
Received 15 July 2022; revised 23 December 2022; accepted 12 February 2023. Date of publication 24 February 2023;
date of current version 30 March 2023. The review of this article was arranged by Editor Alejandro Salado.

Digital Object Identifier 10.1109/OJSE.2023.3249048

Requirements Rationalization and Synthesis
Enabled by Model Synchronization

SIYUAN JI 1 (Member, IEEE), CHARLES E. DICKERSON 1 (Senior Member, IEEE),
AND MICHAEL WILKINSON1,2

1Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, LE11 3TU Loughborough, U.K.
2BAE Systems Submarines, Bridge Road, Barrow-in-Furness, LA14 1AF Cumbria, U.K.

CORRESPONDING AUTHOR: Siyuan Ji (e-mail: s.ji@lboro.ac.uk).

ABSTRACT In the international standard for system and software engineering ISO/IEC/IEEE 15288: 2015,
the output of the stakeholder needs and the business or mission analysis technical processes are transformed
into a technical view of the system by the system requirements definition process. In model-based sys-
tems engineering, functional needs can be modeled by use case diagrams. Intended outcomes of system
requirements definition include resolution of disagreement about requirements, explicit agreement between
stakeholders, and traceability. However, stakeholder needs are often elicited in a siloed manner and may
be inconsistent. The lack of mathematically based systematic approaches for requirements definition poses a
challenge to model-based transformation of needs into a technical view of the system that achieves agreement
between stakeholders. This article specifies and demonstrates mathematical frameworks for rationalizing
and synthesizing functional needs that have been captured through an elicitation process. Benefits of this
approach include but are not limited to supporting rigorous identification and resolution of disagreements
and facilitating systematic analysis of change impact to achieve stakeholder agreement all with minimal
intervention by the system engineers.

INDEX TERMS Model-based systems engineering, model rationalization, model synchronization, model
synthesis, stakeholder requirements, systems modeling language (SysML).

I. INTRODUCTION
System requirements definition processes, such as specified
in ISO/IEC/IEEE 15288: 2015 [1], seek explicit agreement
between stakeholders on system requirements and their trace-
ability. Terminologies, such as rationalization, synthesis, and
synchronization of models, are not used in the standard but
are frequently used by the community to express fundamental
concepts and processes for systems and software engineering,
see for example, the usage of synthesis in the INCOSE SE
Handbook [2, pp. 11, 157, and 201]. The Object Management
Group (OMG) prescribes standards for software technologies,
such as the systems modeling language (SysML) [3], but sim-
ilar to other standards’ bodies, they do not prescribe methods
for implementing their standards. Recent research by the au-
thors has investigated methods for agreement and traceability
processes in systems engineering using model synchroniza-
tion [4].

A. BACKGROUND AND MOTIVATION
Stakeholder needs are often elicited in a “siloed” manner
in which systems’ engineers identify concerns and elicit
needs from different groups of stakeholders in isolation. This
practice supports the definition of architecture viewpoints
that address the different stakeholder concerns [5]. Stake-
holder requirements derived from different viewpoints must
be analyzed for completeness and consistency, among other
qualities. Issues, such as conflicting needs, must be resolved.
The stakeholder views must be agreed upon as a part of
requirements management [1]. In practice, this involves iden-
tifying and resolving issues, such as conflicting needs, from
different stakeholders. It can be enabled through stakeholder
workshops in which the outcome achieved is an agreement
among stakeholders that documents a final synthesis of their
needs and requirements. The outputs of the technical pro-
cesses for stakeholder needs and the business or mission

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

26 VOLUME 1, 2023

https://orcid.org/0000-0001-6139-3539
https://orcid.org/0000-0001-7995-0102

analysis must be of sufficient engineering quality to be used
as the basis for system requirements specification.

It is widely acknowledged that errors made during the early
stages of the lifecycle, say concerning needs or architectural
choices, may have significant impact in later stages, see for
example [6], [7], [8]. Well-known general model-based tech-
niques and methodologies [9], [10], [11] are seen to provide a
good starting point for identifying and resolving incompatible
needs. Graphical models, e.g., SysML [3], are also intended to
facilitate stakeholder communications to achieve agreement.
However, these approaches do not offer rigorous methods to
support a managed agreement process of stakeholder inputs
to system requirements definition. If model-based systems
engineering (MBSE) in general is to be adopted effectively
in the practice of stakeholder requirements elicitation and
management, the diagrams that support stakeholder communi-
cation, e.g., created in SysML, must be supported by rigorous
methods. This is a key motivation for addressing requirements
in a rigorous and repeatable manner using a mathematical
framework. Use of such a framework could also help with
issues known to arise in later stages of the lifecycle [12]. Such
an approach could also help to address from an early stage
what other authors have identified as emergent complexity
generating properties in engineering design [13], [14].

Agreement can be a resource-intensive process. With each
of many stakeholders advocating for their own needs, it can
be difficult to achieve agreement. MBSE seeks to make the
process more efficient and effective by using models as the fo-
cal point of communication and analysis in order to facilitate
agreement. Even so, there are inter-relational dependencies
between needs that can lead to possibly endless cycles of
resolution and agreement.

Recent model theoretic advances [4] by the authors have
demonstrated that structure preserving transformations of
models developed using relational orientation can be synchro-
nized to accommodate changes made to models not just in
progress but also at a later time. We further explore these
advances by using relational methods to enable model-based
agreement between stakeholders. This is a promising ap-
proach to support efficient and effective stakeholder meetings
for the identification and resolution of requirements’ issues,
and synthesis of the stakeholder needs.

It should be noted that this article does not attempt to
define a strictly formal approach to requirements analysis (as
advocated for example in [15], [16], and [17]); rather, it uses a
mathematical framework to assist the analyst within a joint
cognitive paradigm [4]. Within the context of the broader
research programme of the authors [18], we believe the joint
cognitive paradigm begins to address in a pragmatic way calls
for greater rigor in the development and application of sys-
tems engineering [19], [20], [21], [22].

B. DEFINITION AND DISCUSSION OF TERMINOLOGY
To facilitate the description and understanding of the frame-
work and process proposed in this work, we define the
following key terms based on common usage (derived from

dictionary definitions and technical usage) and intended usage
in practical engineering in a model-based context.

Synchronization—A process that establishes and maintains
the consistency of the elements and semantics occurring be-
tween two models. A pair of models is synchronized when
the models are free of issues, such as unnecessary repetitions
or contradictions.

The common usage of the term synchronize refers to en-
tities that occur or operate at the same time. In software
engineering, the term is focused on multiple programmers
working on components of a body of computer code. In [4],
this concept was elevated to a higher level of abstraction for
systems.

Rationalization—A process that seeks to find logical rea-
sons to bring a set of models into agreement.

There are many concepts and definitions of this term. Har-
monization is a similar term. In general software engineering,
the phrase application rationalization is defined as a process
of reviewing an application inventory to determine which ones
should be retired, retained, reposted, replatformed, refactored,
or reimagined [23].

As used in this article, rationalization is a process that
brings a set of models to a state that is free of incompatible
model elements. Incompatibility in the context of require-
ments engineering and MBSE refers to the following two
cases: First, structurally incompatible, e.g., the hierarchical
relationship between two requirements is inconsistently mod-
eled in two places; or second, contradictory or contrary, e.g.,
where two requirements as specified in two different models
cannot be simultaneously true. A more technical definition of
rationalization based on logic and set theory will be proposed
in Section II-A.

In this article, we will only consider endogenous ratio-
nalization (adapting from the terminology of endogenous
transformation [24] used in model-driven software engineer-
ing) of graphical models that are of the same type, e.g., use
case diagrams (UCDs). Models in a rationalized state attained
through this process can be synthesized in a seamless manner,
which in this article is achieved by a straightforward model
merging. This leads us to the third term.

Synthesis—A process that composes parts (partial models)
to form a whole (a complete model). Synthesis defined in this
way has been used in various other contexts, such as the syn-
thesis of musical notes into a piece of music. In requirements
engineering, this can be understood as the idea of combining
different stakeholder views and their needs into a consistent
“system of stakeholder requirements,” captured in a single
model.

C. KEY CONTRIBUTIONS OF THIS WORK
We claim two key contributions brought by this work.

1) Framework for Rationalization and Synthesis:
Model theoretic foundations that facilitate rationaliza-
tion and synthesis of stakeholder needs.

2) Rationalization Process Enabled by Synchronization:

VOLUME 1, 2023 27

JI ET AL.: REQUIREMENTS RATIONALIZATION AND SYNTHESIS ENABLED BY MODEL SYNCHRONIZATION

A matrix-based process that guides the rationalization
of stakeholder needs, which enables the transformation
of the outcomes of an elicitation process into a set of
rationalized stakeholder requirements’ models.

To demonstrate how the framework and process works in
practice and the benefits they bring, we will apply the process
in a case study of a robotic arm in which siloed stakeholder
needs are rationalized and synthesized initially, and further
rerationalized following changes have been introduced to the
models.

D. STRUCTURE OF THE ARTICLE
The rest of this article is organized as follows. In Section II,
we introduce the theoretical framework that underpins model
rationalization and model synthesis as defined in this section,
and construct rationalization and synthesis processes that can
be adopted and executed in practical settings. Practicality is
then illustrated through an incremental application of the pro-
cesses to a robotic arm case study in Section III. To further
demonstrate the synchronization property of the rationalized
models, Section IV continues the case study by introducing
requirements’ changes and demonstrates how the changes can
be analyzed and accepted efficiently while maintaining con-
sistency between the models. Finally, in Section V, we discuss
the practicality of our research for various model-based meth-
ods of requirements elicitation. Finally, Section VI concludes
this article.

II. FOUNDATIONS AND METHODS
This section introduces a foundation for the proposed ratio-
nalization, synthesis, and synchronization processes in this
article. We employ the mathematically based ROSETTA
Framework developed by Dickerson and Mavris [25] and first
applied in [26]. Our method is model theoretic as per Tarski
and Predicate Calculus. Representing the models and their
transformation in matrix representations is a mathematical
technique that is precise and provides a basis for rigorous
development of algorithms.

We assume that following a typical model-based approach
for requirements elicitation (see Section V for related works),
the outcomes are graphical models constructed using stan-
dardized modeling language, such as the SysML. In such
graphical models, model elements are either entities or rela-
tions, allowing one to treat them as simple graphs of vertices
and edges, and thus represent them using matrices, with
matrix elements showing relations between entities. Further-
more, it is possible that the elicitation process is done in
situations where stakeholder needs are elicited in a siloed
manner. As such, stakeholders are not necessarily aware of the
needs articulated by other groups. This results in the need for
processes to identify and resolve incompatible requirements
and to produce a “single source of truth” capturing the agreed
sets of stakeholder needs for the derivation of system require-
ments.

FIGURE 1. Framework for rationalization.

A. FRAMEWORK FOR RATIONALIZATION
Based on the ROSETTA Framework, the proposed frame-
work for rationalization, denoted by a Mi-Di, j-M j triad, is
constructed and depicted in Fig. 1. This framework uses two
adjacency matrices, Mi (b) and M j (a) to represent, respec-
tively, the elements in two graphical models of the same type.
We use the convention Mi(ex) to represent an entity in the
corresponding model, while the matrix elements in Mi cap-
ture the relations between two such entities; these relations
are referred to as in-model dependencies. The semantics of
the matrix elements depends on the metamodel governing
the graphical model. Taking UCDs as an example, in-model
dependencies include association (between an actor entity and
a use case entity), allocation (from a use case to the system),
inclusion, extension, and usage (which are all between two
use cases).

The framework further utilizes an incidence matrix, de-
noted as Di, j (bottom-right), to represent the so-called
cross-model dependencies [4] between the entities of the
models, i.e., relations between Mi(ex) in Mi and M j (ey) in
M j . These dependencies are logical in nature. Thus, based
on the formal logic of possible (logical) dependencies be-
tween two elements, the following types of relations can
be formulated between two model elements from different
models.

1) E – Equivalence: ex = ey

2) H – Hierarchical: ex ⊂ ey

3) O – Overlapping: ∃ez, ez ⊂ ex, ez ⊂ ey

4) I – Implication: ex → ey

5) C – Contradiction: ¬(ex → ex)
6) Unrelated: no logical dependencies
This is not an exhaustive list of logical dependencies, but it

is sufficient for the applications in this paper and indeed for
most engineering problems. For instance, H, O, and I depen-
dencies indicate potential structural incompatibility between
the two model elements, where there is a relationship between

28 VOLUME 1, 2023

FIGURE 2. Framework for synthesis.

model elements across the models not being captured by either
of the models. On the other hand, incompatible requirements
that are conflicting in nature can be identified as having a
C-dependency. Of the above dependencies, H and I dependen-
cies are directional. Directionality is captured using a directed
arrowhead in the subscript, e.g., I→ for Mi(ex)→ M j (ey) and
H← for Mi(ex) ⊃ M j (ey).

Our technical definition of a rationalized state between two
models is given as follows. Two models are rationalized when
the Di, j matrix contains only E- (equivalence) dependency
or void (empty) matrix elements, representing equivalent and
unrelated entities, respectively.

B. FRAMEWORK FOR SYNTHESIS
Using matrix representation, the framework for synthesis is
constructed and depicted in Fig. 2. This framework, unlike
the previous, is a matrix of matrices, where the header of a
row or a column now represents a set of entities contained
in a model, Mi. For instance, the notation Mi(e) describes
a row (column) vector when it is used as the header of a
column (row). As such, every block (element) in this matrix
is representing a matrix, either denoted by Mi for the diagonal
blocks or Di, j for the off-diagonal blocks. The notations are
self-explanatory referring back to the framework for rational-
ization, as depicted in Fig. 1. Notably, the matrix of matrices
is symmetric. This is because dependencies, whether in-model
or cross-model, are directional such that Di, j and D j,i have
exactly the same semantic content. Therefore, the framework
is simplified down to an upper triangular matrix of matrices,
as shown in Fig. 2.

For a set of n-models, Synthesis, as a process, is technically
understood as merging the models. In the case where mod-
els are not rationalized, one would anticipate seeing various
logical dependencies in the Di, j matrices. These elements
would make merging difficult and, in certain cases, infeasible.
For example, where there is a contradiction, C-dependency
merging is impossible since the presence of one model entity
contradicts the presence of the other. Arguably, one could
rationalize the models during synthesis. However, in this ap-
proach, a resolution of problematic logical dependencies, such

FIGURE 3. Rationalization and synthesis process enabled by model
synchronization.

as a C-dependency, could generate new C-dependencies else-
where in another D matrix, making it difficult to track changes
and rerationalize.

A better alternative is to rationalize the models using
model synchronization prior to synthesis. When models are
all synchronized with each other, according to the frame-
work for rationalization, Di, j matrices will contain only
E-dependencies as nonempty matrix elements. Then, syn-
thesizing the rationalized models becomes seamless because
the equivalent cross-model entities will merge into a single
entity. In terms of matrix operation, an E-dependency sug-
gests that a row/column is repeated, thus allowing repeated
row/columns to be merged into one, inheriting all the in-model
dependencies prior to the merge. Such merging can be readily
implemented by existing technologies in software engineering
[27].

C. RATIONALIZATION AND SYNTHESIS PROCESSES
In principle, rationalization and synthesis can be treated as
two independent processes, e.g., it is possible to synthesize
models without rationalizing them first. However, follow-
ing the frameworks introduced in Section II-B, it is evident
that a synthesis preceded by an endogenous rationalization
of models of the same type is advantageous; hence, we
construct the two processes in series, as conceptually il-
lustrated in Fig. 3, where we have adopted the following
notations.
M0

i Initial model that are not necessarily rationalized
M ′i Rationalized model
M Synthesized model
D0

i, j Initialized cross-model dependencies; empty
Di, j Cross-model dependencies presynchronization
D′i, j Cross-model dependencies postsynchronization
ℐ Process: identification of cross-model dependencies
𝒮 Process: synchronization
ℳ Process: merging
→ Process flow
��� Linkage for a synchronized triad

Note that, technically, M and D are the matrices with M
representing a corresponding model; and D0

i, j is always ini-
tialized as an empty matrix; this does not mean the models are
rationalized; hence, no dashed arrows are drawn between D0

i, j
and Ms.

VOLUME 1, 2023 29

JI ET AL.: REQUIREMENTS RATIONALIZATION AND SYNTHESIS ENABLED BY MODEL SYNCHRONIZATION

The rationalization process starts with initializing M0
i -D0

i, j-

M0
j , followed by the identification of cross-model dependen-

cies according to the prompt list of logical dependencies, as
provided in Section II-A. These dependencies are captured
in an intermediate matrix, Di, j , which will serve as the basis
for synchronization. The goal of the synchronization subpro-
cess, as discussed in the framework, is to revise the models
until Di, j is transitioned into a D′i, j , where the D′i, j only
contains E-dependencies as nonempty matrix elements. When
this is achieved, a synchronized M ′i-D′i, j-M ′ j triad is formed,
marking the completion of the rationalization between the two
(revised) models as, respectively, represented in M ′i and M ′ j .
This is why the rationalization process is said to be enabled by
model synchronization. Then, to complete the rationalization
among all models, the rationalization process is repeated until
all pairs of models are synchronized, as reflected through a
dedicated triad.

Following the completion of rationalization among all mod-
els, the synthesis process merges all the triads together into an
overarching model, M, that contains all the model elements.
This is a seamless process as the merge is only concerned with
merging repeated model entities (related by E-dependencies).
Each merged entity inherits every in-model dependency that
the entity has in different models prior to merging.

III. CASE STUDY PART I—RATIONALIZATION AND
SYNTHESIS
This section demonstrates an incremental application of the
rationalization and synthesis processes to a robotic arm case
study.

A. FUNCTIONAL NEEDS FOR A ROBOTIC ARM
In this section, we describe the settings and assumptions made
for the robotic arm case study. The engineering project is
about designing or acquiring a suitable robotic arm for a
production line in a factory. To reduce the scope of the study,
we will focus only on stakeholder functional needs, which can
be modeled using UCDs in a typical model-based stakeholder
needs elicitation approach.

During the elicitation, we assume that three stakeholders
and their needs are identified initially.

1) The Production Line Owner, who requires the robotic
arm to be able to pick parts from one workbench and
place them on another.

2) Factory Planner, who, for the purpose of optimizing the
factory floor and safety, requires the robot to be able to
move its arm following a predefined path.

3) Maintenance engineer, who needs to be able to test
whatever functions the robot exhibits.

Assuming that the needs of individual stakeholders are
elicited in a siloed manner, we derive three UCDs, each cap-
turing the functional needs as use cases. The three UCDs
are depicted in Fig. 4, from left to right. It is worth noting
that although the Production Line Owner and Factory Planner
are modeled as Actors for the purpose of showing the siloed

FIGURE 4. Set of siloed UCDs for the Robotic Arm system; from left to
right, UCD-1, UCD-2, and UCD-3, respectively.

FIGURE 5. Matrix representation prior to rationalization between M0
1 and

M0
2; D0

1,2 is empty prior to rationalization.

stakeholder view, they do not directly interact with the system;
hence, no Associations have been used. We have also inten-
tionally neglected the “parts” being moved by the robotic arm
as an Actor to simplify the models. In these diagrams, we have
given each model entity a unique ID, denoted using the matrix
convention, as introduced in Section II.

B. RATIONALIZATION OF THREE MODELS
The proposed rationalization process needs to be applied to
every possible pair of models, starting from the first pair,
UCD-1 and UCD-2. The two models, together with yet to
be identified cross-model dependencies, are initialized into an
M0

1 -D0
1,2-M0

2 triad, produced and shown in Fig. 5, according to
the framework for rationalization. The matrix representations
use the ID conventions adopted in the diagrams. For M0

1 , we
have the System, an Actor, and two Use Cases, and the matrix
elements capturing the semantic structure: allocations of the
two Use Cases to the System. For M0

2 , we have the System, an
Actor, and a Use Case, and the matrix elements capturing the
semantic structure: allocation of the Use Case to the System
and association between the Actor and the Use Case. For D0

1,2,
this is empty to start with.

In the next step, we identify cross-model dependencies and
update D0

1,2 into a D1,2 that captures these dependencies. Go-
ing through every pair of cross-model entities as guided by
D0

1,2, we have identified three dependencies, as shown on the
left of Fig. 6. First, there is the equivalence, E-dependency,

30 VOLUME 1, 2023

FIGURE 6. Identified cross-model (logical) dependencies between entities
in M1 and entities in M2, captured in D1,2.

for the System. This is straightforward as both diagrams
are focusing on the same subject of interest: the “Robotic
Arm.” Second, an implication relation between the individual
functionalities modeled in UCD-1 and the “Test Function”
functionality in UCD-2. Specifically, for every functionality,
“Test Function” plies that it needs to be tested, so the direction
of implication goes from “Test Function” to “Pick Part” and
“Place Part,” denoted by I← in the D1,2 matrix to show the
directionality.

With D1,2 derived, we then need to synchronize M1 and
M2 until arriving at an M ′1-D′1,2-M ′2 triad, where D′1,2 con-
tains only E-dependencies as nonempty matrix elements. This
synchronization subprocess can be intuitively understood as a
resolution of “disagreement” between stakeholders. Disagree-
ments do not necessarily mean contradictions in this context
but serve as points of interests that need to be investigated, so
“agreement” can be achieved. Agreement is reflected through
equivalent (repeated) functional needs appearing in different
models, showing that different stakeholders agree on what
they mean by that need.

In the case study, the repetition of Robotic Arm is ex-
pected, and thus, is already synchronized. For the two
I←-dependencies, there could be different ways of reso-
lution to achieve synchronization. For instance, one could
make an argument that when the Maintenance Engineer tests
a Robotic Arm’s functionality, that functionality must be
accessed (used); this can then be modeled by a Usage depen-
dency with the «use» stereotype in a UCD. Another slightly
more complicated but more practical and meaningful reso-
lution is to introduce a normal mode and a test mode for
each of the functions modeled in UCD-1. Instead of accessing
the full functionality for testing, a dedicated test mode could
make maintenance more efficient, but at the cost of higher
complexity. In practice, how one achieves synchronization is
subject to a tradeoff analysis conducted during stakeholder
discussions when different resolutions exist.

In this case study, we will be using the second resolution
going forward. This resolution can be modeled by introducing
a pair of included Use Cases for each of the primary functions,
one dedicated to each of the two modes, as shown in the
revised UCD-1 on the left of Fig. 7. To synchronize such
changes made to UCD-1, the test model Use Cases are also

FIGURE 7. Rationalized UCD-1 and UCD-2.

FIGURE 8. Synchronized M′
1-D′

1,2-M′
2 triad for the rationalized UCD-1 and

UCD-2; elements of D′
1,2 are either empty (unrelated) or E (equivalence).

modeled in the revised UCD-2, shown on the right of Fig. 7.
The equivalent entities are self-evident.

Now that UCD-1 and UCD-2 are rationalized, the ma-
trices can be updated to establish the synchronized triad,
M ′1-D′1,2-M ′2, as shown in Fig. 8, with D′1,2 containing three
E-dependencies, one for the system and two for the newly
introduced functions in test modes. It is worth noting that
in the transition of D1,2 into D′1,2, we do not revisit matrix
elements that have been previously considered but only those
that are considered “new” to D1,2 (matrix cells are highlighted
in blue), either due to the newly added entities (headers col-
ored in red) or revised existing entities (not applicable in this
rationalization).

Before moving on, it is worth revisiting the two resolu-
tions to discuss what has happened technically during the
synchronization. For either of the two approaches, essentially,
what has been done can be understood as an interpretation
of the I←-dependencies into the semantics of the in-model
dependencies in a UCD. In some cases, such interpretation
becomes a direct mapping. For instance, in the first resolution,
the I←-dependencies are interpreted into usage relations that

VOLUME 1, 2023 31

JI ET AL.: REQUIREMENTS RATIONALIZATION AND SYNTHESIS ENABLED BY MODEL SYNCHRONIZATION

FIGURE 9. Rationalized UCD-1 and UCD-3.

can be modeled by «use». In other cases, such interpretation
requires additional entities to be introduced before logical
dependencies can be directly mapped into the semantics of
in-model dependencies. For instance, in the second resolution,
I←-dependencies are interpreted into shared inclusions after
adding the included Use Cases in both models.

Now, we move on to the rationalization of UCD-1 and
UCD-3, beginning with the identification of logical depen-
dencies to derive a D1,3 from the triad, M ′1-D0

1,3-M0
3 . Due

to the space limitation, we will not depict more matrices,
but speak of specific matrix elements, using the convention,
{Mi(ex), M j (ey)} = Dependency Type.

Here, it is self-explanatory that instead of using the initial
UCD-1 as in Fig. 5 and represented in M0

1 , we will be us-
ing the revised UCD-1 in Fig. 7 and represent it by M ′1 to
continue the thread of synchronization. Between M ′1 and M0

3 ,
one could argue that there is an I→ dependency from “Pick
Part” (as well as “Place Part”) to “Move Arm,” i.e., in terms
of corresponding matrix elements, we have

{M ′1 (U1) , M0
3 (U1)} = I→

{
M ′1 (U2) , M0

3 (U1)
} = I→.

These reflect the concept of the Robotic Arm needing to
move to the designated point before performing the pick and
place function, and likely moving away from the point after
the completion of the function.

Following the idea of interpreting the cross-model de-
pendencies into the semantics of in-model dependencies
discussed previously, we could interpret these I→ dependen-
cies into Usage dependencies. For instance, the completion of
“Pick Part” function would require the use of the “Move Arm”
function. As such, the resolution is modeled by repeating the
“Move Arm” Use Case in UCD-1 together with two «use»
dependencies from “Pick Part” and “Place Part” Use Case to
the “Move Arm” Use Case. This is shown on the left in Fig. 9,
which is rationalized with the original UCD-3, reproduced on
the right of Fig. 9. Note that, the same resolution can also
be represented by repeating the “Pick Part” and “Place Part”
Use Cases in UCD-3 with the «use» dependencies, but this is
graphically more complicated.

FIGURE 10. Rationalized UCD-2 and UCD-3.

In this resolution, it is realized that in addition to an
interpretation into a Usage dependency, there is also the
precedence semantic with “Move Arm” likely performed both
before and after “Pick Part” (or “Place Part”) is performed.
However, UCDs do not exhibit any explicit semantics for
precedence. Hence, one cannot accurately and completely
resolve these Implications into Equivalences without intro-
ducing new semantics for UCDs through extensions (not the
preferred method in general), or using other types of diagrams,
such as Activity diagram (AD) and Sequence diagram (SD),
which focus on precedence (the preferred method). Since we
have scoped the case study to UCDs, we will be neglecting
the precedence part of the interpretation to move forward
with the rationalized UCDs, as shown in Fig. 9. As such,
D′1,2 in the synchronized M ′1-D′1,3-M ′3 triad (with M ′3=M0

3
since no change has been made to UCD-3) would contain two
E-dependencies

{M ′1 (S) , M ′3 (S)} = E
{
M ′1 (U7) , M ′3 (U1)

} = E.

Finally, we will be rationalizing the last pair, UCD-2 and
UCD-3. Following the same processes demonstrated previ-
ously, we arrive at a pair of rationalized UCDs, as depicted
in Fig. 10, and with D′1,2 in the synchronized M ′2-D′2,3-M ′3
triad containing two E-dependencies

{M ′2 (S) , M ′3 (S)} = E
{
M ′2 (U4) , M ′3 (U4)

} = E.

In this step of rationalization, one would raise a concern
on how the changes made to UCD-2 and UCD-3 might affect
the rationalized UCD-1. This is where one can trace through
the synchronized triads developed so far to identify where
iteration is needed. For instance, the introduction of M ′2(U4)
in M ′2 would impact the M ′1-D′1,2-M ′2 triad by introducing a
new column (with M ′2(U4) as the header) in the D′1,2 matrix.
One would then need to go through the new cross-model entity
pairings (c.f., Fig. 8), e.g., {M ′1(U1), M ′2(U4)} to see if there
are new cross-model dependencies that could arise. In this
case study, the rationalized UCD-2 and UCD-3 as in Fig. 9 do
not introduce any new cross-model dependencies with respect
to UCD-1 that require further synchronization. Therefore, we
claim that all three UCDs are now rationalized with a set of

32 VOLUME 1, 2023

FIGURE 11. Synthesized UCD.

three synchronized triads: M ′1-D′1,2-M ′2, M ′1-D′1,2-M ′3, and
M ′2-D′2,3-M ′3. Due to space limitations, final matrices are not
depicted.

In this case study, the order in which pairwise ratio-
nalization was conducted followed a natural sequence with
ascending index. In principle, the order followed should not
make a difference to the results. However, certain orders are
likely to be less efficient than others if the synchronization
of models in a later step introduces changes that desynchro-
nize the models that were synchronized in previous steps.
Again, in the case study, such desynchronization did not oc-
cur. Therefore, designing an efficient order based on available
information would be valuable for accelerating the overall
rationalization process, as if we are designing a “system of
stakeholder requirements.”

C. SEAMLESS SYNTHESIS BY MERGE
With the set of synchronized triads, we can now perform the
synthesis process by a straightforward merge based on the
framework for synthesis introduced in Section II-B. In simple
terms, equivalent Use Cases appearing in multiple diagrams
are merged into one Use Case and the merged Use Case inher-
its all the in-model dependencies that the premerge Use Cases
possess. For instance, the “Move Arm” Use Case appeared
in both rationalized UCD-1 and UCD-3, with IDs M ′1(U7)
and M ′3(U1), respectively. After the merge, the two Use Cases
are merged into one, as depicted in the synthesized UCD, M,
in Fig. 11, inheriting two «use» dependencies from UCD-1
(M ′1) and three «include» dependencies from UCD-3 (M ′3).
To maintain traceability, merged model entities have multiple
IDs as inherited from the siloed UCDs.

IV. CASE STUDY PART II—HANDLING CHANGES
In the case study, we have demonstrated how synchronization
enables rationalization. Any change from any stakeholder,

FIGURE 12. UCD-4 for the new stakeholder group: Safety analyst and
factory workers.

indexed by i, would then be reflected as a change to the
corresponding UCD and its matrix representation, M ′i. Such
a change could desynchronize the models, similar to the
way in which changes introduced during a rationalization
step could desynchronize previously rationalized models.
Hence, any changes made after the rationalization and syn-
thesis would require agreement among stakeholders in terms
of rerationalizing the models. The scale of rerationalization
required depends on the nature and scale of the change. Rera-
tionalization, at whatever scale, could be achieved by the
synchronization concept using matrix triads, as described in
Section III. In brief, while making changes to the previously
synchronized triads, stakeholders are prompted to identify
new cross-model dependencies with respect to the change
made. In this section, we illustrate how this synchronization
of changes is practically achieved, building on the case study
used so far.

A. NEW STAKEHOLDER
The first change we introduce to the case study is a new
stakeholder group that was intentionally left out in the initial
elicitation. This stakeholder group consists of a Safety Analyst
and the Part Inspector, sharing a goal that the Robotic Arm
will operate safely in a collaborative manner with the Part
Inspector. Specifically, the Robotic Arm would place a part
on the workbench for the Part Inspector to inspect and pick
the part up when it passes human inspection.

Safety was previously considered by the Factory Planner,
who considered that the Robotic Arm needs to follow prede-
fined paths so that, in principle, it will always be at a safe
distance from any workers involved in production. However,
a safety analyst would notice that even with such intent, there
is still a safety hazard: namely when the Part Inspector is
located too close to a Robotic Arm, possibly due to making a
human error. Eventually this hazard could lead to an accident
where the Robotic Arm harms the worker. To address this
safety concern, the need from this stakeholder group could
be elicited into a UCD, denoted as UCD-4 and depicted in
Fig. 12. In brief, the Robotic Arm needs to stop any movement
when any workers are within close and unsafe proximity.

The rationalization of UCD-4 with the other UCDs fol-
lows a similar rationalization process to that introduced in

VOLUME 1, 2023 33

JI ET AL.: REQUIREMENTS RATIONALIZATION AND SYNTHESIS ENABLED BY MODEL SYNCHRONIZATION

Section III, with the difference being that the previous UCDs
are already rationalized. Instead of going through the details,
we highlight the key outcomes below.

First, with respect to M ′1, identifying cross-model depen-
dencies in D1,4 would yield the following matrix elements:

{M0
4 (S) , M ′1 (S)} = E

{
M0

4 (U1) , M ′1 (U1)
} = E

{
M0

4 (U2) , M ′1 (U2)
} = E

{
M0

4 (U3) , M ′1 (U7)
} = C.

The first three E-dependencies are self-evident due to the
repetition of Use Case naming convention. Strictly speaking,
the “Pick Part” and “Place Part” Use Cases are modified with
adding an extension point, which needs to be repeated as well
in M ′1, if E-dependency is confirmed and agreed between the
stakeholders. The last dependency in the list is a contradiction,
C-dependency, because the Robotic Arm cannot move and
stop moving at the same time.

To resolve this contradiction, one would need to introduce
a prioritization on which function is to be performed under
what conditions. In principle, safety should be prioritized in
all circumstances. One could reflect this prioritization by in-
cluding an extension point for the “Move Arm” Use Case such
that it will also trigger “Stop Movement” when the situation is
considered unsafe. However, a proper resolution would again
require the usage of other diagram types, such as ADs, to
allow the priority logic to be properly modeled, e.g., by using
Disruption nodes and Merge nodes.

Next, with respect to M ′2, for D2,4, we have a similar
I←-dependency concerning the “Testing Function” Use Case.
This can be resolved again by introducing an “Operate Stop
in Test Mode” and “Operate Stop in Normal Mode” pair that
would not desynchronize any other models (c.f., Figs. 7 and
9).

Finally, with respect to M ′3, we would have the contradic-
tion issue with the “Move Arm” Use Case, but this has been
already resolved during the synchronization with M ′1.

With the above treatment, UCD-4 would be rationalized
with the other UCDs and a new M could be seamlessly synthe-
sized again by merging M ′4 along with the set of D-matrices
into the previous M. It is worth noting that the treatment of
UCD-4 in this section suggests another approach to the or-
dering and iterative synchronization of the models. Instead of
synchronizing one model with the rest of the models and then
iterating from the next model in the list (as in Section III-C),
this other approach can be described as iteratively adding a
new model and synchronizing it with the existing synchro-
nized models.

B. CONTRADICTING NEEDS
The resolution of the contradicting needs adopted in Section
IV-A assumed prioritizing safety over production throughput.
However, the Factory Planner may argue that such a priori-
tization could potentially lead to Robotic Arms stopping too

often, resulting in the production throughput not generating a
minimum income to sustain the production line. Therefore,
such a resolution cannot be accepted during the synchro-
nization of M ′3 and M0

4 . This is an example for which the
resolution of a conflicting need between two stakeholders
creates a new conflicting need with the third stakeholder.

Our proposed rationalization framework and the synchro-
nization process facilitate the identification of such situations.
Specifically, as described in Section IV-A, the resolution
following the prioritization of safety results in the “Stop
Movement” Use Case to be added to UCD-1, which will be
extending the “Move Arm” Use Case, M ′1(U7). This added
dependency flags up a change of property for the “Move Arm”
Use Case, as such, the matrix element, {M ′1(U7), M ′3(U1)} =
E, in D′1,3, requires a re-examination of the validity of the E-
dependency. As discussed earlier, this dependency no longer
holds due to the concern of financial feasibility from the Fac-
tory Planner.

An appropriate resolution would then require stakeholder
consultation involving all parties. To avoid repeating the is-
sue where resolution of conflicts generates new conflicts, a
possible resolution here is to continue prioritizing safety but
requesting the Robotic Arm to redirect itself to avoid un-
safe situations. This would then require artificial intelligence,
which could be modeled by changing the “Follow Predefined
Path” Use Case, M ′3(U2), into a “Follow Self-defined Path”
Use Case. Again, this change, such as any other, needs to
be investigated through the synchronized triads to determine
whether they desynchronize the models by creating new cross-
model dependencies other than the E-dependency. Through a
synchronization enabled change management process, stake-
holders will eventually arrive at an agreement with reasonable
confidence reflected by the achieved synchronization.

To summarize the case study, as presented in Sections III
and IV, incompatible needs that were identified during ra-
tionalization are briefly captured in Table 1, along with the
type of incompatibility and proposed resolution. In the initial
rationalization of three UCDs, no contradiction was identified,
but there were four structural incompatible cases due to miss-
ing relationships between Use Cases derived from different
stakeholders. Following the change introduced in the fourth
UCD, a contradiction has been identified. Initial resolution
leads to a further contradiction that can be resolved by pushing
the changes into further design details. In this simple case
study, it is difficult to argue that these incompatible cases are
only discoverable through our proposed processes. However,
the frameworks offer a systematic and rigorous approach that
promises a level of automation, e.g., tracking of effects from
changes brought by the proposed resolutions into other mod-
els, to avoid human errors.

V. APPLICABILITY TO SELECTED WORKS
In this section, we discuss related work and comment on the
applicability of the framework and the process to these works.
This will also serve to further validate our model theoretic
framework.

34 VOLUME 1, 2023

TABLE 1. Summary of Case Study Results

A. DIFFERENT DIAGRAM TYPES
There are numerous existing works in model-based require-
ments engineering that offer a variety of methods for eliciting
stakeholder needs using standardized modeling languages.
The development of UCD-based approaches can be traced
back to the early 90s [28], when object-oriented software
engineering gained its growing popularity. Since then, sev-
eral applications using approaches based on UCDs have been
reported in various domains, e.g., data warehouse systems
[29] and the IoT [30]. From the UCD-based case study, it is
clear that our approach naturally aligns with these kinds of
approaches.

It has been acknowledged by the community that although
UCDs are a good starting point for needs elicitation, they
are not always the best diagram type to work with due to
lack of semantics, such as precedence. For instance, early
work by Waite and Logan [31] utilized ADs for user need
elicitation, which captured clearly intended functional needs
as well as flows and physical objects that need to be generated
in the process with an intuitive restaurant servicing example.
Following this line of thought, to cope with the limitations
of a single diagram type, various types of diagrams are typi-
cally used in conjunction with each other to enable full scope
elicitation [32], [33], [34], [35]. Multidiagram types become
even more demanding when concerning System of Systems
due to complex interactions and the need for taking the logical
architecture of existing constituent system into account in
the elicitation process [36], [37]. While our framework can
handle different diagrams, since logical dependencies used
to synchronize models are diagram independent, when mul-
tiple diagrams of different types are used in combination, this

FIGURE 13. Illustration of 2-D synchronization.

creates a situation that requires “2-D synchronization” (see
Fig. 13).

Interestingly, a number of the related works emphasized the
importance of a model-based approach being able to manage
and resolve conflicts in addition to just facilitating stakeholder
communications [33], [36], resonating with what we proposed
in this work.

A particular work of interest is the one by Kaiya, Osada,
and Kaijiri, which utilizes derived UCDs as the basis for non-
functional requirements’ elicitations [38]. A key step in their
approach is to “find common and/or similar use cases in the
UCDs” and “find differences among the surroundings,” which
essentially is what we are trying to achieve: rationalization.

B. TWO-DIMENSIONAL SYNCHRONIZATION
The discussion in Section V-A leads to a potentially demand-
ing capability for model-based requirements elicitation to sup-
port the wider practice of MBSE: 2-D synchronization, which
is an idea describing simultaneous “horizontal” and “vertical”
synchronization of models. Here, horizontal synchronization
refers to the process of endogenous rationalization as de-
scribed in this article, while vertical synchronization refers to
exogenous elaboration that was explored in a previous paper
on model synchronization [4].

This idea of 2-D synchronization is conceptually depicted
in Fig. 13, using UCDs and ADs for illustration. As shown,
let us consider two stakeholder groups, denoted as 1 and 2
with the stakeholder needs elicited in a siloed manner, but now
with multiple diagram types, UCD and AD in this illustra-
tion, to fully articulate their intent. Following the framework
introduced in [4], the AD can be developed using structure
preserving transformations. The resultant AD is eventually
an elaboration of the UCD in a consistent way such that the
UCD and the AD form a synchronized pair, e.g., UCD-1
and AD-1. Now that the needs for each stakeholder group
are modeled in a UCD and AD pair, the new rationalization
process would require synchronization between the UCDs
and between the ADs. The new process is intuitive but will
be complicated because while synchronizing horizontally to
achieve rationalization, the vertical synchronization between
UCD and AD pairs needs to be maintained. We envision that a
combined framework based on the article presented in [4] and

VOLUME 1, 2023 35

JI ET AL.: REQUIREMENTS RATIONALIZATION AND SYNTHESIS ENABLED BY MODEL SYNCHRONIZATION

this work would help understanding of the complexity, but the
detailed executable process requires further research to ensure
applicability. The complexity would need to be handled with
a sufficient level of automation, if such a process were to be
adopted in practice.

VI. CONCLUSION
Intended outcomes of stakeholder needs modeling and anal-
ysis to enable system requirements definition that include
resolution of requirements conflicts to achieve agreement
between stakeholders. We have specified a model theoretic
framework that facilitates rationalization and synthesis of
outputs from stakeholder needs elicitation. The framework
has been demonstrated through a case study on robotic arms
in which siloed stakeholder needs are synthesized and fur-
ther rerationalized based on the stakeholder changes. The
demonstration exhibits both an efficacy and robustness of our
matrix-based rationalization and seamless synthesis process.

The real test of the efficacy and robustness will be in the
application of the framework and matrix-based processes to
complex systems and systems of scale. As demonstrated in
this article, seamless synthesis was for models that are of the
same type of semantic structure. It is natural that different
stakeholder groups might use different types of models and
diagrams or modeling languages, including domain-specific
languages rather than general purpose languages. Further re-
search is then needed on how exogenous synthesis can be
performed across rationalized models of different types.

Future work is planned to address both research and com-
mercialization. The advanced mathematics underlying the
model theoretic framework will be published and provide a
basis for collaboration with commercialization partners, such
as the OMG. Longer term collaboration efforts will be fo-
cused on elaboration and implementation of the framework
for MBSE practices in aerospace systems.

REFERENCES
[1] Systems and Software Engineering – System Life Cycle Processes,

ISO/IEC/IEEE 15288:2015, 2015.
[2] INCOSE, INCOSE Systems Engineering Handbook: A Guide for Sys-

tem Life Cycle Processes and Activities, 4th ed. Hoboken, NJ, USA:
Wiley, 2015.

[3] OMG, Systems Modeling Language (UMLTM), v1.5, 2017.
[4] S. Ji, M. K. Wilkinson, and C. E. Dickerson, “Structure preserving

transformations for practical model-based systems engineering,” in
Proc. IEEE Int. Symp. Syst. Eng., 2022, pp. 1–8.

[5] Systems and software engineering– Architecture Description,
ISO/IEC/IEEE 42010:2011, 2011.

[6] M. W. Maier, “Architecting principles for systems-of-systems,” Syst.
Eng., vol. 1, no. 4, pp. 267–284, Feb. 1998.

[7] M. W. Maier, The Art of Systems Architecting. Boca Raton, FL, USA:
CRC, 2009.

[8] A. Kossiakoff, W. N. Sweet, S. J. Seymour, and S. M. Biemer, Sys-
tems Engineering Principles and Practice, vol. 83. Hoboken, NJ, USA:
Wiley, 2011.

[9] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language. New York, NY, USA: Elsevier, 2014.

[10] B. P. Douglass, Agile Systems Engineering. New York, NY, USA: Else-
vier, 2015.

[11] A. W. Wymore, Model-Based Systems Engineering: An Introduction to
the Mathematical Theory of Discrete Systems and to the Tricotyledon
Theory of System Design. Boca Raton, FL, USA: CRC, 1993.

[12] A. Salado and H. Kannan, “Elemental patterns of verification strate-
gies,” Syst. Eng., vol. 22, no. 5, pp. 370–388, Mar. 2019.

[13] D. E. Whitney, “Why mechanical design cannot be like VLSI design,”
Res. Eng. Des., vol. 8, no. 3, pp. 125–138, Sep. 1996.

[14] T. G. Topcu, S. Mukherjee, A. Hennig, and Z. Szajnfarber, “The dark
side of modularity: How decomposing problems can increase system
complexity,” J. Mech. Des., vol. 144, no. 3, Mar. 2022, Art. no. 031403.

[15] H. Kannan, G. V. Bhatia, B. L. Mesmer, and B. Jantzen, “Theoretical
foundations for preference representation in systems engineering,” Sys-
tems, vol. 7, no. 4, Dec. 2019, Art. no. 55.

[16] H. Kannan, B. C. Jantzen, and B. Mesmer, “A formal approach to
identify inconsistencies in stakeholder needs in the context of systems
engineering,” in Proc. AIAA SCITECH Forum, 2022, Paper 1469.

[17] H. Kannan, “Formal reasoning of knowledge in systems engineering
through epistemic modal logic,” Syst. Eng., vol. 24, no. 1, pp. 3–16,
Jan. 2021.

[18] C. E. Dickerson et al., “Architecture definition in complex system de-
sign using model theory,” IEEE Syst. J., vol. 15, no. 2, pp. 1847–1860,
Jun. 2021.

[19] C. Dickerson and S. Ji, Essential Architecture and Principles of Systems
Engineering. Boca Raton, FL, USA: CRC, 2021.

[20] M. D. Griffin, “How do we fix systems engineering?,” in Proc. 61st Int.
Astronaut. Congr., vol. 27, 2010.

[21] T. G. Topcu, K. Triantis, R. Malak, and P. Collopy, “An interdisci-
plinary strategy to advance systems engineering theory: The case of
abstraction and elaboration,” Syst. Eng., vol. 23, no. 6, pp. 673–683,
Nov. 2020.

[22] G. A. Hazelrigg and D. G. Saari, “Toward a theory of systems engineer-
ing,” J. Mech. Des., vol. 144, no. 1, Jan. 2022, Art. no. 011402.

[23] CIO Council, “The application rationalization PLAYBOOK,” Accessed
on: Dec. 23, 2022. [Online]. Available: https://www.cio.gov/assets/files/
Application-Rationalization-Playbook.pdf

[24] T. Mens and P. van Gorp, “A taxonomy of model transformation,”
Electron. Notes Theor. Comput. Sci., vol. 152, pp. 125–142, 2006.

[25] C. E. Dickerson and D. Mavris, “A brief history of models and model
based systems engineering and the case for relational orientation,” IEEE
Syst. J., vol. 7, no. 4, pp. 581–592, Dec. 2013.

[26] C. E. Dickerson, “A relational oriented approach to system of systems
assessment of alternatives for data link interoperability,” IEEE Syst. J.,
vol. 7, no. 4, pp. 549–560, Dec. 2013.

[27] M. Alanen and I. Porres, “Difference and union of models,” in Proc. Int.
Conf. Unified Model. Lang., 2003, pp. 2–17.

[28] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Noida, India: Pearson Education, 1993.

[29] R. Bruckner, B. List, and J. Scheifer, “Developing requirements for
data warehouse systems with use cases,” in Proc. Amer. Conf. Inf. Syst.,
2001, Paper no. 66.

[30] N. L. Laplante, P. A. Laplante, and J. M. Voas, “Stakeholder iden-
tification and use case representation for internet-of-things applica-
tions in healthcare,” IEEE Syst. J., vol. 12, no. 2, pp. 1589–1597,
Jun. 2018.

[31] M. Waite and P. Logan, “Model based user needs analysis,” in Proc.
Syst. Eng. Test Eval. Conf., vol. 7, 2011.

[32] B. London and P. Miotto, “Model-based requirement generation,” in
Proc. IEEE Aerosp. Conf., 2014, pp. 1–10.

[33] W. Brace and K. Ekman, “CORAMOD: A checklist-oriented model-
based requirements analysis approach,” Requirements Eng., vol. 19,
no. 1, pp. 1–26, Apr. 2014.

[34] Y. Mordecai and D. Dori, “Model-based requirements engineering: Ar-
chitecting for system requirements with stakeholders in mind,” in Proc.
IEEE Int. Syst. Eng. Symp., 2017, pp. 1–8.

[35] A. Salado and P. Wach, “Constructing true model-based requirements
in SysML,” Systems, vol. 7, no. 2, Mar. 2019, Art. no. 19.

[36] J. Holt, S. Perry, R. Payne, J. Bryans, S. Hallerstede, and F. O. Hansen,
“A model-based approach for requirements engineering for systems of
systems,” IEEE Syst. J., vol. 9, no. 1, pp. 252–262, Mar. 2015.

[37] O. C. Eichmann, S. Melzer, F. Giertzsch, and R. God, “Stake-
holder needs and requirements definition during service development
in a system of systems,” in Proc. IEEE Int. Syst. Conf., 2020,
pp. 1–8.

[38] H. Kaiya, A. Osada, and K. Kaijiri, “Identifying stakeholders and their
preferences about NFR by comparing use case diagrams of several
existing systems,” in Proc. IEEE 12th Int. Requirements Eng. Conf.,
2004, pp. 112–121.

36 VOLUME 1, 2023

https://www.cio.gov/assets/files/Application-Rationalization-Playbook.pdf
https://www.cio.gov/assets/files/Application-Rationalization-Playbook.pdf

SIYUAN JI (Member, IEEE) received the M.Sc.
and Ph.D. degrees in physics from the University of
Nottingham, Nottingham, U.K., in 2011 and 2015,
respectively.

He is a Senior Lecturer in systems engineering
with Loughborough University, Loughborough,
U.K. He was a Lecturer and the Programme Lead
for M.Sc. in safety-critical systems engineering
with the Department of Computer Science, Uni-
versity of York, U.K. His research is focused
on model-based systems engineering and system

safety assessments, and constraint-driven design algorithms.

CHARLES E. DICKERSON (Senior Member,
IEEE) received the Ph.D. degree in mathematics
from Purdue University, West Lafayette, IN, USA,
in 1980.

He is a Professor and the Chair of systems en-
gineering with Loughborough University, Lough-
borough, U.K. He was a Technical Fellow in BAE
systems in the USA. His aerospace experience
further includes the Lockheed Skunkworks and
Northrop Advanced Systems. He was also a mem-
ber of the Research Staff with Lincoln Laboratory,

Massachusetts Institute of Technology. He has served secondments as the
Aegis Systems Engineer for US Navy Ballistic Missile Defense; and the
Director of Architecture for the Navy’s Chief Engineer. He is currently the
Co-Chair of Mathematical Frameworks in the Object Management Group.

MICHAEL WILKINSON received the B.Sc. de-
gree in physics and the Ph.D. degree in theoretical
physics from King’s College, London, U.K., in
1982 and 1985, respectively.

He is a Chief Technologist and Chief Systems
Engineer with BAE Systems Submarines, U.K.,
and is a Visiting Professor with Loughborough
University, Loughborough, U.K. He was a Tech-
nical Director and Professional Head of Discipline
for Systems Engineering with Atkins. Prior to that,
he was a Technical Director of the Niteworks part-

nership of the Ministry of Defence. He has served as the President and
Academic Director of the U.K. Chapter of the International Council on Sys-
tems Engineering. He is currently the Co-Chair of the INCOSE U.K. Chapter
Architecture Working Group.

VOLUME 1, 2023 37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

