countries with
higher populations, e.g., India and Indonesia, would require
a larger supply of vaccines, considering that all the coun-
tries in our framework are low-income countries with similar
conditions of fighting against the pandemic. We can predict
the health risks using the constructed LR model (2). The
coefficients β0,β1, and β2 in the learned model for each
country are shown in Fig. 4(b). The values of β0 are extremely
close to 0, showing that they do not significantly impact the
risk quantification. The values of β1, on the other hand, are
much more prominent, with most coefficient values above 0.5
for each country. β1 is the coefficient associated with the
death rate and the result indicates a positive relation between
this factor and the risk output. This is explainable as an
increasing death toll indicates the virus being more contagious,
resulting in more infected people and hence a larger risk. In
comparison, β2 has a negative correlation with the risk. The
coefficient values of β2 associated with the vaccination rate are
all negative. This relation concurs with the fact that due to the
introduction of the vaccination and its success in countering
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(a) Population of the targeted COVAX
countries.

(b) Coefficients in the learnt risk func-
tion.

Fig. 4. Population and risk function coefficients utilized in the model.

(a) Vaccination rate after the proposed
scheme with and without fairness in
the implementation.

(b) Vaccination allocation scheme
with and without fairness in the im-
plementation.

Fig. 5. Results of the proposed scheme with and without fairness incorporated
into decision-making of vaccine distribution.

the COVID-19 virus, the new cases reported each day began
to decrease as more and more people got vaccinated.

It is expected that as the vaccination rates for countries
increase, there should be a reduction in the pandemic risk.
We next investigate the vaccine distribution scheme yielded
by the proposed optimization framework.

B. Equitable vs. Inequitable Vaccine Distribution

We first study how the vaccine allocation plan changes due
to the inclusion of fairness into decision-making. Fig. 5 illus-
trates the obtained results by solving (OP-Fair). Specifically,
Fig. 5(a) shows the vaccination rates for all considered coun-
tries after the proposed vaccine distribution schemes shown
in Fig. 5(b) under two scenarios with ω = 0 (no fairness)
and ω = 50 (with fairness). When fairness is not considered,
i.e., ω = 0, the results demonstrate that countries with low
populations are allocated enough vaccines for achieving 100%
vaccination rates. In comparison, countries with much larger
populations, such as India and Indonesia, are not allocated
with sufficient amount of vaccines and will end up with
extremely low vaccination rates. Such a distribution scheme
is not equitable considering that not all countries are treated
the same and do not get enough of their country vaccinated
whereas other countries achieve much higher vaccination
rates. To remedy this consequence, the scenario with ω = 50
promotes fairness in vaccine distribution explicitly. Though
the vaccination rates in this case become smaller as shown
in Fig. 5(a), this distribution strategy is better suited for a

(a) Vaccination rate until 4/10/2021. (b) Vaccination rate after the proposed
scheme.

(c) Vaccination allocation after the
proposed scheme.

(d) Risk reduction after the proposed
scheme.

Fig. 6. Equitable vaccine allocation scheme with ω = 50.

fair distribution. Under the proposed plan, most countries in
the framework attain a similar vaccination rate. The result
shown in Fig. 5(b) indicates that the equitable distribution plan
specifically considers the population of each country, other
than the effectiveness of vaccines in mitigating the risks.

To demonstrate the equitable framework further, we refer
to Fig. 6, which are the results corresponding to ω = 50.
Due to the assumption that the vaccine distribution of TV =
300,000,000 vaccines happens over a span of 100 days, we
assume 4/10/2021 as a distribution day and plot what the actual
vaccination rate has been up till this date in Fig. 6(a). The bars
indicate different vaccine rates all across the countries, which
is a fact needed to be taken into account when developing
a new distribution scheme. Fig. 6(b) depicts the attainable
vaccination rates under the proposed equitable scheme shown
in Fig. 6(c). This distribution is considered equitable due to
the inclusion of the varying risks and population sizes in
the proposed framework in (OP-Fair). All countries in the
considered network receive an equitable amount of vaccines.
To evaluate the efficacy of the proposed model, we calculate
the amount of potential risk reduction for each country under
the proposed vaccination distribution and the result is plotted
in Fig. 6(d). We can observe that all countries exhibit a
certain level of risk reduction. Though countries like Djibouti
and India reveal lower levels of risk reduction compared to
the other countries, they possess different factors that may
influence the effectiveness of the vaccines in their countries.
Such factors include whether these countries are implementing
strict social distancing rules and the government’s policies
towards vaccine distribution to their populations at various
scales (e.g., state-level, city-level, community-level, etc).
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(a) Vaccination rate after the proposed
scheme.

(b) Vaccination allocation scheme.

(c) Risk reduction.

Fig. 7. Vaccine allocation scheme with varying level of fairness considerations
(ω = 8,ω = 20, and ω = 50). A larger ω yields a more equitable outcome.

C. Impact of the Degree of Equity

To understand the influence of equity in the resulting
distribution strategy, we implement various weighing factors
of ω in the developed optimization framework. This set of case
studies helps to determine the degree of equity incorporated
to decision-making to have a balance between efficiency and
equity. Fig. 7 demonstrates the results of vaccination rate,
vaccine allocation schemes, and risk reduction for various
fairness levels with ω = 8, ω = 20, and ω = 50. In Fig.
7(a), when ω = 8, the distribution scheme is not sufficiently
equitable but is the most efficient one among the three cases
as it reduces the largest amount of aggregated risks of all
considered countries. As the weighing factor increases, the
vaccination rates get closer among different targeted countries.
It can be seen that ω = 50 leads to the most equitable
outcome, indicating that a higher weighing factor produces
a more equitable allocation. Fig. 7(b) plots the corresponding
vaccine allocation schemes using these different values of ω .
With a larger ω , the vaccine allocation plan becomes more
population-aware, i.e., the strategy will pay more attention
to the vaccination rate in the decision-making process. Fig.
7(c) displays the risk reduction in each proposed plan. Despite
the larger risk reduction values depicted by the blue bars for
certain countries, this value of ω is not ideal for equity since
not all countries receive an appropriate amount of vaccines to
reduce their risks. In comparison, under the more equitable
plan with ω = 50, the variance of risk reduction across all
countries becomes much smaller. A larger ω ensures the
distribution plan to treat the countries fairly so that they

are able to efficiently contain the pandemic risk among the
population.

VI. CONCLUSION

In this paper, we have developed a theoretical framework
for equitable and efficient COVID-19 vaccine distribution
among countries targeted by COVAX. The established model
explicitly considers the vaccination rates among the population
and continuously evaluates the risks of virus propagation in
these countries. The developed machine learning enabled risk
prediction paradigm quantifies the effectiveness of increased
vaccination level in mitigating the risks in each country, hence
facilitating the optimal distribution of limited vaccines. The
incorporation of a fairness metric into the objective function
successfully yields a distribution scheme that is equitable and
effective in containing the global health risks. As for future
work, we plan to incorporate social and political factors,
such as re-opening plans of cities, social distancing and mask
wearing policies, and information broadcast by social media
[13], into the framework to investigate their influence on the
virus propagation and develop more effective equitable vaccine
distribution schemes.
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