
Received 10 June 2023; revised 2 September 2023; accepted 7 September 2023. Date of publication 18 September 2023;
date of current version 23 October 2023.

Digital Object Identifier 10.1109/OJSE.2023.3316395

Ontology for Technical Debt in Systems
Engineering

HOWARD KLEINWAKS , ANN BATCHELOR, AND THOMAS H. BRADLEY (Member, IEEE)
Department of Systems Engineering, Colorado State University, Fort Collins, CO 80523 USA

CORRESPONDING AUTHOR: HOWARD KLEINWAKS (e-mail: howard.kleinwaks@colostate.edu)

ABSTRACT The technical debt metaphor is used to describe the long-term consequences of engineering
decisions made to achieve a short-term benefit. The metaphor originated in the field of software engineering
and has begun to migrate to other fields, including systems engineering. The usage of the metaphor, its
associated terminology, and basic definitions vary both within the software field and within the greater engi-
neering community. The lack of consistent definitions inhibits the ability of system developers to understand
and control technical debt within their system developments. This article presents an ontology for technical
debt, focusing on the field of systems engineering. By providing a set of concise and consolidated definitions,
this ontology enables precise discussion of technical debt and associated techniques for mitigating its impact
within systems engineering.

INDEX TERMS Ontology, rework, systems engineering, technical debt (TD).

I. INTRODUCTION
Technical debt (TD), originally defined within the context
of software engineering [1], is becoming a standard part of
the technical lexicon, used by system engineers [2], program
managers [3], and corporate executives [4]. But what exactly
is TD? It has variously been defined as the long-term impact
of compromises made for the short-term benefit [5], the differ-
ence between the planned system capabilities and the actual
system capabilities [6], a promise to complete work in the
future [7], the acceptance of a short-term solution that will
create additional work in the long-term [2], and all the “tech-
nical work that has to be completed in the future” [4]. Further
complicating the problem is the use of different terms, such as
rework [8] and unintended consequences [9], to define similar
problems. Even these terms do not have consistent definitions,
as up to eight different definitions of rework have been found
within the same paper [10]. These conflicting sources make it
clear that a common definition of TD does not exist neither
in the broader research community nor specifically within the
field of systems engineering [11].

The definitions of the components of TD also vary from
author to author. Tom et al. [12] mapped the components
of TD to the associated forms of TD, showing that multiple
components can be classified into more than one form of
debt. Li et al. [5] defined the “cause” of TD as “the reason

for the existence of technical debt,” which corresponds to
the “precedent” defined by Tom et al. [12]. Rios et al. [13]
used the term “consequence” to identify the impacts of TD
on the system, while Tom et al. [10] discussed the impacts in
terms of the “attributes of technical debt.” Alves et al. [14]
defined an ontology of TD types but did not provide details
on terminology beyond those types.

To address the terminology differences, several authors
have developed taxonomies of TD. A taxonomy provides
methods to classify items, while an ontology provides def-
initions of those items [15]. Taxonomies are necessary to
enable the classification of different TD types; however, an
accepted ontology is required to provide the basis for those
taxonomies. Yang et al. [16] recently defined a taxonomy
focused on the incorporation of custom off-the-shelf products
into complex systems. They expand Kruchten’s TD land-
scape [17] to include an additional “Accountability” access
and define several factors leading to different types of TD.
Tom et al. [12] also defined a taxonomy of TD, including
methods for classifying the TD based on precedents, out-
comes, and attributes. They defined several attributes of TD,
such as technical bankruptcy, but did not provide a full ontol-
ogy and their definitions did not necessarily extend beyond the
field of software engineering. Alves et al. [14] extended their
earlier work to provide a taxonomy of TD types [18]. Several

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2023 111

https://orcid.org/0000-0002-5478-8927
https://orcid.org/0000-0003-3533-293X
mailto:howard.kleinwaks@colostate.edu

KLEINWAKS ET AL.: ONTOLOGY FOR TD IN SYSTEMS ENGINEERING

other authors have proposed taxonomies related to TD [13],
[19], [20], but the taxonomies focus on classifying TD and
do not provide consistent definitions that can be used across
industries [21].

Furthering the problem, TD is not well-researched within
systems engineering literature [22]. The authors have pro-
vided empirical evidence that TD does occur within systems
engineering, even if the terminology is not widely used [23].
This survey identified that TD is more likely to be created
early in the system lifecycle and its impacts are more likely
to be observed later in the system lifecycle. The lack of a
common ontology for common systems engineering problems
prevents the systematic identification of similar research and,
therefore, the sharing of tools and techniques to manage TD
and mitigate its impact throughout the system lifecycle [21].
With TD occupying significant portions of corporate technol-
ogy portfolios [4], the management of TD is increasing in
importance and value. Within specific systems engineering
contexts, the problem of TD is increasing with the push to
release products on shorter timelines [24] and an increased
emphasis on prioritizing value delivery over nonfunctional
requirements [25]. These pressures can result in developers
taking shortcuts [26] and systems that break more easily when
changes are required and which are more difficult to maintain,
both of which are symptoms of unpaid TD [27].

Based on this examination of the state of the art in the field,
it is clear that there is a need for a common ontology for TD.
While multiple taxonomies exist, the authors are unaware of a
comprehensive ontology of TD, particularly when considered
in the field of systems engineering. Establishing a common
language for TD is a key step to enable cooperation between
the business and technology sectors of a company [28] and to
enable communication between practitioners throughout the
field.

Communication between practitioners is especially
important as systems become increasingly complex and
combined into systems of systems. In these cases, TD can be
incurred in one system and then compound throughout the
systems of systems. With increased complexity, identifying
the source of the problem so that it can be remedied can
become difficult and expensive, especially since the source of
the TD may be far removed from its impacts. These factors
are exacerbated within systems engineering, compared to
software engineering, due to the increased interactions with
external influences that may be outside the control of the
system developer. Therefore, an ontology that provides
a common basis for discussions across the entire system
context is critical to managing systematic risks.

This article develops such an ontology for the field of sys-
tems engineering, which will enable a consistent discussion
about TD and its management within systems engineering
[15]. Standardization of terminology and definitions will lead
to knowledge sharing and the development of measurement
and management techniques.

The rest of this article is structured as follows. Sec-
tion II presents the proposed ontology for TD for systems

engineering. Section III discusses the use of ontology. Sec-
tion IV concludes the article and presents concepts for future
work.

II. TECHNICAL DEBT ONTOLOGY FOR SYSTEMS
ENGINEERING
A. TECHNICAL DEBT CONCEPT MAP
The development of an ontology for TD starts with a concep-
tual understanding of TD. The following example, originally
provided in a survey on the prevalence of TD within systems
engineering [23], demonstrates how TD can impact the devel-
opment of a system.

Sydney is a test engineer tasked with writing test procedures to
ensure that each part being manufactured is of sufficient quality.
Sydney has substantial experience working with the parts and
the test equipment. Sydney writes test procedures that outline the
steps to execute the tests such that executing the tests should take
1 h on each part. Following these procedures, Sydney can verify
the quality of each part in 1 h. Months later, Sydney is promoted
and Jody is given the responsibility of testing the quality of the
parts. Jody is new to the company and to the specific product line.
Jody follows Sydney’s test procedures, but Jody takes 2 h to test
each part, instead of 1 h, reducing the overall throughput of the
test team. Why?

The test procedures were written at a level relevant to Sydney’s
use and not for someone with less experience in the product line.
Doing so saved Sydney time but also increased the amount of
time that someone unfamiliar with the testing would need to test
each part, which introduced TD into the system. While Sydney
saved time in creating the procedures, the system took on debt
in the form of a less than ideal set of test procedures. The debt
impacts the system when Jody takes longer to test each part and
slows down the process. In this case, paying back the debt requires
rewriting the test procedures such that they are at a sufficient
level for any engineer, regardless of experience, to be able to use
efficiently. The system suffered from delays due to the increased
time to evaluate each part and also from the time to rewrite the test
procedures. This TD can impact the project schedule, the cost of
the project, and also the quality of the outputs. Was this example
helpful in explaining TD?

This example highlights the major concept of TD: A tech-
nical compromise made to achieve a short-term benefit creates
additional costs in the long term. To visually explain the
concept of TD, Izurieta et al. [29] developed a conceptual
map of TD for software engineering, which was extended by
Rios et al. [13]. The concept maps visualize the major compo-
nents of TD and associate these components with the system
and business goals. While a useful aid in understanding the
fundamental concepts of TD, these maps contain some notable
deficiencies, including the lack of a feedback loop between
TD and the system performance.

To address these concerns, a modified concept map of TD
within the context of systems engineering has been developed
based on a synthesis of TD components identified in the litera-
ture and interactions between the system and its stakeholders.
This concept map is shown in Fig. 1. In this concept map, the
business goals exert pressure on the system and its developers,
who are then forced to make a technical compromise. This

112 VOLUME 1, 2023

FIGURE 1. Conceptual map of TD for systems engineering, based on [13]
and [29].

technical compromise can yield a short-term benefit, which
satisfies the business goals, but may create TD.

TD is composed of one or more technical debt items (TD
Item), which have several attributes, including the affected
artifact, the type of TD, the cause of the TD Item, and the
long-term consequences. The cause is associated with the
short-term benefit that satisfies the business goals. The long-
term consequence is measured in principal, interest, and fees
and impacts the system’s health—the ability of the system to
meet its performance objectives. These impacts on the sys-
tem’s health can also impact the satisfaction of the business
goals, which leads to additional pressure on the system or
to technical bankruptcy. TD management is an activity as-
sociated with the control of TD items. This map shows the
feedback between TD and system health as an indicator of
system performance.

The concept map defined in Fig. 1 provides a starting point
for the creation of a TD ontology by identifying the relation-
ship between the critical components of TD. This ontology is
designed to provide common terminology and definitions that
are focused on the systems engineering field. It leverages ter-
minology from the software engineering field where possible.
However, the ontology also redefines terms and introduces
new terms as necessary to clarify the definitions and usages
within systems engineering-specific applications.

B. BACKGROUND TERMINOLOGY
This section defines the background concepts and terminology
used to establish the ontology.

1) SYSTEM DIMENSIONS
The development of a system can be characterized along three
major dimensions: Budget, schedule, and performance, where
performance is defined as the combination of the system’s
scope (what the system does) and its quality (how well it does
it). These dimensions are linked together through a concept
similar to the “Iron Triangle” of program management [30]:
Stakeholders must conduct tradeoffs between the three di-
mensions. For example, the customer can define the scope
through a requirement’s specification and can define a delivery

FIGURE 2. Interconnected system dimensions showing an estimation of
system value.

timeline. The system developer then determines the cost of
the project which provides the developer with a sufficient
value. The value is not necessarily a profit-driven parameter;
a project may have other values to a system developer, such
as the development of new technology. Alternatively, if the
stakeholder asks for a product within a specified budget and
on a specified schedule, then the scope of the deliverable may
need to change. In this case, the stakeholder must conduct
a tradeoff between the achievable scope and the available
budget and schedule.

The triangle concept can be represented visually, as
shown in Fig. 2, where the vertices are performance (P),
profitability ($), and speed to market (T). The area of the
triangle represents the value of the system. As the values of
the dimensions change, the vertices will move, altering the
system value. The farther the vertices are from the center of
the triangle, the larger the area of the triangle and, therefore,
the larger the value provided by the system: Faster time
to market, higher profitability, and better performance, all
deliver a higher value. Increased costs cause the profitability
vertex to move left, which lowers the area of the triangle and
decreases the overall value. Similarly, realized cost savings
increase the profitability, moving the vertex to the right and
increasing the overall value.

2) PHASES
System lifecycles flow through characteristic stages, regard-
less of the development strategy that is employed [31]. Dif-
ferent strategies result in different frequencies and numbers
of iterations through the system lifecycle. Broadly speaking,
the systems lifecycle can be divided into two phases: System
development and system deployment. The development phase
might consist of the following stages, adapted from [31]:

1) Needs Analysis: Definition of system capabilities to sat-
isfy stakeholder needs;

2) Requirements Definition: Decomposition of stakeholder
requirements into system requirements;

3) Preliminary Design: Development of design specifi-
cations to prove the ability of the system to meet
requirements;

4) Critical Design: Detailed design of the system;

VOLUME 1, 2023 113

KLEINWAKS ET AL.: ONTOLOGY FOR TD IN SYSTEMS ENGINEERING

5) Integration: Implementation and integration of the com-
ponents of the system;

6) Verification: Verification that the components and the
integrated system meet the requirements.

The deployment phase might consist of the following
stages:

1) Validation: Validation that the integrated system meets
the stakeholders needs;

2) Operations: Postdevelopment phases of the system,
consisting of production, use, maintenance, and retire-
ment of the system.

Within this ontology, the development phase will be used to
refer to the activities leading up to system validation and the
deployment phase will be used to refer to activities that oc-
cur during and after system validation, including production,
operations, maintenance, and retirement.

C. TECHNICAL DEBT DEFINITION
Cunningham [1] introduced the concept of TD stating the
following.

“Although immature code may work fine and be completely
acceptable to the customer, excess quantities will make a
program unmasterable, leading to the extreme specialization
of programmers and finally an inflexible product. Shipping
a first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite.
Objects make the cost of this transaction tolerable. The danger
occurs when the debt is not repaid. Every minute spent on
not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a stand-still under
the debt load of an unconsolidated implementation, object-
oriented or otherwise.”

He used the term as a metaphor and not a definition. How-
ever, its introduction of the metaphor has proven useful in
explaining the impact of technical decisions in terminology
familiar to personnel who are not involved in the system
development.

With its increased use, there is a need to provide a con-
sensus definition of the TD metaphor. Many authors have
provided definitions of TD, especially within the realm of
software engineering. These definitions have subtle differ-
ences and nuances; however, the following components are
common across the definitions.

1) TD occurs due to decisions made for short-term benefits
that have long-term negative consequences [32], [33],
[34], [35], [36], [37].

2) Taking on TD involves making a compromise in one
area to achieve a benefit in another area (e.g., reducing
the quality of testing to save schedule) [35], [38], [39],
[40], [41], [42]

3) The effect of taking on TD is an increased amount of
work in the future [38], [43], [44].

Some authors propose alternate definitions of TD, including
presenting it as a gap between the actual and should-be state
of a system [6], [12], [45], the existence of incomplete or
immature components [7], [46], or work not yet done [2]. We

assert that these definitions do not reflect the central tenant of
Cunningham’s initial concept that the decisions made today
may result in increasing consequences tomorrow.

Rosser and Ouzzif [47] provided a systems engineering-
based definition: “Expedient engineering decisions in require-
ments, architecture, design, documentation, integration, and
test are made to gain short-term advantage, with similar nega-
tive effects on productivity and quality as have been shown in
software.” This definition is cumbersome and does not detail
the negative effects, instead relying on foreknowledge of the
application of TD within software engineering.

Jones et al. [48] defined TD as consisting of “design or
implementation constructs that are expedient in the short term
but that set up a technical context that can make a future
change more costly or impossible.” This definition does not
define what an “expedient construct” is and whether it is
due to poor design or intentional choices. Additionally, this
definition states that TD only impacts the system when future
changes are required. However, as will be discussed later,
there is a component of TD associated with the use of a
system.

To enable clear communication, a concise and easily under-
stood definition of TD is preferred. Therefore, the definition of
TD for systems engineering proposed by Kleinwaks et al. [22]
is adopted here.

Definition 1: TD is a metaphor reflecting technical com-
promises that can yield short-term benefits but may hurt the
long-term health of a system.

Definition 1 identifies the TD metaphor—the application
of the concept of TD to describe potential problems within
a system. The metaphor is used to talk about the abstract
concept without necessarily relating it to concrete numbers
and measurements. However, the term “technical debt” is also
commonly used to refer to “the complete set of TD items” [49]
within the system and as a value representing something the
system “owes.” When used in this context, the term TD takes
on a different meaning, as listed in Definition 2. To limit the
confusion, the term “TD metaphor” is used in the conceptual
context and the term “technical debt” or “TD” is used in the
quantitative context.

Definition 2: TD is the quantitative impact on the long-term
health of the system accrued as the result of a technical com-
promise made to achieve a short-term benefit.

These definitions of TD consist of four main components:
technical compromises, short-term benefits, the potential for
negative impacts, and the long-term health of the system. The
following sections explain these components in more detail.

1) TECHNICAL COMPROMISES
Referencing Fig. 2, compromises can be made that affect
one or more of the system dimensions. For example, the
stakeholder can compromise on budget by adding funding or
compromise on schedule by delaying delivery until the system
reaches the specified level of quality. Technical compromises
are defined in Definition 3.

Definition 3: A technical compromise is a concession made
in the performance dimension, either in scope or quality.

114 VOLUME 1, 2023

Only decisions that require concessions in the performance
dimension are included in this definition. Decisions such as
increasing the development timeline to enable the full realiza-
tion of the system design (concession on schedule, benefit on
performance) do not constitute TD.

2) SHORT-TERM BENEFIT
A system-level benefit is an increase in system capability in
one of the three dimensions. A benefit in schedule would be
the reduction in the time required to release a product. A
benefit in performance would be the increase of capability
in one area of the system. A short-term benefit is one that
quickly realizes the benefit for the stakeholders and the sys-
tem developers. For example, releasing a product two days
earlier is a short-term benefit. A long-term benefit would be
one that is not manifested until later in the system lifecy-
cle. For example, an increase in system documentation may
produce a benefit by reducing the complexity of system-level
maintenance and a corresponding increase in the performance
dimension. Generating the documentation during the system
design phase results in a long-term realization of the bene-
fit. The actual calendar times associated with short-term and
long-term are subjective and dependent upon the system being
developed.

Decisions that do not yield short-term benefits do not
constitute TD. For example, the decision to invest in the devel-
opment of a new factory instead of running additional shifts
at the current factory provides a long-term benefit instead of a
short-term benefit and, therefore, does not constitute TD.

3) POTENTIAL FOR NEGATIVE IMPACTS
Unlike financial debt, TD has intrinsic uncertainty about when
it will need to be repaid and exactly how large the cost will
be to repay the debt. Cunningham [1] captured this concept
when he said “The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest
on that debt.” If system developers have to interact with the
portion of the system that has TD, then they will have to
expend additional effort to develop that portion of the system.
However, if developers never interact with that component,
then the technical compromise will not impact the system
development. Definition 1 captures the probabilistic nature of
TD—there is a chance that the debt will need to be repaid
and also a chance that the debt may not negatively impact the
system. The probabilistic nature of TD must be considered
when making the initial technical compromise.

4) LONG-TERM HEALTH OF THE SYSTEM
The result of the technical compromise is often a long-term
impact on the system’s health if the technical concessions
are not restored. Cunningham [1] recognized this fact when
he stated “Entire engineering organizations can be brought
to a stand-still under the debt load of an unconsolidated

implementation, object-oriented or otherwise.” If the tech-
nical concessions that are made are left uncorrected, then
the system’s health may become compromised over time.
Kothamasu et al. [50] defined the health of a deployed system
as the ability of the system to stay in an operable condi-
tion, characterized by margins in design specifications, lack
of observable damage to the system, system reliability, and
performance parameters that are within the required bounds,
and lack of any issues that would compromise the integrity
of the system [51]. However, technical compromises affect
both the development and operational phases of the system
lifecycle [23], and therefore, an updated system of health
definition covering both phases is required.

Definition 4: The system’s health is the ability of the sys-
tem to meet its objectives in the performance dimension
without changes to the budget or schedule dimensions.

During system development, objectives in the performance
dimension include designing and implementing the system in
line with the scope and quality requirements. After the sys-
tem is deployed, these objectives include meeting the quality
requirements, such as usability and maintainability. A system
that fails to meet either set of objectives within its planned
schedule and budget is unhealthy. In development, an un-
healthy system requires additional funds and/or schedules to
deliver the required performance. After deployment, an un-
healthy system underperforms its requirements, especially in
areas of maintenance and usability.

To be considered TD, the impacts on the system’s health
must be long term. The use of the long-term qualifier implies
that the impacts will remain in the system unless they are
corrected. A short-term impact of a decision is resolvable
and, if resolved, may have no significant impact on future
changes. As such, this type of decision is an alternative design
choice and does not incur TD [38]. For example, a test is
specified to be conducted with a flight model of a satellite
component. However, the component is delayed, and in or-
der to keep the test schedule, an engineering model of the
satellite component is used instead. This decision represents
a technical compromise—the exact flight unit is not tested.
However, if the engineering model is of sufficient quality, the
test results will be valid and do not require retesting and there
is no long-term impact.

5) IMPACT OF TECHNICAL DEBT ON THE SYSTEM
DIMENSIONS
Fig. 3 shows the progressive impact of TD on the overall value
of the system. Section 1 of the diagram shows the baseline
system, with target performance (P), profitability ($), and
speed to market (T) objectives resulting in a defined system
value. TD affects the long-term health of the system through
a concession made in the performance dimension. The system
may still meet the overall scope requirements but the conces-
sions may make additional changes more complicated. This
system state is represented in section 2 of the diagram. Here,
a small amount of TD has been introduced into the system (the

VOLUME 1, 2023 115

KLEINWAKS ET AL.: ONTOLOGY FOR TD IN SYSTEMS ENGINEERING

FIGURE 3. Impact of TD on project schedule, performance, and cost during
project execution. Restoring system performance requires reducing the
time to market or the profitability of the project.

arrow labeled TD) which does not have a significant impact on
the overall value of the system. Section 2 represents system
states such as taking on prudent deliberate debt, which is
debt incurred with a known repayment plan [52], to meet a
specified release date, where the reduction in performance is
acceptable. In fact, not all TD taken on during the course of
system development is detrimental as debt incurred intention-
ally to meet a deadline may benefit the system [53]. Prudent
TD can be recovered in future releases.

In section 3 of Fig. 3, the TD has grown significantly,
indicated by the larger arrow, drastically reducing both the
system performance and the overall system value. The per-
formance can no longer be recovered without adjustments to
the other vertices. This state arises from the accumulation of
TD either through reckless and inadvertent means, where TD
is incurred without a defined repayment plan [52], or through
the failure to follow the TD repayment plan. Section 4 of
Fig. 3 shows how the system performance can be recovered by
paying down the TD. The schedule and profitability vertices
have both been moved inward to prop up the performance
vertex, representing an increase in time to market (schedule
delays) and lower profitability (increasing cost). While the
performance has been restored, the overall value of the system
(the area of the triangle) is reduced.

This analysis shows how TD, which is incurred in the
performance dimension, can have impacts on the other sys-
tem dimensions. The system dimensions are interconnected
and, therefore, require a system-level view of TD in order to
mitigate the impact of the debt. This ontology provides the
communication framework necessary to support the system-
level view.

D. SYSTEM TECHNICAL DEBT
“System TD” refers to the set of TD items present in the
system. It is used to address the accumulation of TD from
multiple sources within a system and separates the definition
of the total TD (system TD) from the TD associated with each
TD Item (technical debt). The system TD provides a method
to quantitatively understand the accumulation of TD within
the system.

Definition 5: System TD is the concrete set of TD items
present in the system.

E. TECHNICAL DEBT MEASUREMENT UNITS
Addressing TD quantitatively requires that TD be measured in
a consistent unit across all occurrences. A consistent measure-
ment enables comparison of the impact of multiple TD items.
TD has been measured as the financial cost [37], the amount
of time required to do the work [54], and the work required to
be performed [46]. Each of these terms has varying degrees of
usability in systems engineering and roughly aligns with the
three system dimensions of budget (financial cost), schedule
(time required), and performance (work required). Definitions
1 and 3 state that TD starts with a technical compromise in the
performance dimension of the system that results in impacts
on the long-term health of the system. Definition 4 states that
the health of the system is the ability to meet requirements
in the performance dimension. The health of the system can
be measured in the performance dimension by assessing the
change in performance required to achieve the objectives.
Since both the technical compromise and the long-term health
can be measured in the performance dimension, TD should
also be measured in the performance dimension.

The units used to measure the performance dimension
will be different across different systems. For example, some
systems may choose to measure the performance dimension
based on the number of labor hours required to complete the
work. Other systems may measure the performance dimension
in terms of the lines of code that need to be written, and other
systems may use the number of verified requirements. Still,
other systems may convert the performance dimension into
strict financial terms. With respect to TD, the specific unit
does not matter as long as each TD Item is represented in the
same unit for comparison and the unit used is understood by
the system development team. Given the freedom of a system
to report instances of TD in their own units, the term UNIT
will be used within this ontology as the measurement of the
TD.

Definition 6: The UNIT of TD is a quantified measurement
of a change in the performance dimension of the system.

F. TECHNICAL BANKRUPTCY
Technical concessions may increase the cost of developing
new features and the costs of maintaining the system [55].
The project development schedule may be exceeded due to
the impact of the technical concessions. The impacts in the
performance dimension may be so severe that the system

116 VOLUME 1, 2023

development cannot continue or that the maintainability and
reliability of the deployed system are insufficient [40]. Reach-
ing any of these conditions puts the system into a state of
technical bankruptcy, defined as follows.

Definition 7: Technical bankruptcy is the state where the
system can no longer proceed with its lifecycle until some, or
all, of the system TD is repaid.

Systems that are technically bankrupt are no longer able to
support future development without first repaying some or all
of the existing system TD [5]. This situation can occur when
the effort required to repay system TD exceeds the capacity
of the development team. The development team will not be
able to make progress on the system, resulting in a bankrupt
state. Bankrupt systems are no longer able to either verify
or validate their requirements within the system development
timeline and budget [55].

A system may also reach technical bankruptcy once it is
deployed due to an accumulation of technical fees. Technical
fees, which define the increased difficulty in using the system
due to the presence of unpaid principal, impact the quality of
the delivered product. An excessive accumulation of fees will
make the system unusable until the TD that resulted in the fees
is corrected.

Systems reach technical bankruptcy when the technical
costs, associated with system development and system, use
exceed system benefits, such as delivering on time and within
budget. Technically, bankrupt systems require an increase
in the budget or schedule dimension or a reduction in the
expectations in the performance dimension to emerge from
bankruptcy.

G. TECHNICAL DEBT ITEM
A TD Item is a concrete instance of TD within a system that
connects the technical concession and its consequences on
system artifacts [49]. The TD item represents the concession
that was made as part of the technical compromise and is used
to track the impacts on the long-term health of the system. The
following sections discuss each of the TD Item attributes.

1) DESCRIPTION
The description provides a narrative of the technical con-
cession and the steps required to restore the system in the
performance dimension.

2) CONSEQUENCE
The consequence of the TD item refers to the potential im-
pacts on the long-term health of the system [29]. It consists
of a narrative description of the impacts and the quantitative
measures of principal, interest, and fees.

3) PRINCIPAL
The existing definitions of the principal vary but are typically
centered on the effort required to correct the issue causing the
TD [5], [54], [56], [57]. Ampatzoglou et al. [40] defined it as
“the effort that is required to address the difference between

the current and the optimal level of design-time quality.”
Izurieta et al. [58] stated that principal “refers to the cost
or effort (measured monetarily or in time units) necessary to
restore a software artifact back to health.” Avgeriou et al. [49]
identified principal as the “cost savings gained by taking some
initial approach or “shortcut” in development (the initial prin-
cipal). Or the cost it would take now to develop a different or
better solution (the current principal).”

This quick review of the literature identifies two major
methodologies for calculating the principal: It is either the
UNIT to implement the optimal solution originally (the sav-
ings from the original concession) or it is the current UNIT
to implement the optimal solution now. The principal mea-
sures the initial concession made as part of the technical
compromise—it is the UNIT of system performance that is
given up in order to achieve the desired benefit. The principal
is like the principal in financial debt—it does not increase with
time, although payments can be made to reduce the principal,
and therefore, the following definition is adopted.

Definition 8: The principal P is a measurement of the
concession made in the performance dimension to achieve a
short-term benefit.

4) INTEREST AND FEES
The long-term impact of TD on a system’s users is different
than the impact on the system’s developers. System users may
experience decreased usability, maintainability, or reliability
of the system. These impacts are likely to occur each time the
system is used and to be of the same magnitude with each oc-
currence. System developers may experience the same issues
but may also experience increased difficulties in continuing
the system development to meet performance requirements.
The impacts seen by developers occur when the system is
modified either due to the natural development process or due
to changes in the system requirements. These impacts tend to
be less predictable both in occurrence and in the magnitude of
the impact. Therefore, the long-term impact of the technical
concession needs to be considered from both perspectives.
This consideration results in two separate quantities: interest
and fees.

Interest and fees can be distinguished based on how they
impact the system. Interest is based on impacts on the de-
velopment of the system—if the technical concession results
in increased costs, schedule, or difficulty in making modifi-
cations to the system, then the system has accrued interest.
Interest is variable—both the interest amount and the interest
probability are functions of the state of the system. Fees are
based on impacts observed during usage of the system—if the
system is more difficult or complicated to use as a result of
the technical concession, then the system has incurred a fee.
The magnitude of the fee is constant; however, the fee must be
paid by the user every time that the impacted artifact is used.

Fees are paid by the user and the interest is paid by the sys-
tem developer. The system developer must repay the principal.
The repayment of the principal constitutes the correction of

VOLUME 1, 2023 117

KLEINWAKS ET AL.: ONTOLOGY FOR TD IN SYSTEMS ENGINEERING

the original technical concessions and removes the TD. This
repayment must be done by the developers and then the up-
dated system is released to the users.
a) Interest: Interest on TD is traditionally defined as the

extra effort required to modify the system due to the presence
of deficiencies [5], [32], [36], [40], [54]. TD interest has also
been defined as the work to correct a deficiency [58], the
additional work to implement new functionality [49], and the
additional work to maintain the system due to the presence of
the deficiency [55], [59].

TD interest results from the lower design-time quality
of a component (poor documentation, low maintainability,
etc.) that requires additional effort in subsequent develop-
ment efforts. TD interest can be contagious [20]—each new
component that interacts with a component containing TD
may require additional effort to develop and may then carry
forward that interest into its successor components (com-
pounding the interest). If a suboptimal component is included
in the architecture instead of correcting the component (the
principal), each new application that connects to that compo-
nent would suffer from its suboptimality [56]. The build-up of
dependencies on the suboptimal component results in overall
suboptimal performance and increased work to add new com-
ponents (the interest).

Within the systems engineering context, the TD interest
refers to the long-term impacts on the system as encountered
by the system developers. The interest will accrue in the per-
formance dimension of the system and can impact both the
scope and the quality of the system. The interest definition,
therefore, is limited to the impact on the system developers.

Definition 9: The interest I is the expected value of ad-
ditional UNITs incurred by the system developers in the
performance dimension due to the presence of unpaid prin-
cipal.

Applying a direct financial analog to TD would require the
definition of an “interest rate” for TD, which would associate
the total amount to be repaid with a known growth rate of
the debt. However, a relationship between TD principal and
interest that would apply to all projects has not been defined.
Ampatzogolou et al. [54] suggested that such a rate cannot
be defined, since the specific growth of TD interest depends
on aspects unique to each system, such as the system imple-
mentation, the system context, and the maintenance activities
performed. Due to the complexities in calculating and pre-
dicting the effort associated with interest, Seaman et al. [39]
divided the interest into two categories: interest amount and
interest probability.
b) Interest amount: The interest amount reflects the long-

term change in the performance dimension that is traceable to
the original concession (the principal) [39].

Definition 10: The interest amount a is the additional
UNITs incurred by the system developers in the performance
dimension due to the presence of unpaid principal as a func-
tion of the state of the system.

The interest amount represents the impact of the principal
on the future state of the system. For example, if the principal

was incurred due to a decision to not complete documentation,
then the interest amount would be an increase in the effort
required to update that part of the system in future iterations.
The interest amount is measured in the same UNIT as the
principal. The interest amount is a function of the state of
the system development and the development timeline. For
example, a system may initially have few interfaces and com-
ponents, and the ability to work around the initial concession
is small. As the system grows, the number of interfaces in-
creases and the impact of the initial concession spreads to a
larger number of interfaces and components. Therefore, the
change in the performance dimension has increased due to
the larger number of impacted components, increasing the
interest amount. The interest amount may also decrease due
to changes in the system development, such as removing an
interface.
c) Interest probability: Unlike financial debt, which has a

known schedule of payments and interest, TD interest may or
may not be realized. Once the technical compromise is made,
the principal exists in the system. The technical compromise
may be made in a component of the system that never has to
be altered again, and therefore, the compromise does not need
to be resolved. The interest probability accounts for the likeli-
hood of the interest being realized [39]. For example, a system
may choose smaller batteries that reduce the upgradability of
the system. However, if those upgrades are not implemented,
then the interest is never realized.

Definition 11: The interest probability r is the probability
that the interest amount will be realized as a function of the
state of the system.

Like the interest amount, the interest probability is also
a function of the state of the system and the development
timeline. As the system development changes, especially in
iterative design cycles, the probability of the interest being
realized may change. For example, an incompletely imple-
mented standard may initially have a low-interest probability
if the component that implements the standard is isolated.
If the system design changes such that the component is no
longer isolated, then the interest probability will increase.
d) Fees: Users of a system use a released version of the

system, and therefore, the system’s capability in the perfor-
mance dimension is largely fixed. Design choices made in
the system development may result in a less-than-optimal
experience for the user. Activities may take longer than they
should due to underperforming hardware or due to poor user
interface design. Capabilities may not be fully implemented
and require workarounds by the user. The system may not be
easily maintained or may not be as reliable as it should have
been. All these issues tend to occur in the quality aspect of
the performance dimension. Unlike TD interest, these issues
occur with each use of the system. The total impact of the
issues is dependent upon the number of times that the system
is used and is not based on the effort required to add capability
to the system or to modify the system design.

Therefore, these impacts on the health of the system are
separated out from the TD interest and are instead termed TD

118 VOLUME 1, 2023

fees. Fees are the recurring costs of using a system containing
TD and are measured in UNIT every time that the system
is used. Izurieta et al. [29] defined this concept as recurring
interest. An example of a fee occurs when a poorly developed
user interface results in several extra minutes spent inputting
system parameters in a software system. Every time the user
has to input the parameters, users will have to “pay the fee”
for those extra minutes, until the principal on that TD Item
(reworking the interface) is repaid by the developers. A fee is
defined as follows.

Definition 12: The fee f is the amount of additional UNIT
incurred by the user with each use of the system due to the
presence of TD.

A system that performs poorly does not necessarily have
fees. Fees must be associated with a technical compromise,
and as such, an instance of TD. For example, a race car
that is slower than its competitors does not necessarily have
any fees associated with the use of the car—it is just not
as well designed as its competitors. However, a cost savings
compromise made to use a metal frame instead of a composite
frame that reduces the gas mileage would be an example of a
fee—the user (the driver) must perform additional pit stops
every time the car is raced.

5) BALANCE
The balance B is the summation of the principal and the
interest and represents the total UNITs required to repay the
TD item. The balance does not include the fees (either realized
or anticipated) in the system, as fees are not repaid. The
expected value of the balance is calculated, as given in (1).
The subscript t indicates the parameters that change with time.

Bt = P + at∗rt . (1)

6) TOTAL COST
The total cost C in terms of UNIT, due to the TD item, is
inclusive of the balance and the fees. The total cost is a time-
dependent value, as it includes the interest, which is a function
of the state of the system, and the expected fees. Fees are fixed
in magnitude, but the number of fees n will change with time.
The expected value of the total cost is calculated, as given in
(2). The subscript t indicates the parameters that change with
time.

Ct = Bt + f ∗nt . (2)

7) ARTIFACT
The artifact is the part of the system that is affected by the TD
[29]. A TD item may impact multiple artifacts—the principal
may be associated with one artifact while the interest and fees
may be associated with a different artifact. An artifact may be
a piece of documentation, a component of the system, a test
case, or any other part of the system itself.

Definition 13: An artifact is the part of the system affected
by TD.

8) CAUSE
The cause of a TD item defines the reasons why the technical
compromise was made [29]. It consists of two attributes: The
specific cause and the cause category. The cause provides
traceability of the TD item to the original decision that can
then be used in forensic evaluations.
a) Specific cause: The specific cause of a TD item is

the short-term benefit provided to the system developers,
stakeholders, or users that is realized through a technical
concession. The specific cause includes the rationale for why
achieving the short-term benefit required a technical conces-
sion. For example, a technical compromise may be made such
that a program increment can be released on time. In this ex-
ample, the specific cause is the on-time release of the program
increment. The rationale defines why a technical concession
had to be made to release the increment on schedule, such as
supply chain issues forcing a switch to a different less reliable
part.

Definition 14: The specific cause of a TD item is the short-
term benefit realized through the technical concession.
b) Cause category: The cause category provides a general

categorization of the cause. The cause category is defined as
follows.

Definition 15: A cause category is the dimension of the sys-
tem development where the short-term benefits are achieved
as a result of the technical concession.

Kleinwaks et al. [23] conducted an empirical survey of
systems engineering professionals. This survey included ques-
tions on reasons why a system developer may incur TD. Over
80% of the respondents identified schedule pressure as a rea-
son, over 60% of the respondents identified cost pressure as a
reason, and over 30% of the respondents identified technical
compromise as a reason. Kruchten et al. [17] similarly iden-
tified schedule pressure as the primary cause of TD. These
results lead to the following cause categories.

1) Schedule: It consists of pressures put on the technical
solution due to the need for the system to meet the
schedule. For example, any TD incurred such that the
system can meet its scheduled release date is caused by
the schedule category.

2) Cost: It consists of pressures put on the technical solu-
tion due to the need for the system to stay on budget. For
example, technical concessions associated with the use
of a cheaper part are associated with the cost category.

3) Performance: It consists of technical concessions made
in one area to achieve technical benefits in another
area of the system. For example, a satellite system may
choose to use a less performant antenna such that system
mass requirements are met.

These categories mirror the system dimensions defined in
Section II-B. As evidenced by Fig. 3, pressure on any of the
dimensions may result in movement in the other dimensions.
Fig. 4 shows an example of this process. Stakeholders, such
as management executives, may put pressure on the system to
release earlier in order to beat a competitor to market. This

VOLUME 1, 2023 119

KLEINWAKS ET AL.: ONTOLOGY FOR TD IN SYSTEMS ENGINEERING

FIGURE 4. Example of schedule pressure creating TD.

pressure pulls the schedule vertex (T) to the left, as shown in
section 1 in Fig. 4. Without other resources, the movement
of the schedule vertex would result in a corresponding de-
crease in system performance (P), as shown in section 2 of
Fig. 4. This reduction indicates that a technical compromise
is required, which introduces TD to the system. To restore
the system performance, the cost vertex ($) is moved left,
decreasing the system profitability, as shown in section 3 of
Fig. 4. Therefore, the stakeholders would have to accept a
tradeoff in the system—either a decreased performance and
the introduction of TD or decreased profitability due to an
increase in costs. Note that the profitability factor here does
not account for the potential future benefits of releasing the
system earlier to the market.

9) TYPE
The type of a TD item provides a means to categorize the TD
item. TD items with similar types may have similar causes or
similar methods for repaying the TD. Examples of different
types of TD can be found throughout the literature and include
items such as architectural TD [60], domain debt [42], and re-
quirements debt [61]. TD occurs in various stages throughout
a system’s lifecycle and for various reasons. Classification of
TD into different types assists in understanding and managing
it; however, too many disparate types of risk are diluting the
strength of the TD metaphor [17]. A definition for a TD type,
such as that provided in Definition 16, can assist in restricting
the accumulation of differing TD types.

Definition 16: A TD type is a classification of TD based
on the artifacts that are negatively affected by the technical
concessions made to realize a short-term benefit.

This definition restricts a TD type to be associated with
specific artifacts and the technical concessions that are made.
Domain debt, defined as the “misrepresentation of the applica-
tion domain by an actual system” [42], is associated with the
documentation of stakeholder needs and system requirements.
Technical concessions that result in domain debt can include
limiting user interactions to save development time. Defect
debt, defined as any defect found within the system [5], would
not be a type of TD according to Definition 16. Defect debt
can be mapped to an artifact, such as the source code, but not
to technical concessions. Defects are the result of poor work
and are not inserted into the system to realize a short-term
benefit.

FIGURE 5. Consolidation of TD types from [22], organized by interest and
fee-bearing status.

III. DISCUSSION
The ontology provided in this article provides a starting
point for developing a common framework for discussing TD
within systems engineering. This commonality is critical to
enable the sharing of methods and processes for identifying
and mitigating the impacts of TD. The need for a common set
of definitions can be seen by examining a listing of types of
TD.

Kleinwaks et al. [22] identified the types of TD found
within published systems engineering research. Recognizing
that creating too many types of TD risks can dilute the strength
of the metaphor [17], the types of systems engineering TD
were reevaluated in the context of this TD ontology. This
evaluation resulted in the consolidation of the TD types, as
shown in Fig. 5, with the types classified as interest bearing
(associated primarily with impacts during system develop-
ment), fee bearing (associated primarily with impacts during
system usage), or both interest and fee bearing. Several of the
identified types of TD proved to be instances of other types
of TD. For example, versioning debt is an instance of doc-
umentation debt and not a separate type of TD. Automation
debt, build/assembly debt, depreciation debt, and infrastruc-
ture debt were originally listed as different types of TD [22].
These types of TD impact the same artifacts—the supporting
tools used to develop the system. Therefore, according to
ontology, they represent different facets of the same type of
TD. Fig. 5 shows the subtypes as italicized items under the
new parent type, which is listed in bold. After application
of the definition of a TD type, several types of TD listed in
[22] were found to not be TD types: defect, operations and
maintenance, and organic. These items reflect the causes or
impacts of TD instead of types of TD. This short example
demonstrates the utility of the ontology—it provides clear
guidelines of what is and is not TD and can prevent overclassi-
fication, which impedes communication and the development
of effective management strategies [17].

120 VOLUME 1, 2023

IV. CONCLUSION
Kleinwaks et al. [22] proposed a research agenda for un-
derstanding TD in the context of systems engineering. This
agenda includes baselining the knowledge of TD in the field
of systems engineering through empirical data collection, de-
veloping a systems engineering ontology of TD, developing
techniques to identify causes of TD within systems engineer-
ing, developing methods to quantify and predict the impact of
TD within systems development, and verifying and validating
these methods.

The first agenda item was addressed through a survey on the
prevalence of TD in systems engineering [23]. The research
question presented in this article addresses the second agenda
item—identifying an ontology of TD within the context of
systems engineering. This research presents a starting point
for the development of a complete ontology. It introduces
and defines the key terms, with clear explanations. These
explanations and definitions begin the creation of a common
lexicon and provide practitioners with the semantics necessary
to create clarity in communications.

The ontology presented here is not complete. Further work
needs to be performed to create taxonomies of TD types and
of specific causes of TD. Too many classes of either TD types
or specific causes can dilute the strength of the TD metaphor
[17]. Future research needs to provide guidance on how to
classify TD such that it is precise enough to be meaningful
without overspecification.

The socialization of this ontology, of which this article
is the first step, will provide a starting point for clear and
concise terminology usage within the field of systems en-
gineering, which is a necessary step toward mitigation of
the risks associated with TD and the prevention of technical
bankruptcy.

IV. REFERENCES

[1] W. Cunningham, “The WyCash portfolio management system,” Mar.
26, 1992, Accessed: Jan. 29, 2022. [Online]. Available: http://c2.com/
doc/oopsla92.html

[2] L. Wheatcraft, T. Katz, M. Ryan, and R. B. Wolfgang, “Needs,
requirements, verification, validation lifecycle manual,” INCOSE Re-
quirements Working Group, Tech. Prod. INCOSE-TP-2021.002-01, Jan.
2022.

[3] Project Management Institute, “Technical debt,” Feb. 2022, Accessed:
Mar. 11, 2023. [Online]. Available: https://www.pmi.org/disciplined-
agile/agile/technicaldebt

[4] V. Dalal, K. Krishnakanthan, B. Munstermann, and R. Patenge, “Tech
debt: Reclaiming tech equity,” Oct. 2020. Accessed: Mar. 12, 2023.
[Online]. Available: https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/tech-debt-reclaiming-tech-equity

[5] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on tech-
nical debt and its management,” J. Syst. Softw., vol. 101, pp. 193–220,
2015.

[6] R. E. Fairley and M. J. Willshire, “Better now than later: Managing
technical debt in systems development,” Computer, vol. 50, no. 5,
pp. 80–87, 2017.

[7] R. S. Carson, P. J. Frenz, and E. O’Donnell, “Project manager’s guide
to systems engineering measurement for project success: A basic intro-
duction to systems engineering measures for use by project managers
(Version 1.0),” INCOSE, San Diego, CA, USA, 2015.

[8] D. A. Broniatowski and J. Moses, “Measuring flexibility, descriptive
complexity, and rework potential in generic system architectures,” Syst.
Eng., vol. 19, no. 3, pp. 207–221, 2016.

[9] A. T. Bahill, “Diogenes, a process for identifying unintended conse-
quences,” Syst. Eng., vol. 15, no. 3, pp. 287–306, 2012.

[10] S. Dullen, D. Verma, and M. Blackburn, “Review of research into the
nature of engineering and development rework: Need for a systems en-
gineering framework for enabling rapid prototyping and rapid fielding,”
Procedia Comput. Sci., vol. 153, pp. 118–125, 2019.

[11] L. A. Rosser and J. H. Norton, “A systems perspective on technical
debt,” in Proc. IEEE Aerosp. Conf. (50100), 2021, pp. 1–10.

[12] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
J. Syst. Softw., vol. 86, pp. 1498–1516, 2013.

[13] N. Rios, M. G. de Mendonca Neto, and R. O. Spinola, “A tertiary study
on technical debt: Types, management strategies, research,” Inf. Softw.
Technol., vol. 102, pp. 117–145, 2018.

[14] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spinola,
“Towards an ontology of terms on technical debt,” in Proc. IEEE 6th Int.
Workshop Manag. Tech. Debt, 2014, pp. 1–7.

[15] M. Uschold and R. Jasper, “A framework for understanding and
classifying ontology applications,” in Proc. Workshop Ontol. Problem-
Solving Methods, 1999, pp. 11-1–11-12.

[16] Y. Yang, D. Verma, and P. S. Anton, “Technical debt in the engineering
of complex systems,” Syst. Eng., vol. 26, pp. 590–603, 2023.

[17] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Softw., vol. 29, no. 6, pp. 18–21,
Nov./Dec. 2012.

[18] N. S. Alves, T. S. Mendes, M. G. de Mendonca, R. O. Spinola, F. Shull,
and C. Seaman, “Identification and management of technical debt: A
systematic mapping study,” Inf. Softw. Technol., vol. 70, pp. 100–121,
2016.

[19] D. Pina, A. Goldman, and G. Tonin, “Technical debt prioritization: Tax-
onomy, methods results, and practical characteristics,” in Proc. IEEE
47th Euromicro Conf. Softw. Eng. Adv. Appl., 2021, pp. 206–213.

[20] A. Martini and J. Bosch, “The danger of architectural technical debt:
Contagious debt and vicious circles,” in Proc. IEEE/IFIP 12th Work.
Conf. Softw. Architecture, 2015, pp. 1–10.

[21] S. Malakuti and J. Heuschkel, “The need for holistic technical debt man-
agement across the value stream: Lessons learnt and open challenges,”
in Proc. IEEE/ACM Int. Conf. Tech. Debt, 2021, pp. 109–113.

[22] H. Kleinwaks, A. Batchelor, and T. H. Bradley, “Technical debt in Sys-
tems Engineering - A systematic literature review,” Syst. Eng., vol. 26,
pp. 675–687, 2023.

[23] H. Kleinwaks, A. Batchelor, and T. H. Bradley, “An empirical survey
on the prevalence of technical debt in systems engineering,” in Proc.
INCOSE Int. Symp., 2023, pp. 1640–1658.

[24] S. Koolmanojwong and J. A. Lane, “Enablers and inhibitors of expedit-
ing systems engineering,” Procedia Comput. Sci., vol. 16, pp. 483–491,
2013.

[25] G. Robiolo, E. Scott, S. Matalonga, and M. Felderer, “Technical
debt and waste in non-functional requirements documentation: An ex-
ploratory study,” in Proc. Int. Conf. Product-Focused Softw. Process
Improvement, 2019, pp. 220–235.

[26] J. A. Lane, S. Koolmanojwong, and B. Boehm, “4.6.3 Affordable sys-
tems: Balancing the capability, schedule, flexibility, and technical debt
tradespace,” in Proc. INCOSE Int. Symp., 2013, pp. 1385–1399.

[27] B. W. Boehm, J. A. Lane, S. Koolmanojwong, and R. Turner, The
Incremental Commitment Spiral Model: Principles and Practices for
Successful Systems and Software, Upper Saddle River, NJ, USA:
Addison-Wesley, 2014.

[28] S. Blumberg, R. Das, J. Lansing, N. Motsch, B. Munstermann,
and R. Patenge, “Demystifying digital dark matter: A new standard
to tame technical debt,” Jun. 2022. Accessed: Mar. 12, 2023.
[Online]. Available: https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/demystifying-digital-dark-matter-a-new-standard-
to-tame-technical-debt

[29] C. Izurieta et al., “Perspectives on managing technical debt: A transition
point and roadmap from Dagstuhl,” in Proc. Joint 4th Int. Workshop
Quantitative Approaches Softw. Qual., 1st Int. Workshop Tech. Debt
Analytics, 2016, pp. 84–87.

[30] J. W. Boswell, F. T. Anbari, and J. W. Via, III, “Systems engineering and
project management: Points of intersection, overlaps, and tensions,” in
Proc. Portland Int. Conf. Manage. Eng. Technol., 2017, pp. 1–6.

VOLUME 1, 2023 121

http://c2.com/doc/oopsla92.html
http://c2.com/doc/oopsla92.html
https://www.pmi.org/disciplined-agile/agile/technicaldebt
https://www.pmi.org/disciplined-agile/agile/technicaldebt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

KLEINWAKS ET AL.: ONTOLOGY FOR TD IN SYSTEMS ENGINEERING

[31] A. Kossiakoff, S. J. Seymour, D. A. Flanigan, and S. M. Biemer, Sys-
tems Engineering: Principles and Practice, 3rd ed. Hoboken, NJ, USA:
Wiley, 2020.

[32] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical
debt: A unified model and systematic literature review,” J. Syst. Softw.,
vol. 135, pp. 1–16, 2017.

[33] R. Verdecchia, P. Kruchten, and P. Lago, “Architectural technical debt:
A grounded theory,” in Proc. Eur. Conf. Softw. Architecture, 2020,
pp. 202–219.

[34] K. Borowa, A. Zalewski, and A. Saczko, “Living with technical debt
– A perspective from the video game industry,” IEEE Softw., vol. 38,
no. 6, pp. 65–70, Nov./Dec. 2021.

[35] F. Ocker, M. Seitz, M. Oligschlager, M. Zou, and B. Vogel-Heuser,
“Increasing awareness for potential technical debt in the engineering of
production systems,” in Proc. IEEE 17th Int. Conf. Ind. Inform., 2019,
pp. 478–484.

[36] V. Lenarduzzi and D. Fucci, “Towards a holistic definition of require-
ments debt,” in Proc. IEEE/ACM Int. Symp. Empirical Softw. Eng.
Meas., 2019, pp. 1–5.

[37] N. Brown et al., “Managing technical debt in software-reliant systems,”
in Proc. FSE/SDP workshop Future Softw. Eng. Res., 2010, pp. 47–52.

[38] Z. S. H. Abad and G. Ruhe, “Using real options to manage technical
debt in requirements engineering,” in Proc. IEEE 23rd Int. Require-
ments Eng. Conf., 2015, pp. 230–235.

[39] C. Seaman et al., “Using technical debt data in decision making: Po-
tential decision approaches,” in Proc. IEEE 3rd Int. Workshop Manag.
Tech. Debt, 2012, pp. 45–48.

[40] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic litera-
ture review,” Inf. Softw. Technol., vol. 64, pp. 52–73, 2015.

[41] S. McConnell, “Managing technical debt,” Construx Softw. Builders,
pp. 1–14, 2008.

[42] H. Storrle and M. Ciolkowski, “Stepping away from the lamppost:
Domain-level technical debt,” in Proc. IEEE 45th Euromicro Conf.
Softw. Eng. Adv. Appl., 2019, pp. 325–332.

[43] D. Sculley et al., “Machine Learning: The high-interest credit card
of technical debt,” in Proc. SE4ML: Softw. Eng. Mach. Learn., 2014,
pp. 1–9.

[44] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and
types of technical debt,” in Proc. IEEE 3rd Int. Workshop Manag. Tech.
Debt, 2012, pp. 49–53.

[45] J. Schutz and M. Uslar, “Introducing the concept of technical debt to
smart grids: A system engineering perspective,” in Proc. 25th Int. Conf.
Electricity Distrib., 2019, pp. 1–5.

[46] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Adv. Comput., vol. 82, pp. 25–46, 2011.

[47] L. A. Rosser and Z. Ouzzif, “Technical debt in hardware systems and
elements,” in Proc. IEEE Aerosp. Conf. (50100), 2021, pp. 1–10.

[48] C. L. Jones, G. Draper, B. Golaz, and P. Januz, “Practical software and
systems measurement continuous iterative development measurement
framework. Part 3: Software assurance and technical debt version 2.1,”
Nat. Defense Ind. Assoc., Int. Council Syst. Eng., 2021.

[49] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman, “Re-
ducing friction in software development,” IEEE Softw., vol. 33, no. 1,
pp. 66–73, Jan./Feb. 2016.

[50] R. Kothamasu, S. H. Huang, and W. H. VerDuin, “System health moni-
toring and prognostics—A review of current paradigms and practices,”
Int. J. Adv. Manuf. Technol., vol. 28, no. 9, pp. 1012–1024, 2006.

[51] D. H. Collins, C. M. Anderson-Cook, and A. V. Huzurbazar, “System
health assessment,” Qual. Eng., vol. 23, no. 2, pp. 142–151, 2011.

[52] M. Fowler, “TechnicalDebtQuadrant,” Oct. 14, 2009, Accessed:
Jan. 27, 2022. [Online]. Available: https://martinfowler.com/bliki/
TechnicalDebtQuadrant.html

[53] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt:
Towards a crisper definition report on the 4th international workshop on
managing technical debt,” ACM SIGSOFT Softw. Eng. Notes, vol. 38,
no. 5, pp. 51–54, 2013.

[54] A. Ampatzoglou et al., “Exploring the relation between technical debt
principal and interest: An empirical approach,” Inf. Softw. Technol.,
vol. 128, 2020, Art. no. 106391.

[55] M. Ciolkowski, V. Lenarduzzi, and A. Martini, “10 Years of technical
debt research and practice: Past, present, and future,” IEEE Softw.,
vol. 38, no. 6, pp. 24–29, Nov./Dec. 2021.

[56] V. Lenarduzzi, T. Besker, D. Taibi, and A. Martini, “A systematic
literature review on technical debt prioritization: Strategies, processes,
factors, and tools,” J. Syst. Softw., vol. 171, 2021, Art. no. 110827.

[57] A. Martini, J. Bosch, and M. Chaudron, “Investigating architectural
technical debt accumulation and refactoring over time: A multiple case
study,” Inf. Softw. Technol., vol. 67, pp. 237–253, 2015.

[58] C. Izurieta, G. Rojas, and I. Griffith, “Preemptive management of model
driven technical debt for improving software quality,” in Proc. 11th Int.
ACM SIGSOFT Conf. Qual. Softw. Architectures, 2015, pp. 31–36.

[59] G. Digkas, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, and O.
Matel, “The risk of generating technical debt interest: A case study,”
SN Comput. Sci., vol. 2, no. 1, pp. 1–12, 2020.

[60] R. Verdecchia, I. Malavolta, and P. Lago, “Architectural technical debt
identification: The research landscape,” in Proc. ACM/IEEE Int. Conf.
Tech. Debt, 2018, pp. 11–20.

[61] N. A. Ernst, “On the role of requirements in understanding and man-
aging technical debt,” in Proc. 3rd Int. Workshop Manag. Tech. Debt,
2012, pp. 61–64.

HOWARD KLEINWAKS received the B.Sc. and
M.Sc. degrees in aerospace engineering from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2003 and 2005, respectively. He is
currently working toward the Doctor of Engineer-
ing degree in systems engineering with Colorado
State University, Fort Collins, CO, USA.

He is researching the management of technical
debt in iterative systems development. He is the
Chief Engineer of the Strategic Space Business
Unit at Modern Technology Solutions, Inc., and

has more than 15 years of experience in the aerospace and systems engi-
neering fields. He is a Project Management Professional, Associate Systems
Engineer, and a Professional Scrum Master.

ANN BATCHELOR received the B.S. degree in
chemistry from Erskine College, in 1973, and M.S.
degree in nutrition from Clemson University, in
1975.

She has extensive industrial experience in tech-
nical management, systems engineering, produc-
tion, manufacturing, lean engineering, life cycle
management, test and analysis, transitioning tech-
nology into manufacturing, proposal and project
management, and technical writing. Her experi-
ence includes more than 20 years in research,

product development, manufacturing, engineering management, and business
development in the defense industry as a Chief Scientist, Systems Engineer,
Director of engineering, and Director of program management. While at
CSU, she worked with the Energy Institute in natural gas leak monitoring
projects and transportation projects. She teaches engineering project and pro-
gram management, systems requirements engineering, and engineering risk
assessment. She is a past certified Program Management Professional by the
Project Management Institute, a Military Sensing Fellow (DOD Informational
and Analysis Center for Military Sensing), a Lecturer on risk and opportunity
management courses, a former president-elect of the International Council on
Systems Engineering Atlanta Chapter, and a former course leader at GT for
infrared and visible signature suppression course.

THOMAS H. BRADLEY (IEEE, Member) re-
ceived the B.S. degree and another B.S. degree
in mechanical engineering from the University of
California—Davis, Davis, CA, USA, in 2000 and
2003, respectively, and the Ph.D. degree in me-
chanical engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2008.

He serves as the Woodward Foundation Profes-
sor and is the Department Head for the Department
of Systems Engineering with Colorado State Uni-
versity, Fort Collins, CO, USA. He is a member

of INCOSE, SAE, ASME, and AIAA. He conducts research and teaches
a variety of courses in system engineering, multidisciplinary optimization,
and design. His research interests are focused on applications in automo-
tive and aerospace system design, energy system management, and lifecycle
assessment.

122 VOLUME 1, 2023

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

