
Received 19 August 2022; revised 6 July 2023; accepted 11 January 2024. Date of publication 23 January 2024;
date of current version 26 February 2024.

Digital Object Identifier 10.1109/OJSE.2024.3357243

ALCEA: The Architecture Life-Cycle
Effect Analysis Method

JAKOB AXELSSON 1,5, DAMIR BILIC 2,5, DANIEL BRAHNEBORG 3 (Member, IEEE), JOAKIM FRÖBERG 4,
HENRIK GUSTAVSSON 5, ROBBERT JONGELING 5 (Member, IEEE), AND DANIEL SUNDMARK 5

1RISE Research Institutes of Sweden, SE-164 29 Kista, Sweden
2Volvo Construction Equipment, SE-63185 Eskilstuna, Sweden

3Braxo AB, 118 64 Stockholm, Sweden
4Safety Integrity AB, SE-722 35 Västerås, Sweden

5Department of Innovation, Design, and Engineering, Mälardalen University, SE-721 23 Västerås, Sweden

CORRESPONDING AUTHOR: ROBBERT JONGELING (e-mail: robbert.jongeling@mdu.se.)

This work was supported by Mälardalen University.
This article has supplementary downloadable material available at https://doi.org/10.1109/OJSE.2024.3357243, provided by the authors.

ABSTRACT This article describes the architecture life cycle effect analysis (ALCEA) method, a structured
method for evaluating proposed new architectures for software-intensive systems. The method evaluates a
proposed architecture by quantifying its effect on the performance of system life-cycle phases. The method
is instantiated by identifying the relevant life-cycle phases of the system under investigation and a set of
evaluation functions that capture, in terms of basic factors, the effect of different architectural decisions on
key life-cycle PAs, such as revenue, operating resources, and investments. The method results in a transparent
cost and revenue structure, documented in a tabular form, based on quantifiable factors from the developing
organization. The results of the method can be used directly as part of a business case, and their robustness
can be estimated by sensitivity analysis. The ALCEA method is designed for system-level architectural
analysis, covering both software and hardware aspects. In this article, we introduce the ALCEA method and
provide a detailed example of how to apply it in the evolution of embedded systems. Moreover, we share
early experiences of using the method in large-scale industrial settings.

INDEX TERMS Architecture analysis, computer architecture, full life-cycle support, systems engineering.

I. INTRODUCTION
Software-intensive embedded systems play an increasingly
important role in many companies that develop technical
products in industries such as automotive, defense, pro-
cess automation, telecommunications, and transportation. The
functionality of these systems is mostly provided by software,
often running on a large number of computers, interconnected
using both wired and wireless links. Each such computer, or
processor node, can run software consisting of millions of
lines of code and have many information-intensive actuators
and sensors. The system needs to be packaged in whatever
physical space is available in the product and needs to be
equipped with an adequate power supply system. This pack-
aging may require multiple modes of operation and electrical
requirements that have implications for the software in differ-
ent ways.

In addition, systems often must provide features and qual-
ities to support service operations, testing efforts, and other
phases of system usage. This means that a substantial part of
the design effort deals with supporting other life-cycle phases
beyond normal operations such as evolution or maintenance,
and these processes can be both costly and provide additional
revenue. It is, therefore, business-critical that the embedded
system supports all these life-cycle phases of the product.

The emphasis of modern system architecture thus lies on
supporting all life-cycle phases. Moreover, the various oper-
ating domains of these systems increase the need to create
multiple variants of the system. Consequently, architecture
requires an increasing amount of business attention in compa-
nies developing software-intensive systems. ISO/IEC 42010
defines an architecture as “the fundamental concepts or prop-
erties of a system in its environment embodied in its elements,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2024 1

https://orcid.org/0000-0002-3986-1196
https://orcid.org/0000-0001-8598-3816
https://orcid.org/0000-0003-4606-5144
https://orcid.org/0000-0001-8891-033X
https://orcid.org/0009-0000-8105-2598
https://orcid.org/0000-0002-1863-3987
https://orcid.org/0000-0002-5032-2310
mailto:robbert.jongeling@mdu.se
https://doi.org/10.1109/OJSE.2024.3357243

AXELSSON ET AL.: ALCEA: THE ARCHITECTURE LIFE-CYCLE EFFECT ANALYSIS METHOD

relationships, and in the principles of its design and evolu-
tion” [1]. In other words, it shows the following:

1) the high-level structure of important parts of the system;
2) the internal and external interfaces of the system;
3) the general design principles that are to be followed in

both current and future versions of the system.
Given the importance of system architecture, an objective

way to compare alternatives is required. An evaluation span-
ning all life-cycle phases would provide support when making
decisions about how to build the system. Combined with
existing work [2], we list the following generally desirable
properties for an architectural evaluation method.

Lean: The effort should impose a reasonable footprint; the
resources needed for the analysis should be relatively small
compared to the value provided by the analysis.

Fact-based: As far as possible, the analysis should be based
on facts and quantifiable measures rather than on a gut feeling
of the individuals involved.

General: The method should not make assumptions about
the system to allow it to be applicable to different types of sys-
tems. It should also be general enough to be applicable early in
development, as well as possible to reuse in future architecture
analysis when better estimates and measures become available
during the system evolution.

Transparent: It should be possible to derive from the archi-
tecture analysis how the conclusions were reached and what
the rationale was for a certain evaluation.

Several methods exist for architecture evaluation, as will
be discussed in more detail in Section V. These methods are
often based on quality attributes (QAs) such as modifiability
and testability. However, we observed that many companies
developing complex embedded systems have well-established
life-cycle models, where companies collect data on the per-
formance of the different phases. The properties of these
life-cycle phases correspond well to the QAs. Therefore, we
propose a method that can improve the state-of-the-art by
benefiting from existing knowledge on life-cycle phases for
architectural analysis.

The purpose of this research is to find an appropriate
method that can be used for the evaluation of system archi-
tecture proposals. In addition to the four desirable properties
mentioned previously, the method should cover the relevant
aspects for software-intensive systems, including embedded
systems where not only software, but also electronic hardware
is of importance. Furthermore, the method should be applica-
ble to product lines and the evolutionary development of a
system.

We propose the architecture life-cycle effect analysis
(ALCEA) method, where we analyze the architecture based
on its performance in each life-cycle phase of the system.
The analysis is quantified in economic terms, since the choice
of architecture is an investment decision that requires a busi-
ness case. Finally, our approach takes into account the whole
system and not just the software. We exemplify the ALCEA
method on architectures of software-intensive embedded sys-
tems, but possible applications are not limited to that domain.

FIGURE 1. Information model (using UML notation) for architecture
evaluations using ALCEA.

II. ALCEA METHOD
This section presents the ALCEA method in detail. We first
present an overview of the basic principles of the ALCEA
method and define a process for using it. We then elaborate
on how to work with the method and provide forms for doing
so. Finally, we show how conclusions can be drawn from an
analysis and how to check the robustness of these conclusions.

A. BASIC PRINCIPLES
The ALCEA method fundamentally supports architectural
decisions by comparing the costs and revenue incurred by
each architectural alternative in all relevant life-cycle phases
(see Section III for an example application of ALCEA). As de-
scribed in Section I, the architecture analysis should be based
on the degree to which it supports a well-functioning system.
We emphasize that this is not limited to functioning during
the operational phase of the system. Instead, for an analysis to
be complete, it must span all life-cycle phases of importance,
including, e.g., system development and maintenance.

Fig. 1 shows the basic information model used to perform
architectural evaluations in the ALCEA method. To allow for
cost comparisons of alternatives, the cost of performing a
life-cycle phase is determined on the basis of its performance
attributes (PAs). To better structure the analysis and to ensure
that all costs are included and that no costs are counted more
than once, we consider the following three types of PAs:

1) initial investment associated with creating or migrating
to the new architecture;

2) the consumption of operating resources through the
life-cycle phase;

3) revenue resulting from product sales or other sources
such as sales of services and maintenance contracts.

For each of the PAs, an evaluation function is defined to cal-
culate their value. Evaluation functions consist of arithmetic
operations applied to one or more basic factors. Basic factors
are the core ingredients of value calculations, e.g., the hourly
cost of engineering.

2 VOLUME 2, 2024

To learn the life cycle and how it is affected by architectural
decisions, it is important to involve the process owners of the
different life-cycle phases. It is also important to set the scope
for the system under consideration and assign costs that relate
to the organization that is responsible for the life cycle. Our
analysis focuses primarily on deciding, within the producing
organization, which architecture will be used in the future.
This means that all the effects of an architectural decision
should be translated into a cost or revenue for the producer.

The actual evaluation of an architecture, based on the
principles mentioned previously, is a question of identifying
what effects (in terms of PAs) will be caused by using a
system based on that architecture in all life-cycle phases.
The causes should thus capture the mechanisms or parts of
the architecture that contribute to the effects. Also, since
architecture captures only certain properties of the system,
and many others are the result of detailed design decisions,
comparisons of different architectures must assume that the
same decisions are made when creating the concrete sys-
tem, regardless of which abstract architecture is the basis. In
other words, the principle ceteris paribus (“all else equal”)
must be used for aspects that are not governed by the
architecture.

B. USING ALCEA
Now, we describe the process of using ALCEA, how to eval-
uate the results, and how to deal with uncertainties in the
analysis.

1) PROCESS OF USING ALCEA
We define a three-stage process to put the ALCEA method to
practical use.

1) Stage 1. Instantiation: The instantiation stage includes
the identification of relevant life-cycle phases and PAs.
The purpose of this initial stage is to define a high-level
description of the life-cycle process and its phases. For
the system under analysis, the relevant life-cycle phases
must be identified and understood. This includes identi-
fying PAs and their corresponding evaluation functions.
As an example, the annual cost associated with feature
development could be described by the expression: (av-
erage number of hours required for development of a
feature) × (number of features to be developed per year)
× (per-hour cost for engineering).
The PA captured by this evaluation function is of the
type operating resources with three basic factors. Note
that some basic factors, for example, the per hour
cost for engineering, will most likely recur in several
evaluation functions. The evaluation model and its eval-
uation functions are captured in an overall evaluation
form (described in Section II-B2), and the basic factors
are collected in a summary table of the basic factors
(described in Section II-B3). In addition, there may be
several PAs that are used to evaluate a single life-cycle
phase. At this stage, variants of the input that can result

in significantly different actions in the life-cycle phase
must be adequately captured by sufficiently expressive
evaluation functions.

2) Stage 2. Preparation: The preparation stage includes
the identification of architectural alternatives and the
collection of data. The ALCEA method requires that
architectural alternatives be identified and defined. First,
the baseline must be identified (often today’s architec-
ture). Then, descriptions of the architectural alternatives
are created that will be evaluated. Once the evaluation
model is created and validated by the process owners
involved in the system life cycle, data are collected to
quantify the basic factors that allow the calculation of
the evaluation functions. For the baseline architecture,
we assign values based on historical data, when such
data are available. The relevant process owners then
provide the assessment of the effect that the new archi-
tectural alternatives will have in terms of basic factors.
It is assumed that the architectural alternatives do not
affect the evaluation functions themselves, but only the
values of the basic factors. In addition, the rationale
for the assessment is documented by describing the
cause-and-effect relationship from architectural features
to life-cycle phase PAs.

3) Stage 3. Comparison: The comparison stage in-
cludes the comparison of alternatives, including
their validation and sensitivity analysis. When com-
pleted, the assessment is summarized and a business
case is developed for each alternative architecture
(see Section II-C1). Note that an alternative architecture
often affects aspects such as sales volume or pricing,
which, in turn, affect the expected revenue for that
alternative. Therefore, revenue must be considered in
addition to costs.

To produce reliable comparisons, the baseline must be val-
idated. This can be done by comparing the current budget
for the life-cycle phases with the outcomes of the evaluation
functions. Furthermore, a sensitivity analysis is performed to
identify important uncertainties in the cost estimations and
the resulting risks in the overall comparison. Using sensitivity
analysis, it can be analyzed which of the basic factors are the
most important and how much the business case is affected by
outcomes that differ from estimates (see Section II-C3).

The instantiation stage (1) of the ALCEA method can be
performed once, and then, reused in multiple analyses of the
same system. Data collected in the preparation stage (2) may
need to be updated to reflect events that have occurred since
the last analysis, whereas the values for the baseline can typi-
cally be reused in multiple comparisons.

Data collection can be performed in a single well-prepared
workshop in which all process owners participate. Alterna-
tively, the analysis team could gather the relevant process
owners of each life-cycle process in separate, shorter meet-
ings to reduce the difficulties of finding a calendar slot that
suits everyone. If such a distributed evaluation is chosen, it is
essential that at least one person, e.g., an architect, is present

VOLUME 2, 2024 3

AXELSSON ET AL.: ALCEA: THE ARCHITECTURE LIFE-CYCLE EFFECT ANALYSIS METHOD

TABLE 1. Header of Form for Collecting Input to an ALCEA Analysis

in all sessions, to ensure that evaluations are done based on
the same principles.

2) EVALUATION FORM
For practical evaluations, the information model in Fig. 1 has
been transformed into a tabular format where each analysis
item is on one line, and the other entities are in columns. The
form is shown in Table 1.1 The form is filled out during the
process of using the method. During stage 1, the entities life-
cycle phase and PA (and its type) are identified. For each PA,
an evaluation function is defined, which takes basic factors
as input. During stage 2, the basic factors are given concrete
values, thus capturing the effects the architecture has on a PA
through the evaluation functions. Thus, this evaluation model
postulates that the performance of a process, and thereby, also
the architecture, is only evaluated by measurable factors that
are used to calculate estimates . This approach allows analyses
to be based on real data, and by providing a predefined form
(similar to that used in failure mode and effects analysis [3],
which is well known to many practitioners), quickly gain
momentum in their analyses. The form is structured in the
following columns.

1) Life-cycle phase: The name of the life-cycle phase that
is analyzed in this row.

2) PA, with the following subcategories.
a) Performance attribute (PA): A description of the

concrete PA.
b) PA type: Investment, operating resource, or rev-

enue.
3) Context: A label denoting the scenario(s) for which the

input holds, e.g., “All,” or “Variant 3.”
4) Effect, with the following subcategories.

a) Effect on PA: A textual description of the effect of
the architectural alternative on the considered PA.

b) Parts of architecture causing effect: A short ref-
erence to the parts of the architecture that are
causing the effect mentioned in the previous col-
umn.

5) Rating, with the following subcategories.
a) Evaluation function: A textual description of the

evaluation function used to calculate the rating for
different architectural alternatives of this PA, as a
function of a set of basic factors.

1The interested reader is referred to the supplementary materials, where the
form is provided as a spreadsheet.

TABLE 2. Header of the Form Summarizing Basic Factors to Allow Reuse in
Multiple Evaluation Functions

b) Baseline: The result of applying the evaluation
function given the basic factor values of the base-
line solution.

c) Alternative: The result of applying the evaluation
function given the basic factor values of the alter-
native.

d) Difference: The difference between the rating for
the baseline and the rating for the alternative.

6) Comments, with the following subcategories.
a) Improving actions: If the evaluation team identi-

fies things in the architecture that could be solved
in other ways that would improve the assessment,
those findings can be documented in this column.

b) Analysis assumptions: The final column can be
used to note assumptions made during the analy-
sis, including, e.g., assumptions about what deci-
sions will be made during the subsequent detailed
design. Making these assumptions explicit makes
it easier to ensure their consistent application
for all alternatives (see the discussion of ceteris
paribus in Section II-A).

3) BASIC FACTORS AND NUMERICAL ASSESSMENTS
The evaluation functions indicate the economic importance
expressed in currency units per year, taking a positive value
for income and a negative value for costs for the system
producer. Its parameters are a set of basic factors that should
be provided with values for the baseline architecture and
for the proposed alternative architecture. Typically, the same
basic factor serves as input to the evaluation of several anal-
ysis items, and some factors are even used in several or all
processes. Therefore, the basic factors are summarized in a
separate form with the structure shown in Table 2.2 A com-
pleted version of this table is shown later in the example in
Section III-C1.

Going from left to right, the following columns are used.
1) Basic factor: A textual description of the factor.
2) Unit: Unit of measurement used.

2The interested reader is referred to the supplementary materials, where the
form is provided as a fillable spreadsheet.

4 VOLUME 2, 2024

3) Baseline value: The value of the factor in the baseline.
4) Alternative value: The value of the factor in the alter-

native solution. Here, we add two columns to provide
minimum and maximum bounds for the estimated costs.
These Min–Max intervals are intended to capture un-
certainties in the estimates and are later used in the
comparison stage.

5) Comment: A textual description that captures, e.g., as-
sumptions on which the value is based or other relevant
information.

Note that the focus of the evaluation function is on the
costs and revenues of the producer organization. Since certain
life-cycle phases might be owned by another organization than
the producer (e.g., maintenance), values perceived by them
need to be translated into costs or revenues for the producer
organization. It is important to document the reasoning behind
this translation in the analysis sheet.

When determining values on the basic factors for the base-
line (if using the current product), useful input includes the
department budgets for those departments working with the
products, the part price for the parts included in it, etc. The
values of the alternative can be estimated by comparing the
differences in architecture between the two solutions.

C. USING THE DATA FOR ANALYSIS
We now discuss how to use the data resulting from applying
the method for analysis of alternative architectures.

1) SUMMARIZING THE OUTCOME OF LIFE-CYCLE PHASES
After finalizing the evaluation by filling out the form line by
line, it is time to step back and look at the overall picture.
Often, the evaluation is used as a basis to decide whether
or not to invest in the development of a new or changed
architecture. This business case can be created simply by
summing the overall ratings for each line. However, usually,
it is beneficial to dig a bit deeper into the data created, since
this improves the understanding of why a certain effect was
achieved, which can be used for either further improvements
or a broader evaluation taking non-economic factors into ac-
count. When the effects of different PAs are examined, the
following observations can be made.

1) Investment indicates how much initial investment is
needed to migrate to the new architecture.

2) Operating resources shows the effects on the yearly
cost.

3) Revenue shows the effects on revenue from sales or
other sources, such as maintenance contracts.

The difference between the baseline and the alternative can
be used to filter out the most important items in the analysis,
and depending on the sign (positive or negative), they summa-
rize the strength and weaknesses of the proposal. By grouping
the most important items by the life-cycle phase, it is also
possible to show where in the life cycle the gains and losses
can be found from the new architecture. Similarly, one could

group by the parts of the architecture that cause the effects to
see what the key parts are.

2) BUSINESS CASE AND REVENUE
Based on the defined analysis, we now have a projection
of the effects, in terms of costs, on the complete life cycle
when comparing the baseline to the alternative architecture.
To choose between alternative architectures, their business
cases need to be constructed and compared. To create a busi-
ness case, it is necessary to consider the financial benefit of
a product, which includes not only changes in costs but also
changes in revenue.

a) Revenue: In its simplest form, revenue is given by the
expression (the number of systems sold) × (the price per sys-
tem). An organization can generate additional revenue from
related services, such as maintenance contracts.

In the initial cost analysis, we compare the baseline with a
system based on a new architecture, while assuming that the
production volume is unchanged. However, an architectural
change can affect sales and, therefore, production volume.
During the cost analysis, a change in production volume
would be reflected only as an increase in cost and would not
necessarily support a decision toward change unless we take
the revenue into account.

By summing up all revenues expressed as performance
attributes in all phases of the life cycle, we can observe the
effect of the new architecture in terms of revenues in addition
to the cost analysis. Here, we get the overall projection on how
revenue will change for the new system.

b) Business case: A business case must cover the entire
life-cycle process of a product to avoid premature conclusions
based on the effects on individual units. In fact, problems
can arise when the business case of an organizational unit
responsible for one life-cycle phase does not reflect the costs
or savings of parts of an organizational unit responsible for
the other life-cycle phases. For example, a cost change in
maintenance due to an architectural change will not neces-
sarily be visible in the business case of the organizational unit
responsible for the development.

Moreover, the life cycle of a product might even span mul-
tiple organizations. For example, a bus operator organization
is usually responsible for the maintenance life-cycle phase
of their buses. In such cases, from a producer perspective,
maintenance can be considered as a cost, e.g., due to warranty
guarantees, but also as a source of revenue, e.g., through sales
of extended maintenance contracts.

To build a complete business case that spans all life-cycle
phases across multiple units within an organization or even
multiple organizations, it is necessary to describe where the
organizational boundaries are and assign life-cycle phases to
the corresponding organizations and their units. This allows
us to estimate revenue streams across internal organizational
borders and build a business case that takes into account the
complete life cycle of the system.

VOLUME 2, 2024 5

AXELSSON ET AL.: ALCEA: THE ARCHITECTURE LIFE-CYCLE EFFECT ANALYSIS METHOD

3) DEALING WITH UNCERTAINTIES
The ALCEA method aims to perform an analysis based as
much as possible on facts. However, there is still a large ele-
ment of subjective judgment involved in deciding the values
of the basic factors and the design of the evaluation functions.
To strengthen the analysis, we propose three techniques for
dealing with these uncertainties: baseline validation, min–max
intervals, and sensitivity analysis.

a) Baseline validation: To validate that all costs are ac-
counted for by the basic factors and evaluation functions, it
is necessary to assess them on the baseline budget. The eval-
uation functions should produce a result close to the true cost
of the baseline architecture according to the current budget.
Once the baseline is validated, we can consider uncertainties
in the values of the basic factors themselves.

b) Min–Max intervals: A straightforward way to deal with
uncertainties in the values of the basic factors is to ask the
process owners to provide intervals within which the estimate
of the basic factor is likely to fall, providing both minimum
and maximum values for the estimations. This allows the
analysis to account for variability in the estimations and to
derive best- and worst-case scenarios for the alternative and
the baseline architecture.

c) Sensitivity analysis: Another way to manage uncertain-
ties in estimates is to perform a sensitivity analysis on the
ratings to see which estimates could potentially distort the
main conclusions. As discussed by Axelsson [4], this is an
important technique to deal with the inevitable uncertainties
involved in architecting. The decision of whether to base fu-
ture products on a certain architecture alternative is made from
the business case, which should then be better than the other
alternatives; that is, the sum of the overall ratings should be
higher.

The procedure for the sensitivity analysis is to select a basic
factor and then to find the value of that factor that causes the
total difference between the baseline and the alternative to be
zero. This will be the point beyond which the conclusion of
which alternative is the best will change. Since we have not
put any particular restrictions on the form of the evaluation
functions, the equation has to be solved numerically. However,
in our experience, the functions tend to take a fairly simple
form and be solvable very rapidly even with the simplest
numerical algorithms.

The aforementioned procedure should be repeated for all
factors that contain any uncertainty, both for the baseline and
the alternative solution. When the breakpoint value has been
found, it can be compared with the original value to assess
the sensitivity of the conclusion. At this point, the architects’
judgment has to be used to determine whether the difference is
small enough to constitute a major risk or not, since different
factors have different levels of inherent uncertainty. If it turns
out to be a risk, several mitigation approaches can be used.
One is to try to gain more information by a deeper investiga-
tion to see if the uncertainty is reducible. Another is to try to
modify the architecture to make it less sensitive to unknown
events.

III. ALCEA APPLICATION EXAMPLE
To illustrate the usage of the ALCEA method and to pro-
vide additional guidance to practitioners who want to use
the method, we present an example of architecture analysis.3

The example is based on reality, but has been simplified
and adapted to allow for a short presentation and to avoid
revealing proprietary data from the company involved. The
example concerns the issue of revising the hardware and soft-
ware structure of a complex distributed embedded system. To
simplify the presentation, we describe the product on which
the example is based, in Section III-A.

A. EXAMPLE SYSTEM
The example system is a distributed control system for high-
power electric equipment, such as motors or auxiliary power,
similar to what is used in power systems, process automation,
heavy-duty automotive powertrains, or drive systems for rail-
way trains. The system is a platform used for different product
variants in a product line, and the product line architecture
(rather than an individual product architecture) is subject to
change. In particular, we consider, and in detail describe, the
application of ALCEA on a proposed architectural change
related to the restructuring of the hardware and software.

As described in Section II, the ALCEA method is per-
formed in the following three stages: The instantiation stage,
where the life-cycle is mapped and the evaluation model is
created; the preparation stage, where the architectural alterna-
tives are identified and data are collected; and the comparison
stage, where the actual analysis is performed. In the remainder
of this section, we provide an in-depth description of the
application of ALCEA for analyzing an example proposed
architecture alternative. Note here that the first two stages are
done once per system (and life cycle), and thus, can be reused
for other proposed architectural changes.

B. STAGE 1: INSTANTIATION
The instantiation stage of the ALCEA method starts with the
mapping of the life cycle of the system to be analyzed. In our
example, the life-cycle consists of the following six phases.

1) Platform development: Development of the base plat-
form from which concrete products are derived. The
platform is revised iteratively, with a major release once
per year.

2) Sales: Negotiation with potential customers about
application requirements and agreement on the terms of
sale. This phase occurs in parallel to platform develop-
ment and provides application requirements as input to
application development.

3) Application development: Development of the system
solution for a particular application or a particular cus-
tomer segment. Application development is based on
the platform, but with a certain set of configurations and
additional application-specific software and I/O.

3The interested reader is referred to the supplementary materials, where we
include complete filled-out spreadsheets for this and an additional example.

6 VOLUME 2, 2024

TABLE 3. PAs for Each Life-Cycle Phase

4) Production: Production of hardware units and assembly
into the overall product.

5) Operation: Starting up and supporting the use of the
product by the customer.

6) Maintenance: Upon product failure during operation,
performing fault tracing and repair to put the product
back in operation.

Note here that the objective of the ALCEA analysis is to
evaluate the effect of the architectural alternative for the pro-
ducer of the system, not the customer or other process owners.
Therefore, the process phases are described and modeled us-
ing only the details that are relevant to the producer, and the
evaluation shows the results in terms of the producer pro-
cesses. In other examples, there may be additional life-cycle
phases such as a disposal phase in cases where the system
remains property of the producer throughout operation.

The instantiation stage involves describing these life-cycle
phases in more detail. Specifically, for each phase, process
variants, PAs, and evaluation functions should be derived.
In Table 3, PAs for each phase are listed. For some process
phases, there are variants in how the phase is run, typically
depending on the different models of the product. In the ex-
ample, there are three variants of the system that make up
three different system assemblies. Variant 1 is a small system
with one motor and one auxiliary power system; Variant 2
is a medium-size system with four copies of the system in
Variant 1, organized in two groups; and Variant 3 is a large
system with three copies of Variant 2. The variants correspond
to 30%, 60%, and 10% of the sales volume, respectively.

To describe the mechanics of the instantiation, let us look at
the first life-cycle phase: platform development. Investigating
the procedures that the producer employs, we may find the
key PAs that reveal the costs in this phase. In the example,
we see that bug fixing and support is needed from a platform
engineering team (“running changes”). Furthermore, architec-
tural change requires investments in the form of development
and the purchase of new tools (“initial development” and
“development tools”). In this way, we simplify and model
each phase with key PAs.

After defining the PAs, the evaluation functions need to be
defined. Table 4 shows a few such evaluation functions, ex-
emplifying each PA type, and Table 5 shows the basic factors
in these evaluation functions. Let us again elaborate on how
this is done in practice and look at the first evaluation func-
tion. From the experts in the producer organization, we get
an estimate on how much work is needed to accomplish the
proposal, engineering hourly cost, and the expected lifetime
of the platform. From this estimate, we derive a formula to
express the investment. In this way, we model the evaluation
function for each PA.

C. STAGE 2: PREPARATION
The second stage begins with the identification of a baseline
architecture. In our example, the functionality of the systems
built on the platform controls the electrical equipment, e.g.,
ensuring that the motor speed remains at the level currently
given by a set point from the operator. For an auxiliary power
system, the set point is fixed to a certain voltage, which has
to be upheld regardless of the current being drawn from the
system. The control functions use sensors to measure voltage,
current, and temperature; and its principal actuators are elec-
trical converters that control the shape of the voltage curves.
In addition, secondary functionality related to diagnostics, su-
pervision, and operator interfaces is supported. To address the
variability of configurations of the control system, a product
line approach is used in which the architecture consists of
several building blocks that can be connected as required.

The main layout of the hardware architecture is illustrated
in Fig. 2, in black and red. In the architecture, there are three
types of electronic control units (ECUs), which are connected
over various networks.

1) Converter control unit (CCU): An ASIC-based ECU,
responsible for the detailed, micro-second level control
of the converters.

2) General control unit (GCU): A general ECU control-
ling a set of CCUs; typically placed close to each
other and solving parts of a common overall task. The
GCU executes different software depending on its ap-
plication, e.g., controlling motors or auxiliary units. It
also has numerous I/O capabilities to handle customer
or application-specific requirements. One of the GCUs
also runs software to coordinate the set of GCUs.

3) Operator control unit (OCU): A control unit where op-
erator commands are collected and where system status
information is displayed.

The CCU and GCU software are developed in-house,
whereas the OCU is developed and produced by a supplier.
Internally, the GCU and OCU are realized using basic soft-
ware (BSW, i.e., operating system, communication, etc.) and
application software (ASW). The BSW is different between
the OCU and the GCU, but is the same in all GCUs. The
ASW also differs between different GCUs, depending on the
application they are used for.

VOLUME 2, 2024 7

AXELSSON ET AL.: ALCEA: THE ARCHITECTURE LIFE-CYCLE EFFECT ANALYSIS METHOD

TABLE 4. Evaluation Functions for Selected PAs; Referring to Basic Factors in Table 5

TABLE 5. Basic Factor Values for the PAs for the Proposal in Table 4

FIGURE 2. Baseline hardware architecture used in the example (black+red) and the proposed new architecture (black+blue).

1) PROPOSED ARCHITECTURE CHANGE—RESTRUCTURING
OF HARDWARE AND SOFTWARE ARCHITECTURE
In our proposed change, the hardware and software architec-
ture will be restructured. The background is that the solution
with general GCUs that run different kinds of software de-
pending on use has proven to be quite expensive since the
hardware has to be powerful enough to handle all possible
situations. However, in most concrete applications, it turns
out that only a fraction of the processing power, memory, and
I/O is used, which is suspected to drive the component cost.
Therefore, the idea is to replace the GCUs with a hierarchical
structure, where a specific hardware unit is developed and
optimized for each application type, i.e., a motor control unit
(MCU), an auxiliary control unit (ACU), etc. Moreover, a new

subsystem control unit (SCU) is introduced for coordination,
a task that was previously allocated to one of the GCUs. In
this way, much of the customer-specific adaptations can be
allocated to the SCU. The functionality of the system is un-
changed, but some hardware units are new and the allocation
of software is changed. The proposed hardware architecture
change is shown in Fig. 2; common elements are shown in
black, current elements (to be replaced) in red, and new ele-
ments to be added in blue.

Having defined the new proposed alternative architecture, it
is now time to populate the basic factors table for the proposal
with numerical values, which will give us the PA values for the
evaluation. As mentioned in Section II-B3, the baseline basic
factor values are fetched from existing company data. The

8 VOLUME 2, 2024

TABLE 6. Baseline and Alternative Architecture Values for Initial
Development of the Proposal

TABLE 7. Baseline and Alternative Architecture Values for New Product
Application Development for the Proposal

corresponding values for the proposed alternative architec-
ture are estimated by studying the architectural differences
between the two solutions. The baseline and alternative val-
ues of the basic factors presented in Section III-B are shown
in Table 5. All factors from Table 4 are included for com-
pleteness; however, many factors are unaffected by the choice
of architecture. For factors where the alternative architecture
influences it, the alternative value is highlighted in boldface
characters. The rationale behind these alternative values is fur-
ther explained when we perform the comparisons throughout
Section III-D. To preserve readability of the tables, we present
the examples with a single alternative value and not a min and
max value.

D. STAGE 3: COMPARISON
In the third stage, the actual evaluation of the alternative
architecture is done to understand what financial effect the
alternative architecture will have in each product life-cycle
phase. Hence, the analysis starts by inserting the values of all
the applicable basic factors—see the subset of basic factors in
Section III-C1—into the PA evaluation functions for deriving
the PA values.

We now go through and calculate some of the PAs in the
evaluation table to exemplify the analysis. We round the val-
ues of the PAs to one decimal point for the brevity of the
presentation. To avoid tedious repetition, we do not explicitly
reference each of the tables summarizing the contributions of
the PAs.

1) PLATFORM DEVELOPMENT: INITIAL DEVELOPMENT
In the platform development life-cycle phase, one of the PAs is
initial development. The new ECUs need to be developed and
the cost is simply the manpower needed, which is estimated
at 40 person-years, or a total cost of -7.5 M$. With an eco-
nomic lifetime of 5 years, the annual figure is -1.5 M$ for the
alternative solution (and 0 for the baseline) shown in Table 6.

2) APPLICATION DEVELOPMENT: NEW PRODUCT
DEVELOPMENT
The annual application development effort is (average man-
power cost per project) × (number of application projects
per year). For the baseline, the average project requires 2
person-years to complete, and there are ten projects per year.
Due to the new structure of the architecture where application
changes are separated in the SCU, the effort per project is

TABLE 8. Baseline and Alternative Architecture Values for the Cost of Parts
in Variants 1, 2, and 3 of the Proposal

TABLE 9. Baseline and Alternative Architecture Values for System Sales of
the Proposal

TABLE 10. Baseline and Alternative Architecture Values for the Reliability
of the Proposal

assumed to be reduced to 1.5 person-years. On the other hand,
it is assumed that the number of projects will increase by 30%
as flexibility will allow the company to be competitive for
more niche projects. Therefore, the total cost for application
development only changes from -3.8 M$ to -3.7 M$ shown in
Table 7.

3) PRODUCTION: COST OF PARTS
The cost of the parts is simply (cost of part for a variant)
× (annual production of the variant). The analysis is divided
into Variant 1, 2, and 3, as described in Section III-B. Variant 1
consists of two GCUs; Variant 2 of eight GCUs; and Variant
3 of 24 GCUs in the baseline. For the alternative, Variant 1
consists of one SCU, one MCU, and one1 ACU; Variant 2 of
two SCUs, four MCUs, and four ACUs; and Variant 3 of six
SCUs, 12 MCUs, and 12 ACUs. The baseline thus contains
fewer components in all variants, but on the other hand, the
GCU is more expensive than the other, more specialized,
components. Therefore, the average cost (weighted by the
variant production mix) is reduced from 6240 $ to 3300 $. On
the other hand, the production volume increases from 5000
systems to 5500 systems per year. Therefore, the total annual
cost of production parts is reduced from -31.2 M$ to -18.6 M$,
shown in Table 8.

4) SALES: SYSTEM SALES
Revenue from product sales is calculated by adding sales
prices (weighted by the variants production mix.) The produc-
tion volume increases from 5000 systems to 5500 systems and
the price change yields an increase in revenue from 56.2 M$
to 66.9 M$ per year, shown in Table 9.

5) OPERATION: RELIABILITY
The reliability of the system is linked to a financial loss that
comes from the system being unable to operate due to fault
occurrence and the corresponding obligations of the producer
to perform repairs under the warranty period. The increased

VOLUME 2, 2024 9

AXELSSON ET AL.: ALCEA: THE ARCHITECTURE LIFE-CYCLE EFFECT ANALYSIS METHOD

TABLE 11. Summary Per Life-Cycle Phase of the Proposal

TABLE 12. Summary Per PA Type in the Proposal

number of components is expected to result in a change from
3900 to 4537.5 annual fault repair actions which yields a cost
increase from -23.4 M$ to -27.2 M$ per year. Note that in this
example, we do not consider the addition of diagnostics to
identify facilitate repairs, which may increase the probability
of failure. ALCEA analysis wishing to incorporate these ef-
fects may identify them as additional PAs, shown in Table 10.

6) SUMMARY OF EVALUATION
The five aforementioned PAs show the principles of how the
analysis is performed. Table 11 summarizes the annual profits
and losses in each life-cycle phase and in the total life cycle,
after completion of all analysis stages. The table shows the
baseline architecture and alternative architecture values, and
the difference between them. The table also shows which
relative percentage contribution each life-cycle phase has on
the total annual business improvement.

As indicated in Section II-C1 interesting information about
the evaluation data can also be found by summarizing the data
in other ways, e.g., categorized per PA type. This is illustrated
in Table 12. By observing Tables 11 and 12 together, we can
deduce that the change in operating resources, supposedly
primarily in the production and maintenance phases, is the
main contributor to the annual business improvement. This
supposition should be confirmed by a look at the full PA table.

We are now ready to make observations about which
financial impact the alternative architecture will have on the
business and where the big contributors can be found. In this
case, the result is that the new architecture would, per year,
improve the business from a loss of -8.5 M$ to a profit of
11.1 M$. The main contributors to this 19.6 M$ improvement
are increased sales (10.7 M$) and reduced production cost
(12.6 M$).

Looking at the analysis and the business case, we can
analyze uncertainties, using data validation for the baseline
architecture, basic factor min–max interval definition, and
sensitivity analysis.

The first step in dealing with uncertainties is to validate the
calculated baseline data by comparing it against actual budget
data. In a real case, the sum of the costs should roughly equal
the budget for the system. The next step is to find realistic
min–max intervals for each of the basic factors. Finally, we do
the sensitivity analysis, deciding for each basic factor what the
break-point value is, i.e., the value that yields a zero difference
in profit between the baseline architecture and the alternative
architecture. We find the sensitive basic factors in the analysis
by identifying the ones whose break-point values are located
within the min–max interval, i.e., the result is sensitive to that
factor and the result can realistically end up in that range.

In this example, we found that the conclusion of the anal-
ysis is quite robust to changes of the values of basic factors
within their min–max intervals. The basic factor to which the
analysis is most sensitive is the cost of the GCU, and if that
would shrink from the current 800 $ to around 450 $, the
current architecture would be competitive to the alternative.
However, the price of the GCU is a known fact, not an esti-
mate, so it appears unlikely that such a cost reduction would
occur (without at the same time reducing the other ECUs in
the alternative with similar amounts). Another sensitive factor
is the average repair time. If that would go up from 3 to
5.2 h for the alternative (but remain at 3 h for the baseline),
the conclusion would change and the proposed architecture is
no longer favorable. Such a scenario is possible, for instance,
due to the increased number of spare part types that must be
kept or more complex fault tracing, and the likelihood of this
happening should be investigated before embarking on the
new architecture development.

IV. DISCUSSION
The aforementioned example analysis of a proposed
architectural change above highlights several benefits of
the ALCEA method. First, it shows how the same analysis
structure can be reused for quite different purposes, since
the instantiation stage of the method as done for the shown
proposal can be reused for other analyses, too, thereby
reducing the effort for other analyses since both structure and
some data could be reused.

Second, the sensitivity analysis is important, both as a vali-
dation of the results, but also as a constructive pointer to what
actions can be taken to improve the situation, the latter point
hints at a different way of using the model. Once it has been
instantiated for a given system in a company, it can be used
to guide the process of identifying refactoring by pointing out
areas of improvement that would have a large effect on the
business. That is, the method is applied before an alternative
architecture has been sketched and serves as input to the pro-
cess of deriving the alternative.

A. INDICATORS FOR USEFULNESS
In Section I, we presented four desirable properties that
the evaluation model should have; it should be lean, fact-
based, general, and transparent. We will now discuss how the
ALCEA method fulfills those properties.

10 VOLUME 2, 2024

1) LEAN
The model reduces time consumption in several ways. First,
many parts of the analysis can be reused many times. The
whole instantiation can be done once for a certain type of
system at a certain company, and then, used for analyzing
many different alternatives, or for iterative solutions. Second,
it is not necessary to have all process owners participate
throughout the analysis, but only those with knowledge about
a certain process need to participate in the analysis of that
process. We believe that thereby the cost of performing an
ALCEA analysis is minimized.

2) FACT BASED
All of the performance indicators are directly related to
measurable things that companies often already measure,
including resource consumption for different processes, fre-
quency of events, etc.

3) GENERAL
The model described is completely general and can be used
to evaluate any architecture in any organization. Company-
specific details are provided during the instantiation and
preparation phases.

4) TRANSPARENT
The cause-effect chains for different ratings are provided in
the evaluation form, as is an importance rating for different
analysis items in terms of their relative contributions to the
overall result.

B. EXPERIENCES FROM REAL USE
The previous parts of the section have shown an example of
applying ALCEA. The example is partial, and it might be hard
to deduce how much effort goes into this kind of analysis.
Our own experience from doing the real-life analyses4 that
underlie the example shows that the effort is quite limited.
Assessing each analysis item (row in the matrix) typically
required about 10–20 min by a few knowledgeable people.
With about ten life-cycle processes and about five analysis
items per process, there will be about 50 items to consider, i.e.,
a total duration of about 8–16 hs. With five people involved,
this would mean a total analysis cost of 5–10 working days
for a first analysis.

Subsequent analyses of other alternatives for the same sys-
tem would be much faster. To this comes the one-time cost of
instantiating the model, which is a similar effort. In addition,
the effort to get the relevant data is needed, and this varies
depending on how accessible the data are within the particu-
lar organization. Our experience from similar analyses using
other methods that are based on abstract QAs is that there tend
to be lengthy discussions on the interpretation of attributes
and on personal opinions that are not based on data. Such dis-
cussions are more or less absent when applying ALCEA, and

4These real analyses could not be included in this article because of intel-
lectual properties.

therefore, the whole process becomes less resource-intensive
and more predictable.

C. POTENTIAL APPLICATION CONTEXTS OF ALCEA
The ALCEA method is designed to perform lean, fact-based,
and transparent analyses of architectural alternatives during
the development and maintenance of software-intensive sys-
tems. Although not required, it is likely easier to apply the
method in settings with a preexisting architecture, since then
more values of basic factors can be estimated with greater
confidence. When used to analyze possible decisions in an
agile setting, ALCEA can benefit from reuse of identified PAs
and evaluation functions. For a completely new system, the re-
quired inputs may necessarily need to be more estimated, and
hence, the min–max intervals on them will be greater. It is then
important to perform a careful sensitivity analysis to ensure
that the analysis is still fact based. Given the domain-specific
expertise needed to define the PAs and the estimations of basic
factors, the method is probably more useful for companies that
have previously developed complex systems.

To aid the application of the method in greenfield settings,
we intend to build a corpus of common PAs and basic factors.
The corpus is intended to be a living document, added to by
the community. A starting point of such a corpus is provided
in the supplementary material and is based on the attributes
and factors identified in the real-world examples presented
in Section III. The preexistence of this information can help
the adoption of the method in practice, although still many of
these factors are of course specific to the setting in which the
method is applied, and therefore, need to be identified on a
case-by-case basis.

V. RELATED WORK
Before the concept of architectural analysis had matured,
Abowd et al. [5] published a report on recommended best
practices based on two workshops in 1995 and 1996, respec-
tively. They discussed the cost of doing the evaluation, which
should be compared to the benefits in terms of increased un-
derstanding of the system and the requirements, which in turn
can lead to lowered project costs. They identified two main
categories of analysis processes, which were distinguished on
whether they focused on qualitative questions, e.g., discussing
scenarios in various contexts, or if they were based on quan-
titative measurements. They also gave recommendations on
when to do the analysis, by whom it should be done, how to
select a good process, the expected output, and more. They
mentioned software architecture analysis method (SAAM) [6]
(discussed in the following) briefly, but the article is otherwise
method agnostic.

There now exists a wide selection of published methods for
architectural analysis [6], [7], [8], [9], [10], [11], most of them
based on analyzing scenarios. Their focus varies, and can
either consider QAs in general [9], [11], or take a more narrow
approach, focusing on just cost/benefit [10], [12], modifiabil-
ity [6], [13], or maintenance effort [8]. Some of these methods
are described briefly in the following. Despite this variety of

VOLUME 2, 2024 11

AXELSSON ET AL.: ALCEA: THE ARCHITECTURE LIFE-CYCLE EFFECT ANALYSIS METHOD

methods, to the best of our knowledge, there does not yet
exist an analysis method that explicitly considers the system’s
life-cycle phases.

A. SAAM, ARCHITECTURE TRADEOFF ANALYSIS METHOD
(ATAM), AND RELATED METHODS
One of the earliest surveys on software architecture analysis
methods was done in 2002 by Dobrica and Niemelä [14].
Their goal was to help software architects and designers select
a suitable analysis method, based on whether the methods
were intended to be used early or late in the design process,
on few or many QAs, using an easy or complex process.
Assuming that early in the process is better than late, many
attributes are better than few, and an easy process is better
than a complex one, they recommended the ATAM [11] from
the Software Engineering Institute at the Carnegie Mellon
University (CMU/SEI).

When using the ATAM [11], the desired functionality and
QAs of the target system are first elicited and discussed,
and then, related to the suggested architectural elements (also
called architectural strategies, AS). If a particular element is
required to fulfill a QA requirement, it is called a sensitivity
point. If it also affects one or more other QAs, particularly
in a different direction, it is called a tradeoff point. By letting
the stakeholders prioritize the QAs involved in tradeoff points,
any architectural elements that may need to be changed are
easily found [15]. The process is iterated as needed. The
QAs can be selected freely, with some typical and reasonable
starting points being either ISO/IEC 25010 [16] or the list
presented by Bass et al. [17].

Also included in the survey by Dobrica and Niemelä [14] is
the predecessor to the ATAM, the SAAM) [6]. The SAAM
does not consider tradeoff points and primarily focuses on
modifiability as compared to the full set of QAs used in
the ATAM. In addition to the ATAM, the SAAM was ex-
tended at least by: SAAMCS [18], focusing on complex
scenarios; ESAAMI [19], adding a reusable knowledge base;
and SAAMER [20], adding considerations for evolution and
reusability,.

The ATAM was later refined into the cost benefit analysis
method (CBAM) [10], [12], which can be used to priori-
tize possible architectural changes. Just as in the ATAM, the
CBAM creates links between possible ASs and selected QA. It
then goes further, calculating a combined benefit for each AS,
adding the product of the weight of each QA and the utility
of the reached QA value as a value between 0 and 100%. By
dividing the benefit of the QAs with the cost for the AS, each
AS gets a return on investment (ROI) score, which in turn can
be used for a preliminary ordering. The strategies with the
best ROI scores then get their costs and benefits converted to
ranges, based on the estimated risks. These ranges are then
compared pairwise, resulting in the final ordering.

Of the analysis methods in the SAAM family tree, CBAM
is the one closest to ALCEA, as CBAM also considers the
financial aspect in a quantitative way. The main differences

are that ALCEA explicitly separates the costs and benefits
according to the product life cycle, making the values easier to
elicit, and that ALCEA uses monetary units, providing a more
direct business case.

The survey by Ionita et al. [21] compared much the same set
of methods as Dobrica and Niemelä, in particular the SAAM
ones in the family tree. They concluded that most methods
lead to “. . . improved communications between stakeholders
and meaningful architectural discoveries and improvements if
the assessment is performed early in the development phase.”

Mattson et al. [22] searched for analysis methods explic-
itly targeted on performance, maintainability, testability, and
portability. The method they find most useful is ATAM, just
as Dobrica and Niemelä did earlier.

Later surveys have taken different perspectives, e.g., look-
ing at methods specific for product lines [23], evaluation
tools [24], or architecture languages [25]. Typically, SAAM
and/or ATAM appear in these surveys as well.

B. OTHER METHODS
In addition to the methods in the SAAM tree discussed pre-
viously, Bengtsson and Bosch described the scenario-based
software architecture reengineering method (SBAR) [7]. De-
spite its name, the main difference between SBAR and other
methods is not the scenario viewpoint, which is quite com-
mon. Instead, the difference is that SBAR considers simula-
tions, mathematical models, and experience-based reasoning
if those techniques would be more appropriate. The result of
an SBAR analysis is a list of whether each examined QA is
satisfied, but it is not quantified further.

Next, Bengtsson and Bosch discussed architecture level
prediction of system maintenance (ALPSM) [8]. ALPSM uses
historical data, estimations, and other factors to predict the
sizes of future maintenance efforts. The unit of these sizes is
not defined. ALPSM is focused on the maintenance phase of a
system, while ALCEA also considers all other relevant phases
in the system life cycle.

The software architecture evaluation model (SAEM) [9]
uses a quantitative approach to find out which QAs are ful-
filled by a particular version of the architecture, and to what
degree. For the measurements, a technique such as goal-
question-metric [26] can be used. In SAEM, no particular
analysis process is suggested.

Babar et al. [27] presented a framework for evaluating
software architecture methods, applying it on what effectively
amounts to the SAAM family tree plus architecture-level
modifiability analysis (ALMA) [13]. ALMA focuses on mod-
ifiability initiated by external factors, e.g., changes in the
environment or the requirements, thereby ignoring changes
such as bug fixes. In particular, the goal of the analysis
may be to predict the cost of the elicited modifications, their
risk, or the effect of different architectural selections. The
method is described as a combination of ALPSMA [8] and
SAAMCS [18].

12 VOLUME 2, 2024

VI. CONCLUSION
In this article, we have presented the ALCEA method and
illustrated its application on an example proposed architecture
change. The basic idea behind the method is that the value
of an architecture lies in how well it supports the creation
of well-functioning systems that perform throughout all of
their life-cycle phases. Therefore, it is natural to base the
analysis on the system life cycle and look at the principal PAs
of investments, operating resource consumption, and revenue,
instead of looking at abstract QAs that have been the basis
for most existing methods. This approach makes it possible to
base the analysis on real data, and by providing a predefined
form they can quickly gain momentum in their analyses. The
method also supports sensitivity analyses for the uncertainties
that are always present in the early phases of the system
design. Our research focus is primarily on software-intensive
embedded systems, and that is the area where the method has
been applied so far, as illustrated by the examples mentioned
previously. However, we believe the method is applicable in
other domains too, such as software-only systems on servers
or desktops, or even for mechanical systems with no software
in them at all. Verifying this generalization is future work.

REFERENCES
[1] ISO/IEC/IEEE 42010:2011 Systems and Software Engineering–

Architecture description, Standard ISO/IEC/IEEE 42010:2011, 2011.
[2] J. Fröberg, S. Larsson, S. Dersten, and P.-Å. Nordlander, “Defining a

method for identifying architectural candidates as part of engineering a
system architecture,” in Proc. Int. Syst. Conf., 2014, pp. 266–271.

[3] S.-H. Teng and S.-Y. Ho, “Failure mode and effects analysis: An inte-
grated approach for product design and process control,” Int. J. Qual.
Rel. Manage., vol. 13, no. 5, pp. 8–26, 1996.

[4] J. Axelsson, “On how to deal with uncertainty when architecting em-
bedded software and systems,” in Proc. Eur. Conf. Softw. Archit., 2011,
pp. 199–202.

[5] G. Abowd, L. Bass, P. Clements, R. Kazman, L. Northrop, and A.
Zaremski, “Recommended best industrial practice for software ar-
chitecture evaluation,” Software Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-96-TR-025, 1997.

[6] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A method for
analyzing the properties of software architectures,” in Proc. Int. Conf.
Softw. Eng., 1994, pp. 81–90.

[7] P. Bengtsson and J. Bosch, “Scenario-based software architecture
reengineering,” in Proc. Int. Conf. Softw. Reuse, 1998, pp. 308–317.

[8] P. Bengtsson and J. Bosch, “Architecture level prediction of software
maintenance,” in Proc. Eur. Conf. Softw. Maintenance Reengineering,
1999, pp. 139–147.

[9] J. C. Dueñas, W. L. de Oliveira, and A. Juan, “A software architecture
evaluation model,” in Proc. Int. Workshop Architectural Reasoning Em-
bedded Syst., 1998, pp. 148–157.

[10] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and ben-
efits of architectural decisions,” in Proc. Int. Conf. Softw. Eng., 2001,
pp. 297–306.

[11] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J.
Carriere, “The architecture tradeoff analysis method,” in Proc. Int. Conf.
Eng. Complex Comput. Syst., 1998, pp. 68–78.

[12] M. Moore, R. Kazman, M. Klein, and J. Asundi, “Quantifying the value
of architecture design decisions: Lessons from the field,” in Proc. Int.
Conf. Softw. Eng., 2003, pp. 557–562.

[13] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-
level modifiability analysis (ALMA),” J. Syst. Softw., vol. 69, no. 1/2,
pp. 129–147, 2004.

[14] L. Dobrica and E. Niemelá, “A survey on software architecture anal-
ysis methods,” IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 638–653,
Jul. 2002.

[15] D. Brahneborg and W. Afzal, “A lightweight architecture analysis of a
monolithic messaging gateway,” in Proc. Int. Conf. Softw. Archit., 2020,
pp. 25–32.

[16] ISO/IEC 25010, 2020. Accessed: Jun. 7, 2020. [Online]. Available:
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

[17] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Reading, MA, USA: Addison-Wesley Professional, 2013.

[18] N. Lassing, D. Rijsenbrij, and H. van Vliet, “On software architecture
analysis of flexibility, complexity of changes: Size isn’t everything,” in
Proc. Nordic Softw. Archit. Workshop, 1999, pp. 1–6.

[19] G. Molter, “Integrating SAAM in domain-centric and reuse-based de-
velopment processes,” in Proc. Nordic Workshop Softw. Archit., 1999,
pp. 1–10.

[20] C.-H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, “An approach
to software architecture analysis for evolution and reusability,” in Proc.
Conf. Centre Adv. Stud. Collaborative Res., 1997, pp. 144–154.

[21] M. T. Ionita, D. K. Hammer, and H. Obbink, “Scenario-based soft-
ware architecture evaluation methods: An overview,” in Proc. Workshop
Methods Techn. Softw. Archit. Rev. Assessment, 2002, pp. 1–12.

[22] M. Mattsson, H. Grahn, and F. Mårtensson, “Software architecture
evaluation methods for performance, maintainability, testability, and
portability,” in Proc. Int. Conf. Qual. Softw. Architectures, 2006,
pp. 18–28.

[23] L. Etxeberria and G. Sagardui, “Product-line architecture: New is-
sues for evaluation,” in Proc. Int. Conf. Softw. Product Lines, 2005,
pp. 174–185.

[24] E. Anjos and M. Zenha-Rela, “A framework for classifying and com-
paring software architecture tools for quality evaluation,” in Proc. Int.
Conf. Comput. Sci. Appl., 2011, pp. 270–282.

[25] M. A. Abbasi, D.-E.-B. B. Batool, R. Butt, and T. M. Anjum, “Compar-
ative analysis of software architecture documentation and architecture
languages,” in Proc. Asia-Pacific World Congr. Comput. Sci. Eng., 2016,
pp. 199–204.

[26] V. R. Basili and H. D. Rombach, “The TAME project: Towards
Improvement-oriented software environments,” IEEE Trans. Softw.
Eng., vol. 14, no. 6, pp. 758–773, Jun. 1988.

[27] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying
and comparing software architecture evaluation methods,” in Proc. Aus-
tralian Softw. Eng. Conf., 2004, pp. 309–318.

JAKOB AXELSSON received the Ph.D. degree
in computer systems from Linköping University,
Linköping, Sweden, in 1997.

He spent about 15 years in the automotive in-
dustry within the Volvo Group and with Volvo
Cars. He is currently a Full Professor in com-
puter science with Mälardalen University, Västerås,
Sweden, and is also a Senior Research Leader in
systems-of-systems with RISE Research Institutes
of Sweden, Kista, Sweden. He is the author of more
than 100 research publications. His research inter-

ests include all aspects of system-of-systems engineering as well as system
architecture for cyber-physical systems.

Dr. Axelsson was the recipient of Best Paper Awards at international con-
ferences on four occasions.

DAMIR BILIC is currently working toward the in-
dustrial Ph.D. degree in software engineering with
Mälardalen University, Västerås, Sweden.

He is having experience as a System Engineer in
the automotive domain. His research interests in-
clude model-driven development and product line
engineering, with focus on the evolution and con-
sistency management of models in product lines.

VOLUME 2, 2024 13

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

AXELSSON ET AL.: ALCEA: THE ARCHITECTURE LIFE-CYCLE EFFECT ANALYSIS METHOD

DANIEL BRAHNEBORG (Member, IEEE) re-
ceived the Ph.D. degree in computer science from
Mälardalen University, Västerås, Sweden, in 2022.
His Ph.D. dissertation was Improving the Effi-
ciency and Reliability of Text Messaging Gate-
ways, “Improving the Quality Attributes of Mes-
saging Gateways.”

He is self-employed with Braxo AB, Stock-
holm, Sweden, where he spends most of his time
on further development of the company’s flagship
product and the Short Message Service (SMS)

gateway Enterprise Messaging Gateway (EMG).

JOAKIM FRÖBERG received the Ph.D. degree
in computer science from Mälardalen University,
Västerås, Sweden, in 2007 .

He has more than 20 years of industry experi-
ence in developing software-intensive embedded
systems. He is a Safety Assessor and Researcher
with Safety Integrity AB, Västerås, Sweden. He
has participated in many research and develop-
ment projects including automotive electric drive,
autonomous, remote-control, and platooning sys-
tems. He has worked with safety analysis and

architecture analysis in many application areas including construction, au-
tomotive, transport, agriculture, and mining. He is active as an Assistant
Supervisor for a Ph.D. student in the area safety analysis for system-of-
systems. His research interests include systems engineering, safety analysis,
and evaluation of system architecture.

HENRIK GUSTAVSSON is currently working to-
ward the industrial Ph.D. degree in software en-
gineering with Mälardalen University, Västerås,
Sweden .

He is having 25 years experience in indus-
try specializing in requirements management and
integration of electrical and embedded systems,
including safety-related applications. His research
interest include product line engineering require-
ments, use cases, and architecture.

ROBBERT JONGELING (Member, IEEE) re-
ceived the Ph.D. degree in software engineering in
2022. His Ph.D. dissertation was Mälardalen Uni-
versity, Västerås, Sweden, “Lightweight Consis-
tency Checking for Advancing Continuous Model-
Based Development in Industry.”

He is an Associate Senior Lecturer in software
engineering with the Department of Innovation,
Design, and Engineering, Mälardalen University,
Västerås, Sweden. His research interests include
continuous model-based development and flexible

modeling for software and systems.

DANIEL SUNDMARK received the Ph.D. degree
in software engineering with Mälardalen Univer-
sity, Västerås, Sweden, in 2008. He is a Professor
of computer science, focusing on engineering of
embedded software and systems with Mälardalen
University, Västerås, Sweden, where he serves as
a Leader with the Software Testing Laboratory.
His research interests include empirical studies of
industrial software engineering, with a particular
focus on different aspects of testing of embedded
systems and embedded software engineering from

a life-cycle perspective .

14 VOLUME 2, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

